
OpenRTK Documentation

Aceinna Engineering

Apr 07, 2022

Table of contents

I About OpenRTK 2

1 Overview 3

II Tutorial 8

2 Quick Start 9

3 How to Use OpenRTK330 EVK? 17

4 Firmware Online Upgrade 43

5 OpenARC GNSS Correction Service 50

III RTK/IMU Modules 54

6 The OpenRTK330LI Module 55

IV Evaluation Kits 65

7 The OpenRTK330LI EVK 66

V Communication protocol 79

8 ACEINNA protocol data format definition 80

9 USER UART Data Packet 81

10 DEBUG UART Data Packet 85

11 Port command 89

12 CAN Interface Data Protocol 91

13 NMEA 95

i

VI RTKlib tools 97

14 Overview 98

15 Instructions 101

ii

OpenRTK Documentation

OpenRTK is an integrated GNSS (Global Navigation Satellite System) high precision chip and precisely calibrated
Inertial Measurement Unit open-source platform for the development of navigation and localization algorithms. Users
are able to quickly develop and deploy custom navigation/localization algorithms and custom sensor integrations on
top of the OpenRTK platform. OpenRTK also has pre-built drivers in Python as well as a developer website - Aceinna
Navigation Studio (ANS). These tools make logging and plotting data, including custom data structures and packets
very simple.

Social: Twitter | Medium

Table of contents 1

https://twitter.com/MEMSsensortech
https://medium.com/@mikehorton

Part I

About OpenRTK

2

CHAPTER 1

Overview

OpenRTK is an integrated GNSS (Global Navigation Satellite System) high precision chip and precisely calibrated
Inertial Measurement Unit open-source platform for the development of navigation and localization algorithms. A
free Visual Studio Code (VSCode) extension is installed which contains all the software and tools necessary to create
and deploy custom embedded sensor apps using OpenRTK. Visual Studio Code is the recommended IDE and the
extension configures VS Code to include easy access to compilation, code download, JTAG debug, IMU and GNSS
data logging as well as OpenRTK platform updates and news. A developer website called Aceinna Navigation Studio
(ANS) includes additional support tools including a GUI for controlling, plotting and managing data files logged by
your Custom RTK/IMU module. About OpenIMU, you can refer to Aceinna OpenIMU Developer Manual.

The OpenRTK and ANS platform and tool-chain are supported on all three Major OS cross-development platform:

• Windows 7 or 10

3

https://openimu.readthedocs.io/en/latest/

OpenRTK Documentation

• MAC OS 10

• Ubuntu 14.0 or later

Note: Contributions to the public repositories related to this project are welcomed. Please submit a pull request.

The following pages cover:

• What is OpenRTK

• What is the Acienna Navigation Studio

• Who is using OpenRTK and the Acienna Navigation Studio

1.1 What is OpenRTK?

OpenRTK is an open source hardware and software platform for development of high-performance navigation and
localization applications on top of multi-constellation, multi-frequency Global Navigation Satellite System (GNSS)
chips, a family of low-drift pre-calibrated Inertial Measurement Units (IMU) and cloud based server supports.

• Hardware

– OpenRTK hardware features of a multi-frequency, multi-constellation GNSS chipset from STMicroelec-
tronics (aka ST), a triple-redudant 6-axis IMU sensor module from Aceinna, and an embedded STM32
ARM Cortex-M4 MCU with floating-point computation support for complex positioning engine

– Spare I/O and ports for external sensors such as Odometer, camera for enhanced sensor fusion navigation

– There comes two form-factors as follows:

Model Description
OpenRTK330LI Inertial Navigation System Module – Industrial Grade
RTK330LA Inertial Navigation System Module – Automotive Grade (Contact Aceinna)

• Software

– OpenRTK embedded software (i.e. the module firmware) is developped on top of the standard STM32
Cortex MCU library

– Utilizes the FreeRTOS as the real time operating system for MCU

– Provides a cost-free embedded environment and toolchain using VS Code and the associated Aceinna
extension (based on PlatformIO)

– Features with open-sourced firmware in the drivers and user interfaces, user can use or modify the provided
firmware code to utilize or customize:

* raw IMU data generation in sensor data extraction, pre-filtering and output data rate/format/interface
and so on

* UART input/output baudrate/mode/messages

* CAN input/output mode/messages

* Ethernet driver and input/output mode/messages

* SPI driver

* Bluetooth driver

1.1. What is OpenRTK? 4

https://code.visualstudio.com/
https://platformio.org/

OpenRTK Documentation

– Features with proprietary positioning engine library (NOT open-sourced):

* GNSS Real Time Kinematic (RTK) positioning engine

* GNSS/IMU integrated Inertial Navigation System (INS) positioning engine

• Cloud Service

– OpenRTK cloud service provides Networked Transport of RTCM via Internet Protocol (NTRIP) server
and caster service for GNSS correction data

– Provides online developer site for user interface

* Web GUI

* Data and algorithm simulation

* Database for storage

* Live support forum

1.2 What is Aceinna Navigation Studio?

• The Aceinna Navigation Studio (https://developers.aceinna.com) is a navigation system developer’s website and
web-platform.

• It consists of a graphical user interfSace to control and configure OpenRTK units.

• Using a JSON configuration file (“openrtk.json”), the graphical user interface can be customized for user specific
messaging and settings without any additional coding. This aligns the embedded code with both the Python
device server and the GUI pages available on ANS (https://developers.aceinna.com).

• Online tools include graphing, mapping, logging, simulation, GNSS RTK, and GNSS cloud RTK.

• User Forum is available at (https://forum.aceinna.com).

1.2. What is Aceinna Navigation Studio? 5

https://developers.aceinna.com/
https://developers.aceinna.com
https://developers.aceinna.com
https://forum.aceinna.com

OpenRTK Documentation

Python & the Acienna Navigation Studio

The Acienna Navigation Studio (ANS) requires Python to operate. If the user has not installed Python, it can be
installed from https://www.python.org/downloads/. Download and install the latest version.

An open-source Python driver for openrtk is available and required. The Python driver can be used directly from the
terminal to load, log, and test your application. The driver leverages the PySerial library to connect to an OpenRTK
of a serial connection. The python script supports configuring units, firmware updates (JTAG is faster for debugging),
and local data logging.

In addition, the open-source Python driver can acts as a server connecting the OpenRTK hardware with our ANS
developer platform for a GUI experience, cloud data storage and retrieval, as well as stored file charting/plotting tools.

The Aceinna VS Code extension ensures a python environment automatically. The OpenRTK python code can be
installed independently by cloning the repository https://github.com/Aceinna/python-openimu or using pip as shown
below.

pip install openimu

1.3 Who is using it?

OpenRTK is to be used for commercial applications in agriculture, transportation, unmanned vehicles, machine con-
trol, marine navigation, and other industries where efficiencies can be gained from the application of precise, continu-
ally available position and time information.

1.3.1 Applications

Unmanned Vehicles

Initially, unmanned vehicles were used primarily by the defense industry. However, as the unmanned vehicle market
has grown and diversified, the commercial use of unmanned vehicles has also grown and diversified. Some of the

1.3. Who is using it? 6

https://www.python.org/downloads/
https://github.com/Aceinna/python-openimu

OpenRTK Documentation

current civilian uses for unmanned vehicles are: search and rescue, crop monitoring, wildlife conservation, aerial pho-
tography, environmental research, infrastructure inspection, bathymetry, landmine detection and disposal, HAZMAT
inspection and disaster management. As the civilian unmanned vehicle market expands, so will the civilian use of
unmanned vehicles.

Machine Control

GNSS technology is being integrated into equipment such as bulldozers, excavators, graders, pavers and farm ma-
chinery to enhance productivity in the realtime operation of this equipment, and to provide situational awareness
information to the equipment operator. The adoption of GNSS-based machine control is similar in its impact to the
earlier adoption of hydraulics technology in machinery, which has had a profound effect on productivity and reliability.

Precise Agriculture

In precision agriculture, GNSS-based applications are used to support farm planning, field mapping, soil sampling,
tractor guidance, and crop assessment. More precise application of fertilizers, pesticides and herbicides reduces cost
and environmental impact. GNSS applications can automatically guide farm implements along the contours of the
earth in a manner that controls erosion and maximizes the effectiveness of irrigation systems. Farm machinery can be
operated at higher speeds, day and night, with increased accuracy. This increased accuracy saves time and fuel, and
maximizes the efficiency of the operation. Operator safety is also increased by greatly reducing fatigue.

Note: This product has been developed exclusively for commercial applications. It has not been tested for, and makes
no representation or warranty as to conformance with, any military specifications or its suitability for any military
application or end-use. Additionally, any use of this product for nuclear, chemical or biological weapons, or weapons
research, or for any use in missiles, rockets, and/or UAV’s of 300km or greater range, or any other activity prohibited
by the Export Administration Regulations, is expressly prohibited without the written consent and without obtaining
appropriate US export license(s) when required by US law. Diversion contrary to U.S. law is prohibited. Specifications
are subject to change without notice.

1.3. Who is using it? 7

Part II

Tutorial

8

CHAPTER 2

Quick Start

Contents

• OpenRTK330LI EVK Introduction

• Quick Setup and Usage

– Prerequisites

– Usage Steps

• Note

Note: if the figures are blur, click on the figure to see the clearer version

2.1 OpenRTK330LI EVK Introduction

The OpenRTK330LI Evalution Kit (EVK) is designed to evaluate the OpenRTK330LI module with the online Aceinna
Navigation Studio (ANS) and related software stack. A full set of OpenRTK330 EVK is shown below after you unpack
the product box.

where

• 1: ST-Link debugger

• 2: Multi-Constellation and Multi-frequency GNSS antenna, supports

– GPS L1/L2/L5

– GLONASS L1/L2

– GALILEO E1/E5/E6

– BEIDOU B1/B2

• 3: Micro-USB cable

9

OpenRTK Documentation

2.1. OpenRTK330LI EVK Introduction 10

OpenRTK Documentation

• 4: OpenRTK330 Evaluation Board (EVB) with metal flat mounting board

• 5: 12-V DC adapter with 5.5 x 2.1 mm power jack

The picture below shows the detailed overview of OpenRTK330 EVB

where some of the parts are listed here

• 1: OpenRTK330 GNSS/IMU integrated module

• 2: GNSS antenna SMA interface

• 3: Espressif ESP32 bluetooth module

• 4: SWD/JTAG connector, 20-pin

• 7: Boot mode swtich

– Position A: booting from bootloader

2.1. OpenRTK330LI EVK Introduction 11

OpenRTK Documentation

– Position B: normal working mode

• 8: RJ45 jack for Ethernet connection

• 9: Micro-USB port

• 10: 9-pin CAN interface

– Pin-7: CAN_H signal

– Pin-2: CAN_L signal

• 12: EVB working status LEDs, yellow, red, and green LED from left to right

2.2 Quick Setup and Usage

2.2.1 Prerequisites

Hardware

• OpenRTK330LI EVK

• Ethernet cable (must have, not included in the EVK)

• Ethernet router/network switch (optional, not included in the EVK)

Software

• The online Aceinna Navigation Studio (ANS) deverloper website, manily for

– OpenRTK devices management and technical forum and support

– Web-based Graphical User Interface (GUI)

– App center for online firmware upgrade

• The OpenRTK Python driver: Python based program runs on a PC, click here to download the latest version of
executables

– Send/Receive data from ANS to enable Web GUI and online firmware upgrade for OpenRTK330LI device

– Log and parse OpenRTK330LI output data, positioning solution and other debug information to binary
and text files

2.2.2 Usage Steps

1. Power and data link: connect the EVB with a PC using a Micro-USB cable, and the YELLOW LED (#12 on
the EVB figure above) flashes. The EVB is powered on, and four serial com ports are established on the PC.

2. Antenna: connect a GNSS multi-frequency antenna to the SMA interface (#2 on the EVB figure), the GREEN
LED (#12 on the EVB figure above) flashes if the incoming GNSS signal is valid

3. Network: Use an Ethernet calbe to connect the EVB with a network router or switch, and then connect a PC to
the same router/switch using an Ethernet cable. The OpenRTK330LI EVB gets internet access and assigned an
IP address in the local network via DHCP.

4. GNSS RTK and INS Configuration: open a browser (Google Chrome is recommended), visit http://openrtk,

• You will firstly see the following device running status page

2.2. Quick Setup and Usage 12

https://developers.aceinna.com/devices/rtk
https://github.com/Aceinna/python-openimu/releases/
http://openrtk

OpenRTK Documentation

• On the left side menu bar, click “Work Configuration” tab to choose the following working mode of
the device and configure it accordingly:

– Rover: works as a nomarl GNSS positioning unit that is also referring to “NTRIP client” re-
ceiving GNSS data correction

– Base: works as a GNSS reference station with known position and sending GNSS data to
“NTRIP server” to be used as GNSS data correction

Please refer to the “How-to-use” chapter for the detailed configurations.

• On the left side menu bar, click “User Configuration” tab to select the user output data and rate
among the options provided, including NMEA0183 messages and Aceinna format binaries

2.2. Quick Setup and Usage 13

https://openrtk.readthedocs.io/en/latest/useOpenRTK.html

OpenRTK Documentation

• On the left side menu bar, click “Device Info” tab to have the detailed device information displayed,
including firmware version, product number and serial number etc..

5. Live Web GUI: download the latest Python driver executable (v2.2.4 and later), and run it in a command line,
for example:

cd c:\pythondriver-win
.\ans-devices.exe

• Check the console output, the Python driver connects the device and the online ANS website, if successfully,
the following connection information is displayed

2.2. Quick Setup and Usage 14

OpenRTK Documentation

• Go to the online ANS, on the left side menu bar, click “Devices”->”OpenRTK”, then we will have the “Open-
RTK Monitor” webpage as shown below, and the center “Play” button is highlighted indicating correct device
connection with the Web GUI,

• Click “Play”, you will have a live web GUI showing positioning information, map presentation and associated
satellites information

6. Data Logging and Parsing: when the device is connected with the PC via the micro-USB cable, the run-
ning Python driver is logging all serial port output into files, including raw GNSS/IMU data, position-
ing solution and the device configuration. These files are located in a subfolder labelled “.pythondriver-
windataopenrtk_log_xxxxxxxx_xxxxxx”, e.g.

2.2. Quick Setup and Usage 15

https://developers.aceinna.com/

OpenRTK Documentation

which,

• configuration.json: is the device configuration information

• rtcm_base_xxxx_xx_xx_xx_xx_xx.bin: is the received GNSS RTK correction data through internet,
in RTCM format

• rtcm_rover_xxxx_xx_xx_xx_xx_xx.bin: is the GNSS raw data from the device, in RTCM format

• user_xxxx_xx_xx_xx_xx_xx.bin: is the output from the USER UART, including NMEA0183 mes-
sages in ASCII format, raw IMU data and GNSS RTK/INS solution in binary format

Go to the “openrtk_data_parse” subfolder, run the parser executable as below

cd c:\pythondriver-win\
.\ans-devices.exe parse -t openrtk -p ..\data\openrtk_log_20201217_141618

A subfolder with the name “user_xxxx_xx_xx_xx_xx_xx_p” is created and contains the decoded files all in ASCII
format, e.g.

which:

• user_xxxx_xx_xx_xx_xx_xx.nmea: contains the GGA and RMC NMEA0183 messages

• user_xxxx_xx_xx_xx_xx_xx_g1.csv: is the GNSS RTK solution

• user_xxxx_xx_xx_xx_xx_xx_s1.csv: is the raw IMU data

• user_xxxx_xx_xx_xx_xx_xx_y1.csv: is the GNSS satellites information that are used in the solution

2.3 Note

This section presents a brief introduction and quick start on using OpenRTK330LI EVK for RTK and INS positioning.
Please refer to the remaining sections of this tutorial chapter to explore more on OpenRTK330LI’s features and its
usage.

2.3. Note 16

CHAPTER 3

How to Use OpenRTK330 EVK?

Note the usage of OpenRTK330 is described with the OpenRTK330 EVK. There are two types of user APP provided
to interact with both the module and a NTRIP server over the internet providing GNSS correction data for RTK
positioning:

• PC: using the Ethernet interface

– Ethernet connectivity between module and NTRIP server with a lightweight TCP/IP stack embedded in
firmware

– Module settings on positioning parameters and user configuration with a web GUI embedded in firmware

– Map and positioning information display on the online web GUI (“OpenRTK Monitor”) of Aceinna de-
veloper website

17

https://developers.aceinna.com/devices/rtk

OpenRTK Documentation

• Android: the “OpenRTK” Android App with the following contents

– Bluetooth connectivity to module

– 4G connectivity to NTRIP server

– Map display with user trajectory and positioning infromation

– Module settings on positioning parameters and user configuration

The following two subsections cover the detailed steps of using the two types of user App.

3.1 With a PC

Using the OpenRTK330L EVK to evaluate the OpenRTK330L product with a PC requires

• access to the online web based Aceinna Navigation Studio (ANS) via the Micro-USB connection between the
EVB and the PC

• access to NTRIP server over the internet via a Ethernet connection between the EVB and the PC

3.1. With a PC 18

OpenRTK Documentation

3.1.1 Usage

1. Power and data link

Connect the EVB with a PC using a Micro-USB cable, and the YELLOW LED (#12 on the EVB figure
above) flashes. The EVB is powered on, and four serial ports are established on the PC.

2. Antenna

Connect a GNSS multi-frequency antenna to the SMA interface (#2 on the EVB figure), the GREEN
LED (#12 on the EVB figure above) flashes if the incoming GNSS signal is valid

3. Network

There are two ways of for the OpenRTK330LI EVB gets access to internet:

• Use an Ethernet calbe to connect the EVB with a network router or switch, and then connect a PC to
the same router/switch using an Ethernet cable. The OpenRTK330LI EVB gets internet access and
assigned an IP address in the local network via DHCP.

• The other way is using an Ethernet cable to connect the EVB and the PC directly, which requires
internet sharing between the PC and the EVB. For example, with a Windows 10 PC,

– Go to Control PanelNetwork and InternetNetwork Connections, an Ethernet subnetwork is es-
tablished for the Ethernet connection between the EVB and the PC, e.g. “Ethernet 2” as shown
below.

– Right-click “Ethernet 2”, and then click “Properties”, on the “Networking” tab, click “Inter-
net Protocol Version 4 (TCP/IPv4)”, configure the IP settings as follows: the gateway has to
be 192.168.137.1, and the subnet mask has to be 255.255.255.0, while the IP address can be
assigned to one that has not been taken in the network 192.168.137.xx.

– Then, right-click WLAN (assuming the PC uses WiFi for internet access), go to Properties-
>Sharing, check the “Allow other network users to connect through this computer’s internet

3.1. With a PC 19

OpenRTK Documentation

connection”, and select “Ethernet 2” on the drop down menu below, click “OK” to enable the
EVB to have access to internet shared by the PC.

4. Device Configuration on the Embedded Web Pages

A lightweight TCP/IP web service is embedded inside the OpenRTK330 firmware, user can access the
device configurations on the embedded web pages when the device and the PC are in the same local
Ethernet network (connected to the same router or direclty connected). Open a browser (Google Chrome
is recommended), visit http://openrtk,

• You will firstly see the following device running status page

Besides the positioning information, this web page displays the working mode and status of the
device on the most left-upper conner,

– Station Mode, has the following two values:

* NTRIP-CLIENT: the device works as a NTRIP client (Rover), and is used as a position-
ing/navigation equipment

3.1. With a PC 20

http://openrtk

OpenRTK Documentation

* NTRIP-SERVER: the device works as a NTRIP server (Base), and broadcasts its GNSS
data to NTRIP clients for differential GNSS operation

and the mode changes when the user configures the device differently in the “Work Configura-
tion” tab.

– Station Status, has the following thirteen values:

* “Waiting. . . ”: waiting for changes to take effective

* “NTRIP-CLIENT & CONNECT. . . ”: trying to connect with a NTRIP server

* “NTRIP-CLIENT & CONNECT FAIL”: failed to connect with a NTRIP server

* “NTRIP-CLIENT & CONNECTED”: connect with a NTRIP server successfully, waiting
for GNSS correction data

* “NTRIP-CLIENT & RTCM AVAILABLE”: received GNSS correction data successfully
from the NTRIP server

* “NTRIP-SERVER & CONNECT. . . ”: trying to connect with a NTRIP caster

* “NTRIP-SERVER & CONNECT FAIL”: failed to connect with a NTRIP caster

* “NTRIP-SERVER & CONNECTED”: connect with a NTRIP caster successfully, waiting
to output GNSS correction data

* “NTRIP-SERVER & RTCM OUTPUT”: outputting GNSS correction data

* “OpenARC CONNECT. . . ”: trying to connect with Aceinna’s OpenARC cloud service
(e.g. NTRIP server and data service)

* “OpenARC CONNECT FAIL”: failed to connect with Aceinna’s OpenARC cloud service

* “OpenARC CONNECTED”: connect with a Aceinna’s OpenARC cloud service success-
fully, waiting for GNSS correction data

* “OpenARC RTCM AVAILABLE”: received GNSS correction data successfully from
Aceinna’s OpenARC cloud service

• On the left side menu bar, click “Work Configuration” tab to choose the following working mode of
the device and configure it accordingly:

– Rover: works as a nomarl GNSS positioning device that is also referring to “NTRIP client”,
and receives GNSS data correction from a NTRIP server that has to be configured with the
following information, as shown by the “OpenARC Client” tab below

* IP: openarc.aceinna.com

* PORT: 8011

* Mount Point: RTK

* User Name: username

* Password: password

3.1. With a PC 21

OpenRTK Documentation

OpenARC is a cloud service provided by Aceinna for users in the United States to receive
nation-wide GNSS correction data for RTK operation, without the need to set up a local GNSS
base station. More details refer to the section “OpenARC Service” (click here) in this tutorial.

– Base: works as a GNSS reference station with known position and sending GNSS data to
“NTRIP server” to be used as GNSS data correction

5. Live Web GUI on the Online ANS Website

Download (click here) the latest Python driver executable (v2.2.4 and later), and run it in a command line,
for example:

cd c:\pythondriver-win
.\ans-devices.exe

• Check the console output, the Python driver connects the device and the online ANS website, if
successfully, the following connection information is displayed

• Go to the online ANS, on the left side menu bar, click “Devices”->”OpenRTK”, then we will have
the “OpenRTK Monitor” webpage as shown below, and the center “Play” button is highlighted
indicating correct device connection with the Web GUI,

3.1. With a PC 22

https://openrtk.readthedocs.io/en/latest/openarc_service.html
https://github.com/Aceinna/python-openimu/releases/tag/v2.2.4
https://developers.aceinna.com/

OpenRTK Documentation

• Click “Play”, you will have a live web GUI showing positioning information, map presentation and
associated satellites information

6. Data Logging and Parsing on a PC

• With the UART/Serial port

When the device is connected with the PC via the micro-USB cable, the running Python driver is logging all
serial port output into files, including raw GNSS/IMU data, positioning solution and the device configuration.
These files are located in a subfolder labelled “.pythondriver-windataopenrtk_log_xxxxxxxx_xxxxxx”, e.g.

which,

– configuration.json: is the device configuration information

3.1. With a PC 23

OpenRTK Documentation

– rtcm_base_xxxx_xx_xx_xx_xx_xx.bin: is the received GNSS RTK correction data through in-
ternet, in RTCM format

– rtcm_rover_xxxx_xx_xx_xx_xx_xx.bin: is the GNSS raw data from the device, in RTCM for-
mat

– user_xxxx_xx_xx_xx_xx_xx.bin: is the output from the USER UART, including NMEA0183
messages in ASCII format, raw IMU data and GNSS RTK/INS solution in binary format

Go to the “openrtk_data_parse” subfolder, run the parser executable as below

cd c:\pythondriver-win\
.\ans-devices.exe parse -t openrtk -p ..\data\openrtk_log_20201217_141618

A subfolder with the name “user_xxxx_xx_xx_xx_xx_xx_p” is created and contains the decoded files all in
ASCII format, e.g.

which:

– user_xxxx_xx_xx_xx_xx_xx.nmea: contains the GGA and RMC NMEA0183 messages

– user_xxxx_xx_xx_xx_xx_xx_g1.csv: is the GNSS RTK solution

– user_xxxx_xx_xx_xx_xx_xx_s1.csv: is the raw IMU data

– user_xxxx_xx_xx_xx_xx_xx_y1.csv: is the GNSS satellites information that are used in the solution

• With the CAN Interface

User could use a CAN-USB (e.g. https://canable.io/) or CAN-TTL adapter to connect with the DB-9 male
interface on the EVB to log and parse the CAN messages (click here for definitions). Note that user has to write
their own CAN message parsing code using the provided lib or open-source code from the adapter provider.

3.2 With an Android Smartphone

Using the OpenRTK330L EVK to evaluate the module requires

• the installation the “OpenRTK” Android App: provides 4G access to NTRIP server over the internet

• Micro-USB connection to a PC for power and data logging connection

3.2.1 “OpenRTK” App Installation

1. Scan the QR code below or click here to download the Android apk installation file. Make sure your Android
version is 8.0 or above.

3.2. With an Android Smartphone 24

https://canable.io/
https://openrtk.readthedocs.io/en/latest/communication_port/Can_port.html
https://developers.aceinna.com/static/appDownload.html/

OpenRTK Documentation

2. Open the downloaded APK file to install the App

Note: Please grant the OpenRTK App access to run in Android system’s backend.

3.2.2 Usage Steps

1. Connection

• Connect the OpenRTK330 EVB to a PC via a Micro-USB cable, then connect the EVB
with a GNSS antenna, checking the LED lights for working status

• YELLOW: flashing light indicating GNSS chipsets is powered on with valid 1PPS signal
output

• GREEN: flashing light indicating OpenRTK330L INS App is running correctly with valid
GNSS signal receiving

• Enable “Bluetooth” function and “Location” access right for “OpenRTK” App on your
Anroid device

• Open the “OpenRTK” Andorid App, as shown by the picture below, go to the “Connect”
tab and click the “search” icon (right bottom) to search for your device. If your Open-
RTK330 device is found, a Bluetooth device ID appears on the “Connect” list. By factory
setting, the Bluetooth device ID is “OpenRTK_<four digits>” and the four digits are the
last four digits of your OpenRTK330 module S/N. Click your Bluetooth device ID and if
connected successfully, a notification appears

3.2. With an Android Smartphone 25

OpenRTK Documentation

• Besides, detailed Bluetooth connection and user configuration information of the device can be
found on the lower window of the “Log” tab, and NMEA GGA messages are reporting the Open-
RTK330 device position on the upper window of the “Log” tab.

3.2. With an Android Smartphone 26

OpenRTK Documentation

2. Map Presentation

• Once the Bluetooth connection made successfully, and OpenRTK330 is reporting positioning infor-
mation to Android App, go to “Map” tab and click “Start Live Data” to start a live map presentation

3.2. With an Android Smartphone 27

OpenRTK Documentation

• Real time positioning information and trajectory is shown

3.2. With an Android Smartphone 28

OpenRTK Documentation

3. NTRIP Configuration

• In order to get GNSS RTK positioning, go to “NTRIP” tab and configure the NTRIP server settings of your
GNSS correction data provider

3.2. With an Android Smartphone 29

OpenRTK Documentation

• Click “SAVE” to save your NTRIP server settings to your OpenRTK330 module, and then switch on “Pull Base”
to get GNSS correction data for RTK

3.2. With an Android Smartphone 30

OpenRTK Documentation

4. User Configuration.

From anyone of the four tabs, you can access the menu for user configuration by clicking the icon “” at
the upper left corner

3.2. With an Android Smartphone 31

OpenRTK Documentation

• Click “Device Advanced”: user can change and save OpenRTK330 device settings, like Bluetooth
ID, lever arm and so on.

3.2. With an Android Smartphone 32

OpenRTK Documentation

• Click “Developer Option”: user can configure the Android App on map presentation and switch
on/off of saving positioning results (NMEA GGA messages only) to Android phone storage. The
defualt storage path is “Android/data/com.aceinna.rtk/files/log”

3.2. With an Android Smartphone 33

OpenRTK Documentation

5. Data Logging

In the mobile use case, user still needs a PC to log the device output data into files, the OpenRTK Android
app doesnot log data on the phone. Refer to the previous section “With a PC” for data logging details.

3.3 EVK Vehicle Installation

3.3.1 Reference coordinate frames

In order to install the OpenRTK330 EVB on vehicle for driving test, a few reference frames listed below has to be
defined

• The IMU body frame is defined as below and shown in the figure. By default the INS solution of
OpenRTK330 is provided at the center of navigation of the IMU (refer to the mechanical drawing
for accurate IMU navigation center position on the EVB).

• x-axis: points to the same direction as the SMA antenna interface

• z-axis: perpendicular to x-axis and points downward

• y-axis: points to the side of the EVK and completes a right-handed coordinate system

• The vehicle frame is defined as

3.3. EVK Vehicle Installation 34

https://openrtk.readthedocs.io/en/latest/EVK-OpenRTK330LI/mechanical.html

OpenRTK Documentation

3.3. EVK Vehicle Installation 35

OpenRTK Documentation

– x-axis: points out the front of the vehicle in the driving direction

– z-axis: points down to the ground

– y-axis: completes the right-handed system

• The local level navigation frame is defined as

– x-axis: points north

– z-axis: points down parallel with local gravity

– y-axis: points east

• The user output frame is used to transfer the INS solution to a user designated position.

3.3.2 Installation Parameters

Depends on the vehicle installation of the OpenRTK330 system, user has to configure two types of offsets to make the
GNSS integrated INS solution work

• Translation offset

– GNSS antenna lever-arm: GNSS position is estimated to the phase center of the GNSS antenna,
and INS position is estimated to the center of the navigation of the IMU. The translation from
the IMU center to the phase center of the GNSS antenna has to be known and applied to the
integrated system via user configuration of the antenna lever-arm. The GNSS/INS integrated
solution outputs position at the IMU center. For example, the lever arm in the figure below is
[x, y, z] = [-1.0, -1.0, -1.0] meter.

3.3. EVK Vehicle Installation 36

OpenRTK Documentation

– User output lever-arm: If user wants the above GNSS/INS integrated solution output at a more
useful position, the translation between the IMU center and the designated point of interest has
to be known and applied via user configuration of point of interest lever-arm.

• Rotation offset: If the axes of the IMU body frame of the installed OpenRTK330 unit is not aligned
with the vehicle frame, the orientation of the IMU relative to the vehicle also has to be known and
applied via user configuration of rotation angles between the IMU body frame and vehicle frame.
For example, given a installation setup as shown by the following figure

We have to mathematically rotate the IMU body frame to align with the vehicle frame, in the
following order:

1. Rotate IMU cooridnate frame to get z-axis aligned

2. Rotate IMU cooridnate frame to get x-axis aligned

3. Rotate IMU cooridnate frame to get y-axis aligned

For the example above, firstly rotate 90 degrees clockwise along IMU y-axis to align z-axis of
two frames,

Then rotate 90 degrees counter-clockwise along IMU z-axis to align x-axis of two frames.

The final rotation matrix angles that user has to configure are [x, y, z] = [0, -90, 90] degrees.

3.3. EVK Vehicle Installation 37

OpenRTK Documentation

3.3. EVK Vehicle Installation 38

OpenRTK Documentation

3.3.3 Odometer Input from Vehicle

To fully explore the dead reckoning (DR) for vehicular positioning, OpenRTK330LI EVK has the following three
options to get the Odometer data input from the vehicle:

• CAN interface

• wheel-tick signal and FWD (i.e. forward) signal

• USER UART input message

CAN interface

User is recommended to use a OBDII-CAN cable to connect the EVB DB-9 interface with one OBDII
interface on the vehicle, the following photos show an example

3.3. EVK Vehicle Installation 39

OpenRTK Documentation

The CAN message contains vehicle Odometer speed data is different among manufacturers, Open-
RTK330LI EVK provides user configuration on the internal Web interface (https://openrtk) to accom-
mondate the different input CAN messages, as shown below

User has to check the “CAR” option for the CAN mode to enable the data input working mode of the
CAN interface, as shown in the red circle. In the table above, user input the following fields to configure
how the OpenRTK330LI module should parse the incoming Odometer message from CAN bus:

• MesgID: CAN message ID, decimal value

• Startbit: the number of starting bit of the Odometer data

• Length: the Odometer data Length in number of bits

• Endian: 0 - little endian; 1 - big endian

• Sign: 0 - unsigned; 1 - signed

3.3. EVK Vehicle Installation 40

https://openrtk

OpenRTK Documentation

• Factor and Offset: actual Odometer value = (original value + Offset) * Factor

• Unit: 0 - km/h; 1 - mph; 2 - m/s

• Source:

– 0 - right-rear wheel speed (RR)

– 1 - left-rear wheel speed (LR)

– 2 - vehicle speed (combined)

– 3 - gears: fill-in the gear (P, R, N, and D) value in the table below

There are two options to input the vehicle speed depending on the Odometer CAN messages,

• Configure the source to have RR and LR enalbed to obtain aveaged real wheel speed

• Configure the source to have a single combined vehicle speed

and the first option above is recommendded.

USER UART interface

With this approach, user need to extract vehicle speed information from the CAN bus or the wheel speed
encoder and send in the real vehicle speed value through the USER UART, using the “cA” packet de-
scribed in the USER UART data protocol section.

Wheel-tick encoder interface

Another approach to integrate vehicle speed for DR is shown below. A typical aftermarket wheel-tick
encoder is shown on the left. Note that OpenRTK330LI EVB currently only supports one wheel-tick
encoder input. As shown by the right side photo below, the phase-A and phase-B should connect with
the #47 and #48 jumper on the EVB, respectivelly. The input voltage for the pins of OpenRTK330LI
EVB is 3.3 v, if the wheel-tick encoder output voltage does not fit, user has to bring in additional voltage
conversion circuits or module.

In the current design, the wheel-tick input processing takes over the interrupter of the MCU from the SPI
communication ports, thus user needs to choose one of two working mode on the internal web interface
page, as shown by the red circle in the figure below

3.3. EVK Vehicle Installation 41

https://openrtk.readthedocs.io/en/latest/communication_port/User_uart.html#user-uart-data-packet

OpenRTK Documentation

3.3. EVK Vehicle Installation 42

CHAPTER 4

Firmware Online Upgrade

Contents

• WARNING!!!

• Firmware Upgrade Online

4.1 WARNING!!!

I. SAVE BEFORE DEVELOPMENT START: it’s strongly recommended to save your factory OpenRTK330
module system image file to a binary file to be able to recover the whole system if something unexpected
happened! Especially, if the system bootloader and IMU calibration tables are damaged, OpenRTK330 will not
work properly.

• Save system image

1. Download and install ST-Link Utility from here

2. Connect ST-Link debugger between OpenRTK330 EVB and PC and power on the EVB

3. Open ST-Link Utility software on the PC and go to Target->Connect

4. Enter value 0x08000000 in Address box and 0x100000 in Size box as shown by the figure below, then hit
enter

5. Click File->Save As to save the system image file

• Recover system image

1. Connect ST-Link debugger between OpenRTK330 EVB and PC and power on the EVB

2. Open ST-Link Utility software on the PC and go to Target->Connect

43

https://www.st.com/en/development-tools/stsw-link004.html

OpenRTK Documentation

3. Click File->Open and open previously saved image file

4. Click Target->Program & Verify and make sure that the start address is 0x08000000 before you click Start
button to re-programming the OpenRTK330 module

5. Click Target->Option Bytes and select “sector 0”, “sector 1”, “sector 2”, “sector 3” and “sector 11” to
perform write protection. Click Apply button for make it effective.

4.2 Firmware Upgrade Online

Work with the online App Center of ANS (click here) to install/update the OpenRTK330 module firmware, as
shown by

First, upgrade OpenRTK330LI bootloader (to v1.1.1 and later, Win10 only):

1. Connect ST-LINK debugger between a PC and the EVB

2. Use a Micro-USB cable to connect the PC and the EVB and power on the EVB

3. Download the Bootloader bin file from the App center as shown by the above figure

4. Open ST Utility software, click Target->Connect, then click Target->Program & Verify, on the pop dialog as
shown below, load the downloaded bootloader bin file from step 3, check “Verify while programming” and
“Reset after programming”, click “Start” button

4.2. Firmware Upgrade Online 44

https://developers.aceinna.com/code/apps

OpenRTK Documentation

5. Remove ST-LINK debugger from the EVB

Secondly, follow the steps below to upgrade OpenRTK330 firmware:

1. Click here to download the latest Python driver (v2.3.0 and later), e.g. “pythondriver-win.zip” for
Windows 10

2. Unzip the Python driver on a PC, and run the excutable file “ans-devices.exe” in a command line,
e.g.

c:\pythondriver-win\ans-devices.exe

3. Upgrade OpenRTK330 INS App

• Power on the EVB via connecting a Micro-USB cable between the EVB and a PC, the
YELLOW LED starts flashing

• The python driver keeps scanning available serial ports to connect with OpenRTK330, if
connected successfully, you will see the following console output

• On the above App Center webpage, click “GNSS_RTK_INS” App, and then click the
highlighted “UPGRADE” button, the YELLOW LED stops blinking and the GREEN
LED starts blinking quickly

• Upon finishing, you will see the dialog below on the App Center webpage. USER DO
NOT have to do any operation, wait for the YELLOW LED to recover blinking. The
GREEN LED will start blinking if connected to a GNSS antenna with valid signal receiv-
ing

4.2. Firmware Upgrade Online 45

https://github.com/Aceinna/python-openimu/releases

OpenRTK Documentation

4.2. Firmware Upgrade Online 46

OpenRTK Documentation

4.2. Firmware Upgrade Online 47

OpenRTK Documentation

4.2. Firmware Upgrade Online 48

OpenRTK Documentation

4.2. Firmware Upgrade Online 49

CHAPTER 5

OpenARC GNSS Correction Service

Contents

• Introduction

• Usage with the OpenRTK330LI Module

5.1 Introduction

OpenARC is Aceinna’s precise positioning platform that offers easy system integration of GNSS corrections with
high performance GNSS RTK/INS hardware. OpenARC provides secure GNSS corrections powered by a dense RTK
network nation-wide over the United States and a cloud-based architecture.OpenARC offers performance (<10 cm
accuracy with no latency), security and integrity (fault tolerance and encryption) and flexibility, while being cost
effective.

OpenARC service is inherently supported by the OpenRTK330LI navigation module and its cloud service interface is
embedded in the module firmware, and provides a vertically integrated and seamless positioning platform for industrial
and autonomous vehicle applications.

5.2 Usage with the OpenRTK330LI Module

1. Register an OpenARC user account

a. Go to https://openarc.aceinna.com, click “Sign Up” to register an account.

50

https://openarc.aceinna.com

OpenRTK Documentation

b. On the Sign Up page, enter the user name, email, password and confirm password to register, or
directly use your GitHub account to register

2. Create GNSS correction service account

a. Login your OpenARC user account, click on your username that is located on the right-upper corner
of the web page, then click on “RTK credentials”

b. On the “RTK Credentials” web page, click “Add” button

c. On the “Create RTK Credentials” webpage, create a username and password for your GNSS correc-
tion data service, which will be used as the “username” and “password” for a typical NTRIP setting,
e.g.

• IP Address: openarc.aceinna.com

• PORT: 8011

• Mount Point: RTK

• User Name: username

• Password: password

3. Subscribe correction service

a. On your OpenARC account webpage, click “Subscriptions” on the left side menu, and then click the
“Add” button to create a new data service subscription,

5.2. Usage with the OpenRTK330LI Module 51

OpenRTK Documentation

b. On the “Create Subscription” page, select the subscription type and modify the number of devices
that will be associated with this subscription, and then click “Submit” button to get to the payment
page,

c. Fill in your payment method information, and complete the OpenARC GNSS correction service
account creation and subsription.

4. Bundle your OpenRTK330LI device

a. On your OpenARC account webpage, click “Devices” on the left side menu, and then click the
“Add” button to start adding a device,

5.2. Usage with the OpenRTK330LI Module 52

OpenRTK Documentation

b. On the pop up window, enter your OpenRTK330LI device’s serial number manually. This step is
optional as OpenARC will associate your device with your subscription automatically when the
device is connected with OpenARC for the first time. Each OpenRTK330LI device has a service
trial time after you registered with OpenARC by default, which means during this time you can
perform RTK positioning with OpenRTK330LI device.

c. Once your OpenRTK330LI device is associated your OpenARC account, for each device on the
device list you can click the “bind” button to bundle with your purchased RTK correction service
subscription.

5.2. Usage with the OpenRTK330LI Module 53

Part III

RTK/IMU Modules

54

CHAPTER 6

The OpenRTK330LI Module

The Aceinna OpenRTK330 module integrates a ST Teseo V automotive grade multi-constellation, multi-frequency
Global Navigation Satellite System (GNSS) chipset (supports GPS, GALILEO, GLONASS, Beidou, QZSS), a triple-
redundant 6-axis (3-axis accelerometer and 3-axis gyro) MEMS Inertial Measurement Unit (IMU), and a ST M4
MCU as the processor. OpenRTK330 module is targeted for commecial applicaiton for the mass market that requires
a reliable, high-precision and yet cost effective GNSS/INS integrated positioning solution.

Features with:

• 100 Hz GNSS/INS integrated position, velocity and attitude solution

• Integrated tripple redundant 6-axis IMU sensors

• Integrated multi-frequency GNSS chipset with the following two frequency plans

GNSS L1/L2 plan L1/L5 plan
GPS L1 C/A + L2C L1 C/A + L5
GLONASS G1 G1
BeiDou B1I + B2I B1I + B2A
Galileo E1 + E5b E1 + E5a
QZSS L1C + L2C L1C + L5

• RTK algorithms on-board for up to centimetre accuracy

• UART / SPI / CAN / Ethernet Interfaces

6.1 Technical characteristics

Accuracy1

Horizontal Position Accuracy (RMS)
SPS 1.2 m CEP
RTK2 0.02 m

Continued on next page

55

OpenRTK Documentation

Table 1 – continued from previous page
10s GNSS Outage 0.4 m
Vertical Position Accuracy (RMS)
SPS 1.8 m CEP
RTK 0.03 m
10s GNSS Outage 0.6 m
Velocity Accuracy (RMS)
Horizontal 0.02 m/s
Vertical 0.02 m/s
Heading Accuracy (RMS)3 0.5°
Attitude Accuracy (Roll/Pitch, RMS) 0.1°
Operating Limits
Velocity 515 m/s
Acceleration 8 g
Angular Rate 400 °/s
Temperature Calibration Range -40 °C to +85 °C
Timing
Time to First Fix4

Cold Start5 < 60 s
Warm Start6 < 45 s
Hot Start < 11 s
Signal Re-acquisition < 2 s
RTK Initialization Time < 15 s
INS PVA output rate 100 Hz
Sensitivity
Tracking -160 dBm
Cold Start -140 dBm
Environment
Operating Temperature (°C) -40 to +85
Non-Operating Temperature (°C) -55 to +105
Vibration IEC 60068-2-6 (5g)
Shock survival MIL-STD-810G (40g)
Electrical
Input Voltage (VDC) 2.7 to 5.5 V
Power Consumption (W) 1.0 (Typical)
Digital Interface UART, CAN, SPI, Ethernet
Physical
Package Type 50-pin LGA
Size (mm) 31 x 34 x 5
Weight (gm) 5

1 Typical values, subject to ionospheric/tropospheric conditions, satellite geometry, baseline length, multipath and interference effects.
2 Add 1ppm of baseline length.
3 After dynamic motion initialization.
4 Typical values.
5 No previous satellite or position information.
6 Using ephemeris and last known position.

6.1. Technical characteristics 56

OpenRTK Documentation

Notes

6.2 Pin Definitions

No. Name Type Description
1 GND P Ground
2 GND P Ground
3 GND P Ground
4 GND P Ground
5 VBAT P Reserved
6 LED2 O Status2 LED
7 LED1 O Status1 LED
8 ETH_RESET O Reset signal of ETH RMII interface
9 RMII_TXD0 O Transmit data0 of ETH RMII interface
10 RMII_TXD1 O Transmit data1 of ETH RMII interface
11 RMII_TX_EN O Transmit enable of ETH RMII interface
12 VDD_CORE P Reserved
13 VIN P Typical DC3.3V, input voltage DC3.0V~3.6V
14 RMII_RXD1 I Receive data1 of ETH RMII interface
15 ETH_MDC O Management interface (MII) clock output
16 RMII_RXD0 I Receive data0 of ETH RMII interface

Continued on next page

6.2. Pin Definitions 57

OpenRTK Documentation

Table 2 – continued from previous page
17 RMII_REF_CLK I Clock signal of ETH RMII Interface
18 ETH_MDIO I/O Management interface (MII) data I/O
19 RMII_CRS_DV O Carrier sense/receive data valid output of ETH RMII interface
20 GND P Ground
21 GNSS_1PPS I 1PPS signal from external GNSS module
22 GNSS_RTK_STAT I RTK status signal from external GNSS module
23 GNSS_RSTn O Reset signal to external GNSS module
24 GNSS_TX I Receive data from external GNSS module
25 GNSS_RX O Transmit data to external GNSS module
26 DEBUG_NRST I Reset signal of MCU debug interface
27 WIFI/BT_RESET O Rest signal for external WIFI/BT module
28 WIFI/BT_BOOT_CTL O Boot mode select signal for external WIFI/BT module
29 USER_MOSI I SPI interface. Receive data from master
30 USER_SCK I SPI interface. Clock signal from master
31 USER_NSS I SPI interface. Chip selected signal from master
32 USER_MISO O SPI interface. Transmit data to master
33 LED3 O Status3 LED
34 ST_BOOT_MODE I Boot mode control signal for internal ST GNSS chip
35 WIFI/BT_UART2_RX I Receive data from external WiFi/BT module
36 WIFI/BT_UART2_TX O Transmit data to external WiFi/BT module
37 CAN_AB O CAN bus transceiver loopback mode control
38 CAN_120R_CTL O CAN termination resistor control (ON/OFF)
39 USER-DRDY O Data ready signal
40 GND P Ground
41 LTE1_TX O Transmit data to external LTE module 1
42 LTE1_RX I Receive data from external LTE module 1
43 LTE1_PWR O Power control signal for external LTE module 1
44 LTE1_RSTn O Reset signal of external LTE module 1
45 LTE2_RSTn O Reset signal of external LTE module 2
46 GND P Ground
47 LTE2_RX I Receive data from external LTE module 2
48 LTE2_TX O Transmit data to external LTE module 2
49 ST_UART_PROG_TX O Receive data from internal ST GNSS UART2 (GNSS program burning)
50 ST_UART_PROG_RX I Transmit data to internal ST GNSS UART2 (GNSS program burning)
51 DEBUG_TX O Transmit data. DEBUG serial port
52 DEBUG_RX I Receive data. DEBUG serial port
53 CAN_RX I Receive data from CAN bus
54 CAN_TX O Transmit data to CAN bus
55 USER_UART1_RX I Receive data. USER port
56 USER_UART1_TX O Transmit data. USER port
57 SWDIO I/O Data IO of SWD debug interface
58 SWCLK I Clock signal of SWD debug interface
59 ST_UART1_TX O Transmit data from internal ST GNSS UART1 port (debug data)
60 ST_UART1_RX I Receive data to internal ST GNSS UART1 port (debug data)
61 1PPS O 1PPS signal
62 LTE2_PWR O Power control signal for external LTE module 2
63 LNA_EN O Control signal of external LNA power
64 ANT_EN O Antenna enable, reserved
65 ANT_SENSE I Antenna sensing detection, reserved
66 AGND P Internal GNSS RF path ground

Continued on next page

6.2. Pin Definitions 58

OpenRTK Documentation

Table 2 – continued from previous page
67 ANT_IN I GNSS antenna signal input
68 AGND P Internal GNSS RF path ground

6.3 Communication Ports and Operation

USER UART has serial port IAP (program firmware APP) function, ST UART PROG serial port is the serial port for
SDK firmware programming, users must connect. BT UART and ETH can pull base rtcm3 for RTK operation, users
need to choose at least one connection. Other interface users can connect according to their needs. The hardware
design can refer to OpenRTK330 EVK.

6.3.1 User Port

• Pin: USER_UART_RX(#55), USER_UART_TX(#56)

• Default configuration

• Baud tare: 460800 b/s

• Stop bit: 1

• Data bits: 8

• Check Digit: None

• Data format: ACEINNA format, NMEA format

• The main function

• Obtain module information: hardware version number, software version number;

• Obtain and configure module user parameters;

• Send data packets: IMU raw data, positioning data, satellite data;

• Send NMEA format data;

• Function details

The following takes configuration parameters as an example to introduce how to use the ACEINNA for-
mat:

1) Send the “gA” command to the module to obtain all current user parameters:

gA command: [0x55, 0x55, 0x67, 0x41, 0, 0x31, 0x0A]

2) Use the “uP” command to modify the parameters:

uP command: [0x55, 0x55, 0x75, 0x50, data length, parameter number, parameter value,
CRC_L, CRC_H]

For example: configure the three parameters of leverArmBx, leverArmBy, leverArmBz to [0.5,
-0.5, 1] (unit m), you need to send the “uP” command three times, and the setting result will be
returned each time. After the last setting result is returned, send again Set the command next
time.

• Configure leverArmBx: [0x55, 0x55, 0x75, 0x50, 0x08, 0x04, 0, 0, 0, 0, 0, 0, 0x3F,
0x1D, 0x32]

• Configure leverArmBy: [0x55, 0x55, 0x75, 0x50, 0x08, 0x05, 0, 0, 0, 0, 0, 0, 0xBF,
0xCB, 0x69]

6.3. Communication Ports and Operation 59

OpenRTK Documentation

• Configure leverArmBz: [0x55, 0x55, 0x75, 0x50, 0x08, 0x06, 0, 0, 0, 0, 0, 0x80, 0x3F,
0x89, 0x0C]

3) Use the “sC” command to save the parameter value:

sC command: [0x55, 0x55, 0x73, 0x43, 0, 0xC8, 0xCB]

Special Note

"initial":{
"useDefaultUart": 1,

"uart":[
{

"name": "GNSS",
"value": "com10",
"enable": 1

},
{

"name": "DEBUG",
"value": "com11",
"enable": 1

}
],

"userParameters": [
{

"paramId": 4,
"name": "lever arm x",
"value": 0.0

},
{

"paramId": 5,
"name": "lever arm y",
"value": 0.0

}
]

}

The user serial port is the serial port connected by the python driver. If the user needs to enable the data log func-
tion or automatically configure user parameters when the python driver is started, first configure the “initial” field in
openrtk.json as shown in Figure above.

Use OpenRTK/OpenIMU python driver operation

1) Set the log serial port

When the python driver is started with the “-r” suffix, the log function will be enabled and the data of the three
serial ports of USER, GNSS and DEBUG will be recorded at the same time. The USER serial port number can be
automatically identified by the python driver, but GNSS and DEBUG cannot. The user must set these two serial port
numbers.

Case 1: The GNSS/DEBUG of OpenRTK330 EVK is the USER serial port number plus 1 and 2 respectively. Just
configure the “useDefaultUart” field to 1, and the “uart” field does not work at this time.

6.3. Communication Ports and Operation 60

OpenRTK Documentation

Case 2: If the user needs to specify the GNSS/DEBUG serial port number, or does not use the GNSS/DEBUG serial
port (the user has not made a hardware connection), the “useDefaultUart” needs to be configured to 0, and the “uart”
field is valid at this time, the GNSS/DEBUG When “enable” is 1, it means to use this serial port. When not in use,
configure it to 0. “Value” should be the serial port name of the serial port in the system. For example: under windos,
open the device manager, as shown in Figure above, find the connected GNSS and DEBUG serial numbers are COM10
and COM11 respectively, the configuration should be as follows:

"uart":[
{

"name": "GNSS",
"value": "com10",
"enable": 1

},
{

"name": "DEBUG",
"value": "com11",
"enable": 1

}
],

2) Setting paracmeters

When starting the python driver with the “-s” suffix, the “userParameters” parameters can be automatically configured
to the OpenRTK device and saved after power off. Find “userParameters” as shown in Figure 2, and configure fields
for user parameters. All configurable fields are in “userConfiguration”, except for “Data CRC” and “Data Size” whose
paramId is 0 or 1 are not configurable, the others can be added to “userParameters”. Among them, “paramId” and
“value” are mandatory fields, the value of paramId must be consistent with that in “userConfiguration”, and the type
of value must be consistent with “type”.

For example: to configure Ethernet and NTRIP services, the following configuration is required, where the Ethnet
mode value is 1 to use static IP mode, and the value is 0 to use DHCP mode.

"userParameters": [
{

"paramId": 13,
"name": "Ethnet mode",
"value": 1

},
{

"paramId": 14,
"name": "STATIC IP",
"value": "192.168.137.110"

},
{

"paramId": 15,
"name": "NETMASK",
"value": "255.255.255.0"

},
{

"paramId": 16,

(continues on next page)

6.3. Communication Ports and Operation 61

OpenRTK Documentation

(continued from previous page)

"name": "GATEWAY",
"value": "192.168.137.1"

},
{

"paramId": 18,
"name": "IP",
"value": "203.107.45.154"

},
{

"paramId": 19,
"name": "PORT",
"value": 8001

},
{

"paramId": 20,
"name": "MOUNT POINT",
"value": " RTCM32_GGB"

},
{

"paramId": 21,
"name": "USER NAME",
"value": "username"

},
{

"paramId": 22,
"name": "PASSWORD",
"value": "password"

}
]

6.3.2 ST GNSS UART1

• Pin: ST_UART1_TX(#59), ST_UART1_RX(#60)

• Default configuration

• Baud tare: 460800 b/s

• Stop bit: 1

• Data bits: 8

• Check Digit: None

• Data formation: RTCM3 format

• Main function: Send raw data of GNSS receiver satellite signal

6.3.3 DEBUG UART1

• Pin: DEBUG_TX(#51), DEBUG_RX(#52)

• Default configuration

• Baud tare: 460800 b/s

• Stop bit: 1

6.3. Communication Ports and Operation 62

OpenRTK Documentation

• Data bits: 8

• Check Digit: None

• Data formation: ASSIC format, “P1” packet format

• Main function:

• Send “p1” packet data (more detailed than user serial port data), not sending by default

• Get user parameters (only basic parameters are included, user serial port can get all parameters)

• Control “p1” packet data on or off

6.3.4 ST UART PROG

• Pin: ST_UART_PROG_TX(#49), ST_UART1_PROG_RX(#50)

• Default configuration

• Baud tare: 460800 b/s

• Stop bit: 1

• Data bits: 8

• Check Digit: None

• Main function: ST GNSS chip firmware download interface (SDK download port)

6.3.5 BT UART

• Pin: BT_UART2_RX(#35), BT_UART2_TX(#36)

• Default configuration

• Baud tare: 460800 b/s

• Stop bit: 1

• Data bits: 8

• Check Digit: None

• Main function

• Receive RTCM3 data from GNSS base station

• Send module position data in NMEA GPGGA format

6.3.6 SPI Pin Definition

• Pin: USER_MOSI(#29), USER_SCK(#30), USER_NSS(#31), USER_MISO(#32)

• Default configuration

• Frame format: Motorola

• Data length: 8 bits

• First bit: 1

• CPOL: High

6.3. Communication Ports and Operation 63

OpenRTK Documentation

• CPHA: 2Edge

• Main function

• Send “p1” data, “p1” packet format (see 4.3 for details)

6.3.7 CAN Pin Definition

• Pin: CAN_RX(#53), CAN_TX(#54)

• Default configuration

• ECU address: 128 (automatically match, add 1 to this address, maximum 247)

• Baud rate: 250K

• Data format: can communication protocol, which can be divided into the following 3 categories according to
functions:

• Setting parameters: the user sends a setting parameter command, the module does not return

• Get parameters: the user sends a get parameter command, the content of the command is the PF number and PS
number of the data required by the user, and the module returns the corresponding data frame

• Data packet: The module continuously sends data packets according to the data type and frequency configured
by the user

• Main function

• Support SAE J1939 protocol

• Configure CAN interface parameters

• Send user data packet

6.3.8 RMII Pin Definition

• Pin: ETH_RESET(#8), RMII_TXD0(#9), RMII_TXD1(#10), RMII_TX_EN(#11), VDD_CORE(#12),
VIN(#13), RMII_RXD1(#14),

ETH_MDC(#15),RMII_RXD0(#16),RMII_REF_CLK(#17),ETH_MDIO(#18),RMII_CRS_DV(#19)

• Default configuration

• DHCP mode

• Hostname: openrtk, you can access the Web Interface through http://openrtk in the LAN

• Main function

• Support static IP mode and DHCP mode

• Access to Web Interface configuration parameters (including Ethernet, NTRIP, etc.)

• Establish NTRIP CLIENT to pull base rtcm3 data

6.3. Communication Ports and Operation 64

http://openrtk

Part IV

Evaluation Kits

65

CHAPTER 7

The OpenRTK330LI EVK

Contents

• 1. Introduction

• 2. OpenRTK330 EVB

7.1 1. Introduction

The OpenRTK evaluation kit (EVK) is a hardware platform to evaluate the OpenRTK330 GNSS RTK/INS
integrated positioning system and develop various applications based on this platform. Supported by
the online Aceinna Navigation Studio the kit provides easy access to the features of OpenRTK330 and
explains how to integrate the device in a custom design. The OpenRTK EVK is shown below after
unpacking.

66

OpenRTK Documentation

where

• 1: ST-Link debugger

• 2: Multi-Constellation Multi-frequency GNSS antenna

• 3: Micro-USB cable

• 4: OpenRTK330 Evaluation Board (EVB) with metal flat mounting board

• 5: 12-V DC adapter with 5.5 x 2.1 mm power jack

7.2 2. OpenRTK330 EVB

An OpenRTK330 Evaluation board is shown below in detail

where

• 1: OpenRTK330 GNSS/IMU integrated module

• 2: GNSS antenna SMA interface

• 3: Espressif ESP32 bluetooth module

• 4: SWD/JTAG connector, 20-pin

• 5: Extension connector with 6-pin interfaces from left to right

– GND

– Not Connected

7.2. 2. OpenRTK330 EVB 67

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 68

OpenRTK Documentation

– Not Connected

– Connects to pin #56 “USER_UART2_TX” of the OpenRTK330 module

– Connects to pin #55 “USER_UART2_RX” of the OpenRTK330 module

– 1PPS outlet

• 6. Extension connector with 6-pin SPI interfaces from left to right

– Connects to pin #29 “USER_MOSI” of the OpenRTK330 module

– Connects to pin #30 “USER_SCK” of the OpenRTK330 module

– Connects to pin #31 “USER_NSS” of the OpenRTK330 module

– Connects to pin #32 “USER_MISO” of the OpenRTK330 module

– Connects to pin #39 “USER_DRDY” of the OpenRTK330 module

– GND

• 7. Boot mode switch with two positions (A and B)

• 8. RJ45 jack for Ethernet interface

• 9. Micro-USB port

• 10. CAN interface

• 11. Power jack for 12-v adapter

• 12. EVB working status LEDs from left to right

– Yellow: ST GNSS chipset is powered on and working properly

– Red: valid GNSS base station data receiving

– Green: valid GNSS signal receiving

7.2.1 EVB Mechanical Drawing

The following mechanical drawing shows the EVB dimension (in mm) and the position of IMU navigation center.
The IMU navigation center is fixed to the left-bottom corner of the OpenRTK330LI module on the EVB. User is
recommended to measure the level arm from the GNSS antenna phase center to the IMU Navigation center as accurate
as possible.

7.2. 2. OpenRTK330 EVB 69

OpenRTK Documentation

The following mechnical drawing shows the dimension (in mm) of the mounting plate for the OpenRTK330LI EVB:

7.2. 2. OpenRTK330 EVB 70

OpenRTK Documentation

Note: Use the browser’s back button to return to this page.

7.2. 2. OpenRTK330 EVB 71

OpenRTK Documentation

7.2.2 EVB Schematic

7.2. 2. OpenRTK330 EVB 72

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 73

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 74

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 75

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 76

OpenRTK Documentation

7.2. 2. OpenRTK330 EVB 77

OpenRTK Documentation

Schematic download link

7.2. 2. OpenRTK330 EVB 78

Part V

Communication protocol

79

CHAPTER 8

ACEINNA protocol data format definition

Start 1 Start
2

Frame type
1

Frame type
2

Data length
1

Data con-
tent

Check
1

Check
2

Description:

• Start: Each frame of data starts with this, 2 bytes: 0x55 0x55.

• Frame type: 2 bytes, high byte first.

• Data length: 1 byte, refers to the byte length of the data content.

• Data content: maximum 255 bytes.

• Check: crc16 check, 2 bytes, low byte first, bytes from the beginning of the “Frame type” to the end of the “Data
content” are included in the check calculation, and the check algorithm C code is as follows:

uint16_t CalculateCRC (uint8_t *buf, uint16_t length)
{

uint16_t crc = 0x1D0F;

for (int i=0; i < length; i++) {
crc ^= buf[i] << 8;
for (int j=0; j<8; j++) {

if (crc & 0x8000) {
crc = (crc << 1) ^ 0x1021;

}
else {

crc = crc << 1;
}

}
}

return ((crc << 8) & 0xFF00) | ((crc >> 8) & 0xFF);
}

80

CHAPTER 9

USER UART Data Packet

9.1 Get the hardware version number

9.2 Get the software version number

9.3 Get user parameters

Frame type “gA”
Description Obtain all user parameters.
Request frame Start Frame type Data length Data comment Check

0x55 0x55 0x70 0x41 0 None CRC_L CRC_H
Return frame Start Frame type Data length Data content Check

0x55 0x55 0x70 0x41 see below CRC_L CRC_H
Data content:

Offset Variable type Name Unit Description
0 uint16 dataCRC check: CRC16 check of all parameters, including length
2 uint16 dataSize length: length of all parameters, including length and parity
4 char * 2 userPacketType[2] UART data: currently only “s1”
6 uint16 userPacketRate Hz UART data frequency
8 float leverArmBx m lever arm x, lever arm y, lever arm z: the offset from the IMU navigation center to the GNSS antenna

phase center12 float leverArmBy m
16 float leverArmBz m

Continued on next page

81

OpenRTK Documentation

Table 1 – continued from previous page
20 float pointOfInterestBx m User lever arm x, user lever arm also y , user lever arm z: the offset from the IMU navigation center to

the user-defined point.24 float pointOfInterestBy m
28 float pointOfInterestBz m
32 float rotationRbvx deg Rotation x, rotation y, rotation z: the rotation angle from the IMU coordinate system to the vehicle

coordinate system .36 float rotationRbvy deg
40 float rotationRbvz deg
44 uint8 ethMode Ethernet mode: 0: DHCP 1: static IP
45 uint8 * 4 staticIp[4] Static IP: ipv4
49 uint8 * 4 netmask[4] subnet mask
53 uint8 * 4 gateway[4] gateway
57 uint8 * 6 mac[6] Mac address
63 char * 23 ip[23] NTRIP service IP: it can be an IP address or a domain name
86 uint16 port NTRIP port
88 char * 20 mountPoint[20] NTRIP mount point: the software defaults to adding “/” in front
108 char * 16 username[16] NTRIP username
124 char * 24 password[24] NTRIP password
148 uint16 can_ecu_address Can password
150 uint16 can_baudrate Can baud rate: 250K, 500K, 1000K
152 uint16 can_packet_type Can packet
154 uint16 can_packet_rate Can data frequency: 50Hz, 100Hz, 200Hz
156 uint16 can_termresistor Can terminal resistance: 0: Disable 1: Enable
158 uint16 can_baudrate_detect Can automatic baud rate: 0: Disable 1: Enable

9.4 Set user parameters

9.5 Save user parameters

Frame type “sC”
Description Save user parameters
Request frame Start Frame type Data length Data comment Check

0x55 0x55 0x73 0x43 0 None CRC_L CRC_H
Return frame Start Frame type Data length Data content Check

0x55 0x55 0x73 0x43 0 None CRC_L CRC_H
If saving is successful, return as it is; if saving fails, return NAK frame

9.6 Failed frame

Frame type 0x15 0x15
Description NAK frame
Request frame Start Frame type Data length Data comment Check

0x55 0x55 0x15 0x15 2 Failed frame type CRC_L CRC_H

9.4. Set user parameters 82

OpenRTK Documentation

9.7 IMU raw data packet

Frame type “s1”
Description IMU raw data
Data Frame Start Frame

type
Data length Data com-

ment
Check

0x55 0x55 0x73
0x31

36 see below CRC_L
CRC_H

Data content:
Off-
set

Variable type Name Unit Description

0 uint32 week GPS week, seconds within GPS week: GPS
time4 double timeOfWeek s

12 float * 3 accel_g[3] m/s^2 accelerometer(x,y,z)
24 float * 3 rate_dps[3] deg/s gyroscope (x,y,z)

9.8 Combined solution PVA packet

Frame type “pS”
Description position, speed, attitude
Data Frame Start Frame type Data length Data comment Check

0x55 0x55 0x70 0x53 124 see below CRC_L CRC_H
Data content:

Offset Variable type Name Unit Description
0 uint32 week GPS week, seconds within GPS week: GPS time, accurate to milliseconds within a week
4 double timeOfWeek s
12 uint32 positionMode positionMode Positioning mode:0:Invalid 1: Single point solution 4: Fixed solution 5: Floating point

solution
16 double latitude deg latitude
24 double longitude deg longitude
32 double height m height
40 uint32 numberOfSVs Number of satellites
44 float hdop horizontal component precision factor
48 float differential_age s differential time difference
52 uint32 vel_mode Speed mode: 0: Invalid 1: Doppler 2: Pure INS calculation
56 uint32 insStatus Inertial navigation status: 0: invalid 1: INS is in alignment 2: INS solution is not reliable 3: INS

solution is good 4: Pure INS solution (no GNSS update)
60 uint32 insPositionType Inertial navigation positioning type:0: Invalid 1: Pseudo-range single point positioning/INS combina-

tion 4:RTK fixed solution/IN combination 5:RTK floating point
64 float north_vel m/s speed (north)
68 float east_vel m/s speed (east)
72 float up_vel m/s speed (up)
76 float roll deg roll angle
80 float pitch deg pitch angle
84 float heading deg yaw angle
88 float latitude_std Latitude standard deviation
92 float longitude_std Longitude standard deviation

Continued on next page

9.7. IMU raw data packet 83

OpenRTK Documentation

Table 2 – continued from previous page
96 float height_std Height standard deviation
100 float north_vel_std Speed (north) standard deviation
104 float east_vel_std Speed (East) standard deviation
108 float up_vel_std Speed (up) standard deviation
112 float roll_std roll angle standard deviation
116 float pitch_std pitch angle standard deviation
120 float heading_std yaw angle standard deviation

9.9 Satellite information for positioning solution

Frame type “sK”
Description Satellite information
Data Frame Start Frame

type
Data length Data comment Check

0x55 0x55 0x73
0x4B

21*n see below CRC_L
CRC_H

Data content: a frame of data contains multiple satellite information n
Off-
set

Variable
type

Name Unit Description

0+n*21 double timeOfWeek s GPS week, seconds within GPS week: accurate to
milliseconds within a week

8+n*21 uint8 satelliteId atellite number
9+n*21 uint8 systemId system number: 0: GPS 1: GLONASS 2: Galileo 3:

QZSS 4: BeiDou 5: SBAS
10+n*21uint8 antennaId antenna number: 0: Main antenna 1: Secondary an-

tenna
11+n*21uint8 l1cn0 S/N ratio 1: L1
12+n*21uint8 l2cn0 S/N ratio 2: L2 / L5
13+n*21float azimuth deg azimuth
17+n*21float elevation m height

9.9. Satellite information for positioning solution 84

CHAPTER 10

DEBUG UART Data Packet

10.1 Protocol packet format

Debug uart port data package (P1 package) includes four types of data: “imu”, “gnss”, “vel” and “ins”. Each piece of
data contains three parts: packet header, content and check code.

packet header
Offset Variable type Name Description
0 uint8 sync1 sync 1: 0xAA
1 uint8 sync2 sync 2: 0x44
2 uint8 sync3 sync 3: 0x12
3 uint8 header_length Length of packet header: 0x1C
4 uint16 message_id data id: 268-“imu” 42-“gnss” 99-“vel” 507-“ins”
6 uint8 message_type N/A
7 uint8 port_address N/A
8 uint16 message_length Data length: not including header and check code
10 uint16 sequence N/A
12 uint8 idle N/A
13 uint8 time_status N/A
14 uint16 gps_week GPS week
16 uint32 gps_millisecs GPS seconds within a week: unit: ms
20 uint32 status N/A
24 uint16 Reserved N/A
26 uint16 version N/A

Check code:

#define CRC32_POLYNOMIAL 0xEDB88320L

static unsigned long CRC32Value(int i)
{

(continues on next page)

85

OpenRTK Documentation

(continued from previous page)

int j;
unsigned long ulCRC;
ulCRC = i;
for (j = 8; j > 0; j--)
{

if (ulCRC & 1)
ulCRC = (ulCRC >> 1) ^ CRC32_POLYNOMIAL;

else
ulCRC >>= 1;

}
return ulCRC;

}
unsigned long CalculateBlockCRC32(unsigned long ulCount,

unsigned char *ucBuffer)
{

unsigned long ulTemp1, ulTemp2;
unsigned long ulCRC = 0;
while (ulCount-- != 0)
{

ulTemp1 = (ulCRC >> 8) & 0x00FFFFFFL;
ulTemp2 = CRC32Value(((int)ulCRC ^ *ucBuffer++) & 0xff);
ulCRC = ulTemp1 ^ ulTemp2;

}
return (ulCRC);

}

10.2 Original IMU packet

“imu”
Off-
set

Variable type Name Description

0 OpenRTKPacket-
Header

header header

28 uint32 gps_week GPS week
32 double gps_millisecs GPS seconds within a week (ms)
40 uint32 imuStatus N/A
44 float z_acceleration Accelerometer data on z-axis, y-axis, x-axis

(g)48 float y_acceleration
52 float x_acceleration
56 float z_gyro_rate Gyroscope data on z-axis, y-axis, x-axis

(rad/s)60 float y_gyro_rate_neg
64 float x_gyro_rate
68 int8 * 4 crc[4] check code

10.3 GNSS position solution

10.2. Original IMU packet 86

OpenRTK Documentation

“gnss”
Off-
set

Variable type Name Description

0 OpenRTK-
PacketHeader

header header

28 uint32 solution_status N/A
32 uint32 position_type Positioning mode: 0: Invalid 1: Single point solution 4:

Fixed solution 5: Floating point solution
36 double latitude longitude (deg)
44 double longitude Latitude (deg)
52 double height Altitude (m)
60 float undulation N/A
64 uint32 datum_id Geodetic datum coordinate system
68 float longi-

tude_standard_deviation
Longitude standard deviation

72 float lati-
tude_standard_deviation

Latitude standard deviation

76 float height_standard_deviationheight standard deviation
80 int8 * 4 base_station_id[4] N/A
84 float differential_age N/A
88 float solution_age
92 uint8 num-

ber_of_satellites
The number of satellites used in the positioning solution

93 uint8 num-
ber_of_satellites_in_solution

N/A

94 uint8 num_gps_plus_glonass_l1N/A
95 uint8 num_gps_plus_glonass_l2N/A
96 uint8 reserved N/A
97 uint8 ex-

tended_solution_status
N/A

98 uint8 reserved2 N/A
99 uint8 sig-

nals_used_mask
N/A

100 int8 * 4 crc[4] check code

10.4 GNSS velocity solution

“vel”
Offset Variable type Name Description
0 OpenRTKPacketHeader header header
28 uint32 solution_status N/A
32 uint32 position_type N/A
36 float latency N/A
40 float age N/A
44 double horizontal_speed Horizontal speed (m/s)
52 double track_over_ground Ground speed (m/s)
60 double vertical_speed Vertical speed (m/s)
68 float reserved N/A
72 int8 * 4 crc[4] check code

10.4. GNSS velocity solution 87

OpenRTK Documentation

10.5 INS position, velocity and attitude solution

“ins”
Off-
set

Vari-
able
type

Name Description

0 Open-
RTK-
Packet-
Header

header header

28 uint32 gps_weekGPS week
32 double gps_millisecsGPS seconds within a week (ms)
40 double lati-

tude
Latitude (deg)

48 double lon-
gi-
tude

Longitude (deg)

56 double height Height (m)
64 double north_velocityVelocity (north) (m/s)
72 double east_velocityVelocity (East) (m/s)
80 double up_velocityVelocity (up) (m/s)
88 double roll Roll angle (deg)
96 double pitch Pitch angle (deg)
104 double az-

imuth
Yaw angle (deg)

112 int32 sta-
tus

Combined solution status: 0: invalid 1: INS alignment ongoing 2: INS so-
lution is unreliable 3: INS solution is good 4 :INS free(no GNSS update) 5:
Estimating installation angle 6: Completed estima installation angle estima-
tion

116 int8 * 4 crc[4] check code

10.5. INS position, velocity and attitude solution 88

CHAPTER 11

Port command

11.1 Get module configuration information

Command: get configuration\r\n

Return: string in json format

{
"openrtk configuration":

{
"Product Name": "",
"Product PN": "",
"Product SN": "",
"Version": "",
"userPacketType": "s1",
"userPacketRate": 100,
"leverArmBx": 0.0,
"leverArmBy": 0.0,
"leverArmBz": 0.0,
"pointOfInterestBx": 0.0,
"pointOfInterestBy": 0.0,
"pointOfInterestBz": 0.0,
"rotationRbvx": 0,
"rotationRbvy": 0,
"rotationRbvz": 0

}
}

At the same time, the module will close the P1 packet output of the DEBUG port.

11.2 Enable P1 packet output

Command: log debug on\r\n

89

OpenRTK Documentation

Return: N/A, the module will directly output P1 packet data after a delay of 1 second.

11.2. Enable P1 packet output 90

CHAPTER 12

CAN Interface Data Protocol

12.1 CAN port settings

• Save parameters

Frame type Save parameters
Description Save user parameters, no loss after power failure
Set frame PF ps PGN Data content length

255 81 65361 3
Data content:
Byte Description Value
0 Frame type 0: Request frame 1: Reply frame
1 Destination address
2 Reply frame is valid 0: Save failed 1: Save successfully

• Set CAN packet type

Frame
type

Set CAN data packet type

Description Set the type of CAN data sent cyclically
Set frame PF PS PGN Data content length

255 86 65366 3
Data content:
Byte Description Value
0 destination ad-

dress
1 Data packet type

(low byte)
0x01-accelerometer 0x02-Gyroscope 0x04-latitude and longitude 0x08-
attitude Note: The package can be sent together, such as 0x03, both ac-
celerometer and gyroscope2 Packet type (high

byte)

• Set CAN data frequency

91

OpenRTK Documentation

Frame type Set CAN data frequency
Description Set the frequency of CAN data sent cyclically
Set frame PF PS PGN Data content length

255 85 65365 2
Data content:
Byte Description Value
0 destination address
1 Data frequency 0-Quiet Mode 1-100(default) 2-50 4-25 5-20 10(0x0a)-10

20(0x14)-5 25(0x19)-4 50(0x32)-2

12.2 Get parameters through CAN port

Frame type Get parameters
Description Get specified parameters
Get frame PF PS PGN Data content length

234 255 60159 3
Data content:
Byte Description Value
0 N/A
1 Parameter PF PF and PS of specific parameters, see below 2 parameter PS
2 Parameter PS

• Get the software version number

Frame type Get software version number
Description Get specified parameters
Get frame PF PS PGN Data content length

254 218 65242 5
Data content:
Byte Description Value
0 Major Version Number
1 Minor Version Number
2 Patch Number
3 Stage Number
4 Build Number

• Get ECU ID

12.2. Get parameters through CAN port 92

OpenRTK Documentation

Frame type Get ECU ID
Descrip-
tion

Get specified parameters

Get frame PF PS PGN Data content length
253 197 64965 8

Data content:
Bits Description Value
bits 0 Arbitrary Address Arbitrary Address
bits 1:3 Industry Group Industry Group
bits 4:7 Vehicle System Instance Vehicle System Instance
bits 8:14 System Bits System Bits Vehicle system domain
bits 15 Reserved Reserved Reserved
bits 16:23 Function Bits Function Bits Function domain
bits 24:28 Function Instance Function Instance
bits 29:31 ECU Bits ECU Bits ECU instance domain
bits 32:42 Manufacturer code Manufacturer code Manufacturer code field
bits 43:63 ID bits ID bits number

• Get CAN packet type

Frame type Get CAN data packet type
Description
Get frame PF PS PGN Data content length

225 86 65366 3
Data content:
Byte Description Value
0 destination address
1 Packet type (low byte)
2 Packet type (high byte)

• Get CAN data frequency

Frame type Get CAN data frequency
Description
Get frame PF PS PGN Data content length

255 85 65365 2
Data content:
Byte Description Value
0 destination address
1 Data frequency

• Latitude and longitude position

Frame type Latitude and longitude position
Description
Data frame PF PS PGN Data content length

254 243 65267 8
Data content:
Byte Description Value
0:3 Latitude 0.0000001 deg/bit
4:7 Longitude 0.0000001 deg/bit

• Attitude

12.2. Get parameters through CAN port 93

OpenRTK Documentation

Frame type Attitude
Description
Data frame PF PS PGN Data content length

241 25 127257 8
Data content:
Byte Description Value
0 SID
1:2 yaw angle 0.0001 rad/bit
3:4 pitch angle 0.0001 rad/bit
5:6 roll angle 0.0001 rad/bit
7 Latitude

• Accelerometer data

Frame type Accelerometer data
Description
Data frame PF PS PGN Data content length

240 45 61485 8
Data content:
Byte Description Value
0:1 Accelerometer x axis 0.01 m/s**2/bit -320 m/s**2
2:3 Accelerometer y axis 0.01 m/s**2/bit -320 m/s**2
4:5 Accelerometer z axis 0.01 m/s**2/bit -320 m/s**2
6:7 reserved

• Gyroscope data

Frame type Gyroscope data
Description
Data frame PF PS PGN Data content length

240 42 61482 8
Data content:
Byte Description Value
0:1 gyroscope x axis 1/128 deg/second/bit -250 deg
2:3 gyroscope y axis 1/128 deg/second/bit -250 deg
4:5 gyroscope z axis 1/128 deg/second/bit -250 deg
6:7 reserved

12.2. Get parameters through CAN port 94

CHAPTER 13

NMEA

$GNGGA

Format: $GNGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,< 11>,<12>*xx<CR><LF> E.g:
$GNGGA,072446.00,3130.5226316,N,12024.0937010,E,4,27,0.5,31.924,M,0.000,M,2.0,*44 Field explanation:

• <0> $GNGGA

• <1> UTC time, the format is hhmmss.sss

• <2> Latitude, the format is ddmm.mmmmmmm

• <3> Latitude hemisphere, N or S (north latitude or south latitude)

• <4> Longitude, the format is dddmm.mmmmmmm

• <5> Longitude hemisphere, E or W (east longitude or west longitude)

• <6> GNSS positioning status: 0 not positioned, 1 single point positioning, 2 differential GPS fixed solution, 4
fixed solution, 5 floating point solution

• <7> Number of satellites used

• <8> HDOP level precision factor

• <9> Altitude

• <10> The height of the earth ellipsoid relative to the geoid

• <11> Differential time

• <12> Differential reference base station label

• * Statement end marker

• xx XOR check value of all bytes starting from $ to *

• <CR> Carriage return, end tag

• <LF> line feed, end tag

95

OpenRTK Documentation

$GNRMC

Format: $GNRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,< 12>*xx<CR><LF> E.g: $GN-
RMC,072446.00,A,3130.5226316,N,12024.0937010,E,0.01,0.00,040620,0.0,E,D*3D Field explanation:

• <0> $GNRMC

• <1> UTC time, the format is hhmmss.sss

• <2> Positioning status, A=effective positioning, V=invalid positioning

• <3> Latitude, the format is ddmm.mmmmmmm

• <4> Latitude hemisphere, N or S (north latitude or south latitude)

• <5> Longitude, the format is dddmm.mmmmmmm

• <6> Longitude hemisphere, E or W (east longitude or west longitude)

• <7> Ground speed

• <8> Ground heading (take true north as the reference datum)

• <9> UTC date, the format is ddmmyy (day, month, year)

• <10> Magnetic declination (000.0~180.0 degrees)

• <11> Magnetic declination direction, E (east) or W (west)

• <12> Mode indication (A=autonomous positioning, D=differential, E=estimation, N=invalid data)

• * Statement end marker

• XX XOR check value of all bytes starting from $ to *

• <CR> Carriage return, end tag

• <LF> line feed, end tag

$GNGSA

format: $GNGSA,<1>,<2>,<3>,<3>„„,<3>,<3>,<3>,<4>,<5>,<6>,<7> *xx<CR><LF> E.g:
$GNGSA,A,3,03,06,09,17,19,23,28„„„3.0,1.5,2.6,1*25 $GNGSA,A,3,65,66,67,81,82,88„„„,2.4,1.3,2.1,2*36
$GNGSA,A,3,02,05,09,15,27„„„„,10.8,2.7,10.4,3*3A $GNGSA,A,3,01,02,07,08,10,13,27,28,32,33,37„2.1,1.0,1.9,5*33
Field explanation:

• <1> Mode: M=Manual, A=Auto

• <2> Positioning type: 1=not positioned, 2=two-dimensional positioning, 3=three-dimensional positioning

• <3> PRN code (Pseudo Random Noise Code), channels 1 to 12, up to 12

• <4> PDOP position precision factor

• <5> HDOP level precision factor

• <6> VDOP vertical precision factor

• <7> GNSS system ID: 1(GPS), 2(GLONASS), 3(GALILEO), 5(BEIDOU)

• * Statement end marker

• xx XOR check value of all bytes starting from $ to *

• <CR> Carriage return, end tag

• <LF> line feed, end tag

96

Part VI

RTKlib tools

97

CHAPTER 14

Overview

14.1 What is RTKlib

RTKLIB is an open source program package for standard and precise positioning with GNSS (global navigation
satellite system). It supports standard and precise positioning algorithms with GPS, GLONASS, Galileo, QZSS,
BeiDou and SBAS.

14.2 RTKlib tools supporting Aceinna Format

RTKlib tools supporting Aceinna Format is s special version of RTKlib which supports aceinna data format to display
data, decode data, save data, and also plotting and RTK processing.

RTKLIB_with Aceinna format binary version: https://github.com/Aceinna/rtklib_bin_aceinna

RTKLIB_with Aceinna format_source version: https://github.com/Aceinna/rtklib_aceinna

14.3 Aceinna data format

Aceinna-user and aceinna-raw are two data formats exported from Openrtk330LI; They are output from serial port 1
and serial port 3 of Openrtk330LI; Aceinna-user data include imu raw data, rtk and ins solution; Aceinna-raw includes
rover, base RTCM data and imu raw data.

14.3.1 Aceinna-User Format

Data format definition

Start 1 Start 2 Frame type 1 Frame type 2 Data length 1 Data content Check 1 Check 2

Description

98

https://github.com/Aceinna/rtklib_bin_aceinna
https://github.com/Aceinna/rtklib_aceinna

OpenRTK Documentation

• Start: Each frame of data starts with this, 2 bytes: 0x55 0x55.

• Frame type: 2 bytes, high byte first.

• Data length: 1 byte, refers to the byte length of the data content.

• Data content: maximum 255 bytes.

• Check: crc16 check, 2 bytes, low byte first, bytes from the beginning of the “Frame type” to the end of the “Data
content” are included in the check calculation, and the check algorithm C code is as follows:

uint16_t CalculateCRC (uint8_t *buf, uint16_t length)
{

uint16_t crc = 0x1D0F;

for (int i=0; i < length; i++) {
crc ^= buf[i] << 8;
for (int j=0; j<8; j++) {

if (crc & 0x8000) {
crc = (crc << 1) ^ 0x1021;

}
else {

crc = crc << 1;
}

}
}

return ((crc << 8) & 0xFF00) | ((crc >> 8) & 0xFF);
}

Frame types

Aceinna-user has five types of data, namely “S1”, “G1”, “I1”, “O1” and “Y1”; For the specific structure of each type of
format, please refer to the openrtk documentation https://openrtk.readthedocs.io/en/latest/communication_port/User_
uart.html#imu-raw-data-packet

14.3.2 Aceinna-raw Format

Aceianna-raw is composed of four format types of $GPGGA$GPIMU$GPROV$GPREF;

$GPGGA

$GPGGA is the standard NMEA GGA format.

$GPIMU

$GPIMU is the IMU information in NMEA format.

$GPIMU time of week accel-x accel-y accel-z gyro-x gyro-y gyro-z

$GPROV

$GPROV contains the RTCM package from Rover.

$GPROV time of week left length RTCM bin

$GPREF

$GPREF contains the RTCM package from Base.

14.3. Aceinna data format 99

https://openrtk.readthedocs.io/en/latest/communication_port/User_uart.html#imu-raw-data-packet
https://openrtk.readthedocs.io/en/latest/communication_port/User_uart.html#imu-raw-data-packet

OpenRTK Documentation

$GPRRF time of week left length RTCM bin

14.3. Aceinna data format 100

CHAPTER 15

Instructions

15.1 Use strsvr to decode aceinna-user data

Use strsvr to decode aceinna-user data format. Decode aceinna format data and display information in monitor dialog
and save it in files.

15.1.1 Set input stream parameter

Select serial for (0) input. Click “opt” button to open the Serial Options dialog.

Select the first serial port in the serial Options dialog.

101

OpenRTK Documentation

Bitrate is selected as 460800.

15.1.2 Set output files path

Select the path to save the file. For example: C:/Users/zhangchen/Desktop/rtklog/.

15.1.3 Show the data in monitor dialog and save file

Click the small square button to open Input Stream Monitor dialog.

15.1. Use strsvr to decode aceinna-user data 102

OpenRTK Documentation

Select the aceinna-user format.

Click “start” button to start receiving data.

Strsvr is running.

15.1. Use strsvr to decode aceinna-user data 103

OpenRTK Documentation

The data decoding information is showed in monitor dialog.

The file is saved in the previous output path.

15.2 Use RTKLIBNAVI to decode aceinna-user data

Aceinna-raw data is the result outputfrom OpenRTK330. Using rtklibnavi to connect the first serial port of openrtk330,
the RTK processing result data can be recognized These data can be displayed by SNR plot, sky map and GND Trk.

15.2. Use RTKLIBNAVI to decode aceinna-user data 104

OpenRTK Documentation

15.2.1 Set input stream parameter

Click the ‘I’ button to open Input Streams dialog.

Check (1) Rover in the Input Streams dialog.

Select “serial” in the type option.

15.2. Use RTKLIBNAVI to decode aceinna-user data 105

OpenRTK Documentation

Click “opt” button to open the Serial Options dialog.

Select the frist serial port in the serial Options dialog.

Bitrate is selected as 460800.

15.2. Use RTKLIBNAVI to decode aceinna-user data 106

OpenRTK Documentation

Format is selected as Aceinna-raw.

15.2.2 Set output log files path

Select the path to save the file. For example: C:/Users/zhangchen/Desktop/rtklog/.

Click the ‘L’ button to open Log Streams dialog.

Check (6) Rover ,select File type and input the log file paths. Click “OK” button.

15.2. Use RTKLIBNAVI to decode aceinna-user data 107

OpenRTK Documentation

15.2.3 Start to receive data

Click the “start” button to start receiving the data.

When receiving the data, the SNR bar is plotted.

Click the arrow button to switch view (SNR bar, sky map, positioning coordinates, horizontal error scatter, position
error timeseries in north, east and up).

15.2. Use RTKLIBNAVI to decode aceinna-user data 108

OpenRTK Documentation

The sky map.

Both sky map and SNR plot.

The Gnd Trk.

15.2. Use RTKLIBNAVI to decode aceinna-user data 109

OpenRTK Documentation

Click the “Plot” button to open RTKPLOT.

The RTKPLOT dialog.

Select the drop-down list to switch views.

15.2. Use RTKLIBNAVI to decode aceinna-user data 110

OpenRTK Documentation

The Position views.

Click “stop” button to stop receiving data.

The file is saved in the previous output path.

15.2. Use RTKLIBNAVI to decode aceinna-user data 111

OpenRTK Documentation

15.3 Use RTKLIBNAVI to decode aceinna-raw data

Aceinna-raw data contains the original data of rover station and base station. Using rtklibnavi to connect the third
serial port of openrtk330, the rover station and the base station information can be read at the same time. These data
can be displayed by SNR plot, sky map, baseline and GND Trk. At the same time, these data can also be used for RTK
processing.

15.3.1 Set input stream parameter

Click the ‘I’ button to open Input Streams dialog.

Check (1) Rover in the Input Streams dialog.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 112

OpenRTK Documentation

Select serial in the type option.

Click “opt” button to open the Serial Options dialog.

Select the third serial port in the serial Options dialog.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 113

OpenRTK Documentation

Bitrate is selected as 460800.

Format is selected as Aceinna-raw.

15.3.2 RTK processing config

Close the Input Streams dialog and click the “options” button to open the options dialog.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 114

OpenRTK Documentation

In the options dialog, choose the RTK posting mode option as “kinematic” or “static”.

15.3.3 Start to receive data

Click “start” button to start receiving the data.

When receiving the data, the SNR map of Rover and base according to the data will appear in GUI, and RTK results
will be displayed.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 115

OpenRTK Documentation

Click the arrow button to switch view (SNR bar, sky map, positioning coordinates, horizontal error scatter, position
error timeseries in north, east and up).

The sky maps.

The baseline.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 116

OpenRTK Documentation

The Gnd Trk.

Click “Plot” button to Open RTKPLOT.

The RTKPLOT dialog.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 117

OpenRTK Documentation

Select the drop-down list to switch views.

The Position views.

15.3. Use RTKLIBNAVI to decode aceinna-raw data 118

	I About OpenRTK
	Overview

	II Tutorial
	Quick Start
	How to Use OpenRTK330 EVK?
	Firmware Online Upgrade
	OpenARC GNSS Correction Service

	III RTK/IMU Modules
	The OpenRTK330LI Module

	IV Evaluation Kits
	The OpenRTK330LI EVK

	V Communication protocol
	ACEINNA protocol data format definition
	USER UART Data Packet
	DEBUG UART Data Packet
	Port command
	CAN Interface Data Protocol
	NMEA

	VI RTKlib tools
	Overview
	Instructions

