

OpenPIV: a python package for PIV image analysis.

OpenPIV is a effort of scientists to deliver a tool for the analysis of PIV images
using state-of-the-art algorithms. OpenPIV is released under the
GPL Licence [http://en.wikipedia.org/wiki/GNU_General_Public_License],
which means that the source code is freely available for users to study, copy, modify
and improve. Because of its permissive licence, you are welcome to download and try
OpenPIV for whatever need you may have. Furthermore, you are encouraged to contribute
to OpenPIV, with code, suggestions and critics.

OpenPIV exists in three forms: Matlab, C++ and Python. This is the home page of the Python implementation.

Contents:

	Basics of the PIV algorithms

	Installation instruction

	OpenPIV tutorial

	Multi-grid window deformation algorithm tutorial

	OpenPIV masking tutorial

	Information for developers and contributors

	API reference

	Frequently Asked Questions about PIV parameters

Indices and tables

	Index

	Module Index

	Search Page

Basics of the PIV algorithms

Using open source PIV software, OpenPIV (http://www.openpiv.net) written with the great help of Python, Numpy, Scipy (http://www.scipy.org) and runs online thanks to the great MyBinder project.

What is it about? Particle Image Velocimetry (PIV)

From Wikipedia: “Particle image velocimetry (PIV) is an optical method of flow visualization used in education and research. It is used to obtain instantaneous velocity measurements and related properties in fluids. The fluid is seeded with tracer particles which, for sufficiently small particles, are assumed to faithfully follow the flow dynamics (the degree to which the particles faithfully follow the flow is represented by the Stokes number). The fluid with entrained particles is illuminated
so that particles are visible. The motion of the seeding particles is used to calculate speed and direction (the velocity field) of the flow being studied.” Read more at http://en.wikipedia.org/wiki/Particle_image_velocimetry.

Particle Image Velocimetry (PIV) is a non-intrusive state-of-the-art technique for flow measurements (e.g.: Raffel et al., 2007, Adrian, 1991). The PIV technique is based on image recording of the illuminated flow field using seeding particles. The technique is based on illuminating the particles in a plane by forming a coherent light sheet. The light scattered by the particles is recorded on a sequence of image frames. The displacement of the particle images between two consecutive light pulses
is determined through evaluation of the PIV recordings and by applying a spatial cross-correlation function as implemented by the OpenPIV resulting with a two dimensional two component velocity field.

In practice, small tracer particles, common sized are in the order of 10-100 microns, are introduced to the flow. The flow is illuminated twice by means of a laser light sheet forming a plane where the camera is focused on. The time delay between the pulses depends on the mean velocity and the image magnification. It is assumed that the tracer particles follow the local flow velocity between the two consecutive illuminations. The light scattered from the tracer particles is imaged via an optical
lens on a digital camera. The images, acquired as pairs correspond to the two laser pulses, are than correlated using a cross-correlation function and image processing tools in order to provide the velocity field.

The effectiveness of the measurement results strongly depends on a large number of parameters such as particles concentration, size distribution and shape, illumination source, recording device, and synchronization between the illumination, acquisition and recording systems (Huang et al., 1997). An appropriate choice of the different parameters of the cross correlation analysis (e.g., interrogation area, time between pulses, scaling) will influence the results accuracy. Read more about PIV in
the following chapters: Gurka and Kit, in Handbook of Environmental Fluid Mechanics, CRC Press, 2014 http://www.crcnetbase.com/doi/abs/10.1201/b13691-39 or Taylor, Gurka and Liberzon “Particle Image Velocimetry for Biological Mechanics” in the Handbook of Imaging in Biological Mechanics, CRC Press, 2015, http://www.crcpress.com/product/isbn/9781466588134.

Open source software to learn the basics

In principle velocimetry is a method to find out the velocity field of the moving fluid. “Particle” image velocimetry is the way to get velocity field from images of small particles, called tracers. The basic principle is to use two images of the same particles with a small time delay between them. For that purpose, typically two laser shots are created and two images are taken.

This tutorial will follow the most simple analysis path from the two images to the velocity field and some post-analysis. We will use one of many open source packages, the open source particle image velocimetry http://www.openpiv.net

[1]:

import the standard numerical and plotting packages
import matplotlib.pyplot as plt
import numpy as np
from skimage.io import imread

We have downloaded some sample images from PIV challenge, see http://www.pivchallenge.org/pub/#b or another standard PIV images project: http://www.piv.jp/down/image05e.html

[2]:

load the images
a = imread("../images/B005_1.tif")
b = imread("../images/B005_2.tif")

fig, axs = plt.subplots(1, 2, figsize=(9, 4))
axs[0].imshow(a, cmap=plt.cm.gray)
axs[1].imshow(b, cmap=plt.cm.gray)
plt.show()

[image: ../_images/src_piv_basics_4_0.png]

The two images show the positions of the particles at two different times. We can analyze small regions of interest, called interrogation windows. Typically we can start with a size of 32 x 32 pixels or smaller. Until recently, the fast algorithms used powers of 2, so the historical sizes are always powers of 2: 8, 16, 32, 64, 128, …

Let’s take the first top left windows from each image.

[3]:

win_size = 32

a_win = a[:win_size, :win_size].copy()
b_win = b[:win_size, :win_size].copy()

fig, axs = plt.subplots(1, 2, figsize=(9, 4))
axs[0].imshow(a_win, cmap=plt.cm.gray)
axs[1].imshow(b_win, cmap=plt.cm.gray)
plt.show()

[image: ../_images/src_piv_basics_6_0.png]

We can see that the bright pixels moved between the two frames. We can find out the distance that all the particles moved between frame A and frame B using the principles of least squares or correlations, but let’s first try to get it manually.

If we shift the window IA by some pixels to the right and subtract from IB the shifted IA, we shall see how good the shift predicts the real displacement between the two.

[4]:

fig = plt.imshow(b_win - a_win, cmap=plt.cm.gray)
plt.title("Without shift")
plt.show()

[image: ../_images/src_piv_basics_8_0.png]

[5]:

plt.imshow(b_win - np.roll(a_win, (1, 0), axis=(0, 1)), cmap=plt.cm.gray)
plt.title("Difference when A has been shifted by 1 pixel")
plt.show()

[image: ../_images/src_piv_basics_9_0.png]

Let’s try to find the best shift algorithmically: shift and calculated the sum of squared differences the minimum is the best shift

[6]:

def match_template(img, template, maxroll=8):
 best_dist = np.inf
 best_shift = (-1, -1)
 for y in range(maxroll):
 for x in range(maxroll):
 # calculate Euclidean distance
 dist = np.sqrt(np.sum((img - np.roll(template, (y, x), axis=(0, 1))) ** 2))
 if dist < best_dist:
 best_dist = dist
 best_shift = (y, x)
 return (best_dist, best_shift)

[7]:

let's test that it works by manually rolling (shifting circurlarly) the same
image
match_template(np.roll(a_win, (2, 0), axis=(0, 1)), a_win)

[7]:

(0.0, (2, 0))

[8]:

indeed, when we find the correct shift, we got zero distance. it's not so in real images:
best_dist, best_shift = match_template(b_win, a_win)
print(f"{best_dist=}")
print(f"{best_shift=}")

best_dist=170.43180454363556
best_shift=(0, 1)

We can draw this as a vector of velocity

\[u = \frac{\Delta x \text{ pixels}}{\Delta t} ,\qquad v = \frac{\Delta y \text{ pixels}}{\Delta t}\]

where \(\Delta t\) is the time interval (delay) between the two images (or two laser pulses).

[9]:

fig, axs = plt.subplots(1, 2, figsize=(9, 4))
axs[0].imshow(np.roll(a_win, best_shift, axis=(0, 1)), cmap='gray')
axs[1].imshow(b_win, cmap='gray')
plt.show()

[image: ../_images/src_piv_basics_15_0.png]

Well, maybe it’s not the best match, but it is already better than nothing.

The problem now is that manually shifting each image and repeating the loop many times is impractical. However, based on the same principle of finding the right shift, one can get by using a different template matching principle, based on the property called cross-correlation (cross because we use two different images). In short this is an efficient computational algorithm to find out the right shift. You can see more details here: http://paulbourke.net/miscellaneous/correlate/.

[10]:

from scipy.signal import correlate

cross_corr = correlate(b_win - b_win.mean(), a_win - a_win.mean(), method="fft")
Note that it's approximately twice as large than the original windows, as we
can shift a_win by a maximum of it's size - 1 horizontally and vertically
while still maintaining some overlap between the two windows.
print("Size of the correlation map: %d x %d" % cross_corr.shape)

Size of the correlation map: 63 x 63

[11]:

let's see what the cross-correlation looks like
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = fig.add_subplot(projection="3d")
Y, X = np.meshgrid(np.arange(cross_corr.shape[0]), np.arange(cross_corr.shape[1]))

ax.plot_surface(Y, X, cross_corr, cmap='jet', linewidth=0.2) # type: ignore
plt.title("Correlation map — peak is the most probable shift")
plt.show()

[image: ../_images/src_piv_basics_18_0.png]

[12]:

let's see the same correlation map, from above
plt.imshow(cross_corr, cmap=plt.cm.gray)

y, x = np.unravel_index(cross_corr.argmax(), cross_corr.shape)
print(f"{y=}, {x=}")

plt.plot(x, y, "ro")
plt.show()

y=30, x=32

[image: ../_images/src_piv_basics_19_1.png]

The image of the correlation map shows the same result that we got manually looping. We need to shift a_win to give the best possible correlation between the two windows. If there best correlation would come from no shift, the result would be (31, 31)—the center of symmetry.

[13]:

dy, dx = y - 31, x - 31
print(f"{dy=}, {dx=}")

dy=-1, dx=1

We can get the first velocity field by repeating this analysis for all small windows. Let’s take 32 x 32 pixels windows from each image and do the loop:

[14]:

def vel_field(curr_frame, next_frame, win_size):
 ys = np.arange(0, curr_frame.shape[0], win_size)
 xs = np.arange(0, curr_frame.shape[1], win_size)
 dys = np.zeros((len(ys), len(xs)))
 dxs = np.zeros((len(ys), len(xs)))
 for iy, y in enumerate(ys):
 for ix, x in enumerate(xs):
 int_win = curr_frame[y : y + win_size, x : x + win_size]
 search_win = next_frame[y : y + win_size, x : x + win_size]
 cross_corr = correlate(
 search_win - search_win.mean(), int_win - int_win.mean(), method="fft"
)
 dys[iy, ix], dxs[iy, ix] = (
 np.unravel_index(np.argmax(cross_corr), cross_corr.shape)
 - np.array([win_size, win_size])
 + 1
)
 # draw velocity vectors from the center of each window
 ys = ys + win_size / 2
 xs = xs + win_size / 2
 return xs, ys, dxs, dys

[15]:

xs, ys, dxs, dys = vel_field(a, b, 32)
norm_drs = np.sqrt(dxs ** 2 + dys ** 2)

fig, ax = plt.subplots(figsize=(6, 6))
we need these flips on y since quiver uses a bottom-left origin, while our
arrays use a top-right origin
ax.quiver(
 xs,
 ys[::-1],
 dxs,
 -dys,
 norm_drs,
 cmap="plasma",
 angles="xy",
 scale_units="xy",
 scale=0.25,
)
ax.set_aspect("equal")
plt.show()

[image: ../_images/src_piv_basics_24_0.png]

If you’ve followed along this far, great! Now you understand the basics.

We can also try out a variant of this that uses a search window larger than the interrogation window instead of relying on zero-padding. By avoiding using zero-padding around the search window, movement detection should theoretically be a bit better, assuming that the window sizes are chosen well.

[16]:

def vel_field_asymmetric_wins(
 curr_frame, next_frame, half_int_win_size, half_search_win_size
):
 ys = np.arange(half_int_win_size[0], curr_frame.shape[0], 2 * half_int_win_size[0])
 xs = np.arange(half_int_win_size[1], curr_frame.shape[1], 2 * half_int_win_size[1])
 dys = np.zeros((len(ys), len(xs)))
 dxs = np.zeros((len(ys), len(xs)))
 for iy, y in enumerate(ys):
 for ix, x in enumerate(xs):
 int_win = curr_frame[
 y - half_int_win_size[0] : y + half_int_win_size[0],
 x - half_int_win_size[1] : x + half_int_win_size[1],
]
 search_win_y_min = y - half_search_win_size[0]
 search_win_y_max = y + half_search_win_size[0]
 search_win_x_min = x - half_search_win_size[1]
 search_win_x_max = x + half_search_win_size[1]
 truncated_search_win = next_frame[
 max(0, search_win_y_min) : min(b.shape[0], search_win_y_max),
 max(0, search_win_x_min) : min(b.shape[1], search_win_x_max),
]
 cross_corr = correlate(
 truncated_search_win - np.mean(truncated_search_win),
 int_win - np.mean(int_win),
 mode="valid",
 method="fft",
)
 dy, dx = np.unravel_index(np.argmax(cross_corr), cross_corr.shape)
 # if the top of the search window got truncated, shift the origin
 # up to the top edge of the (non-truncated) search window
 if search_win_y_min < 0:
 dy += -search_win_y_min
 # if the left of the search window got truncated, shift the origin
 # over to the left edge of the (non-truncated) search window
 if search_win_x_min < 0:
 dx += -search_win_x_min
 # shift origin to the center of the search window
 dy -= half_search_win_size[0] - half_int_win_size[0]
 dx -= half_search_win_size[1] - half_int_win_size[1]
 dys[iy, ix] = dy
 dxs[iy, ix] = dx
 return xs, ys, dxs, dys

[17]:

int_win_size = np.array([32, 32])
print(f"{int_win_size=}")
assert np.all(np.array(a.shape) % int_win_size == 0)
assert np.all(int_win_size % 2 == 0)
half_int_win_size = int_win_size // 2

search_win_size = int_win_size * 2
print(f"{search_win_size=}")
assert np.all(search_win_size % 2 == 0)
half_search_win_size = search_win_size // 2
assert np.all(search_win_size > int_win_size)
print(
 "max velocity that can be detected with these window sizes: "
 + f"{half_search_win_size - half_int_win_size}"
)

int_win_size=array([32, 32])
search_win_size=array([64, 64])
max velocity that can be detected with these window sizes: [16 16]

Making the search window larger compared to the interrogation window would allow for larger velocities to be detected.

[18]:

xs_asym, ys_asym, dxs_asym, dys_asym = vel_field_asymmetric_wins(
 a, b, half_int_win_size, half_search_win_size
)
norm_drs_asym = np.sqrt(dxs_asym ** 2 + dys_asym ** 2)

fig, axs = plt.subplots(1, 2, figsize=(12, 6))
axs[0].quiver(
 xs,
 ys[::-1],
 dxs,
 -dys,
 norm_drs,
 cmap="plasma",
 angles="xy",
 scale_units="xy",
 scale=0.25,
)
axs[1].quiver(
 xs_asym,
 ys_asym[::-1],
 dxs_asym,
 -dys_asym,
 norm_drs_asym,
 cmap="plasma",
 angles="xy",
 scale_units="xy",
 scale=0.25,
)
axs[0].set_title(
 f"{win_size} x {win_size} int. win. + "
 f"{win_size} x {win_size} 0-padded search win."
)
axs[1].set_title(
 f"{int_win_size[0]} x {int_win_size[1]} int. win. + "
 f"{search_win_size[0]} x {search_win_size[0]} unpadded search win."
)
ax.set_aspect("equal")
plt.show()

[image: ../_images/src_piv_basics_29_0.png]

Additional examples

Run this Jupyter notebook without installation:

Now you can take our online Jupyter notebook and process any pairs of images yourself, on the cloud, http://github.com/openpiv/openpiv-python-example.

Download the OpenPIV and try it yourself: https://github.com/OpenPIV

See multiple examples

Including how to work with movies, different series of files, all kind of tips and tricks in our repository of Jupyter notebooks in the https://github.com/OpenPIV/openpiv-python-examples

Installation instruction

Dependencies

OpenPIV would not have been possible if other great open source projects did not
exist. We make extensive use of code and tools that other people have created, so
you should install them before you can use OpenPIV.

The dependencies are:

	Python [http://python.org/]

	Scipy [http://numpy.scipy.org/]

	Numpy [http://www.scipy.org/]

	scikit-image [http://scikit-image.org/]

On all platforms, the following Python distribution is recommended:

	Anaconda <https://store.continuum.io/cshop/anaconda/>

Installation

Use conda

conda install -c conda-forge openpiv

Or use pip

pip install numpy cython
pip install openpiv --pre

Get OpenPIV source code!

At this moment the only way to get OpenPIV’s source code is using git.
Git [http://en.wikipedia.org/wiki/Git_%28software%29] Git is a distributed revision control system and
our code is hosted at GitHub.

Bleeding edge development version

If you are interested in the source code you are welcome to browse out git repository
stored at https://github.com/alexlib/openpiv-python. If you want to download the source code
on your machine, for testing, you need to set up git on your computer. Please look at
http://help.github.com/ which provide extensive help for how to set up git.

To follow the development of OpenPIV, clone our repository with the command:

git clone http://github.com/openpiv/openpiv-python.git

and update from time to time. You can also download a tarball containing everything.

Then add the path where the OpenPIV source are to the PYTHONPATH environment variable, so
that OpenPIV module can be imported and used in your programs. Remeber to build the extension
with

python setup.py build_ext --inplace

Experience problems?

If you encountered some issues, found difficult to install OpenPIV following these instructions
please register and write on our Google groups forum https://groups.google.com/g/openpiv-users , so that we can help you and
improve this page!

OpenPIV tutorial

In this tutorial we read a pair of images and perform the PIV using a standard algorithm. At the end, the velocity vector field is plotted.

[21]:

from openpiv import tools, pyprocess, validation, filters, scaling

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import imageio
import importlib_resources
import pathlib

Reading images:

The images can be read using the imread function, and diplayed with matplotlib.

[22]:

path = importlib_resources.files('openpiv')

[23]:

frame_a = tools.imread(path / 'data/test1/exp1_001_a.bmp')
frame_b = tools.imread(path / 'data/test1/exp1_001_b.bmp')

fig,ax = plt.subplots(1,2,figsize=(12,10))
ax[0].imshow(frame_a,cmap=plt.cm.gray);
ax[1].imshow(frame_b,cmap=plt.cm.gray);

[image: ../_images/src_tutorial1_4_0.png]

Processing

In this tutorial, we are going to use the extended_search_area_piv function, wich is a standard PIV cross-correlation algorithm.

This function allows the search area (search_area_size) in the second frame to be larger than the interrogation window in the first frame (window_size). Also, the search areas can overlap (overlap).

The extended_search_area_piv function will return three arrays. 1. The u component of the velocity vectors 2. The v component of the velocity vectors 3. The signal-to-noise ratio (S2N) of the cross-correlation map of each vector. The higher the S2N of a vector, the higher the probability that its magnitude and direction are correct.

[24]:

winsize = 32 # pixels, interrogation window size in frame A
searchsize = 38 # pixels, search area size in frame B
overlap = 17 # pixels, 50% overlap
dt = 0.02 # sec, time interval between the two frames

u0, v0, sig2noise = pyprocess.extended_search_area_piv(
 frame_a.astype(np.int32),
 frame_b.astype(np.int32),
 window_size=winsize,
 overlap=overlap,
 dt=dt,
 search_area_size=searchsize,
 sig2noise_method='peak2peak',
)

The function get_coordinates finds the center of each interrogation window. This will be useful later on when plotting the vector field.

[25]:

x, y = pyprocess.get_coordinates(
 image_size=frame_a.shape,
 search_area_size=searchsize,
 overlap=overlap,
)

Post-processing

Strictly speaking, we are ready to plot the vector field. But before we do that, we can perform some convenient pos-processing.

To start, lets use the function sig2noise_val to get a mask indicating which vectors have a minimum amount of S2N. Vectors below a certain threshold are substituted by NaN. If you are not sure about which threshold value to use, try taking a look at the S2N histogram with:

plt.hist(sig2noise.flatten())

[26]:

invalid_mask = validation.sig2noise_val(
 sig2noise,
 threshold = 1.05,
)

Another useful function is replace_outliers, which will find outlier vectors, and substitute them by an average of neighboring vectors. The larger the kernel_size the larger is the considered neighborhood. This function uses an iterative image inpainting algorithm. The amount of iterations can be chosen via max_iter.

[27]:

u2, v2 = filters.replace_outliers(
 u0, v0,
 invalid_mask,
 method='localmean',
 max_iter=3,
 kernel_size=3,
)

Next, we are going to convert pixels to millimeters, and flip the coordinate system such that the origin becomes the bottom left corner of the image.

[28]:

convert x,y to mm
convert u,v to mm/sec

x, y, u3, v3 = scaling.uniform(
 x, y, u2, v2,
 scaling_factor = 96.52, # 96.52 pixels/millimeter
)

0,0 shall be bottom left, positive rotation rate is counterclockwise
x, y, u3, v3 = tools.transform_coordinates(x, y, u3, v3)

Results

The function save is used to save the vector field to a ASCII tabular file. The coordinates and S2N mask are also saved.

[29]:

tools.save('exp1_001.txt' , x, y, u3, v3, invalid_mask)

Finally, the vector field can be plotted with display_vector_field.

Vectors with S2N bellow the threshold are displayed in red.

[30]:

fig, ax = plt.subplots(figsize=(8,8))
tools.display_vector_field(
 pathlib.Path('exp1_001.txt'),
 ax=ax, scaling_factor=96.52,
 scale=50, # scale defines here the arrow length
 width=0.0035, # width is the thickness of the arrow
 on_img=True, # overlay on the image
 image_name= str(path / 'data'/'test1'/'exp1_001_a.bmp'),
);

[image: ../_images/src_tutorial1_18_0.png]

Multi-grid window deformation algorithm tutorial

[6]:

import packages

[7]:

from openpiv import windef # <---- see windef.py for details
from openpiv import tools, scaling, validation, filters, preprocess
import openpiv.pyprocess as process
from openpiv import pyprocess
import numpy as np
import pathlib
import importlib_resources
from time import time
import warnings

import matplotlib.pyplot as plt
%matplotlib inline

Set up all the settings:

	where the images are

	where to save the results

	names of the image files

	what is the region of interest

	do you apply dynamic masking or a masking image

	what kind of correlation to apply: circular vs linear

	interrogation window sizes, overlap sizes, number of iterations

	time interval, interpolation options, etc.

Read the tutorial by Theo Kaufer with all the details. See windef.py for more code details

[8]:

settings = windef.PIVSettings()

path = importlib_resources.files('openpiv')

'Data related settings'
Folder with the images to process
settings.filepath_images = path / 'data' / 'test1' # type: ignore
Folder for the outputs
settings.save_path = path / 'data' / 'test1' # type: ignore
Root name of the output Folder for Result Files
settings.save_folder_suffix = 'Test_1'
Format and Image Sequence (see below for more options)
settings.frame_pattern_a = 'exp1_001_a.bmp'
settings.frame_pattern_b = 'exp1_001_b.bmp'

or if you have a sequence:
settings.frame_pattern_a = '000*.tif'
settings.frame_pattern_b = '(1+2),(2+3)'
settings.frame_pattern_b = '(1+3),(2+4)'
settings.frame_pattern_b = '(1+2),(3+4)'

'Region of interest'
(50,300,50,300) #Region of interest: (xmin,xmax,ymin,ymax) or 'full' for full image
settings.roi = 'full'

'Image preprocessing'
'None' for no masking, 'edges' for edges masking, 'intensity' for intensity masking
WARNING: This part is under development so better not to use MASKS
settings.dynamic_masking_method = 'None'
settings.dynamic_masking_threshold = 0.005
settings.dynamic_masking_filter_size = 7

settings.deformation_method = 'symmetric'

'Processing Parameters'
settings.correlation_method='circular' # 'circular' or 'linear'
settings.normalized_correlation=False

settings.num_iterations = 2 # select the number of PIV passes
add the interroagtion window size for each pass.
For the moment, it should be a power of 2
settings.windowsizes = (64, 32, 16) # if longer than n iteration the rest is ignored
The overlap of the interroagtion window for each pass.
settings.overlap = (32, 16, 8) # This is 50% overlap
Has to be a value with base two. In general window size/2 is a good choice.
methode used for subpixel interpolation: 'gaussian','centroid','parabolic'
settings.subpixel_method = 'gaussian'
order of the image interpolation for the window deformation
settings.interpolation_order = 3
settings.scaling_factor = 1 # scaling factor pixel/meter
settings.dt = 1 # time between to frames (in seconds)
'Signal to noise ratio options (only for the last pass)'
It is possible to decide if the S/N should be computed (for the last pass) or not
settings.extract_sig2noise = True # 'True' or 'False' (only for the last pass)
method used to calculate the signal to noise ratio 'peak2peak' or 'peak2mean'
settings.sig2noise_method = 'peak2peak'
select the width of the masked to masked out pixels next to the main peak
settings.sig2noise_mask = 2
If extract_sig2noise==False the values in the signal to noise ratio
output column are set to NaN
'vector validation options'
choose if you want to do validation of the first pass: True or False
settings.validation_first_pass = True
only effecting the first pass of the interrogation the following passes
in the multipass will be validated
'Validation Parameters'
The validation is done at each iteration based on three filters.
The first filter is based on the min/max ranges. Observe that these values are defined in
terms of minimum and maximum displacement in pixel/frames.
settings.min_max_u_disp = (-30, 30)
settings.min_max_v_disp = (-30, 30)
The second filter is based on the global STD threshold
settings.std_threshold = 7 # threshold of the std validation
The third filter is the median test (not normalized at the moment)
settings.median_threshold = 3 # threshold of the median validation
On the last iteration, an additional validation can be done based on the S/N.
settings.median_size=1 #defines the size of the local median
'Validation based on the signal to noise ratio'
Note: only available when extract_sig2noise==True and only for the last
pass of the interrogation
Enable the signal to noise ratio validation. Options: True or False
settings.do_sig2noise_validation = False # This is time consuming
minmum signal to noise ratio that is need for a valid vector
settings.sig2noise_threshold = 1.2
'Outlier replacement or Smoothing options'
Replacment options for vectors which are masked as invalid by the validation
settings.replace_vectors = True # Enable the replacment. Chosse: True or False
settings.smoothn=True #Enables smoothing of the displacemenet field
settings.smoothn_p=0.5 # This is a smoothing parameter
select a method to replace the outliers: 'localmean', 'disk', 'distance'
settings.filter_method = 'localmean'
maximum iterations performed to replace the outliers
settings.max_filter_iteration = 4
settings.filter_kernel_size = 2 # kernel size for the localmean method
'Output options'
Select if you want to save the plotted vectorfield: True or False
settings.save_plot = False
Choose wether you want to see the vectorfield or not :True or False
settings.show_plot = True
settings.scale_plot = 200 # select a value to scale the quiver plot of the vectorfield
run the script with the given settings

Run the windef.py function, called piv with these settings

[9]:

windef.piv(settings)

/home/user/Documents/repos/openpiv-python/openpiv/data/test1
exp1_001_a.bmp
True
[PosixPath('/home/user/Documents/repos/openpiv-python/openpiv/data/test1/exp1_001_a.bmp')]

[image: ../_images/src_windef_6_1.png]

Image Pair 1
exp1_001_a exp1_001_b

Run the extended search area PIV for comparison

[10]:

we can run it from any folder
path = settings.filepath_images

frame_a = tools.imread(path / settings.frame_pattern_a)
frame_b = tools.imread(path / settings.frame_pattern_b)

frame_a = (frame_a).astype(np.int32)
frame_b = (frame_b).astype(np.int32)

u, v, sig2noise = process.extended_search_area_piv(frame_a, frame_b, \
 window_size=32, overlap=16, dt=1, search_area_size=64, sig2noise_method='peak2peak')
x, y = process.get_coordinates(image_size=frame_a.shape,
 search_area_size=64, overlap=16)
mask_s2n = validation.sig2noise_val(sig2noise, threshold = 1.3)
mask_g = validation.global_val(u, v, (-1000, 2000), (-1000, 1000))
invalid = mask_s2n | mask_g
u, v = filters.replace_outliers(u, v, invalid, method='localmean',
 max_iter=10, kernel_size=2)
x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 1)
x, y, u, v = tools.transform_coordinates(x, y, u, v)
tools.save(x, y, u, v, invalid, 'test1.vec')
tools.display_vector_field('test1.vec', scale=75, width=0.0035);

[image: ../_images/src_windef_8_0.png]

Options for creating lists of images

Options:

 settings.pattern_a = 'image_*_a.bmp'
 settings.pattern_b = 'image_*_b.bmp'

or
 settings.pattern_a = '000*.tif'
 settings.pattern_b = '(1+2),(2+3)'

will create PIV of these pairs: 0001.tif+0002.tif, 0002.tif+0003.tif ...

 settings.pattern_a = '000*.tif'
 settings.pattern_b = '(1+3),(2+4)'

will create PIV of these pairs: 0001.tif+0003.tif, 0002.tif+0004.tif ...
or
 settings.pattern_a = '000*.tif'
 settings.pattern_b = '(1+2),(3+4)'

will create PIV of these pairs: 0001.tif+0002.tif, 0003.tif+0004.tif ...

OpenPIV masking tutorial

In this tutorial we focus on the two ways you can use image masking in OpenPIV.

Definitions:

	static mask - an image with regions that should not be processed are marked as 1 (white color in black and white image or True) and regions that are processed are unmasked (zeros, False)

	dynamic mask - every pair of images (frame A, B) are processed to find out the region that has to be masked, e.g. a fish body around which we want to analyze PIV vectors. An average mask is then applied to both frames and PIV analysis

OpenPIV uses these masks in two ways:

	masked image regions are set to zero or completely black. frame_a[image_mask] = 0

	PIV analysis in a completely black interrogation windows result in a zero peak and marked as invalid.

	in addition, the image mask is converted in a set of x,y coordinates on a PIV grid that mark the masked region in the vector field. These mask_coords are propagating through the window deformation and stored with the x,y,u,v,mask in the ASCII result files. The vector fields u,v are numpy.MaskedArray so the masked regions are invalid and should not appear in the plot. They could be also replaced by zeros or NaN if needed.

[1]:

from openpiv import tools, pyprocess, validation, filters, scaling, preprocess
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import imageio
import importlib_resources
import pathlib

[2]:

path = importlib_resources.files('openpiv') # pathlib.Path type

[3]:

frame_a = tools.imread(path / 'data' / 'test3' / 'pair_4_frame_0.jpg')
frame_b = tools.imread(path / 'data' / 'test3' / 'pair_4_frame_1.jpg')

[4]:

fig,ax = plt.subplots(1,2,figsize=(12,10))
ax[0].imshow(frame_a,cmap='gray');
ax[1].imshow(frame_b,cmap='gray');

[image: ../_images/src_masking_4_0.png]

Rescale intensity or stretch histogram to get better contrast

[5]:

frame_a = preprocess.contrast_stretch(frame_a)
frame_b = preprocess.contrast_stretch(frame_b)
plt.figure(figsize=(12,12))
plt.imshow(np.c_[frame_a, frame_b], cmap='gray')

[5]:

<matplotlib.image.AxesImage at 0x7fec92ebf970>

[image: ../_images/src_masking_6_1.png]

Processing

In this tutorial, we are going to use the extended_search_area_piv function, wich is a standard PIV cross-correlation algorithm.

This function allows the search area (search_area_size) in the second frame to be larger than the interrogation window in the first frame (window_size). Also, the search areas can overlap (overlap).

The extended_search_area_piv function will return three arrays. 1. The u component of the velocity vectors 2. The v component of the velocity vectors 3. The signal-to-noise ratio (S2N) of the cross-correlation map of each vector. The higher the S2N of a vector, the higher the probability that its magnitude and direction are correct.

[6]:

winsize = 64 # pixels, interrogation window size in frame A
searchsize = 64 # pixels, search area size in frame B
overlap = 32 # pixels, 50% overlap
dt = 1.0 # sec, time interval between the two frames

u, v, sig2noise = pyprocess.extended_search_area_piv(
 frame_a.astype(np.int32),
 frame_b.astype(np.int32),
 window_size=winsize,
 overlap=overlap,
 dt=dt,
 search_area_size=searchsize,
 sig2noise_method='peak2peak',
)

The function get_coordinates finds the center of each interrogation window. This will be useful later on when plotting the vector field.

[7]:

x, y = pyprocess.get_coordinates(
 image_size=frame_a.shape,
 search_area_size=searchsize,
 overlap=overlap,
)

Post-processing

Strictly speaking, we are ready to plot the vector field. But before we do that, we can perform some convenient pos-processing.

To start, lets use the function sig2noise_val to get a mask indicating which vectors have a minimum amount of S2N. Vectors below a certain threshold are substituted by NaN. If you are not sure about which threshold value to use, try taking a look at the S2N histogram with:

plt.hist(sig2noise.flatten())

[8]:

flags = validation.sig2noise_val(
 sig2noise,
 threshold = 1.0
)

Another useful function is replace_outliers, which will find outlier vectors, and substitute them by an average of neighboring vectors. The larger the kernel_size the larger is the considered neighborhood. This function uses an iterative image inpainting algorithm. The amount of iterations can be chosen via max_iter.

[9]:

u, v = filters.replace_outliers(
 u, v,
 flags,
 method='localmean',
 max_iter=10,
 kernel_size=2,
)

Next, we are going to convert pixels to millimeters, and flip the coordinate system such that the origin becomes the bottom left corner of the image.

[10]:

convert x,y to mm
convert u,v to mm/sec

xs, ys, us, vs = scaling.uniform(
 x, y, u, v,
 scaling_factor = 96.52, # 96.52 pixels/millimeter
)

0,0 shall be bottom left, positive rotation rate is counterclockwise
xs, ys, us, vs = tools.transform_coordinates(xs, ys, us, vs)

Results

The function save is used to save the vector field to a ASCII tabular file. The coordinates and S2N mask are also saved.

[11]:

tools.save(filename, x,y,u,v, image_grid_mask, invalid_flag)
tools.save('exp1_001.txt', xs, ys, us, vs, flags)

Finally, the vector field can be plotted with display_vector_field.

Vectors with S2N bellow the threshold are displayed in red.

[12]:

fig, ax = plt.subplots(figsize=(8,8))
tools.display_vector_field(
 pathlib.Path('exp1_001.txt'),
 ax=ax, scaling_factor=96.52,
 scale=2, # scale defines here the arrow length
 width=0.0035, # width is the thickness of the arrow
 on_img=True, # overlay on the image
 image_name= str(path / 'data'/'test1'/'exp1_001_a.bmp'),
);

[image: ../_images/src_masking_20_0.png]

If we do not want to show the invalid vectors

set show_invalid = False

[13]:

fig, ax = plt.subplots(figsize=(8,8))
tools.display_vector_field(
 pathlib.Path('exp1_001.txt'),
 ax=ax, scaling_factor=96.52,
 scale=2, # scale defines here the arrow length
 width=0.0035, # width is the thickness of the arrow
 on_img=True, # overlay on the image
 image_name= str(path / 'data'/'test1'/'exp1_001_a.bmp'),
 show_invalid=False,
);

[image: ../_images/src_masking_22_0.png]

Tutorial on how to create a polygon mask

Start with drawing a polygon, use image coordinates

Important if the polygon touches borders, leave 5 pixels at least from the border

[14]:

from skimage.draw import polygon

fig, ax = plt.subplots(figsize=(8,8))

img = 0*frame_a.copy()

ax.imshow(img, cmap='gray')

rr, cc = polygon(
 [0,frame_a.shape[0]-1,frame_a.shape[0]-1,0],
 [500,700,frame_a.shape[1]-1,frame_a.shape[1]-1]
)
img[rr, cc] = 1

ax.imshow(img, cmap='gray')

[14]:

<matplotlib.image.AxesImage at 0x7fec92cbd2b0>

[image: ../_images/src_masking_25_1.png]

[15]:

convert img to a boolean mask
img = np.where(img, True, False)

[16]:

Note that mask_coordins for polygon are in image coordinates
and here we need the grid coordinates, so we exchange x,y

grid_mask = preprocess.prepare_mask_from_polygon(x, y, np.array(mask_coords)[:,::-1])

grid_mask = preprocess.prepare_mask_on_grid(x,y,img)

Now use the grid mask to create masked arrays, like in windef.py

[17]:

masked_u = np.ma.masked_array(u, mask=grid_mask)
masked_v = np.ma.masked_array(v, mask=grid_mask)

[28]:

fig, ax = plt.subplots(figsize=(10,10))
ax.imshow(frame_a, alpha=.5,cmap='gray',origin='lower')
Q = ax.quiver(x, y, masked_u, -masked_v, masked_u**2+masked_v**2, scale=150, width=.005,)
ax.invert_yaxis()
cb = fig.colorbar(Q,orientation='horizontal')
cb.set_label('velocity')

[image: ../_images/src_masking_30_0.png]

[]:

Information for developers and contributors

OpenPiv need developers to improve further. Your support, code and contribution is very welcome and
we are grateful you can provide some. Please send us an email to openpiv-develop@googlegroups.com
to get started, or for any kind of information.

We use git [http://git-scm.com/] for development version control, and we have a main repository on github [https://github.com/].

Development workflow

This is absolutely not a comprehensive guide of git development, and it is only an indication of our workflow.

	Download and install git. Instruction can be found here [http://help.github.com/].

	Set up a github account.

	Clone OpenPiv repository using:

git clone http://github.com/openpiv/openpiv-python.git

	create a branch new_feature where you implement your new feature.

	Fix, change, implement, document code, …

	From time to time fetch and merge your master branch with that of the main repository.

	Be sure that everything is ok and works in your branch.

	Merge your master branch with your new_feature branch.

	Be sure that everything is now ok and works in you master branch.

	Send a pull request [http://help.github.com/pull-requests/].

	Create another branch for a new feature.

Which language can I use?

As a general rule, we use Python where it does not make any difference with code speed. In those situations where Python speed is
the bottleneck, we have some possibilities, depending on your skills and background. If something has to be written from scratch
use the first language from the following which you are confortable with: Cython, C, C++, FORTRAN. If you have existing, debugged, tested code that
you would like to share, then no problem. We accept it, whichever language may be written in!

Things OpenPIV currently needs, (in order of importance)

	Good documentation (in progress)

	The implementation of advanced processing algorithms (in progress)

	Flow field filtering and validation functions

	Cython wrappers for C/C++ codes.

	A good graphical user interface (in progress)

How to test all the notebooks::

conda create -n openpiv
conda activate openpiv
conda install -c conda-forge openpiv
conda install ipykernel
python -m ipykernel install –user –name openpiv –display-name=”openpiv”
jupyter nbconvert –to html –ExecutePreprocessor.kernel_name=openpiv –execute *.ipynb

Then open the openpiv/examples/notebooks and check the HTML files. If one of those will fail, the error message will be in the command shell

If you need to install cv2::

conda install -c conda-forge opencv

API reference

This is a complete api reference to the openpiv python module.

The openpiv.preprocess module

This module contains image processing routines that improve
images prior to PIV processing.

	
openpiv.preprocess.contrast_stretch(img, lower_limit=2, upper_limit=98)

	Simple percentile-based contrast stretching

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	lower_limit (int) – lower percentile limit

	upper_limit (int) – upper percentile limit

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.dynamic_masking(image, method='edges', filter_size=7, threshold=0.005)

	Dynamically masks out the objects in the PIV images

	Parameters

	
	image (image) – a two dimensional array of uint16, uint8 or similar type

	method (string) – ‘edges’ or ‘intensity’:
‘edges’ method is used for relatively dark and sharp objects,
with visible edges, on
dark backgrounds, i.e. low contrast
‘intensity’ method is useful for smooth bright objects or dark objects
or vice versa,
i.e. images with high contrast between the object and the background

	filter_size (integer) – a scalar that defines the size of the Gaussian filter

	threshold (float) – a value of the threshold to segment the background from the object
default value: None, replaced by sckimage.filter.threshold_otsu value

	Returns

	
	image (array of the same datatype as the incoming image with the)

	object masked out

	as a completely black region(s) of zeros (integers or floats).

Example

frame_a = openpiv.tools.imread(‘Camera1-001.tif’)
imshow(frame_a) # original

frame_a = dynamic_masking(frame_a,method=’edges’,filter_size=7,
threshold=0.005)
imshow(frame_a) # masked

	
openpiv.preprocess.gen_lowpass_background(img_list, sigma=3, resize=None)

	Generate a background by averaging a low pass of all images in an image list.
Apply by subtracting generated background image.

	Parameters

	
	img_list (list) – list of image directories

	sigma (float) – sigma of the gaussian filter

	resize (int or float) – disabled by default, normalize array and set value to user
selected max pixel intensity

	Returns

	img – a mean of all low-passed images

	Return type

	image

	
openpiv.preprocess.gen_min_background(img_list, resize=255)

	Generate a background by averaging the minimum intensity
of all images in an image list.
Apply by subtracting generated background image.

	Parameters

	
	img_list (list) – list of image directories

	resize (int or float) – disabled by default, normalize array and set value to user
selected max pixel intensity

	Returns

	img – a mean of all images

	Return type

	image

	
openpiv.preprocess.high_pass(img, sigma=5, clip=False)

	Simple high pass filter

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	sigma (float) – sigma value of the gaussian filter

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.instensity_cap(img, std_mult=2)

	Simple intensity capping.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	std_mult (int) – how strong the intensity capping is. Lower values
yields a lower threshold

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.intensity_clip(img, min_val=0, max_val=None, flag='clip')

	Simple intensity clipping

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	min_val (int or float) – min allowed pixel intensity

	max_val (int or float) – min allowed pixel intensity

	flag (str) – one of two methods to set invalid pixels intensities

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.local_variance_normalization(img, sigma_1=2, sigma_2=1, clip=True)

	Local variance normalization by two gaussian filters.
This method is used by common commercial softwares

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	sigma_1 (float) – sigma value of the first gaussian low pass filter

	sigma_2 (float) – sigma value of the second gaussian low pass filter

	clip (bool) – set negative pixels to zero

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.mask_coordinates(image_mask, tolerance=1.5, min_length=10, plot=False)

	
	Creates set of coordinates of polygons from the image mask

	Inputs:
mask : binary image of a mask.

[tolerance] : float - tolerance for approximate_polygons, default = 1.5

[min_length] : int - minimum length of the polygon, filters out
the small polygons like noisy regions, default = 10

	Outputs:

	mask_coord : list of mask coordinates in pixels

Example

if masks of image A and B are slightly different:
image_mask = np.logical_and(image_mask_a, image_mask_b)
mask_coords = mask_coordinates(image_mask)

	
openpiv.preprocess.normalize_array(array, axis=None)

	Min/max normalization to [0,1].

	Parameters

	
	array (np.ndarray) – array to normalize

	axis (int, tuple) – axis to find values for normalization

	Returns

	array – normalized array

	Return type

	np.ndarray

	
openpiv.preprocess.offset_image(img, offset_x, offset_y, pad='zero')

	Offset an image by padding.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	offset_x (int) – offset an image by integer values. Positive values shifts
the image to the right and negative values shift to the left

	offset_y (int) – offset an image by integer values. Positive values shifts
the image to the top and negative values shift to the bottom

	pad (str) – pad the shift with zeros or a reflection of the shift

	Returns

	img – a transformed two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.prepare_mask_from_polygon(x, y, mask_coords)

	Converts mask coordinates of the image mask
to the grid of 1/0 on the x,y grid
Inputs:

x,y : grid of x,y points
mask_coords : array of coordinates in pixels of the image_mask

	Outputs:

	grid of points of the mask, of the shape of x

	
openpiv.preprocess.prepare_mask_on_grid(x: numpy.ndarray, y: numpy.ndarray, image_mask: numpy.ndarray) → numpy.array

	summary

	Parameters

	
	x (np.ndarray) – x coordinates of vectors in pixels

	y (np.ndarray) – y coordinates of vectors in pixels

	image_mask (np.ndarray) – image of the mask, 1 or True is to be masked

	Returns

	boolean array of the size of x,y with 1 where the values are masked

	Return type

	np.ndarray

	
openpiv.preprocess.standardize_array(array, axis=None)

	Standardize an array.

	Parameters

	
	array (np.ndarray) – array to normalize

	axis (int, tuple) – axis to find values for standardization

	Returns

	array – normalized array

	Return type

	np.ndarray

	
openpiv.preprocess.stretch_image(img, x_axis=0, y_axis=0)

	Stretch an image by interplation.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	x_axis (float) – stretch the x-axis of an image where 0 == no stretching

	y_axis (float) – stretch the y-axis of an image where 0 == no stretching

	Returns

	img – a transformed two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.threshold_binarize(img, threshold, max_val=255)

	Simple binarizing threshold

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	threshold (int or float) – boundary where pixels set lower than the threshold are set to zero
and values higher than the threshold are set to the maximum user selected value

	max_val (int or float) – maximum pixel value of the image

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

The openpiv.tools module

The openpiv.tools module is a collection of utilities and tools.

	
openpiv.tools.convert_16bits_tif(filename, save_name)

	convert 16 bits TIFF to an openpiv readable image

	Parameters

	
	filename (_type_) – filename of a 16 bit TIFF

	save_name (_type_) – new image filename

	
openpiv.tools.display(message)

	Display a message to standard output.

	Parameters

	message (string) – a message to be printed

	
openpiv.tools.display_vector_field(filename: Union[pathlib.Path, str], on_img: Optional[bool] = False, image_name: Union[pathlib.Path, str, None] = None, window_size: Optional[int] = 32, scaling_factor: Optional[float] = 1.0, ax: Optional[Any] = None, width: Optional[float] = 0.0025, show_invalid: Optional[bool] = True, **kw)

	Displays quiver plot of the data stored in the file

	Parameters

	
	filename (string) – the absolute path of the text file

	on_img (Bool, optional) – if True, display the vector field on top of the image provided by
image_name

	image_name (string, optional) – path to the image to plot the vector field onto when on_img is True

	window_size (int, optional) – when on_img is True, provide the interrogation window size to fit the
background image to the vector field

	scaling_factor (float, optional) – when on_img is True, provide the scaling factor to scale the background
image to the vector field

	show_invalid (bool, show or not the invalid vectors, default is True) –

	Key arguments(additional parameters, optional)

	scale: [None | float]
width: [None | float]

matplotlib.pyplot.quiver

Examples

— only vector field
>>> openpiv.tools.display_vector_field(‘./exp1_0000.txt’,scale=100,

width=0.0025)

— vector field on top of image
>>> openpiv.tools.display_vector_field(Path(‘./exp1_0000.txt’), on_img=True,

image_name=Path(‘exp1_001_a.bmp’),
window_size=32, scaling_factor=70,
scale=100, width=0.0025)

	
openpiv.tools.display_windows_sampling(x, y, window_size, skip=0, method='standard')

	Displays a map of the interrogation points and windows

	Parameters

	
	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	window_size (the interrogation window size, in pixels) –

	skip (the number of windows to skip on a row during display.) – Recommended value is 0 or 1 for standard method, can be more for random method
-1 to not show any window

	method (can be only <standard> (uniform sampling and constant window size)) – <random> (pick randomly some windows)

Examples

>>> openpiv.tools.display_windows_sampling(x, y, window_size=32, skip=0, method='standard')

	
openpiv.tools.imread(filename, flatten=0)

	Read an image file into a numpy array
using imageio imread

	Parameters

	
	filename (string) – the absolute path of the image file

	flatten (bool) – True if the image is RGB color or False (default) if greyscale

	Returns

	frame – a numpy array with grey levels

	Return type

	np.ndarray

Examples

>>> image = openpiv.tools.imread('image.bmp')
>>> print image.shape
 (1280, 1024)

	
openpiv.tools.imsave(filename, arr)

	Write an image file from a numpy array
using imageio imread

	Parameters

	
	filename (string) – the absolute path of the image file that will be created

	arr (2d np.ndarray) – a 2d numpy array with grey levels

Example

>>> image = openpiv.tools.imread('image.bmp')
>>> image2 = openpiv.tools.negative(image)
>>> imsave('negative-image.tif', image2)

	
openpiv.tools.mark_background(threshold: float, list_img: list, filename: str) → numpy.ndarray

	marks background

	Parameters

	
	threshold (float) – threshold

	list_img (list of images) – _description_

	filename (str) – image filename to save the mask

	Returns

	description

	Return type

	type

	
openpiv.tools.natural_sort(file_list: List[pathlib.Path]) → List[pathlib.Path]

	Creates naturally sorted list

	
openpiv.tools.negative(image)

	Return the negative of an image

image : 2d np.ndarray of grey levels

	Returns

	(255-image)

	Return type

	2d np.ndarray of grey levels

	
openpiv.tools.rgb2gray(rgb: numpy.ndarray) → numpy.ndarray

	converts rgb image to gray

	Parameters

	rgb (_type_) – numpy.ndarray, image size, three channels

	Returns

	numpy.ndarray of the same shape, one channel

	Return type

	gray

	
openpiv.tools.save(filename: Union[pathlib.Path, str], x: numpy.ndarray, y: numpy.ndarray, u: numpy.ndarray, v: numpy.ndarray, flags: Optional[numpy.ndarray] = None, mask: Optional[numpy.ndarray] = None, fmt: str = '%.4e', delimiter: str = '\t') → None

	Save flow field to an ascii file.

	Parameters

	
	filename (string) – the path of the file where to save the flow field

	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	u (2d np.ndarray) – a two dimensional array containing the u velocity components,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity components,
in pixels/seconds.

	flags (2d np.ndarray) – a two dimensional integers array where elements corresponding to
vectors: 0 - valid, 1 - invalid (, 2 - interpolated)
default: None, will create all valid 0

	mask (2d np.ndarray boolean, marks the image masked regions (dynamic and/or static)) – default: None - will be all False

	fmtstring

	a format string. See documentation of numpy.savetxt
for more details.

	delimiterstring

	character separating columns

Examples

	openpiv.tools.save(‘field_001.txt’, x, y, u, v, flags, mask, fmt=’%6.3f’,

	delimiter=’ ‘)

	
openpiv.tools.sorted_unique(array: numpy.ndarray) → numpy.ndarray

	Creates sorted unique array

	
openpiv.tools.transform_coordinates(x, y, u, v)

	Converts coordinate systems from/to the image based / physical based

Input/Output: x,y,u,v

image based is 0,0 top left, x = columns to the right, y = rows downwards
and so u,v

physical or right hand one is that leads to the positive vorticity with
the 0,0 origin at bottom left to be counterclockwise

The openpiv.pyprocess module

This module contains a pure python implementation of the basic
cross-correlation algorithm for PIV image processing.

	
openpiv.pyprocess.correlate_windows(window_a, window_b, correlation_method='fft', convolve2d=<function convolve2d>, rfft2=<function rfft2>, irfft2=<function irfft2>)

	Compute correlation function between two interrogation windows.
The correlation function can be computed by using the correlation
theorem to speed up the computation.
:param window_a: a two dimensions array for the first interrogation window
:type window_a: 2d np.ndarray
:param window_b: a two dimensions array for the second interrogation window
:type window_b: 2d np.ndarray
:param correlation_method: ‘circular’ - FFT based without zero-padding

‘linear’ - FFT based with zero-padding
‘direct’ - linear convolution based
Default is ‘fft’, which is much faster.

	Parameters

	
	convolve2d (function) – function used for 2d convolutions

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	Returns

	
	corr (2d np.ndarray) – a two dimensions array for the correlation function.

	Note that due to the wish to use 2^N windows for faster FFT

	we use a slightly different convention for the size of the

	correlation map. The theory says it is M+N-1, and the

	’direct’ method gets this size out

	the FFT-based method returns M+N size out, where M is the window_size

	and N is the search_area_size

	It leads to inconsistency of the output

	
openpiv.pyprocess.correlation_to_displacement(corr, n_rows, n_cols, subpixel_method='gaussian')

	Correlation maps are converted to displacement for each interrogation
window using the convention that the size of the correlation map
is 2N -1 where N is the size of the largest interrogation window
(in frame B) that is called search_area_size
Inputs:

	corr3D nd.array

	contains output of the fft_correlate_images

	n_rows, n_colsnumber of interrogation windows, output of the

	get_field_shape

	
openpiv.pyprocess.extended_search_area_piv(frame_a: numpy.ndarray, frame_b: numpy.ndarray, window_size: Union[int, Tuple[int, int]], overlap: Union[int, Tuple[int, int]] = (0, 0), dt: float = 1.0, search_area_size: Union[int, Tuple[int, int], None] = None, correlation_method: str = 'circular', subpixel_method: str = 'gaussian', sig2noise_method: Optional[str] = 'peak2mean', width: int = 2, normalized_correlation: bool = False, use_vectorized: bool = False)

	Standard PIV cross-correlation algorithm, with an option for
extended area search that increased dynamic range. The search region
in the second frame is larger than the interrogation window size in the
first frame. For Cython implementation see
openpiv.process.extended_search_area_piv

This is a pure python implementation of the standard PIV cross-correlation
algorithm. It is a zero order displacement predictor, and no iterative
process is performed.

	Parameters

	
	frame_a (2d np.ndarray) – an two dimensions array of integers containing grey levels of
the first frame.

	frame_b (2d np.ndarray) – an two dimensions array of integers containing grey levels of
the second frame.

	window_size (int) – the size of the (square) interrogation window, [default: 32 pix].

	overlap (int) – the number of pixels by which two adjacent windows overlap
[default: 16 pix].

	dt (float) – the time delay separating the two frames [default: 1.0].

	correlation_method (string) – one of the two methods implemented: ‘circular’ or ‘linear’,
default: ‘circular’, it’s faster, without zero-padding
‘linear’ requires also normalized_correlation = True (see below)

	subpixel_method (string) – one of the following methods to estimate subpixel location of the
peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	sig2noise_method (string) – defines the method of signal-to-noise-ratio measure,
(‘peak2peak’ or ‘peak2mean’. If None, no measure is performed.)

	width (int) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	search_area_size (int) – the size of the interrogation window in the second frame,
default is the same interrogation window size and it is a
fallback to the simplest FFT based PIV

	normalized_correlation (bool) – if True, then the image intensity will be modified by removing
the mean, dividing by the standard deviation and
the correlation map will be normalized. It’s slower but could be
more robust

	Returns

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component,
in pixels/seconds.

	sig2noise (2d np.ndarray, (optional: only if sig2noise_method != None)) – a two dimensional array the signal to noise ratio for each
window pair.

The implementation of the one-step direct correlation with different
size of the interrogation window and the search area. The increased
size of the search areas cope with the problem of loss of pairs due
to in-plane motion, allowing for a smaller interrogation window size,
without increasing the number of outlier vectors.

See:

Particle-Imaging Techniques for Experimental Fluid Mechanics

Annual Review of Fluid Mechanics
Vol. 23: 261-304 (Volume publication date January 1991)
DOI: 10.1146/annurev.fl.23.010191.001401

originally implemented in process.pyx in Cython and converted to
a NumPy vectorized solution in pyprocess.py

	
openpiv.pyprocess.fft_correlate_images(image_a: numpy.ndarray, image_b: numpy.ndarray, correlation_method: str = 'circular', normalized_correlation: bool = True, conj: Callable = <ufunc 'conjugate'>, rfft2=<function rfft2>, irfft2=<function irfft2>, fftshift=<function fftshift>) → numpy.ndarray

	FFT based cross correlation
of two images with multiple views of np.stride_tricks()
The 2D FFT should be applied to the last two axes (-2,-1) and the
zero axis is the number of the interrogation window
This should also work out of the box for rectangular windows.
:param image_a: and two last dimensions are interrogation windows of the first image
:type image_a: 3d np.ndarray, first dimension is the number of windows,
:param image_b:
:type image_b: similar
:param correlation_method: one of the three methods implemented: ‘circular’ or ‘linear’

[default: ‘circular].

	Parameters

	
	normalized_correlation (string) – decides wetehr normalized correlation is done or not: True or False
[default: True].

	conj (function) – function used for complex conjugate

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	fftshift (function) – function used for fftshift

	
openpiv.pyprocess.fft_correlate_windows(window_a, window_b, rfft2=<function rfft2>, irfft2=<function irfft2>)

	FFT based cross correlation
it is a so-called linear convolution based,
since we increase the size of the FFT to
reduce the edge effects.
This should also work out of the box for rectangular windows.

	Parameters

	
	window_a (2d np.ndarray) – a two dimensions array for the first interrogation window

	window_b (2d np.ndarray) – a two dimensions array for the second interrogation window

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	from Stackoverflow (#) –

	scipy import linalg (from) –

	numpy as np (import) –

	works for rectangular windows as well (#) –

	= [[1 , 0 , 0 , 0] , [0 , -1 , 0 , 0] , [0 , 0 , 3 , 0] , (x) – [0 , 0 , 0 , 1], [0 , 0 , 0 , 1]]

	= np.array(x,dtype=np.float) (x) –

	= [[4 , 5] , [3 , 4]] (y) –

	= np.array(y) (y) –

	("conv (print) –

	= np.array(x.shape) (s1) –

	= np.array(y.shape) (s2) –

	= s1 + s2 - 1 (size) –

	= 2 ** np.ceil(np.log2(size))astype(int) (fsize) –

	= tuple([slice(0, int(sz)) for sz in size]) (fslice) –

	= np.fft.fft2(x , fsize) (new_x) –

	= np.fft.fft2(y , fsize) (new_y) –

	= np.fft.ifft2(new_x*new_y)[fslice]copy() (result) –

	for my method (print("fft) –

	
openpiv.pyprocess.find_all_first_peaks(corr)

	Find row and column indices of the first correlation peak.

	Parameters

	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	Returns

	
	index_list (integers, index of the peak position in (N,i,j))

	peaks_max (amplitude of the peak)

	
openpiv.pyprocess.find_all_second_peaks(corr, width=2)

	Find row and column indices of the first correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak

	Returns

	
	index_list (integers, index of the peak position in (N,i,j))

	peaks_max (amplitude of the peak)

	
openpiv.pyprocess.find_first_peak(corr)

	Find row and column indices of the first correlation peak.

	Parameters

	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	Returns

	
	(i,j) (integers, index of the peak position)

	peak (amplitude of the peak)

	
openpiv.pyprocess.find_second_peak(corr, i=None, j=None, width=2)

	Find the value of the second largest peak.

The second largest peak is the height of the peak in
the region outside a 3x3 submatrxi around the first
correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	i,j (ints) – row and column location of the first peak.

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak.

	Returns

	
	i (int) – the row index of the second correlation peak.

	j (int) – the column index of the second correlation peak.

	corr_max2 (int) – the value of the second correlation peak.

	
openpiv.pyprocess.find_subpixel_peak_position(corr, subpixel_method='gaussian')

	Find subpixel approximation of the correlation peak.

This function returns a subpixels approximation of the correlation
peak by using one of the several methods available. If requested,
the function also returns the signal to noise ratio level evaluated
from the correlation map.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	subpixel_method (string) – one of the following methods to estimate subpixel location of the
peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	Returns

	subp_peak_position – the fractional row and column indices for the sub-pixel
approximation of the correlation peak.
If the first peak is on the border of the correlation map
or any other problem, the returned result is a tuple of NaNs.

	Return type

	two elements tuple

	
openpiv.pyprocess.get_coordinates(image_size: Tuple[int, int], search_area_size: int, overlap: int, center_on_field: bool = True) → Tuple[numpy.ndarray, numpy.ndarray]

	Compute the x, y coordinates of the centers of the interrogation windows.
for the SQUARE windows only, see also get_rect_coordinates

the origin (0,0) is like in the image, top left corner
positive x is an increasing column index from left to right
positive y is increasing row index, from top to bottom

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns.

	search_area_size (int) – the size of the search area windows, sometimes it’s equal to
the interrogation window size in both frames A and B

	overlap (int = 0 (default is no overlap)) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	
	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

Coordinate system 0,0 is at the top left corner, positive
x to the right, positive y from top downwards, i.e.
image coordinate system

	
openpiv.pyprocess.get_field_shape(image_size: Tuple[int, int], search_area_size: Tuple[int, int], overlap: Tuple[int, int]) → Tuple[int, int]

	Compute the shape of the resulting flow field.

Given the image size, the interrogation window size and
the overlap size, it is possible to calculate the number
of rows and columns of the resulting flow field.

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns, easy to obtain using .shape

	search_area_size (tuple) – the size of the interrogation windows (if equal in frames A,B)
or the search area (in frame B), the largest of the two

	overlap (tuple) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	field_shape – the shape of the resulting flow field

	Return type

	2-element tuple

	
openpiv.pyprocess.get_rect_coordinates(image_size: Tuple[int, int], window_size: Union[int, Tuple[int, int]], overlap: Union[int, Tuple[int, int]], center_on_field: bool = False)

	Rectangular grid version of get_coordinates.

	
openpiv.pyprocess.moving_window_array(array, window_size, overlap)

	This is a nice numpy trick. The concept of numpy strides should be
clear to understand this code.

Basically, we have a 2d array and we want to perform cross-correlation
over the interrogation windows. An approach could be to loop over the array
but loops are expensive in python. So we create from the array a new array
with three dimension, of size (n_windows, window_size, window_size), in
which each slice, (along the first axis) is an interrogation window.

	
openpiv.pyprocess.nextpower2(i)

	Find 2^n that is equal to or greater than.

	
openpiv.pyprocess.normalize_intensity(window)

	
	Normalize interrogation window or strided image of many windows,

	by removing the mean intensity value per window and clipping the
negative values to zero

	Parameters

	window (2d np.ndarray) – the interrogation window array

	Returns

	window – the interrogation window array, with mean value equal to zero and
intensity normalized to -1 +1 and clipped if some pixels are
extra low/high

	Return type

	2d np.ndarray

	
openpiv.pyprocess.sig2noise_ratio(correlation: numpy.ndarray, sig2noise_method: str = 'peak2peak', width: int = 2) → numpy.ndarray

	Computes the signal to noise ratio from the correlation map.

The signal to noise ratio is computed from the correlation map with
one of two available method. It is a measure of the quality of the
matching between to interrogation windows.

	Parameters

	
	corr (3d np.ndarray) – the correlation maps of the image pair, concatenated along 0th axis

	sig2noise_method (string) – the method for evaluating the signal to noise ratio value from
the correlation map. Can be peak2peak, peak2mean or None
if no evaluation should be made.

	width (int, optional) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	Returns

	sig2noise – the signal to noise ratios from the correlation maps.

	Return type

	np.array

	
openpiv.pyprocess.sliding_window_array(image: numpy.ndarray, window_size: Tuple[int, int] = (64, 64), overlap: Tuple[int, int] = (32, 32)) → numpy.ndarray

	This version does not use numpy as_strided and is much more memory efficient.
Basically, we have a 2d array and we want to perform cross-correlation
over the interrogation windows. An approach could be to loop over the array
but loops are expensive in python. So we create from the array a new array
with three dimension, of size (n_windows, window_size, window_size), in
which each slice, (along the first axis) is an interrogation window.

	
openpiv.pyprocess.vectorized_correlation_to_displacements(corr: numpy.ndarray, n_rows: Optional[int] = None, n_cols: Optional[int] = None, subpixel_method: str = 'gaussian', eps: float = 1e-07)

	Correlation maps are converted to displacement for each interrogation
window using the convention that the size of the correlation map
is 2N -1 where N is the size of the largest interrogation window
(in frame B) that is called search_area_size

	Parameters

	
	corr (3D nd.array) – contains output of the fft_correlate_images

	n_cols (n_rows,) – number of interrogation windows, output of the get_field_shape

	mask_width (int) – distance, in pixels, from the interrogation window in which
correlation peaks would be flagged as invalid

	Returns

	u, v – 2d array of displacements in pixels/dt

	Return type

	2D nd.array

	
openpiv.pyprocess.vectorized_sig2noise_ratio(correlation, sig2noise_method='peak2peak', width=2)

	Computes the signal to noise ratio from the correlation map in a
mostly vectorized approach, thus much faster.

The signal to noise ratio is computed from the correlation map with
one of two available method. It is a measure of the quality of the
matching between to interrogation windows.

	Parameters

	
	corr (3d np.ndarray) – the correlation maps of the image pair, concatenated along 0th axis

	sig2noise_method (string) – the method for evaluating the signal to noise ratio value from
the correlation map. Can be peak2peak, peak2mean or None
if no evaluation should be made.

	width (int, optional) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	Returns

	sig2noise – the signal to noise ratios from the correlation maps.

	Return type

	np.array

The openpiv.process module

The openpiv.lib module

	
openpiv.lib.replace_nans(array, max_iter, tol, kernel_size=2, method='disk')

	
	Replace NaN elements in an array using an iterative image inpainting

	algorithm.

The algorithm is the following:

	For each element in the input array, replace it by a weighted average
of the neighbouring elements which are not NaN themselves. The weights
depend on the method type. See Methods below.

	Several iterations are needed if there are adjacent NaN elements.
If this is the case, information is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

Methods:

	localmean - A square kernel where all elements have the same value,

	weights are equal to n/((2*kernel_size+1)**2 -1),
where n is the number of non-NaN elements.

	disk - A circular kernel where all elements have the same value,

	
	kernel is calculated by::

	
	if ((S-i)**2 + (S-j)**2)**0.5 <= S:

	kernel[i,j] = 1.0

	else:

	kernel[i,j] = 0.0

where S is the kernel radius.

	distance - A circular inverse distance kernel where elements are

	weighted proportional to their distance away from the
center of the kernel, elements farther away have less
weight. Elements outside the specified radius are set
to 0.0 as in ‘disk’, the remaining of the weights are
calculated as:

maxDist = ((S)**2 + (S)**2)**0.5
kernel[i,j] = -1*(((S-i)**2 + (S-j)**2)**0.5 - maxDist)

where S is the kernel radius.

	Parameters

	
	array (2d or 3d np.ndarray) – an array containing NaN elements that have to be replaced
if array is a masked array (numpy.ma.MaskedArray), then
the mask is reapplied after the replacement

	max_iter (int) – the number of iterations

	tol (float) – On each iteration check if the mean square difference between
values of replaced elements is below a certain tolerance tol

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the method used to replace invalid values. Valid options are
localmean, disk, and distance.

	Returns

	filled – a copy of the input array, where NaN elements have been replaced.

	Return type

	2d or 3d np.ndarray

The openpiv.filters module

The openpiv.filters module contains some filtering/smoothing routines.

	
openpiv.filters.gaussian(u: numpy.ndarray, v: numpy.ndarray, half_width: int = 1) → Tuple[numpy.ndarray, numpy.ndarray]

	Smooths the velocity field with a Gaussian kernel.

	Parameters

	
	u (2d np.ndarray) – the u velocity component field

	v (2d np.ndarray) – the v velocity component field

	half_width (int) – the half width of the kernel. Kernel
has shape 2*half_width+1, default = 1

	Returns

	
	uf (2d np.ndarray) – the smoothed u velocity component field

	vf (2d np.ndarray) – the smoothed v velocity component field

	
openpiv.filters.gaussian_kernel(sigma: float, truncate: float = 4.0) → numpy.ndarray

	Return Gaussian that truncates at the given number of standard deviations.

	
openpiv.filters.replace_outliers(u: numpy.ndarray, v: numpy.ndarray, flags: numpy.ndarray, w: Optional[numpy.ndarray] = None, method: str = 'localmean', max_iter: int = 5, tol: float = 0.001, kernel_size: int = 1) → Tuple[numpy.ndarray, ...]

	
	Replace invalid vectors in an velocity field using an iterative image

	inpainting algorithm.

The algorithm is the following:

	For each element in the arrays of the u and v components,
replace it by a weighted average
of the neighbouring elements which are not invalid themselves. The
weights depends of the method type. If method=localmean weight
are equal to 1/((2*kernel_size+1)**2 -1)

	Several iterations are needed if there are adjacent invalid elements.
If this is the case, inforation is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – the u velocity component field

	v (2d or 3d np.ndarray) – the v velocity component field

	w (2d or 3d np.ndarray) – the w velocity component field

	flags (2d array of positions with invalid vectors) –

	grid_mask (2d array of positions masked by the user) –

	max_iter (int) – the number of iterations

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the type of kernel used for repairing missing vectors

	Returns

	
	uf (2d or 3d np.ndarray) – the smoothed u velocity component field, where invalid vectors have
been replaced

	vf (2d or 3d np.ndarray) – the smoothed v velocity component field, where invalid vectors have
been replaced

	wf (2d or 3d np.ndarray) – the smoothed w velocity component field, where invalid vectors have
been replaced

The openpiv.validation module

A module for spurious vector detection.

	
openpiv.validation.global_std(u: numpy.ndarray, v: numpy.ndarray, std_threshold: int = 5) → numpy.ndarray

	Eliminate spurious vectors with a global threshold defined by the
standard deviation

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with NaN (Not a Number) if at least
one of the two velocity components is out of a specified global range.

	Parameters

	
	u (2d masked np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d masked np.ndarray) – a two dimensional array containing the v velocity component.

	std_threshold (float) – If the length of the vector (actually the sum of squared components) is
larger than std_threshold times standard deviation of the flow field,
then the vector is treated as an outlier. [default = 3]

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.global_val(u: numpy.ndarray, v: numpy.ndarray, u_thresholds: Tuple[int, int], v_thresholds: Tuple[int, int]) → numpy.ndarray

	Eliminate spurious vectors with a global threshold.

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with Nan (Not a Number) if at
least one of the two velocity components is out of a specified global
range.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_thresholds (two elements tuple) – u_thresholds = (u_min, u_max). If u<u_min or u>u_max
the vector is treated as an outlier.

	v_thresholds (two elements tuple) – v_thresholds = (v_min, v_max). If v<v_min or v>v_max
the vector is treated as an outlier.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.local_median_val(u, v, u_threshold, v_threshold, size=1)

	Eliminate spurious vectors with a local median threshold.

This validation method tests for the spatial consistency of the data.
Vectors are classified as outliers and replaced with Nan (Not a Number) if
the absolute difference with the local median is greater than a user
specified threshold. The median is computed for both velocity components.

	The image masked areas (obstacles, reflections) are marked as masked array:

	u = np.ma.masked(u, flag = image_mask)

and it should not be replaced by the local median, but remain masked.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_threshold (float) – the threshold value for component u

	v_threshold (float) – the threshold value for component v

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.sig2noise_val(s2n: numpy.ndarray, threshold: float = 1.0) → numpy.ndarray

	Marks spurious vectors if signal to noise ratio is below a specified threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – a two or three dimensional array containing the u velocity component.

	v (2d or 3d np.ndarray) – a two or three dimensional array containing the v velocity component.

	s2n (2d np.ndarray) – a two or three dimensional array containing the value of the signal to
noise ratio from cross-correlation function.

	w (2d or 3d np.ndarray) – a two or three dimensional array containing the w (in z-direction)
velocity component.

	threshold (float) – the signal to noise ratio threshold value.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

References

	
	Keane and R. J. Adrian, Measurement Science & Technology, 1990,

1, 1202-1215.

	
openpiv.validation.typical_validation(u: numpy.ndarray, v: numpy.ndarray, s2n: numpy.ndarray, settings: PIVSettings) → numpy.ndarray

	validation using gloabl limits and std and local median,

with a special option of ‘no_std’ for the case of completely
uniform shift, e.g. in tests.

see windef.PIVSettings() for the parameters:

	MinMaxUtwo elements tuple

	sets the limits of the u displacment component
Used for validation.

	MinMaxVtwo elements tuple

	sets the limits of the v displacment component
Used for validation.

	std_thresholdfloat

	sets the threshold for the std validation

	median_thresholdfloat

	sets the threshold for the median validation

The openpiv.scaling module

Scaling utilities

	
openpiv.scaling.uniform(x, y, u, v, scaling_factor)

	Apply an uniform scaling

	Parameters

	
	x (2d np.ndarray) –

	y (2d np.ndarray) –

	u (2d np.ndarray) –

	v (2d np.ndarray) –

	scaling_factor (float) – the image scaling factor in pixels per meter

	Returns

	
	x (2d np.ndarray)

	y (2d np.ndarray)

	u (2d np.ndarray)

	v (2d np.ndarray)

Frequently Asked Questions about PIV parameters

1. Can you please elaborate on the sclt parameter which is passed to the openpiv function.
E.g. if the time between the two consecutive image is 0.5 seconds and 1 pixel in the image corresponds to 50 cms, what would be the value of sclt.

sclt is a shortcut for _scaling factor from displacement to velocity units_. It’s also called the _scale_, or _scaling_.

PIV provides the local displacement in pixel units. In order to know the displacement in the real physical units you multiply it by the scaling of cm/pixel, i.e. by 50 cm/pixel. To know the speed, the displacement is divided by the time separation, i.e. by 0.5 seconds, then we get:
scaling = sclt = 50 cm/pixels / 0.5 = 100 [cm/seconds/pixels]

For example, if the vector is 10 pixels, then the result will be 100 * 10 = 1000 cm/s

	Whats the purpose of the local and global filtering?

global filtering supposingly removes the obvious outliers, i.e. the vectors which length is larger than the mean of the flow field plus 3 times its standard deviation. These are global outliers in the statistical sense.

local filtering is performed on small neighborhoods of vectors, e.g. 3 x 3 or 5 x 5, in order to find local outliers - the vectors that are dissimilar from the close neighbors. Typically there are about 5 per-cent of erroneous vectors and these are removed and later the missing values are interpolated from the neighbor vector values. This is also a reason for the Matlab version to generate three lists of files:
raw - _noflt.txt
filtered (after global and local filters) - _flt.txt
final (after filtering and interpolation) - .txt

	Why, while taking the FFT, we use the Nfft parameter?

ffta=fft2(a2,Nfft,Nfft);
fftb=fft2(b2,Nfft,Nfft);

and why the size has been specified as Nfft which is twice the interrogation window size.

In the FFT-based correlation analysis, we have to pad the window with zeros and get correlation map of the right size and avoid aliasing problem (see Raffel et al. 2007)

4. Also in the same function why sub image b2 is rotated before taking the correlation.
b2 = b2(end:-1:1,end:-1:1);

Without rotation the result will be convolution, not correlation. The definition is ifft(fft(a)*fft(conj(b))). conj() is replaced by rotation in the case of real values. It is more computationally efficient.

	In the find_displacement(c,s2nm) function for finding peak2, why neighbourhood pixels around peak1 are removed? %line no:352

These peaks might appear as ‘false second peak’, but they are the part
of the same peak. Think about a top of a mountain. You want to remove
not only the single point, but cut out the top part in order to search
for the second peak.

6. In the read_pair _of_images() function why
A = double(A(:,:,1))/255; %line no:259
B = double(B(:,:,1))/255;

In order to convert RGB to gray scale. Not always true.

	After the program is executed, the variable vel contains all the parameters for all the velocity vectors. Here what are the units of u & v. Is it in metres/second?

It is not, the result depends on the SCLT variable. if it SCLT is 1, then it is in pixels/dt (dt is the interval between two images).

	What is the “Outlier Filter Value” in OpenPIV?

The outlier filter value is the threshold of the global outlier filter and is says how many times the standard deviation of the whole vector field is exceeded before the vector is considered as outlier. See above discussion on the filters.

	What is the fifth column in the Output data *.txt,*flt.txt or *noflt.txt?

The fifth column is the value of the Signal-To-Noise (s2n) ration. Note that the value is different (numerically) if the user choses Peak-to-Second-Peak ratio as the s2n parameter or Peak-to-Mean ratio as s2n parameter. The value of Peak-to-Second-Peak or Peak-to-Mean ratio is stored for the further processing.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openpiv	

 	
 	
 openpiv.filters	

 	
 	
 openpiv.lib	

 	
 	
 openpiv.phase_separation	

 	
 	
 openpiv.piv	

 	
 	
 openpiv.PIV_3D_plotting	

 	
 	
 openpiv.preprocess	

 	
 	
 openpiv.pyprocess	

 	
 	
 openpiv.pyprocess3D	

 	
 	
 openpiv.scaling	

 	
 	
 openpiv.smoothn	

 	
 	
 openpiv.tools	

 	
 	
 openpiv.validation	

 	
 	
 openpiv.windef	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (openpiv.tools.Multiprocesser method)

 	
 	_gaussian_kernel() (in module openpiv.filters)

B

 	
 	beta() (in module openpiv.smoothn)

 	
 	binomial() (in module openpiv.smoothn)

C

 	
 	check_input() (in module openpiv.pyprocess3D)

 	chisquare() (in module openpiv.smoothn)

 	choice() (in module openpiv.smoothn)

 	contrast_stretch() (in module openpiv.preprocess), [1]

 	convert_16bits_tif() (in module openpiv.tools), [1]

 	
 	correlate_windows() (in module openpiv.pyprocess), [1], [2]

 	(in module openpiv.pyprocess3D)

 	correlation_method (openpiv.windef.PIVSettings attribute)

 	correlation_to_displacement() (in module openpiv.pyprocess), [1]

 	create_deformation_field() (in module openpiv.windef)

D

 	
 	dctND() (in module openpiv.smoothn)

 	deform_windows() (in module openpiv.windef)

 	deformation_method (openpiv.windef.PIVSettings attribute)

 	dirichlet() (in module openpiv.smoothn)

 	display() (in module openpiv.tools), [1], [2]

 	display_vector_field() (in module openpiv.tools), [1], [2]

 	
 	display_windows_sampling() (in module openpiv.tools), [1]

 	dt (openpiv.windef.PIVSettings attribute)

 	dynamic_masking() (in module openpiv.preprocess), [1], [2]

 	dynamic_masking_filter_size (openpiv.windef.PIVSettings attribute)

 	dynamic_masking_method (openpiv.windef.PIVSettings attribute)

 	dynamic_masking_threshold (openpiv.windef.PIVSettings attribute)

E

 	
 	edges() (in module openpiv.tools)

 	explode() (in module openpiv.PIV_3D_plotting)

 	
 	exponential() (in module openpiv.smoothn)

 	extended_search_area_piv() (in module openpiv.pyprocess), [1]

 	extended_search_area_piv3D() (in module openpiv.pyprocess3D)

F

 	
 	f() (in module openpiv.smoothn)

 	fft_correlate_images() (in module openpiv.pyprocess), [1]

 	fft_correlate_windows() (in module openpiv.pyprocess), [1]

 	filepath_images (openpiv.windef.PIVSettings attribute)

 	filter_kernel_size (openpiv.windef.PIVSettings attribute)

 	filter_method (openpiv.windef.PIVSettings attribute)

 	find_all_first_peaks() (in module openpiv.pyprocess), [1]

 	find_all_second_peaks() (in module openpiv.pyprocess), [1]

 	find_boundaries() (in module openpiv.tools)

 	
 	find_first_peak() (in module openpiv.pyprocess), [1], [2]

 	find_reflexions() (in module openpiv.tools)

 	find_second_peak() (in module openpiv.pyprocess), [1], [2]

 	find_second_peak_3D() (in module openpiv.pyprocess3D)

 	find_subpixel_peak_position() (in module openpiv.pyprocess), [1], [2]

 	(in module openpiv.pyprocess3D)

 	first_pass() (in module openpiv.windef)

 	fmt (openpiv.windef.PIVSettings attribute)

 	frame_pattern_a (openpiv.windef.PIVSettings attribute)

 	frame_pattern_b (openpiv.windef.PIVSettings attribute)

G

 	
 	gamma() (in module openpiv.smoothn)

 	gaussian() (in module openpiv.filters), [1], [2]

 	gaussian_kernel() (in module openpiv.filters), [1]

 	gcv() (in module openpiv.smoothn)

 	gen_lowpass_background() (in module openpiv.preprocess), [1]

 	gen_min_background() (in module openpiv.preprocess), [1]

 	geometric() (in module openpiv.smoothn)

 	get_coordinates() (in module openpiv.pyprocess), [1], [2]

 	(in module openpiv.pyprocess3D)

 	
 	get_dist() (in module openpiv.lib)

 	get_field_shape() (in module openpiv.pyprocess), [1], [2]

 	get_particles_size_array() (in module openpiv.phase_separation)

 	get_rect_coordinates() (in module openpiv.pyprocess), [1]

 	get_size_brightness_map() (in module openpiv.phase_separation)

 	get_state() (in module openpiv.smoothn)

 	global_std() (in module openpiv.validation), [1], [2]

 	global_val() (in module openpiv.validation), [1], [2]

 	gumbel() (in module openpiv.smoothn)

H

 	
 	high_pass() (in module openpiv.preprocess), [1]

 	
 	hypergeometric() (in module openpiv.smoothn)

I

 	
 	imread() (in module openpiv.tools), [1], [2]

 	imsave() (in module openpiv.tools), [1]

 	InitialGuess() (in module openpiv.smoothn)

 	
 	instensity_cap() (in module openpiv.preprocess), [1]

 	intensity_clip() (in module openpiv.preprocess), [1]

 	interpolation_order (openpiv.windef.PIVSettings attribute)

 	invert (openpiv.windef.PIVSettings attribute)

K

 	
 	khalitov_longmire() (in module openpiv.phase_separation)

 	
 	khalitov_longmire_analyse_particle_segments() (in module openpiv.phase_separation)

 	khalitov_longmire_get_object_pixels() (in module openpiv.phase_separation)

L

 	
 	laplace() (in module openpiv.smoothn)

 	local_median_val() (in module openpiv.validation), [1], [2]

 	local_variance_normalization() (in module openpiv.preprocess), [1]

 	
 	logistic() (in module openpiv.smoothn)

 	lognormal() (in module openpiv.smoothn)

 	logseries() (in module openpiv.smoothn)

M

 	
 	mark_background() (in module openpiv.tools), [1]

 	mark_background2() (in module openpiv.tools)

 	mask_coordinates() (in module openpiv.preprocess), [1]

 	max_filter_iteration (openpiv.windef.PIVSettings attribute)

 	median_filter_method() (in module openpiv.phase_separation)

 	median_size (openpiv.windef.PIVSettings attribute)

 	median_threshold (openpiv.windef.PIVSettings attribute)

 	
 	min_max_u_disp (openpiv.windef.PIVSettings attribute)

 	min_max_v_disp (openpiv.windef.PIVSettings attribute)

 	moving_window_array() (in module openpiv.pyprocess), [1], [2]

 	multinomial() (in module openpiv.smoothn)

 	multipass_img_deform() (in module openpiv.windef)

 	Multiprocesser (class in openpiv.tools), [1]

 	multivariate_normal() (in module openpiv.smoothn)

N

 	
 	natural_sort() (in module openpiv.tools), [1]

 	negative() (in module openpiv.tools), [1]

 	negative_binomial() (in module openpiv.smoothn)

 	nextpower2() (in module openpiv.pyprocess), [1]

 	(in module openpiv.pyprocess3D)

 	noncentral_chisquare() (in module openpiv.smoothn)

 	
 	noncentral_f() (in module openpiv.smoothn)

 	normal() (in module openpiv.smoothn)

 	normalize_array() (in module openpiv.preprocess), [1]

 	normalize_intensity() (in module openpiv.pyprocess), [1], [2]

 	(in module openpiv.pyprocess3D)

 	normalized_correlation (openpiv.windef.PIVSettings attribute)

 	num_iterations (openpiv.windef.PIVSettings attribute)

O

 	
 	offset_image() (in module openpiv.preprocess), [1]

 	opening_method() (in module openpiv.phase_separation)

 	openpiv (module)

 	openpiv.filters (module), [1]

 	openpiv.lib (module), [1]

 	openpiv.phase_separation (module)

 	openpiv.piv (module)

 	openpiv.PIV_3D_plotting (module)

 	
 	openpiv.preprocess (module), [1]

 	openpiv.pyprocess (module), [1]

 	openpiv.pyprocess3D (module)

 	openpiv.scaling (module), [1]

 	openpiv.smoothn (module)

 	openpiv.tools (module), [1]

 	openpiv.validation (module), [1]

 	openpiv.windef (module)

 	overlap (openpiv.windef.PIVSettings attribute)

P

 	
 	pareto() (in module openpiv.smoothn)

 	peaks() (in module openpiv.smoothn)

 	permutation() (in module openpiv.smoothn)

 	piv() (in module openpiv.windef)

 	piv_example() (in module openpiv.piv)

 	PIVSettings (class in openpiv.windef)

 	
 	plot_3D_alpha() (in module openpiv.PIV_3D_plotting)

 	poisson() (in module openpiv.smoothn)

 	power() (in module openpiv.smoothn)

 	prepare_images() (in module openpiv.windef)

 	prepare_mask_from_polygon() (in module openpiv.preprocess), [1]

 	prepare_mask_on_grid() (in module openpiv.preprocess), [1]

Q

 	
 	quiver_3D() (in module openpiv.PIV_3D_plotting)

R

 	
 	rand() (in module openpiv.smoothn)

 	randint() (in module openpiv.smoothn)

 	randn() (in module openpiv.smoothn)

 	random() (in module openpiv.smoothn)

 	random_integers() (in module openpiv.smoothn)

 	random_sample() (in module openpiv.smoothn)

 	rayleigh() (in module openpiv.smoothn)

 	
 	replace_nans() (in module openpiv.lib), [1], [2]

 	replace_outliers() (in module openpiv.filters), [1], [2]

 	replace_vectors (openpiv.windef.PIVSettings attribute)

 	rgb2gray() (in module openpiv.tools), [1]

 	RobustWeights() (in module openpiv.smoothn)

 	roi (openpiv.windef.PIVSettings attribute)

 	run() (openpiv.tools.Multiprocesser method)

S

 	
 	save() (in module openpiv.tools), [1], [2]

 	save_folder_suffix (openpiv.windef.PIVSettings attribute)

 	save_path (openpiv.windef.PIVSettings attribute)

 	save_plot (openpiv.windef.PIVSettings attribute)

 	scale_plot (openpiv.windef.PIVSettings attribute)

 	scaling_factor (openpiv.windef.PIVSettings attribute)

 	scatter_3D() (in module openpiv.PIV_3D_plotting)

 	seed() (in module openpiv.smoothn)

 	set_axes_equal() (in module openpiv.PIV_3D_plotting)

 	set_state() (in module openpiv.smoothn)

 	show_all_plots (openpiv.windef.PIVSettings attribute)

 	show_plot (openpiv.windef.PIVSettings attribute)

 	shuffle() (in module openpiv.smoothn)

 	sig2noise_mask (openpiv.windef.PIVSettings attribute)

 	sig2noise_method (openpiv.windef.PIVSettings attribute)

 	sig2noise_ratio() (in module openpiv.pyprocess), [1]

 	(in module openpiv.pyprocess3D)

 	sig2noise_threshold (openpiv.windef.PIVSettings attribute)

 	sig2noise_val() (in module openpiv.validation), [1], [2]

 	sig2noise_validate (openpiv.windef.PIVSettings attribute)

 	
 	simple_multipass() (in module openpiv.windef)

 	simple_piv() (in module openpiv.piv)

 	sliding_window_array() (in module openpiv.pyprocess), [1]

 	smooth() (in module openpiv.smoothn)

 	smooth_masked_array() (in module openpiv.smoothn)

 	smoothn (openpiv.windef.PIVSettings attribute)

 	smoothn() (in module openpiv.smoothn)

 	smoothn_p (openpiv.windef.PIVSettings attribute)

 	sorted_unique() (in module openpiv.tools), [1]

 	sparseSVD() (in module openpiv.smoothn)

 	sparseTest() (in module openpiv.smoothn)

 	standard_cauchy() (in module openpiv.smoothn)

 	standard_exponential() (in module openpiv.smoothn)

 	standard_gamma() (in module openpiv.smoothn)

 	standard_normal() (in module openpiv.smoothn)

 	standard_t() (in module openpiv.smoothn)

 	standardize_array() (in module openpiv.preprocess), [1]

 	static_mask (openpiv.windef.PIVSettings attribute)

 	std_threshold (openpiv.windef.PIVSettings attribute)

 	stretch_image() (in module openpiv.preprocess), [1]

 	subpixel_method (openpiv.windef.PIVSettings attribute)

T

 	
 	test() (in module openpiv)

 	test1() (in module openpiv.smoothn)

 	test2() (in module openpiv.smoothn)

 	test3() (in module openpiv.smoothn)

 	test4() (in module openpiv.smoothn)

 	
 	test5() (in module openpiv.smoothn)

 	test6() (in module openpiv.smoothn)

 	threshold_binarize() (in module openpiv.preprocess), [1]

 	transform_coordinates() (in module openpiv.tools), [1]

 	triangular() (in module openpiv.smoothn)

 	typical_validation() (in module openpiv.validation), [1]

U

 	
 	uniform() (in module openpiv.scaling), [1], [2]

 	(in module openpiv.smoothn)

 	
 	use_vectorized (openpiv.windef.PIVSettings attribute)

V

 	
 	validation_first_pass (openpiv.windef.PIVSettings attribute)

 	vectorized_correlation_to_displacements() (in module openpiv.pyprocess), [1]

 	
 	vectorized_sig2noise_ratio() (in module openpiv.pyprocess), [1]

 	vonmises() (in module openpiv.smoothn)

W

 	
 	wald() (in module openpiv.smoothn)

 	warning() (in module openpiv.smoothn)

 	
 	weibull() (in module openpiv.smoothn)

 	windowsizes (openpiv.windef.PIVSettings attribute)

Z

 	
 	zipf() (in module openpiv.smoothn)

numpy>=1.9
openpiv
sphinx
recommonmark
ipykernel
nbsphinx
sphinx_rtd_theme

The OpenPIV graphical user interface

https://github.com/OpenPIV/openpiv_tk_gui

Introduction

openpiv

	openpiv package
	Submodules

	openpiv.PIV_3D_plotting module

	openpiv.filters module

	openpiv.lib module

	openpiv.phase_separation module

	openpiv.piv module

	openpiv.preprocess module

	openpiv.process module

	openpiv.pyprocess module

	openpiv.pyprocess3D module

	openpiv.scaling module

	openpiv.smoothn module

	openpiv.tools module

	openpiv.validation module

	openpiv.widim module

	openpiv.windef module

	Module contents

openpiv package

Submodules

openpiv.PIV_3D_plotting module

functions to plot 3D-deformation fields and simple 3D-structures

	
openpiv.PIV_3D_plotting.explode(data)

	

	
openpiv.PIV_3D_plotting.plot_3D_alpha(data)

	

	
openpiv.PIV_3D_plotting.quiver_3D(u, v, w, x=None, y=None, z=None, mask_filtered=None, filter_def=0, filter_reg=(1, 1, 1), cmap='jet', quiv_args=None, vmin=None, vmax=None, arrow_scale=0.15, equal_ax=True)

	Displaying 3D deformation fields vector arrows

	Parameters

	
	u,v,w (3d ndarray or lists) – arrays or list with deformation in x,y and z direction

	x,y,z (3d ndarray or lists) – Arrays or list with deformation the coordinates of the deformations.
Must match the dimensions of the u,v qnd w. If not provided x,y and z are created
with np.indices(u.shape)

	boolean 3d ndarray or 1d ndarray (mask_filtered,) – Array, or list with same dimensions as the deformations. Defines the area where deformations are drawn

	filter_def (float) – Filter that prevents the display of deformations arrows with length < filter_def

	filter_reg (tuple,list or int) – Filter that prevents the display of every i-th deformations arrows separatly alon each axis.
filter_reg=(2,2,2) means that only every second arrow along x,y z axis is displayed leading to
a total reduction of displayed arrows by a factor of 8. filter_reg=3 is interpreted
as (3,3,3).

	cmap (string) – matplotlib colorbar that defines the coloring of the arrow

	quiv_args (dict) – Dictionary with kwargs passed on to the matplotlib quiver function.

	vmin,vmax (float) – Upper and lower bounds for the colormap. Works like vmin and vmax in plt.imshow().

	arrow_scale: float

	Automatic scaling of the quiver arrows so that the longest arrow has the
length axis length * arrow_scale. Arrow length can alternatively be set by
passing a “lenght” argument in quiv_args.

	equal_axes: bool

	resize the figure axis so that they are have equal scaling.

	Returns

	
	fig (matploltib figure object)

	ax (mattplotlib axes object) – the holding the main 3D quiver plot

	
openpiv.PIV_3D_plotting.scatter_3D(a, cmap='jet', sca_args=None, control='color', size=60)

	

	
openpiv.PIV_3D_plotting.set_axes_equal(ax)

	Following https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to
Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib’s
ax.set_aspect(‘equal’) and ax.axis(‘equal’) not working for 3D.

Parameters

ax: matplotlib.axes object

openpiv.filters module

The openpiv.filters module contains some filtering/smoothing routines.

	
openpiv.filters.gaussian(u: numpy.ndarray, v: numpy.ndarray, half_width: int = 1) → Tuple[numpy.ndarray, numpy.ndarray]

	Smooths the velocity field with a Gaussian kernel.

	Parameters

	
	u (2d np.ndarray) – the u velocity component field

	v (2d np.ndarray) – the v velocity component field

	half_width (int) – the half width of the kernel. Kernel
has shape 2*half_width+1, default = 1

	Returns

	
	uf (2d np.ndarray) – the smoothed u velocity component field

	vf (2d np.ndarray) – the smoothed v velocity component field

	
openpiv.filters.gaussian_kernel(sigma: float, truncate: float = 4.0) → numpy.ndarray

	Return Gaussian that truncates at the given number of standard deviations.

	
openpiv.filters.replace_outliers(u: numpy.ndarray, v: numpy.ndarray, flags: numpy.ndarray, w: Optional[numpy.ndarray] = None, method: str = 'localmean', max_iter: int = 5, tol: float = 0.001, kernel_size: int = 1) → Tuple[numpy.ndarray, ...]

	
	Replace invalid vectors in an velocity field using an iterative image

	inpainting algorithm.

The algorithm is the following:

	For each element in the arrays of the u and v components,
replace it by a weighted average
of the neighbouring elements which are not invalid themselves. The
weights depends of the method type. If method=localmean weight
are equal to 1/((2*kernel_size+1)**2 -1)

	Several iterations are needed if there are adjacent invalid elements.
If this is the case, inforation is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – the u velocity component field

	v (2d or 3d np.ndarray) – the v velocity component field

	w (2d or 3d np.ndarray) – the w velocity component field

	flags (2d array of positions with invalid vectors) –

	grid_mask (2d array of positions masked by the user) –

	max_iter (int) – the number of iterations

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the type of kernel used for repairing missing vectors

	Returns

	
	uf (2d or 3d np.ndarray) – the smoothed u velocity component field, where invalid vectors have
been replaced

	vf (2d or 3d np.ndarray) – the smoothed v velocity component field, where invalid vectors have
been replaced

	wf (2d or 3d np.ndarray) – the smoothed w velocity component field, where invalid vectors have
been replaced

openpiv.lib module

	
openpiv.lib.get_dist(kernel, kernel_size)

	

	
openpiv.lib.replace_nans(array, max_iter, tol, kernel_size=2, method='disk')

	
	Replace NaN elements in an array using an iterative image inpainting

	algorithm.

The algorithm is the following:

	For each element in the input array, replace it by a weighted average
of the neighbouring elements which are not NaN themselves. The weights
depend on the method type. See Methods below.

	Several iterations are needed if there are adjacent NaN elements.
If this is the case, information is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

Methods:

	localmean - A square kernel where all elements have the same value,

	weights are equal to n/((2*kernel_size+1)**2 -1),
where n is the number of non-NaN elements.

	disk - A circular kernel where all elements have the same value,

	
	kernel is calculated by::

	
	if ((S-i)**2 + (S-j)**2)**0.5 <= S:

	kernel[i,j] = 1.0

	else:

	kernel[i,j] = 0.0

where S is the kernel radius.

	distance - A circular inverse distance kernel where elements are

	weighted proportional to their distance away from the
center of the kernel, elements farther away have less
weight. Elements outside the specified radius are set
to 0.0 as in ‘disk’, the remaining of the weights are
calculated as:

maxDist = ((S)**2 + (S)**2)**0.5
kernel[i,j] = -1*(((S-i)**2 + (S-j)**2)**0.5 - maxDist)

where S is the kernel radius.

	Parameters

	
	array (2d or 3d np.ndarray) – an array containing NaN elements that have to be replaced
if array is a masked array (numpy.ma.MaskedArray), then
the mask is reapplied after the replacement

	max_iter (int) – the number of iterations

	tol (float) – On each iteration check if the mean square difference between
values of replaced elements is below a certain tolerance tol

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the method used to replace invalid values. Valid options are
localmean, disk, and distance.

	Returns

	filled – a copy of the input array, where NaN elements have been replaced.

	Return type

	2d or 3d np.ndarray

openpiv.phase_separation module

A module for separating solid phase from liquid tracers using image processing techniques.

	
openpiv.phase_separation.get_particles_size_array(original_image, blur_kernel_size=1, I_sat=230, opening_ksize=3)

	Returns the array of particle image areas in pixels.

Used as a quick means to set size limits in Kalitov-Longmire method.

Usage Example:

plt.hist(get_particles_size_array(image))
plt.title(‘Particle size distribution’)

	Parameters

	
	original_image (np.ndarray) – Original two-phase input image

	blur_kernel_size (int) – Stencil width for pre-processing blur. Must be an odd number.

	I_sat (int) – Saturation intensity for object pixels detection process.

	opening_ksize (int) – Stencil width for opening operation used to remove tiny regions from object pixels.
Set to -1 to skip opening.

	Returns

	size_array – Array of length N, containing areas of particle regions number 0 to N in pixels.

	Return type

	np.array

	
openpiv.phase_separation.get_size_brightness_map(original_image, blur_kernel_size=1, I_sat=230, opening_ksize=3, MAX_PARTICLE_SIZE=400)

	Returns the size-brightness map.

Used as an advanced means to set size and brightness limits in Kalitov-Longmire method.

Usage Example:

plt.imshow(im, origin=’lower’)
plt.xlabel(‘Brightness’)
plt.ylabel(‘Size (px)’)
plt.title(‘Signal density’)

	Parameters

	
	original_image (np.ndarray) – Original two-phase input image

	blur_kernel_size (int) – Stencil width for pre-processing blur. Must be an odd number.

	I_sat (int) – Saturation intensity for object pixels detection process.

	opening_ksize (int) – Stencil width for opening operation used to remove tiny regions from object pixels.
Set to -1 to skip opening.

	MAX_PARTICLE_SIZE (int) – Particle area upper limit (Y-axis max in the map) in pixels.

	Returns

	density_map – Density map (D) where D[i,j] is log10(size*brightness*number) at size=i & brightness=j.
See Kalitov & Longmire, 2002 for more information.

	Return type

	np.ndarray

	
openpiv.phase_separation.khalitov_longmire(original_image, big_particles_criteria, small_particles_criteria, blur_kernel_size=1, I_sat=230, opening_ksize=3)

	Extract separated images using the method proposed by Khalitov & Longmire, 2002.

For detailed information see:

Khalitov, D., Longmire, E. Simultaneous two-phase PIV by two-parameter phase discrimination.
Experiments in Fluids 32, 252–268 (2002).
https://doi.org/10.1007/s003480100356

	Parameters

	
	original_image (np.ndarray) – Original two-phase input image

	big_particles_criteria – ‘min_size’ : int,
[‘max_size’ : int,]
[‘min_brightness’ : int,]
[‘max_brightness’ : int]

	} –

	dictionary defining big particles criteria. 'min_size' is mandatory. (A) –

	small_particles_criteria – [‘min_size’ : int,]
‘max_size’ : int,
[‘min_brightness’ : int,]
[‘max_brightness’ : int]

	} –

	dictionary defining small particles criteria. 'max_size' is mandatory. (A) –

	blur_kernel_size (int) – Stencil width for pre-processing blur. Must be an odd number.

	I_sat (int) – Saturation intensity for object pixels detection process.

	opening_ksize (int) – Stencil width for opening operation used to remove tiny regions from object pixels.
Set to -1 to skip opening.

	Returns

	
	big_particles_img (np.ndarray) – Extracted image of the phase with bigger particles (dispersed phase)

	small_particles_img (np.ndarray) – Extracted image of the phase with smaller particles (carrier phase)

	
openpiv.phase_separation.khalitov_longmire_analyse_particle_segments(original_image, object_pixels)

	Private function

	
openpiv.phase_separation.khalitov_longmire_get_object_pixels(original_image, blur_kernel_size=1, I_sat=230, opening_ksize=3)

	Private function

	
openpiv.phase_separation.median_filter_method(original_image, kernel_size)

	Extract separated images using a median filter

Proposed by Kiger & Pan. Original paper:

Kiger, K. T., & Pan, C. (2000). PIV technique for the simultaneous measurement of dilute two-phase flows.
Journal of Fluids Engineering, Transactions of the ASME, 122(4), 811–818.
https://doi.org/10.1115/1.1314864

	Parameters

	
	original_image (np.ndarray) – Original two-phase input image

	kernel_size (int) – Filter stencil width (must be an odd number). Denoted by Nf in Kiger & Pan.

	Returns

	
	big_particles_img (np.ndarray) – Extracted image of the phase with bigger particles (dispersed phase)

	small_particles_img (np.ndarray) – Extracted image of the phase with smaller particles (carrier phase)

	
openpiv.phase_separation.opening_method(original_image, kernel_size, iterations=1, thresh_factor=1.1)

	Extract separated images based on particle size.

This method uses an erosion filter followed by a dilation (aka opening), to remove
small particle traces, leaving only bigger particles in the image.

The image of small particles is also generated by using the big particles
image as a mask on the original image. A threshold process is used to
intensify the edges of particles in the mask.

	Parameters

	
	original_image (np.ndarray) – Original two-phase input image

	kernel_size (int) – Erosion/dilation stencil width

	iterations (int) – Erosion iterations, default = 1

	thresh_factor (float) – Used to mask big particles, default = 1.1
Mask condition is defined as :

pixel value > thresh_factor * local average intensity

	Returns

	
	big_particles_img (np.ndarray) – Extracted image of the phase with bigger particles (dispersed phase)

	small_particles_img (np.ndarray) – Extracted image of the phase with smaller particles (carrier phase)

openpiv.piv module

	
openpiv.piv.piv_example()

	PIV example uses examples/test5 vortex PIV data to show the main principles

piv(im1,im2) will create a tmp.vec file with the vector filed in pix/dt
(dt=1) from two images, im1,im2 provided as full path filenames
(TIF is preferable)

	
openpiv.piv.simple_piv(im1, im2, plot=True)

	Simplest PIV run on the pair of images using default settings

piv(im1,im2) will create a tmp.vec file with the vector filed in pix/dt
(dt=1) from two images, im1,im2 provided as full path filenames
(TIF is preferable, whatever imageio can read)

openpiv.preprocess module

This module contains image processing routines that improve
images prior to PIV processing.

	
openpiv.preprocess.contrast_stretch(img, lower_limit=2, upper_limit=98)

	Simple percentile-based contrast stretching

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	lower_limit (int) – lower percentile limit

	upper_limit (int) – upper percentile limit

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.dynamic_masking(image, method='edges', filter_size=7, threshold=0.005)

	Dynamically masks out the objects in the PIV images

	Parameters

	
	image (image) – a two dimensional array of uint16, uint8 or similar type

	method (string) – ‘edges’ or ‘intensity’:
‘edges’ method is used for relatively dark and sharp objects,
with visible edges, on
dark backgrounds, i.e. low contrast
‘intensity’ method is useful for smooth bright objects or dark objects
or vice versa,
i.e. images with high contrast between the object and the background

	filter_size (integer) – a scalar that defines the size of the Gaussian filter

	threshold (float) – a value of the threshold to segment the background from the object
default value: None, replaced by sckimage.filter.threshold_otsu value

	Returns

	
	image (array of the same datatype as the incoming image with the)

	object masked out

	as a completely black region(s) of zeros (integers or floats).

Example

frame_a = openpiv.tools.imread(‘Camera1-001.tif’)
imshow(frame_a) # original

frame_a = dynamic_masking(frame_a,method=’edges’,filter_size=7,
threshold=0.005)
imshow(frame_a) # masked

	
openpiv.preprocess.gen_lowpass_background(img_list, sigma=3, resize=None)

	Generate a background by averaging a low pass of all images in an image list.
Apply by subtracting generated background image.

	Parameters

	
	img_list (list) – list of image directories

	sigma (float) – sigma of the gaussian filter

	resize (int or float) – disabled by default, normalize array and set value to user
selected max pixel intensity

	Returns

	img – a mean of all low-passed images

	Return type

	image

	
openpiv.preprocess.gen_min_background(img_list, resize=255)

	Generate a background by averaging the minimum intensity
of all images in an image list.
Apply by subtracting generated background image.

	Parameters

	
	img_list (list) – list of image directories

	resize (int or float) – disabled by default, normalize array and set value to user
selected max pixel intensity

	Returns

	img – a mean of all images

	Return type

	image

	
openpiv.preprocess.high_pass(img, sigma=5, clip=False)

	Simple high pass filter

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	sigma (float) – sigma value of the gaussian filter

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.instensity_cap(img, std_mult=2)

	Simple intensity capping.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	std_mult (int) – how strong the intensity capping is. Lower values
yields a lower threshold

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.intensity_clip(img, min_val=0, max_val=None, flag='clip')

	Simple intensity clipping

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	min_val (int or float) – min allowed pixel intensity

	max_val (int or float) – min allowed pixel intensity

	flag (str) – one of two methods to set invalid pixels intensities

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.local_variance_normalization(img, sigma_1=2, sigma_2=1, clip=True)

	Local variance normalization by two gaussian filters.
This method is used by common commercial softwares

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	sigma_1 (float) – sigma value of the first gaussian low pass filter

	sigma_2 (float) – sigma value of the second gaussian low pass filter

	clip (bool) – set negative pixels to zero

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.mask_coordinates(image_mask, tolerance=1.5, min_length=10, plot=False)

	
	Creates set of coordinates of polygons from the image mask

	Inputs:
mask : binary image of a mask.

[tolerance] : float - tolerance for approximate_polygons, default = 1.5

[min_length] : int - minimum length of the polygon, filters out
the small polygons like noisy regions, default = 10

	Outputs:

	mask_coord : list of mask coordinates in pixels

Example

if masks of image A and B are slightly different:
image_mask = np.logical_and(image_mask_a, image_mask_b)
mask_coords = mask_coordinates(image_mask)

	
openpiv.preprocess.normalize_array(array, axis=None)

	Min/max normalization to [0,1].

	Parameters

	
	array (np.ndarray) – array to normalize

	axis (int, tuple) – axis to find values for normalization

	Returns

	array – normalized array

	Return type

	np.ndarray

	
openpiv.preprocess.offset_image(img, offset_x, offset_y, pad='zero')

	Offset an image by padding.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	offset_x (int) – offset an image by integer values. Positive values shifts
the image to the right and negative values shift to the left

	offset_y (int) – offset an image by integer values. Positive values shifts
the image to the top and negative values shift to the bottom

	pad (str) – pad the shift with zeros or a reflection of the shift

	Returns

	img – a transformed two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.prepare_mask_from_polygon(x, y, mask_coords)

	Converts mask coordinates of the image mask
to the grid of 1/0 on the x,y grid
Inputs:

x,y : grid of x,y points
mask_coords : array of coordinates in pixels of the image_mask

	Outputs:

	grid of points of the mask, of the shape of x

	
openpiv.preprocess.prepare_mask_on_grid(x: numpy.ndarray, y: numpy.ndarray, image_mask: numpy.ndarray) → numpy.array

	summary

	Parameters

	
	x (np.ndarray) – x coordinates of vectors in pixels

	y (np.ndarray) – y coordinates of vectors in pixels

	image_mask (np.ndarray) – image of the mask, 1 or True is to be masked

	Returns

	boolean array of the size of x,y with 1 where the values are masked

	Return type

	np.ndarray

	
openpiv.preprocess.standardize_array(array, axis=None)

	Standardize an array.

	Parameters

	
	array (np.ndarray) – array to normalize

	axis (int, tuple) – axis to find values for standardization

	Returns

	array – normalized array

	Return type

	np.ndarray

	
openpiv.preprocess.stretch_image(img, x_axis=0, y_axis=0)

	Stretch an image by interplation.

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	x_axis (float) – stretch the x-axis of an image where 0 == no stretching

	y_axis (float) – stretch the y-axis of an image where 0 == no stretching

	Returns

	img – a transformed two dimensional array of the input image

	Return type

	image

	
openpiv.preprocess.threshold_binarize(img, threshold, max_val=255)

	Simple binarizing threshold

	Parameters

	
	img (image) – a two dimensional array of float32 or float64,
but can be uint16, uint8 or similar type

	threshold (int or float) – boundary where pixels set lower than the threshold are set to zero
and values higher than the threshold are set to the maximum user selected value

	max_val (int or float) – maximum pixel value of the image

	Returns

	img – a filtered two dimensional array of the input image

	Return type

	image

openpiv.process module

openpiv.pyprocess module

This module contains a pure python implementation of the basic
cross-correlation algorithm for PIV image processing.

	
openpiv.pyprocess.correlate_windows(window_a, window_b, correlation_method='fft', convolve2d=<function convolve2d>, rfft2=<function rfft2>, irfft2=<function irfft2>)

	Compute correlation function between two interrogation windows.
The correlation function can be computed by using the correlation
theorem to speed up the computation.
:param window_a: a two dimensions array for the first interrogation window
:type window_a: 2d np.ndarray
:param window_b: a two dimensions array for the second interrogation window
:type window_b: 2d np.ndarray
:param correlation_method: ‘circular’ - FFT based without zero-padding

‘linear’ - FFT based with zero-padding
‘direct’ - linear convolution based
Default is ‘fft’, which is much faster.

	Parameters

	
	convolve2d (function) – function used for 2d convolutions

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	Returns

	
	corr (2d np.ndarray) – a two dimensions array for the correlation function.

	Note that due to the wish to use 2^N windows for faster FFT

	we use a slightly different convention for the size of the

	correlation map. The theory says it is M+N-1, and the

	’direct’ method gets this size out

	the FFT-based method returns M+N size out, where M is the window_size

	and N is the search_area_size

	It leads to inconsistency of the output

	
openpiv.pyprocess.correlation_to_displacement(corr, n_rows, n_cols, subpixel_method='gaussian')

	Correlation maps are converted to displacement for each interrogation
window using the convention that the size of the correlation map
is 2N -1 where N is the size of the largest interrogation window
(in frame B) that is called search_area_size
Inputs:

	corr3D nd.array

	contains output of the fft_correlate_images

	n_rows, n_colsnumber of interrogation windows, output of the

	get_field_shape

	
openpiv.pyprocess.extended_search_area_piv(frame_a: numpy.ndarray, frame_b: numpy.ndarray, window_size: Union[int, Tuple[int, int]], overlap: Union[int, Tuple[int, int]] = (0, 0), dt: float = 1.0, search_area_size: Union[int, Tuple[int, int], None] = None, correlation_method: str = 'circular', subpixel_method: str = 'gaussian', sig2noise_method: Optional[str] = 'peak2mean', width: int = 2, normalized_correlation: bool = False, use_vectorized: bool = False)

	Standard PIV cross-correlation algorithm, with an option for
extended area search that increased dynamic range. The search region
in the second frame is larger than the interrogation window size in the
first frame. For Cython implementation see
openpiv.process.extended_search_area_piv

This is a pure python implementation of the standard PIV cross-correlation
algorithm. It is a zero order displacement predictor, and no iterative
process is performed.

	Parameters

	
	frame_a (2d np.ndarray) – an two dimensions array of integers containing grey levels of
the first frame.

	frame_b (2d np.ndarray) – an two dimensions array of integers containing grey levels of
the second frame.

	window_size (int) – the size of the (square) interrogation window, [default: 32 pix].

	overlap (int) – the number of pixels by which two adjacent windows overlap
[default: 16 pix].

	dt (float) – the time delay separating the two frames [default: 1.0].

	correlation_method (string) – one of the two methods implemented: ‘circular’ or ‘linear’,
default: ‘circular’, it’s faster, without zero-padding
‘linear’ requires also normalized_correlation = True (see below)

	subpixel_method (string) – one of the following methods to estimate subpixel location of the
peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	sig2noise_method (string) – defines the method of signal-to-noise-ratio measure,
(‘peak2peak’ or ‘peak2mean’. If None, no measure is performed.)

	width (int) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	search_area_size (int) – the size of the interrogation window in the second frame,
default is the same interrogation window size and it is a
fallback to the simplest FFT based PIV

	normalized_correlation (bool) – if True, then the image intensity will be modified by removing
the mean, dividing by the standard deviation and
the correlation map will be normalized. It’s slower but could be
more robust

	Returns

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component,
in pixels/seconds.

	sig2noise (2d np.ndarray, (optional: only if sig2noise_method != None)) – a two dimensional array the signal to noise ratio for each
window pair.

The implementation of the one-step direct correlation with different
size of the interrogation window and the search area. The increased
size of the search areas cope with the problem of loss of pairs due
to in-plane motion, allowing for a smaller interrogation window size,
without increasing the number of outlier vectors.

See:

Particle-Imaging Techniques for Experimental Fluid Mechanics

Annual Review of Fluid Mechanics
Vol. 23: 261-304 (Volume publication date January 1991)
DOI: 10.1146/annurev.fl.23.010191.001401

originally implemented in process.pyx in Cython and converted to
a NumPy vectorized solution in pyprocess.py

	
openpiv.pyprocess.fft_correlate_images(image_a: numpy.ndarray, image_b: numpy.ndarray, correlation_method: str = 'circular', normalized_correlation: bool = True, conj: Callable = <ufunc 'conjugate'>, rfft2=<function rfft2>, irfft2=<function irfft2>, fftshift=<function fftshift>) → numpy.ndarray

	FFT based cross correlation
of two images with multiple views of np.stride_tricks()
The 2D FFT should be applied to the last two axes (-2,-1) and the
zero axis is the number of the interrogation window
This should also work out of the box for rectangular windows.
:param image_a: and two last dimensions are interrogation windows of the first image
:type image_a: 3d np.ndarray, first dimension is the number of windows,
:param image_b:
:type image_b: similar
:param correlation_method: one of the three methods implemented: ‘circular’ or ‘linear’

[default: ‘circular].

	Parameters

	
	normalized_correlation (string) – decides wetehr normalized correlation is done or not: True or False
[default: True].

	conj (function) – function used for complex conjugate

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	fftshift (function) – function used for fftshift

	
openpiv.pyprocess.fft_correlate_windows(window_a, window_b, rfft2=<function rfft2>, irfft2=<function irfft2>)

	FFT based cross correlation
it is a so-called linear convolution based,
since we increase the size of the FFT to
reduce the edge effects.
This should also work out of the box for rectangular windows.

	Parameters

	
	window_a (2d np.ndarray) – a two dimensions array for the first interrogation window

	window_b (2d np.ndarray) – a two dimensions array for the second interrogation window

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	from Stackoverflow (#) –

	scipy import linalg (from) –

	numpy as np (import) –

	works for rectangular windows as well (#) –

	= [[1 , 0 , 0 , 0] , [0 , -1 , 0 , 0] , [0 , 0 , 3 , 0] , (x) – [0 , 0 , 0 , 1], [0 , 0 , 0 , 1]]

	= np.array(x,dtype=np.float) (x) –

	= [[4 , 5] , [3 , 4]] (y) –

	= np.array(y) (y) –

	("conv (print) –

	= np.array(x.shape) (s1) –

	= np.array(y.shape) (s2) –

	= s1 + s2 - 1 (size) –

	= 2 ** np.ceil(np.log2(size))astype(int) (fsize) –

	= tuple([slice(0, int(sz)) for sz in size]) (fslice) –

	= np.fft.fft2(x , fsize) (new_x) –

	= np.fft.fft2(y , fsize) (new_y) –

	= np.fft.ifft2(new_x*new_y)[fslice]copy() (result) –

	for my method (print("fft) –

	
openpiv.pyprocess.find_all_first_peaks(corr)

	Find row and column indices of the first correlation peak.

	Parameters

	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	Returns

	
	index_list (integers, index of the peak position in (N,i,j))

	peaks_max (amplitude of the peak)

	
openpiv.pyprocess.find_all_second_peaks(corr, width=2)

	Find row and column indices of the first correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak

	Returns

	
	index_list (integers, index of the peak position in (N,i,j))

	peaks_max (amplitude of the peak)

	
openpiv.pyprocess.find_first_peak(corr)

	Find row and column indices of the first correlation peak.

	Parameters

	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	Returns

	
	(i,j) (integers, index of the peak position)

	peak (amplitude of the peak)

	
openpiv.pyprocess.find_second_peak(corr, i=None, j=None, width=2)

	Find the value of the second largest peak.

The second largest peak is the height of the peak in
the region outside a 3x3 submatrxi around the first
correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	i,j (ints) – row and column location of the first peak.

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak.

	Returns

	
	i (int) – the row index of the second correlation peak.

	j (int) – the column index of the second correlation peak.

	corr_max2 (int) – the value of the second correlation peak.

	
openpiv.pyprocess.find_subpixel_peak_position(corr, subpixel_method='gaussian')

	Find subpixel approximation of the correlation peak.

This function returns a subpixels approximation of the correlation
peak by using one of the several methods available. If requested,
the function also returns the signal to noise ratio level evaluated
from the correlation map.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	subpixel_method (string) – one of the following methods to estimate subpixel location of the
peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	Returns

	subp_peak_position – the fractional row and column indices for the sub-pixel
approximation of the correlation peak.
If the first peak is on the border of the correlation map
or any other problem, the returned result is a tuple of NaNs.

	Return type

	two elements tuple

	
openpiv.pyprocess.get_coordinates(image_size: Tuple[int, int], search_area_size: int, overlap: int, center_on_field: bool = True) → Tuple[numpy.ndarray, numpy.ndarray]

	Compute the x, y coordinates of the centers of the interrogation windows.
for the SQUARE windows only, see also get_rect_coordinates

the origin (0,0) is like in the image, top left corner
positive x is an increasing column index from left to right
positive y is increasing row index, from top to bottom

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns.

	search_area_size (int) – the size of the search area windows, sometimes it’s equal to
the interrogation window size in both frames A and B

	overlap (int = 0 (default is no overlap)) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	
	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

Coordinate system 0,0 is at the top left corner, positive
x to the right, positive y from top downwards, i.e.
image coordinate system

	
openpiv.pyprocess.get_field_shape(image_size: Tuple[int, int], search_area_size: Tuple[int, int], overlap: Tuple[int, int]) → Tuple[int, int]

	Compute the shape of the resulting flow field.

Given the image size, the interrogation window size and
the overlap size, it is possible to calculate the number
of rows and columns of the resulting flow field.

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns, easy to obtain using .shape

	search_area_size (tuple) – the size of the interrogation windows (if equal in frames A,B)
or the search area (in frame B), the largest of the two

	overlap (tuple) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	field_shape – the shape of the resulting flow field

	Return type

	2-element tuple

	
openpiv.pyprocess.get_rect_coordinates(image_size: Tuple[int, int], window_size: Union[int, Tuple[int, int]], overlap: Union[int, Tuple[int, int]], center_on_field: bool = False)

	Rectangular grid version of get_coordinates.

	
openpiv.pyprocess.moving_window_array(array, window_size, overlap)

	This is a nice numpy trick. The concept of numpy strides should be
clear to understand this code.

Basically, we have a 2d array and we want to perform cross-correlation
over the interrogation windows. An approach could be to loop over the array
but loops are expensive in python. So we create from the array a new array
with three dimension, of size (n_windows, window_size, window_size), in
which each slice, (along the first axis) is an interrogation window.

	
openpiv.pyprocess.nextpower2(i)

	Find 2^n that is equal to or greater than.

	
openpiv.pyprocess.normalize_intensity(window)

	
	Normalize interrogation window or strided image of many windows,

	by removing the mean intensity value per window and clipping the
negative values to zero

	Parameters

	window (2d np.ndarray) – the interrogation window array

	Returns

	window – the interrogation window array, with mean value equal to zero and
intensity normalized to -1 +1 and clipped if some pixels are
extra low/high

	Return type

	2d np.ndarray

	
openpiv.pyprocess.sig2noise_ratio(correlation: numpy.ndarray, sig2noise_method: str = 'peak2peak', width: int = 2) → numpy.ndarray

	Computes the signal to noise ratio from the correlation map.

The signal to noise ratio is computed from the correlation map with
one of two available method. It is a measure of the quality of the
matching between to interrogation windows.

	Parameters

	
	corr (3d np.ndarray) – the correlation maps of the image pair, concatenated along 0th axis

	sig2noise_method (string) – the method for evaluating the signal to noise ratio value from
the correlation map. Can be peak2peak, peak2mean or None
if no evaluation should be made.

	width (int, optional) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	Returns

	sig2noise – the signal to noise ratios from the correlation maps.

	Return type

	np.array

	
openpiv.pyprocess.sliding_window_array(image: numpy.ndarray, window_size: Tuple[int, int] = (64, 64), overlap: Tuple[int, int] = (32, 32)) → numpy.ndarray

	This version does not use numpy as_strided and is much more memory efficient.
Basically, we have a 2d array and we want to perform cross-correlation
over the interrogation windows. An approach could be to loop over the array
but loops are expensive in python. So we create from the array a new array
with three dimension, of size (n_windows, window_size, window_size), in
which each slice, (along the first axis) is an interrogation window.

	
openpiv.pyprocess.vectorized_correlation_to_displacements(corr: numpy.ndarray, n_rows: Optional[int] = None, n_cols: Optional[int] = None, subpixel_method: str = 'gaussian', eps: float = 1e-07)

	Correlation maps are converted to displacement for each interrogation
window using the convention that the size of the correlation map
is 2N -1 where N is the size of the largest interrogation window
(in frame B) that is called search_area_size

	Parameters

	
	corr (3D nd.array) – contains output of the fft_correlate_images

	n_cols (n_rows,) – number of interrogation windows, output of the get_field_shape

	mask_width (int) – distance, in pixels, from the interrogation window in which
correlation peaks would be flagged as invalid

	Returns

	u, v – 2d array of displacements in pixels/dt

	Return type

	2D nd.array

	
openpiv.pyprocess.vectorized_sig2noise_ratio(correlation, sig2noise_method='peak2peak', width=2)

	Computes the signal to noise ratio from the correlation map in a
mostly vectorized approach, thus much faster.

The signal to noise ratio is computed from the correlation map with
one of two available method. It is a measure of the quality of the
matching between to interrogation windows.

	Parameters

	
	corr (3d np.ndarray) – the correlation maps of the image pair, concatenated along 0th axis

	sig2noise_method (string) – the method for evaluating the signal to noise ratio value from
the correlation map. Can be peak2peak, peak2mean or None
if no evaluation should be made.

	width (int, optional) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	Returns

	sig2noise – the signal to noise ratios from the correlation maps.

	Return type

	np.array

openpiv.pyprocess3D module

	
openpiv.pyprocess3D.check_input(window_size, overlap, search_area_size, frame_a, frame_b)

	check the inputs for validity

	
openpiv.pyprocess3D.correlate_windows(window_a, window_b, correlation_method='fft', nfftx=None, nffty=None, nfftz=None)

	Compute correlation function between two interrogation windows.

The correlation function can be computed by using the correlation
theorem to speed up the computation.

	Parameters

	
	window_a (2d np.ndarray) – a two dimensions array for the first interrogation window,

	window_b (2d np.ndarray) – a two dimensions array for the second interrogation window.

	correlation_method (string) – one method is currently implemented: ‘fft’.

	nfftx (int) – the size of the 2D FFT in x-direction,
[default: 2 x windows_a.shape[0] is recommended].

	nffty (int) – the size of the 2D FFT in y-direction,
[default: 2 x windows_a.shape[1] is recommended].

	nfftz (int) – the size of the 2D FFT in z-direction,
[default: 2 x windows_a.shape[2] is recommended].

	Returns

	
	corr (3d np.ndarray) – a three dimensional array of the correlation function.

	Note that due to the wish to use 2^N windows for faster FFT

	we use a slightly different convention for the size of the

	correlation map. The theory says it is M+N-1, and the

	’direct’ method gets this size out

	the FFT-based method returns M+N size out, where M is the window_size

	and N is the search_area_size

	It leads to inconsistency of the output

	
openpiv.pyprocess3D.extended_search_area_piv3D(frame_a, frame_b, window_size, overlap=(0, 0, 0), dt=(1.0, 1.0, 1.0), search_area_size=None, correlation_method='fft', subpixel_method='gaussian', sig2noise_method=None, width=2, nfftx=None, nffty=None, nfftz=None)

	Standard PIV cross-correlation algorithm, with an option for
extended area search that increased dynamic range. The search region
in the second frame is larger than the interrogation window size in the
first frame.

This is a pure python implementation of the standard PIV cross-correlation
algorithm. It is a zero order displacement predictor, and no iterative
process is performed.

	Parameters

	
	frame_a (3d np.ndarray) – an two dimensions array of integers containing grey levels of
the first frame.

	frame_b (3d np.ndarray) – an two dimensions array of integers containing grey levels of
the second frame.

	window_size (tuple) – the size of the (square) interrogation window, [default: 32 pix].

	overlap (tuple) – the number of pixels by which two adjacent windows overlap
[default: 16 pix].

	dt (tuple) – the time delay separating the two frames [default: 1.0].

	correlation_method (string) – only one method is currently implemented: ‘fft’

	subpixel_method (string) – one of the following methods to estimate subpixel location of the peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	sig2noise_method (string) – defines the method of signal-to-noise-ratio measure,
(‘peak2peak’ or ‘peak2mean’. If None, no measure is performed.)

	nfftx (int) – the size of the 3D FFT in x-direction,
[default: 2 x windows_a.shape[0] is recommended]

	nffty (int) – the size of the 3D FFT in y-direction,
[default: 2 x windows_a.shape[1] is recommended]

	nfftz (int) – the size of the 3D FFT in z-direction,
[default: 2 x windows_a.shape[2] is recommended]

	width (int) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	search_area_size (tuple) – the size of the interrogation window in the second frame,
default is the same interrogation window size and it is a
fallback to the simplest FFT based PIV

	Returns

	
	u (3d np.ndarray) – a three dimensional array containing the u velocity component,
in pixels/seconds.

	v (3d np.ndarray) – a three dimensional array containing the v velocity component,
in pixels/seconds.

	w (3d np.ndarray) – a three dimensional array containing the w velocity component,
in pixels/seconds.

	sig2noise (3d np.ndarray, (optional: only if sig2noise_method is not None)) – a three dimensional array the signal to noise ratio for each
window pair.

	
openpiv.pyprocess3D.find_second_peak_3D(corr, i=None, j=None, z=None, width=2)

	Find the value of the second largest peak.

The second largest peak is the height of the peak in
the region outside a 3x3 submatrix around the first
correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	i,j,z (ints) – row, column and layer location of the first peak.

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak.

	Returns

	
	i (int) – the row index of the second correlation peak.

	j (int) – the column index of the second correlation peak.

	z (int) – the 3rd index of the second correlation peak.

	corr_max2int

	the value of the second correlation peak.

	
openpiv.pyprocess3D.find_subpixel_peak_position(corr, subpixel_method='gaussian')

	Find subpixel approximation of the correlation peak.

This function returns a subpixels approximation of the correlation
peak by using one of the several methods available. If requested,
the function also returns the signal to noise ratio level evaluated
from the correlation map.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	subpixel_method (string) – one of the following methods to estimate subpixel location of the peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	Returns

	subp_peak_position – the fractional row and column indices for the sub-pixel
approximation of the correlation peak.

	Return type

	two elements tuple

	
openpiv.pyprocess3D.get_coordinates(image_size, search_area_size, window_size, overlap)

	Compute the x, y coordinates of the centers of the interrogation windows.

	Parameters

	
	image_size (two elements tuple) – a three dimensional tuple for the pixel size of the image

	window_size (tuple) – the size of the interrogation window.

	search_area_size (tuple) – the size of the search area window.

	overlap (tuple) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	
	x (23 np.ndarray) – a three dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (23 np.ndarray) – a three dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	z (23 np.ndarray) – a three dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	
openpiv.pyprocess3D.nextpower2(i)

	Find 2^n that is equal to or greater than.

	
openpiv.pyprocess3D.normalize_intensity(window)

	Normalize interrogation window by removing the mean value.

	Parameters

	window (2d np.ndarray) – the interrogation window array

	Returns

	window – the interrogation window array, with mean value equal to zero.

	Return type

	2d np.ndarray

	
openpiv.pyprocess3D.sig2noise_ratio(corr, sig2noise_method='peak2peak', width=2)

	Computes the signal to noise ratio from the correlation map.

The signal to noise ratio is computed from the correlation map with
one of two available method. It is a measure of the quality of the
matching between to interogation windows.

	Parameters

	
	corr (2d np.ndarray) – the correlation map.

	sig2noise_method (string) – the method for evaluating the signal to noise ratio value from
the correlation map. Can be peak2peak, peak2mean or None
if no evaluation should be made.

	width (int, optional) – the half size of the region around the first
correlation peak to ignore for finding the second
peak. [default: 2]. Only used if sig2noise_method==peak2peak.

	Returns

	sig2noise – the signal to noise ratio from the correlation map.

	Return type

	float

openpiv.scaling module

Scaling utilities

	
openpiv.scaling.uniform(x, y, u, v, scaling_factor)

	Apply an uniform scaling

	Parameters

	
	x (2d np.ndarray) –

	y (2d np.ndarray) –

	u (2d np.ndarray) –

	v (2d np.ndarray) –

	scaling_factor (float) – the image scaling factor in pixels per meter

	Returns

	
	x (2d np.ndarray)

	y (2d np.ndarray)

	u (2d np.ndarray)

	v (2d np.ndarray)

openpiv.smoothn module

	
openpiv.smoothn.InitialGuess(y, I)

	

	
openpiv.smoothn.RobustWeights(r, I, h, wstr)

	

	
openpiv.smoothn.beta(a, b, size=None)

	Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution. It has the probability
distribution function

\[f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
(1 - x)^{\beta - 1},\]

where the normalization, B, is the beta function,

\[B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
(1 - t)^{\beta - 1} dt.\]

It is often seen in Bayesian inference and order statistics.

Note

New code should use the beta method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (float or array_like of floats) – Alpha, positive (>0).

	b (float or array_like of floats) – Beta, positive (>0).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a and b are both scalars.
Otherwise, np.broadcast(a, b).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized beta distribution.

	Return type

	ndarray or scalar

See also

	Generator.beta()

	which should be used for new code.

	
openpiv.smoothn.binomial(n, p, size=None)

	Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified
parameters, n trials and p probability of success where
n an integer >= 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)

Note

New code should use the binomial method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	n (int or array_like of ints) – Parameter of the distribution, >= 0. Floats are also accepted,
but they will be truncated to integers.

	p (float or array_like of floats) – Parameter of the distribution, >= 0 and <=1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if n and p are both scalars.
Otherwise, np.broadcast(n, p).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized binomial distribution, where
each sample is equal to the number of successes over the n trials.

	Return type

	ndarray or scalar

See also

	scipy.stats.binom()

	probability density function, distribution or cumulative density function, etc.

	Generator.binomial()

	which should be used for new code.

Notes

The probability density for the binomial distribution is

\[P(N) = \binom{n}{N}p^N(1-p)^{n-N},\]

where \(n\) is the number of trials, \(p\) is the probability
of success, and \(N\) is the number of successes.

When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.

References

	1

	Dalgaard, Peter, “Introductory Statistics with R”,
Springer-Verlag, 2002.

	2

	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	3

	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	4

	Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

	5

	Wikipedia, “Binomial distribution”,
https://en.wikipedia.org/wiki/Binomial_distribution

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that
generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

	
openpiv.smoothn.chisquare(df, size=None)

	Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal
distributions (mean 0, variance 1), are squared and summed, the
resulting distribution is chi-square (see Notes). This distribution
is often used in hypothesis testing.

Note

New code should use the chisquare method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	df (float or array_like of floats) – Number of degrees of freedom, must be > 0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df is a scalar. Otherwise,
np.array(df).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized chi-square distribution.

	Return type

	ndarray or scalar

	Raises

	ValueError – When df <= 0 or when an inappropriate size (e.g. size=-1)
is given.

See also

	Generator.chisquare()

	which should be used for new code.

Notes

The variable obtained by summing the squares of df independent,
standard normally distributed random variables:

\[Q = \sum_{i=0}^{\mathtt{df}} X^2_i\]

is chi-square distributed, denoted

\[Q \sim \chi^2_k.\]

The probability density function of the chi-squared distribution is

\[p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
x^{k/2 - 1} e^{-x/2},\]

where \(\Gamma\) is the gamma function,

\[\Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.\]

References

	1

	NIST “Engineering Statistics Handbook”
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

	
openpiv.smoothn.choice(a, size=None, replace=True, p=None)

	Generates a random sample from a given 1-D array

New in version 1.7.0.

Note

New code should use the choice method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (1-D array-like or int) – If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if it were np.arange(a)

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	replace (boolean, optional) – Whether the sample is with or without replacement. Default is True,
meaning that a value of a can be selected multiple times.

	p (1-D array-like, optional) – The probabilities associated with each entry in a.
If not given, the sample assumes a uniform distribution over all
entries in a.

	Returns

	samples – The generated random samples

	Return type

	single item or ndarray

	Raises

	ValueError – If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size

See also

randint(), shuffle(), permutation()

	Generator.choice()

	which should be used in new code

Notes

Setting user-specified probabilities through p uses a more general but less
efficient sampler than the default. The general sampler produces a different sample
than the optimized sampler even if each element of p is 1 / len(a).

Sampling random rows from a 2-D array is not possible with this function,
but is possible with Generator.choice through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
 dtype='<U11')

	
openpiv.smoothn.dctND(data, f=<function dct>)

	

	
openpiv.smoothn.dirichlet(alpha, size=None)

	Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. The Dirichlet distribution
is a conjugate prior of a multinomial distribution in Bayesian
inference.

Note

New code should use the dirichlet method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	alpha (sequence of floats, length k) – Parameter of the distribution (length k for sample of
length k).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n), then
m * n * k samples are drawn. Default is None, in which case a
vector of length k is returned.

	Returns

	samples – The drawn samples, of shape (size, k).

	Return type

	ndarray,

	Raises

	ValueError – If any value in alpha is less than or equal to zero

See also

	Generator.dirichlet()

	which should be used for new code.

Notes

The Dirichlet distribution is a distribution over vectors
\(x\) that fulfil the conditions \(x_i>0\) and
\(\sum_{i=1}^k x_i = 1\).

The probability density function \(p\) of a
Dirichlet-distributed random vector \(X\) is
proportional to

\[p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},\]

where \(\alpha\) is a vector containing the positive
concentration parameters.

The method uses the following property for computation: let \(Y\)
be a random vector which has components that follow a standard gamma
distribution, then \(X = \frac{1}{\sum_{i=1}^k{Y_i}} Y\)
is Dirichlet-distributed

References

	1

	David McKay, “Information Theory, Inference and Learning
Algorithms,” chapter 23,
http://www.inference.org.uk/mackay/itila/

	2

	Wikipedia, “Dirichlet distribution”,
https://en.wikipedia.org/wiki/Dirichlet_distribution

Examples

Taking an example cited in Wikipedia, this distribution can be used if
one wanted to cut strings (each of initial length 1.0) into K pieces
with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of
the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

	
openpiv.smoothn.exponential(scale=1.0, size=None)

	Draw samples from an exponential distribution.

Its probability density function is

\[f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),\]

for x > 0 and 0 elsewhere. \(\beta\) is the scale parameter,
which is the inverse of the rate parameter \(\lambda = 1/\beta\).
The rate parameter is an alternative, widely used parameterization
of the exponential distribution [3]_.

The exponential distribution is a continuous analogue of the
geometric distribution. It describes many common situations, such as
the size of raindrops measured over many rainstorms [1]_, or the time
between page requests to Wikipedia [2]_.

Note

New code should use the exponential method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	scale (float or array_like of floats) – The scale parameter, \(\beta = 1/\lambda\). Must be
non-negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if scale is a scalar. Otherwise,
np.array(scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized exponential distribution.

	Return type

	ndarray or scalar

See also

	Generator.exponential()

	which should be used for new code.

References

	1

	Peyton Z. Peebles Jr., “Probability, Random Variables and
Random Signal Principles”, 4th ed, 2001, p. 57.

	2

	Wikipedia, “Poisson process”,
https://en.wikipedia.org/wiki/Poisson_process

	3

	Wikipedia, “Exponential distribution”,
https://en.wikipedia.org/wiki/Exponential_distribution

	
openpiv.smoothn.f(dfnum, dfden, size=None)

	Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters must be greater than
zero.

The random variate of the F distribution (also known as the
Fisher distribution) is a continuous probability distribution
that arises in ANOVA tests, and is the ratio of two chi-square
variates.

Note

New code should use the f method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	dfnum (float or array_like of floats) – Degrees of freedom in numerator, must be > 0.

	dfden (float or array_like of float) – Degrees of freedom in denominator, must be > 0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if dfnum and dfden are both scalars.
Otherwise, np.broadcast(dfnum, dfden).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Fisher distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.f()

	probability density function, distribution or cumulative density function, etc.

	Generator.f()

	which should be used for new code.

Notes

The F statistic is used to compare in-group variances to between-group
variances. Calculating the distribution depends on the sampling, and
so it is a function of the respective degrees of freedom in the
problem. The variable dfnum is the number of samples minus one, the
between-groups degrees of freedom, while dfden is the within-groups
degrees of freedom, the sum of the number of samples in each group
minus the number of groups.

References

	1

	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	2

	Wikipedia, “F-distribution”,
https://en.wikipedia.org/wiki/F-distribution

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people
without diabetes (25 controls). Fasting blood glucose was measured,
case group had a mean value of 86.1, controls had a mean value of
82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
data consistent with the null hypothesis that the parents diabetic
status does not affect their children’s blood glucose levels?
Calculating the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> np.sort(s)[-10]
7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
level.

	
openpiv.smoothn.gamma(shape, scale=1.0, size=None)

	Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale (sometimes designated
“theta”), where both parameters are > 0.

Note

New code should use the gamma method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	shape (float or array_like of floats) – The shape of the gamma distribution. Must be non-negative.

	scale (float or array_like of floats, optional) – The scale of the gamma distribution. Must be non-negative.
Default is equal to 1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if shape and scale are both scalars.
Otherwise, np.broadcast(shape, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized gamma distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.gamma()

	probability density function, distribution or cumulative density function, etc.

	Generator.gamma()

	which should be used for new code.

Notes

The probability density for the Gamma distribution is

\[p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},\]

where \(k\) is the shape and \(\theta\) the scale,
and \(\Gamma\) is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	1

	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	2

	Wikipedia, “Gamma distribution”,
https://en.wikipedia.org/wiki/Gamma_distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show()

	
openpiv.smoothn.gcv(p, Lambda, aow, DCTy, IsFinite, Wtot, y, nof, noe, smoothOrder)

	

	
openpiv.smoothn.geometric(p, size=None)

	Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

\[f(k) = (1 - p)^{k - 1} p\]

where p is the probability of success of an individual trial.

Note

New code should use the geometric method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	p (float or array_like of floats) – The probability of success of an individual trial.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if p is a scalar. Otherwise,
np.array(p).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized geometric distribution.

	Return type

	ndarray or scalar

See also

	Generator.geometric()

	which should be used for new code.

Examples

Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

	
openpiv.smoothn.get_state()

	Return a tuple representing the internal state of the generator.

For more details, see set_state.

	Parameters

	legacy (bool, optional) – Flag indicating to return a legacy tuple state when the BitGenerator
is MT19937, instead of a dict.

	Returns

	out – The returned tuple has the following items:

	the string ‘MT19937’.

	a 1-D array of 624 unsigned integer keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

If legacy is False, or the BitGenerator is not MT19937, then
state is returned as a dictionary.

	Return type

	{tuple(str, ndarray of 624 uints, int, int, float), dict}

See also

set_state()

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

	
openpiv.smoothn.gumbel(loc=0.0, scale=1.0, size=None)

	Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and
scale. For more information on the Gumbel distribution, see
Notes and References below.

Note

New code should use the gumbel method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	loc (float or array_like of floats, optional) – The location of the mode of the distribution. Default is 0.

	scale (float or array_like of floats, optional) – The scale parameter of the distribution. Default is 1. Must be non-
negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Gumbel distribution.

	Return type

	ndarray or scalar

See also

scipy.stats.gumbel_l(), scipy.stats.gumbel_r(), scipy.stats.genextreme(), weibull()

	Generator.gumbel()

	which should be used for new code.

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
Value Type I) distribution is one of a class of Generalized Extreme
Value (GEV) distributions used in modeling extreme value problems.
The Gumbel is a special case of the Extreme Value Type I distribution
for maximums from distributions with “exponential-like” tails.

The probability density for the Gumbel distribution is

\[p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
\beta}},\]

where \(\mu\) is the mode, a location parameter, and
\(\beta\) is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and
rainfall rates. It is a “fat-tailed” distribution - the probability of
an event in the tail of the distribution is larger than if one used a
Gaussian, hence the surprisingly frequent occurrence of 100-year
floods. Floods were initially modeled as a Gaussian process, which
underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.

The function has a mean of \(\mu + 0.57721\beta\) and a variance
of \(\frac{\pi^2}{6}\beta^2\).

References

	1

	Gumbel, E. J., “Statistics of Extremes,”
New York: Columbia University Press, 1958.

	2

	Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme
Values from Insurance, Finance, Hydrology and Other Fields,”
Basel: Birkhauser Verlag, 2001.

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

	
openpiv.smoothn.hypergeometric(ngood, nbad, nsample, size=None)

	Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified
parameters, ngood (ways to make a good selection), nbad (ways to make
a bad selection), and nsample (number of items sampled, which is less
than or equal to the sum ngood + nbad).

Note

New code should use the hypergeometric method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	ngood (int or array_like of ints) – Number of ways to make a good selection. Must be nonnegative.

	nbad (int or array_like of ints) – Number of ways to make a bad selection. Must be nonnegative.

	nsample (int or array_like of ints) – Number of items sampled. Must be at least 1 and at most
ngood + nbad.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if ngood, nbad, and nsample
are all scalars. Otherwise, np.broadcast(ngood, nbad, nsample).size
samples are drawn.

	Returns

	out – Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of
size nsample taken from a set of ngood good items and nbad bad items.

	Return type

	ndarray or scalar

See also

	scipy.stats.hypergeom()

	probability density function, distribution or cumulative density function, etc.

	Generator.hypergeometric()

	which should be used for new code.

Notes

The probability density for the Hypergeometric distribution is

\[P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},\]

where \(0 \le x \le n\) and \(n-b \le x \le g\)

for P(x) the probability of x good results in the drawn sample,
g = ngood, b = nbad, and n = nsample.

Consider an urn with black and white marbles in it, ngood of them
are black and nbad are white. If you draw nsample balls without
replacement, then the hypergeometric distribution describes the
distribution of black balls in the drawn sample.

Note that this distribution is very similar to the binomial
distribution, except that in this case, samples are drawn without
replacement, whereas in the Binomial case samples are drawn with
replacement (or the sample space is infinite). As the sample space
becomes large, this distribution approaches the binomial.

References

	1

	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	2

	Weisstein, Eric W. “Hypergeometric Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

	3

	Wikipedia, “Hypergeometric distribution”,
https://en.wikipedia.org/wiki/Hypergeometric_distribution

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles.
If you pull 15 marbles at random, how likely is it that
12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

	
openpiv.smoothn.laplace(loc=0.0, scale=1.0, size=None)

	Draw samples from the Laplace or double exponential distribution with
specified location (or mean) and scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution,
but is sharper at the peak and has fatter tails. It represents the
difference between two independent, identically distributed exponential
random variables.

Note

New code should use the laplace method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	loc (float or array_like of floats, optional) – The position, \(\mu\), of the distribution peak. Default is 0.

	scale (float or array_like of floats, optional) – \(\lambda\), the exponential decay. Default is 1. Must be non-
negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Laplace distribution.

	Return type

	ndarray or scalar

See also

	Generator.laplace()

	which should be used for new code.

Notes

It has the probability density function

\[f(x; \mu, \lambda) = \frac{1}{2\lambda}
\exp\left(-\frac{|x - \mu|}{\lambda}\right).\]

The first law of Laplace, from 1774, states that the frequency
of an error can be expressed as an exponential function of the
absolute magnitude of the error, which leads to the Laplace
distribution. For many problems in economics and health
sciences, this distribution seems to model the data better
than the standard Gaussian distribution.

References

	1

	Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing,” New York: Dover, 1972.

	2

	Kotz, Samuel, et. al. “The Laplace Distribution and
Generalizations, ” Birkhauser, 2001.

	3

	Weisstein, Eric W. “Laplace Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

	4

	Wikipedia, “Laplace distribution”,
https://en.wikipedia.org/wiki/Laplace_distribution

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

	
openpiv.smoothn.logistic(loc=0.0, scale=1.0, size=None)

	Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified
parameters, loc (location or mean, also median), and scale (>0).

Note

New code should use the logistic method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	loc (float or array_like of floats, optional) – Parameter of the distribution. Default is 0.

	scale (float or array_like of floats, optional) – Parameter of the distribution. Must be non-negative.
Default is 1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized logistic distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.logistic()

	probability density function, distribution or cumulative density function, etc.

	Generator.logistic()

	which should be used for new code.

Notes

The probability density for the Logistic distribution is

\[P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},\]

where \(\mu\) = location and \(s\) = scale.

The Logistic distribution is used in Extreme Value problems where it
can act as a mixture of Gumbel distributions, in Epidemiology, and by
the World Chess Federation (FIDE) where it is used in the Elo ranking
system, assuming the performance of each player is a logistically
distributed random variable.

References

	1

	Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of
Extreme Values, from Insurance, Finance, Hydrology and Other
Fields,” Birkhauser Verlag, Basel, pp 132-133.

	2

	Weisstein, Eric W. “Logistic Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html

	3

	Wikipedia, “Logistic-distribution”,
https://en.wikipedia.org/wiki/Logistic_distribution

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> lgst_val = logist(bins, loc, scale)
>>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
>>> plt.show()

	
openpiv.smoothn.lognormal(mean=0.0, sigma=1.0, size=None)

	Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.

Note

New code should use the lognormal method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	mean (float or array_like of floats, optional) – Mean value of the underlying normal distribution. Default is 0.

	sigma (float or array_like of floats, optional) – Standard deviation of the underlying normal distribution. Must be
non-negative. Default is 1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mean and sigma are both scalars.
Otherwise, np.broadcast(mean, sigma).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized log-normal distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.lognorm()

	probability density function, distribution, cumulative density function, etc.

	Generator.lognormal()

	which should be used for new code.

Notes

A variable x has a log-normal distribution if log(x) is normally
distributed. The probability density function for the log-normal
distribution is:

\[p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}\]

where \(\mu\) is the mean and \(\sigma\) is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
sum of a large number of independent, identically-distributed
variables.

References

	1

	Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal
Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001.
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

	2

	Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme
Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density
function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.standard_normal(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

	
openpiv.smoothn.logseries(p, size=None)

	Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified
shape parameter, 0 < p < 1.

Note

New code should use the logseries method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	p (float or array_like of floats) – Shape parameter for the distribution. Must be in the range (0, 1).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if p is a scalar. Otherwise,
np.array(p).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized logarithmic series distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.logser()

	probability density function, distribution or cumulative density function, etc.

	Generator.logseries()

	which should be used for new code.

Notes

The probability density for the Log Series distribution is

\[P(k) = \frac{-p^k}{k \ln(1-p)},\]

where p = probability.

The log series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].

References

	1

	Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).

	2

	Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.

	3

	D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.

	4

	Wikipedia, “Logarithmic distribution”,
https://en.wikipedia.org/wiki/Logarithmic_distribution

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*np.log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
... logseries(bins, a).max(), 'r')
>>> plt.show()

	
openpiv.smoothn.multinomial(n, pvals, size=None)

	Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalization of the
binomial distribution. Take an experiment with one of p
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents n such experiments. Its values,
X_i = [X_0, X_1, ..., X_p], represent the number of times the
outcome was i.

Note

New code should use the multinomial method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	n (int) – Number of experiments.

	pvals (sequence of floats, length p) – Probabilities of each of the p different outcomes. These
must sum to 1 (however, the last element is always assumed to
account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	out – The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

	Return type

	ndarray

See also

	Generator.multinomial()

	which should be used for new code.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3], # random
 [2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26]) # random

The probability inputs should be normalized. As an implementation
detail, the value of the last entry is ignored and assumed to take
up any leftover probability mass, but this should not be relied on.
A biased coin which has twice as much weight on one side as on the
other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62]) # random

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

	
openpiv.smoothn.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

Note

New code should use the multivariate_normal method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	mean (1-D array_like, of length N) – Mean of the N-dimensional distribution.

	cov (2-D array_like, of shape (N, N)) – Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.

	size (int or tuple of ints, optional) – Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	check_valid ({ 'warn', 'raise', 'ignore' }, optional) – Behavior when the covariance matrix is not positive semidefinite.

	tol (float, optional) – Tolerance when checking the singular values in covariance matrix.
cov is cast to double before the check.

	Returns

	out – The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

	Return type

	ndarray

See also

	Generator.multivariate_normal()

	which should be used for new code.

Notes

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix
element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\).
The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.

References

	1

	Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” 3rd ed., New York: McGraw-Hill, 1991.

	2

	Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern
Classification,” 2nd ed., New York: Wiley, 2001.

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True] # random

	
openpiv.smoothn.negative_binomial(n, p, size=None)

	Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified
parameters, n successes and p probability of success where n
is > 0 and p is in the interval [0, 1].

Note

New code should use the negative_binomial method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	n (float or array_like of floats) – Parameter of the distribution, > 0.

	p (float or array_like of floats) – Parameter of the distribution, >= 0 and <=1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if n and p are both scalars.
Otherwise, np.broadcast(n, p).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that
occurred before a total of n successes was reached.

	Return type

	ndarray or scalar

See also

	Generator.negative_binomial()

	which should be used for new code.

Notes

The probability mass function of the negative binomial distribution is

\[P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},\]

where \(n\) is the number of successes, \(p\) is the
probability of success, \(N+n\) is the number of trials, and
\(\Gamma\) is the gamma function. When \(n\) is an integer,
\(\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}\), which is
the more common form of this term in the the pmf. The negative
binomial distribution gives the probability of N failures given n
successes, with a success on the last trial.

If one throws a die repeatedly until the third time a “1” appears,
then the probability distribution of the number of non-“1”s that
appear before the third “1” is a negative binomial distribution.

References

	1

	Weisstein, Eric W. “Negative Binomial Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

	2

	Wikipedia, “Negative binomial distribution”,
https://en.wikipedia.org/wiki/Negative_binomial_distribution

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil
exploration wells, each with an estimated probability of
success of 0.1. What is the probability of having one success
for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11): # doctest: +SKIP
... probability = sum(s<i) / 100000.
... print(i, "wells drilled, probability of one success =", probability)

	
openpiv.smoothn.noncentral_chisquare(df, nonc, size=None)

	Draw samples from a noncentral chi-square distribution.

The noncentral \(\chi^2\) distribution is a generalization of
the \(\chi^2\) distribution.

Note

New code should use the noncentral_chisquare method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	df (float or array_like of floats) – Degrees of freedom, must be > 0.

Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1.

	nonc (float or array_like of floats) – Non-centrality, must be non-negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df and nonc are both scalars.
Otherwise, np.broadcast(df, nonc).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized noncentral chi-square distribution.

	Return type

	ndarray or scalar

See also

	Generator.noncentral_chisquare()

	which should be used for new code.

Notes

The probability density function for the noncentral Chi-square
distribution is

\[P(x;df,nonc) = \sum^{\infty}_{i=0}
\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
P_{Y_{df+2i}}(x),\]

where \(Y_{q}\) is the Chi-square with q degrees of freedom.

References

	1

	Wikipedia, “Noncentral chi-squared distribution”
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

Demonstrate how large values of non-centrality lead to a more symmetric
distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

	
openpiv.smoothn.noncentral_f(dfnum, dfden, nonc, size=None)

	Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters > 1.
nonc is the non-centrality parameter.

Note

New code should use the noncentral_f method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	dfnum (float or array_like of floats) – Numerator degrees of freedom, must be > 0.

Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.

	dfden (float or array_like of floats) – Denominator degrees of freedom, must be > 0.

	nonc (float or array_like of floats) – Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if dfnum, dfden, and nonc
are all scalars. Otherwise, np.broadcast(dfnum, dfden, nonc).size
samples are drawn.

	Returns

	out – Drawn samples from the parameterized noncentral Fisher distribution.

	Return type

	ndarray or scalar

See also

	Generator.noncentral_f()

	which should be used for new code.

Notes

When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.

References

	1

	Weisstein, Eric W. “Noncentral F-Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html

	2

	Wikipedia, “Noncentral F-distribution”,
https://en.wikipedia.org/wiki/Noncentral_F-distribution

Examples

In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We’ll plot the two probability
distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

	
openpiv.smoothn.normal(loc=0.0, scale=1.0, size=None)

	Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [2]_, is often called the bell curve because of
its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [2]_.

Note

New code should use the normal method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	loc (float or array_like of floats) – Mean (“centre”) of the distribution.

	scale (float or array_like of floats) – Standard deviation (spread or “width”) of the distribution. Must be
non-negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized normal distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.norm()

	probability density function, distribution or cumulative density function, etc.

	Generator.normal()

	which should be used for new code.

Notes

The probability density for the Gaussian distribution is

\[p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },\]

where \(\mu\) is the mean and \(\sigma\) the standard
deviation. The square of the standard deviation, \(\sigma^2\),
is called the variance.

The function has its peak at the mean, and its “spread” increases with
the standard deviation (the function reaches 0.607 times its maximum at
\(x + \sigma\) and \(x - \sigma\) [2]_). This implies that
normal is more likely to return samples lying close to the mean, rather
than those far away.

References

	1

	Wikipedia, “Normal distribution”,
https://en.wikipedia.org/wiki/Normal_distribution

	2

	P. R. Peebles Jr., “Central Limit Theorem” in “Probability,
Random Variables and Random Signal Principles”, 4th ed., 2001,
pp. 51, 51, 125.

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s))
0.0 # may vary

>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

Two-by-four array of samples from N(3, 6.25):

>>> np.random.normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

	
openpiv.smoothn.pareto(a, size=None)

	Draw samples from a Pareto II or Lomax distribution with
specified shape.

The Lomax or Pareto II distribution is a shifted Pareto
distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and
multiplying by the scale parameter m (see Notes). The
smallest value of the Lomax distribution is zero while for the
classical Pareto distribution it is mu, where the standard
Pareto distribution has location mu = 1. Lomax can also
be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set
to one and the location set to zero.

The Pareto distribution must be greater than zero, and is
unbounded above. It is also known as the “80-20 rule”. In
this distribution, 80 percent of the weights are in the lowest
20 percent of the range, while the other 20 percent fill the
remaining 80 percent of the range.

Note

New code should use the pareto method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (float or array_like of floats) – Shape of the distribution. Must be positive.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
np.array(a).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Pareto distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.lomax()

	probability density function, distribution or cumulative density function, etc.

	scipy.stats.genpareto()

	probability density function, distribution or cumulative density function, etc.

	Generator.pareto()

	which should be used for new code.

Notes

The probability density for the Pareto distribution is

\[p(x) = \frac{am^a}{x^{a+1}}\]

where \(a\) is the shape and \(m\) the scale.

The Pareto distribution, named after the Italian economist
Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of
economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe
the distribution of wealth in an economy. It has also found
use in insurance, web page access statistics, oil field sizes,
and many other problems, including the download frequency for
projects in Sourceforge [1]_. It is one of the so-called
“fat-tailed” distributions.

References

	1

	Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.

	2

	Pareto, V. (1896). Course of Political Economy. Lausanne.

	3

	Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.

	4

	Wikipedia, “Pareto distribution”,
https://en.wikipedia.org/wiki/Pareto_distribution

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability
density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

	
openpiv.smoothn.peaks(n)

	Mimic basic of matlab peaks fn

	
openpiv.smoothn.permutation(x)

	Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its
first index.

Note

New code should use the permutation method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	x (int or array_like) – If x is an integer, randomly permute np.arange(x).
If x is an array, make a copy and shuffle the elements
randomly.

	Returns

	out – Permuted sequence or array range.

	Return type

	ndarray

See also

	Generator.permutation()

	which should be used for new code.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12]) # random

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8], # random
 [0, 1, 2],
 [3, 4, 5]])

	
openpiv.smoothn.poisson(lam=1.0, size=None)

	Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution
for large N.

Note

New code should use the poisson method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	lam (float or array_like of floats) – Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested
size.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if lam is a scalar. Otherwise,
np.array(lam).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Poisson distribution.

	Return type

	ndarray or scalar

See also

	Generator.poisson()

	which should be used for new code.

Notes

The Poisson distribution

\[f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}\]

For events with an expected separation \(\lambda\) the Poisson
distribution \(f(k; \lambda)\) describes the probability of
\(k\) events occurring within the observed
interval \(\lambda\).

Because the output is limited to the range of the C int64 type, a
ValueError is raised when lam is within 10 sigma of the maximum
representable value.

References

	1

	Weisstein, Eric W. “Poisson Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PoissonDistribution.html

	2

	Wikipedia, “Poisson distribution”,
https://en.wikipedia.org/wiki/Poisson_distribution

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

	
openpiv.smoothn.power(a, size=None)

	Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.

Also known as the power function distribution.

Note

New code should use the power method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (float or array_like of floats) – Parameter of the distribution. Must be non-negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
np.array(a).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized power distribution.

	Return type

	ndarray or scalar

	Raises

	ValueError – If a < 1.

See also

	Generator.power()

	which should be used for new code.

Notes

The probability density function is

\[P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.\]

The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.

It is used, for example, in modeling the over-reporting of insurance
claims.

References

	1

	Christian Kleiber, Samuel Kotz, “Statistical size distributions
in economics and actuarial sciences”, Wiley, 2003.

	2

	Heckert, N. A. and Filliben, James J. “NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions”, National Institute of Standards and Technology
Handbook Series, June 2003.
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats # doctest: +SKIP
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of stats.pareto(5)')

	
openpiv.smoothn.rand(d0, d1, ..., dn)

	Random values in a given shape.

Note

This is a convenience function for users porting code from Matlab,
and wraps random_sample. That function takes a
tuple to specify the size of the output, which is consistent with
other NumPy functions like numpy.zeros and numpy.ones.

Create an array of the given shape and populate it with
random samples from a uniform distribution
over [0, 1).

	Parameters

	d1, .., dn (d0,) – The dimensions of the returned array, must be non-negative.
If no argument is given a single Python float is returned.

	Returns

	out – Random values.

	Return type

	ndarray, shape (d0, d1, ..., dn)

See also

random()

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random
 [0.37601032, 0.25528411], #random
 [0.49313049, 0.94909878]]) #random

	
openpiv.smoothn.randint(low, high=None, size=None, dtype=int)

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of
the specified dtype in the “half-open” interval [low, high). If
high is None (the default), then results are from [0, low).

Note

New code should use the integers method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	low (int or array-like of ints) – Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the
highest such integer).

	high (int or array-like of ints, optional) – If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).
If array-like, must contain integer values

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	dtype (dtype, optional) – Desired dtype of the result. Byteorder must be native.
The default value is int.

New in version 1.11.0.

	Returns

	out – size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

	Return type

	int or ndarray of ints

See also

	random_integers()

	similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

	Generator.integers()

	which should be used for new code.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1], # random
 [3, 2, 2, 0]])

Generate a 1 x 3 array with 3 different upper bounds

>>> np.random.randint(1, [3, 5, 10])
array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> np.random.randint([1, 5, 7], 10)
array([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[8, 6, 9, 7], # random
 [1, 16, 9, 12]], dtype=uint8)

	
openpiv.smoothn.randn(d0, d1, ..., dn)

	Return a sample (or samples) from the “standard normal” distribution.

Note

This is a convenience function for users porting code from Matlab,
and wraps standard_normal. That function takes a
tuple to specify the size of the output, which is consistent with
other NumPy functions like numpy.zeros and numpy.ones.

Note

New code should use the standard_normal method of a default_rng()
instance instead; please see the random-quick-start.

If positive int_like arguments are provided, randn generates an array
of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian)
distribution of mean 0 and variance 1. A single float randomly sampled
from the distribution is returned if no argument is provided.

	Parameters

	d1, .., dn (d0,) – The dimensions of the returned array, must be non-negative.
If no argument is given a single Python float is returned.

	Returns

	Z – A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.

	Return type

	ndarray or float

See also

	standard_normal()

	Similar, but takes a tuple as its argument.

	normal()

	Also accepts mu and sigma arguments.

	Generator.standard_normal()

	which should be used for new code.

Notes

For random samples from \(N(\mu, \sigma^2)\), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 # random

Two-by-four array of samples from N(3, 6.25):

>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

	
openpiv.smoothn.random(size=None)

	Return random floats in the half-open interval [0.0, 1.0). Alias for
random_sample to ease forward-porting to the new random API.

	
openpiv.smoothn.random_integers(low, high=None, size=None)

	Random integers of type np.int_ between low and high, inclusive.

Return random integers of type np.int_ from the “discrete uniform”
distribution in the closed interval [low, high]. If high is
None (the default), then results are from [1, low]. The np.int_
type translates to the C long integer type and its precision
is platform dependent.

This function has been deprecated. Use randint instead.

Deprecated since version 1.11.0.

	Parameters

	
	low (int) – Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

	high (int, optional) – If provided, the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	out – size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

	Return type

	int or ndarray of ints

See also

	randint()

	Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b,
use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4 # random
>>> type(np.random.random_integers(5))
<class 'numpy.int64'>
>>> np.random.random_integers(5, size=(3,2))
array([[5, 4], # random
 [3, 3],
 [4, 5]])

Choose five random numbers from the set of five evenly-spaced
numbers between 0 and 2.5, inclusive (i.e., from the set
\({0, 5/8, 10/8, 15/8, 20/8}\)):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5]) # random

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, density=True)
>>> plt.show()

	
openpiv.smoothn.random_sample(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Note

New code should use the random method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	out – Array of random floats of shape size (unless size=None, in which
case a single float is returned).

	Return type

	float or ndarray of floats

See also

	Generator.random()

	which should be used for new code.

Examples

>>> np.random.random_sample()
0.47108547995356098 # random
>>> type(np.random.random_sample())
<class 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984], # random
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

	
openpiv.smoothn.rayleigh(scale=1.0, size=None)

	Draw samples from a Rayleigh distribution.

The \(\chi\) and Weibull distributions are generalizations of the
Rayleigh.

Note

New code should use the rayleigh method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	scale (float or array_like of floats, optional) – Scale, also equals the mode. Must be non-negative. Default is 1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if scale is a scalar. Otherwise,
np.array(scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Rayleigh distribution.

	Return type

	ndarray or scalar

See also

	Generator.rayleigh()

	which should be used for new code.

Notes

The probability density function for the Rayleigh distribution is

\[P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}\]

The Rayleigh distribution would arise, for example, if the East
and North components of the wind velocity had identical zero-mean
Gaussian distributions. Then the wind speed would have a Rayleigh
distribution.

References

	1

	Brighton Webs Ltd., “Rayleigh Distribution,”
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp

	2

	Wikipedia, “Rayleigh distribution”
https://en.wikipedia.org/wiki/Rayleigh_distribution

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave
height is 1 meter, what fraction of waves are likely to be larger than 3
meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

	
openpiv.smoothn.seed(self, seed=None)

	Reseed a legacy MT19937 BitGenerator

Notes

This is a convenience, legacy function.

The best practice is to not reseed a BitGenerator, rather to
recreate a new one. This method is here for legacy reasons.
This example demonstrates best practice.

>>> from numpy.random import MT19937
>>> from numpy.random import RandomState, SeedSequence
>>> rs = RandomState(MT19937(SeedSequence(123456789)))
Later, you want to restart the stream
>>> rs = RandomState(MT19937(SeedSequence(987654321)))

	
openpiv.smoothn.set_state(state)

	Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of
the bit generator used by the RandomState instance. By default,
RandomState uses the “Mersenne Twister”[1]_ pseudo-random number
generating algorithm.

	Parameters

	state ({tuple(str, ndarray of 624 uints, int, int, float), dict}) – The state tuple has the following items:

	the string ‘MT19937’, specifying the Mersenne Twister algorithm.

	a 1-D array of 624 unsigned integers keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

If state is a dictionary, it is directly set using the BitGenerators
state property.

	Returns

	out – Returns ‘None’ on success.

	Return type

	None

See also

get_state()

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is
also accepted although it is missing some information about the cached
Gaussian value: state = ('MT19937', keys, pos).

References

	1

	M. Matsumoto and T. Nishimura, “Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator,” ACM Trans. on Modeling and Computer Simulation,
Vol. 8, No. 1, pp. 3-30, Jan. 1998.

	
openpiv.smoothn.shuffle(x)

	Modify a sequence in-place by shuffling its contents.

This function only shuffles the array along the first axis of a
multi-dimensional array. The order of sub-arrays is changed but
their contents remains the same.

Note

New code should use the shuffle method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	x (ndarray or MutableSequence) – The array, list or mutable sequence to be shuffled.

	Returns

	

	Return type

	None

See also

	Generator.shuffle()

	which should be used for new code.

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8] # random

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5], # random
 [6, 7, 8],
 [0, 1, 2]])

	
openpiv.smoothn.smooth(u, mask)

	

	
openpiv.smoothn.smooth_masked_array(u)

	Use smooth() on the masked array

	
openpiv.smoothn.smoothn(y, nS0=10, axis=None, smoothOrder=2.0, sd=None, verbose=False, s0=None, z0=None, isrobust=False, W=None, s=None, MaxIter=100, TolZ=0.001, weightstr='bisquare')

	
function [z,s,exitflag,Wtot] = smoothn(varargin)
SMOOTHN Robust spline smoothing for 1-D to N-D data.
SMOOTHN provides a fast, automatized and robust discretized smoothing
spline for data of any dimension.
Z = SMOOTHN(Y) automatically smoothes the uniformly-sampled array Y. Y
can be any N-D noisy array (time series, images, 3D data,…). Non
finite data (NaN or Inf) are treated as missing values.
Z = SMOOTHN(Y,S) smoothes the array Y using the smoothing parameter S.
S must be a real positive scalar. The larger S is, the smoother the
output will be. If the smoothing parameter S is omitted (see previous
option) or empty (i.e. S = []), it is automatically determined using
the generalized cross-validation (GCV) method.
Z = SMOOTHN(Y,W) or Z = SMOOTHN(Y,W,S) specifies a weighting array W of
real positive values, that must have the same size as Y. Note that a
nil weight corresponds to a missing value.
Robust smoothing
—————-
Z = SMOOTHN(…,’robust’) carries out a robust smoothing that minimizes
the influence of outlying data.
[Z,S] = SMOOTHN(…) also returns the calculated value for S so that
you can fine-tune the smoothing subsequently if needed.
An iteration process is used in the presence of weighted and/or missing
values. Z = SMOOTHN(…,OPTION_NAME,OPTION_VALUE) smoothes with the
termination parameters specified by OPTION_NAME and OPTION_VALUE. They
can contain the following criteria:

	TolZ: Termination tolerance on Z (default = 1e-3)

	TolZ must be in]0,1[

MaxIter: Maximum number of iterations allowed (default = 100)
Initial: Initial value for the iterative process (default =

original data)

Syntax: [Z,…] = SMOOTHN(…,’MaxIter’,500,’TolZ’,1e-4,’Initial’,Z0);
[Z,S,EXITFLAG] = SMOOTHN(…) returns a boolean value EXITFLAG that
describes the exit condition of SMOOTHN:

1 SMOOTHN converged.
0 Maximum number of iterations was reached.

Input array can be numeric or logical. The returned array is of class
double.
Notes
—–
The N-D (inverse) discrete cosine transform functions <a
href=”matlab:web(‘http://www.biomecardio.com/matlab/dctn.html’)”
>DCTN and <a
href=”matlab:web(‘http://www.biomecardio.com/matlab/idctn.html’)”
>IDCTN are required.
To be made
———-
Estimate the confidence bands (see Wahba 1983, Nychka 1988).
Reference
———
Garcia D, Robust smoothing of gridded data in one and higher dimensions
with missing values. Computational Statistics & Data Analysis, 2010.
PDF download
Examples:
——–
1-D example
x = linspace(0,100,2**8);
y = cos(x/10)+(x/50)**2 + randn(size(x))/10;
y[[70, 75, 80]] = [5.5, 5, 6];
z = smoothn(y); # Regular smoothing
zr = smoothn(y,’robust’); # Robust smoothing
subplot(121), plot(x,y,’r.’,x,z,’k’,’LineWidth’,2)
axis square, title(‘Regular smoothing’)
subplot(122), plot(x,y,’r.’,x,zr,’k’,’LineWidth’,2)
axis square, title(‘Robust smoothing’)
2-D example
xp = 0:.02:1;
[x,y] = meshgrid(xp);
f = exp(x+y) + sin((x-2*y)*3);
fn = f + randn(size(f))*0.5;
fs = smoothn(fn);
subplot(121), surf(xp,xp,fn), zlim([0 8]), axis square
subplot(122), surf(xp,xp,fs), zlim([0 8]), axis square
2-D example with missing data
n = 256;
y0 = peaks(n);
y = y0 + rand(size(y0))*2;
I = randperm(n^2);
y(I(1:n^2*0.5)) = NaN; # lose 1/2 of data
y(40:90,140:190) = NaN; # create a hole
z = smoothn(y); # smooth data
subplot(2,2,1:2), imagesc(y), axis equal off
title(‘Noisy corrupt data’)
subplot(223), imagesc(z), axis equal off
title(‘Recovered data …’)
subplot(224), imagesc(y0), axis equal off
title(’… compared with original data’)
3-D example
[x,y,z] = meshgrid(-2:.2:2);
xslice = [-0.8,1]; yslice = 2; zslice = [-2,0];
vn = x.*exp(-x.^2-y.^2-z.^2) + randn(size(x))*0.06;
subplot(121), slice(x,y,z,vn,xslice,yslice,zslice,’cubic’)
title(‘Noisy data’)
v = smoothn(vn);
subplot(122), slice(x,y,z,v,xslice,yslice,zslice,’cubic’)
title(‘Smoothed data’)
Cardioid
t = linspace(0,2*pi,1000);
x = 2*cos(t).*(1-cos(t)) + randn(size(t))*0.1;
y = 2*sin(t).*(1-cos(t)) + randn(size(t))*0.1;
z = smoothn(complex(x,y));
plot(x,y,’r.’,real(z),imag(z),’k’,’linewidth’,2)
axis equal tight
Cellular vortical flow
[x,y] = meshgrid(linspace(0,1,24));
Vx = cos(2*pi*x+pi/2).*cos(2*pi*y);
Vy = sin(2*pi*x+pi/2).*sin(2*pi*y);
Vx = Vx + sqrt(0.05)*randn(24,24); # adding Gaussian noise
Vy = Vy + sqrt(0.05)*randn(24,24); # adding Gaussian noise
I = randperm(numel(Vx));
Vx(I(1:30)) = (rand(30,1)-0.5)*5; # adding outliers
Vy(I(1:30)) = (rand(30,1)-0.5)*5; # adding outliers
Vx(I(31:60)) = NaN; # missing values
Vy(I(31:60)) = NaN; # missing values
Vs = smoothn(complex(Vx,Vy),’robust’); # automatic smoothing
subplot(121), quiver(x,y,Vx,Vy,2.5), axis square
title(‘Noisy velocity field’)
subplot(122), quiver(x,y,real(Vs),imag(Vs)), axis square
title(‘Smoothed velocity field’)
See also SMOOTH, SMOOTH3, DCTN, IDCTN.
– Damien Garcia – 2009/03, revised 2010/11
Visit my website for more details about SMOOTHN

Check input arguments
error(nargchk(1,12,nargin));
z0=None,W=None,s=None,MaxIter=100,TolZ=1e-3

	
openpiv.smoothn.sparseSVD(D)

	

	
openpiv.smoothn.sparseTest(n=1000)

	

	
openpiv.smoothn.standard_cauchy(size=None)

	Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Note

New code should use the standard_cauchy method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	samples – The drawn samples.

	Return type

	ndarray or scalar

See also

	Generator.standard_cauchy()

	which should be used for new code.

Notes

The probability density function for the full Cauchy distribution is

\[P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[1+
(\frac{x-x_0}{\gamma})^2 \bigr] }\]

and the Standard Cauchy distribution just sets \(x_0=0\) and
\(\gamma=1\)

The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

References

	1

	NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy
Distribution”,
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

	2

	Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

	3

	Wikipedia, “Cauchy distribution”
https://en.wikipedia.org/wiki/Cauchy_distribution

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

	
openpiv.smoothn.standard_exponential(size=None)

	Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution
with a scale parameter of 1.

Note

New code should use the standard_exponential method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	out – Drawn samples.

	Return type

	float or ndarray

See also

	Generator.standard_exponential()

	which should be used for new code.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

	
openpiv.smoothn.standard_gamma(shape, size=None)

	Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale=1.

Note

New code should use the standard_gamma method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	shape (float or array_like of floats) – Parameter, must be non-negative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if shape is a scalar. Otherwise,
np.array(shape).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized standard gamma distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.gamma()

	probability density function, distribution or cumulative density function, etc.

	Generator.standard_gamma()

	which should be used for new code.

Notes

The probability density for the Gamma distribution is

\[p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},\]

where \(k\) is the shape and \(\theta\) the scale,
and \(\Gamma\) is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	1

	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	2

	Wikipedia, “Gamma distribution”,
https://en.wikipedia.org/wiki/Gamma_distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show()

	
openpiv.smoothn.standard_normal(size=None)

	Draw samples from a standard Normal distribution (mean=0, stdev=1).

Note

New code should use the standard_normal method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns

	out – A floating-point array of shape size of drawn samples, or a
single sample if size was not specified.

	Return type

	float or ndarray

See also

	normal()

	Equivalent function with additional loc and scale arguments for setting the mean and standard deviation.

	Generator.standard_normal()

	which should be used for new code.

Notes

For random samples from \(N(\mu, \sigma^2)\), use one of:

mu + sigma * np.random.standard_normal(size=...)
np.random.normal(mu, sigma, size=...)

Examples

>>> np.random.standard_normal()
2.1923875335537315 #random

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
 -0.38672696, -0.4685006]) # random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

Two-by-four array of samples from \(N(3, 6.25)\):

>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

	
openpiv.smoothn.standard_t(df, size=None)

	Draw samples from a standard Student’s t distribution with df degrees
of freedom.

A special case of the hyperbolic distribution. As df gets
large, the result resembles that of the standard normal
distribution (standard_normal).

Note

New code should use the standard_t method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	df (float or array_like of floats) – Degrees of freedom, must be > 0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df is a scalar. Otherwise,
np.array(df).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized standard Student’s t distribution.

	Return type

	ndarray or scalar

See also

	Generator.standard_t()

	which should be used for new code.

Notes

The probability density function for the t distribution is

\[P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
\Gamma(\frac{df}{2})}\Bigl(1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}\]

The t test is based on an assumption that the data come from a
Normal distribution. The t test provides a way to test whether
the sample mean (that is the mean calculated from the data) is
a good estimate of the true mean.

The derivation of the t-distribution was first published in
1908 by William Gosset while working for the Guinness Brewery
in Dublin. Due to proprietary issues, he had to publish under
a pseudonym, and so he used the name Student.

References

	1

	Dalgaard, Peter, “Introductory Statistics With R”,
Springer, 2002.

	2

	Wikipedia, “Student’s t-distribution”
https://en.wikipedia.org/wiki/Student’s_t-distribution [https://en.wikipedia.org/wiki/Student's_t-distribution]

Examples

From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended
value of 7725 kJ? Our null hypothesis will be the absence of deviation,
and the alternate hypothesis will be the presence of an effect that could be
either positive or negative, hence making our test 2-tailed.

Because we are estimating the mean and we have N=11 values in our sample,
we have N-1=10 degrees of freedom. We set our significance level to 95% and
compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our
empirical standard deviation on an unbiased estimate of the variance (note:
the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> t
-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate
degrees of freedom.

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_t(10, size=1000000)
>>> h = plt.hist(s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at
both tails of the distribution?

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is
lower than the 5% pre-determined significance threshold.

Therefore, the probability of observing values as extreme as our intake
conditionally on the null hypothesis being true is too low, and we reject
the null hypothesis of no deviation.

	
openpiv.smoothn.test1()

	

	
openpiv.smoothn.test2(axis=None)

	

	
openpiv.smoothn.test3(axis=None)

	

	
openpiv.smoothn.test4(i=10, step=0.2, axis=None)

	

	
openpiv.smoothn.test5()

	

	
openpiv.smoothn.test6(noise=0.05, nout=30)

	

	
openpiv.smoothn.triangular(left, mode, right, size=None)

	Draw samples from the triangular distribution over the
interval [left, right].

The triangular distribution is a continuous probability
distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters
directly define the shape of the pdf.

Note

New code should use the triangular method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	left (float or array_like of floats) – Lower limit.

	mode (float or array_like of floats) – The value where the peak of the distribution occurs.
The value must fulfill the condition left <= mode <= right.

	right (float or array_like of floats) – Upper limit, must be larger than left.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if left, mode, and right
are all scalars. Otherwise, np.broadcast(left, mode, right).size
samples are drawn.

	Returns

	out – Drawn samples from the parameterized triangular distribution.

	Return type

	ndarray or scalar

See also

	Generator.triangular()

	which should be used for new code.

Notes

The probability density function for the triangular distribution is

\[\begin{split}P(x;l, m, r) = \begin{cases}
\frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
\frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
0& \text{otherwise}.
\end{cases}\end{split}\]

The triangular distribution is often used in ill-defined
problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used
in simulations.

References

	1

	Wikipedia, “Triangular distribution”
https://en.wikipedia.org/wiki/Triangular_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

	
openpiv.smoothn.uniform(low=0.0, high=1.0, size=None)

	Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by uniform.

Note

New code should use the uniform method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	low (float or array_like of floats, optional) – Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.

	high (float or array_like of floats) – Upper boundary of the output interval. All values generated will be
less than or equal to high. The default value is 1.0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if low and high are both scalars.
Otherwise, np.broadcast(low, high).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized uniform distribution.

	Return type

	ndarray or scalar

See also

	randint()

	Discrete uniform distribution, yielding integers.

	random_integers()

	Discrete uniform distribution over the closed interval [low, high].

	random_sample()

	Floats uniformly distributed over [0, 1).

	random()

	Alias for random_sample.

	rand()

	Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array of floats, uniformly distributed over [0, 1).

	Generator.uniform()

	which should be used for new code.

Notes

The probability density function of the uniform distribution is

\[p(x) = \frac{1}{b - a}\]

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of low will be returned.
If high < low, the results are officially undefined
and may eventually raise an error, i.e. do not rely on this
function to behave when passed arguments satisfying that
inequality condition. The high limit may be included in the
returned array of floats due to floating-point rounding in the
equation low + (high-low) * random_sample(). For example:

>>> x = np.float32(5*0.99999999)
>>> x
5.0

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the
probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

	
openpiv.smoothn.vonmises(mu, kappa, size=None)

	Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode
(mu) and dispersion (kappa), on the interval [-pi, pi].

The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the unit
circle. It may be thought of as the circular analogue of the normal
distribution.

Note

New code should use the vonmises method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	mu (float or array_like of floats) – Mode (“center”) of the distribution.

	kappa (float or array_like of floats) – Dispersion of the distribution, has to be >=0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mu and kappa are both scalars.
Otherwise, np.broadcast(mu, kappa).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized von Mises distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.vonmises()

	probability density function, distribution, or cumulative density function, etc.

	Generator.vonmises()

	which should be used for new code.

Notes

The probability density for the von Mises distribution is

\[p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},\]

where \(\mu\) is the mode and \(\kappa\) the dispersion,
and \(I_0(\kappa)\) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.

References

	1

	Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing,” New York: Dover, 1972.

	2

	von Mises, R., “Mathematical Theory of Probability
and Statistics”, New York: Academic Press, 1964.

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0 # doctest: +SKIP
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP
>>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show()

	
openpiv.smoothn.wald(mean, scale, size=None)

	Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a
Gaussian. Some references claim that the Wald is an inverse Gaussian
with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
because there is an inverse relationship between the time to cover a
unit distance and distance covered in unit time.

Note

New code should use the wald method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	mean (float or array_like of floats) – Distribution mean, must be > 0.

	scale (float or array_like of floats) – Scale parameter, must be > 0.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mean and scale are both scalars.
Otherwise, np.broadcast(mean, scale).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Wald distribution.

	Return type

	ndarray or scalar

See also

	Generator.wald()

	which should be used for new code.

Notes

The probability density function for the Wald distribution is

\[P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
\frac{-scale(x-mean)^2}{2\cdotp mean^2x}\]

As noted above the inverse Gaussian distribution first arise
from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and
modeling stock returns and interest rate processes.

References

	1

	Brighton Webs Ltd., Wald Distribution,
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp

	2

	Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian
Distribution: Theory : Methodology, and Applications”, CRC Press,
1988.

	3

	Wikipedia, “Inverse Gaussian distribution”
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

	
openpiv.smoothn.warning(s1, s2)

	

	
openpiv.smoothn.weibull(a, size=None)

	Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given
shape parameter a.

\[X = (-ln(U))^{1/a}\]

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter
\(\lambda\) is just \(X = \lambda(-ln(U))^{1/a}\).

Note

New code should use the weibull method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (float or array_like of floats) – Shape parameter of the distribution. Must be nonnegative.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
np.array(a).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Weibull distribution.

	Return type

	ndarray or scalar

See also

scipy.stats.weibull_max(), scipy.stats.weibull_min(), scipy.stats.genextreme(), gumbel()

	Generator.weibull()

	which should be used for new code.

Notes

The Weibull (or Type III asymptotic extreme value distribution
for smallest values, SEV Type III, or Rosin-Rammler
distribution) is one of a class of Generalized Extreme Value
(GEV) distributions used in modeling extreme value problems.
This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

\[p(x) = \frac{a}
{\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},\]

where \(a\) is the shape and \(\lambda\) the scale.

The function has its peak (the mode) at
\(\lambda(\frac{a-1}{a})^{1/a}\).

When a = 1, the Weibull distribution reduces to the exponential
distribution.

References

	1

	Waloddi Weibull, Royal Technical University, Stockholm,
1939 “A Statistical Theory Of The Strength Of Materials”,
Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
Generalstabens Litografiska Anstalts Forlag, Stockholm.

	2

	Waloddi Weibull, “A Statistical Distribution Function of
Wide Applicability”, Journal Of Applied Mechanics ASME Paper
1951.

	3

	Wikipedia, “Weibull distribution”,
https://en.wikipedia.org/wiki/Weibull_distribution

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

	
openpiv.smoothn.zipf(a, size=None)

	Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter
a > 1.

The Zipf distribution (also known as the zeta distribution) is a
continuous probability distribution that satisfies Zipf’s law: the
frequency of an item is inversely proportional to its rank in a
frequency table.

Note

New code should use the zipf method of a default_rng()
instance instead; please see the random-quick-start.

	Parameters

	
	a (float or array_like of floats) – Distribution parameter. Must be greater than 1.

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
np.array(a).size samples are drawn.

	Returns

	out – Drawn samples from the parameterized Zipf distribution.

	Return type

	ndarray or scalar

See also

	scipy.stats.zipf()

	probability density function, distribution, or cumulative density function, etc.

	Generator.zipf()

	which should be used for new code.

Notes

The probability density for the Zipf distribution is

\[p(x) = \frac{x^{-a}}{\zeta(a)},\]

where \(\zeta\) is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted
that the frequency of any word in a sample of a language is inversely
proportional to its rank in the frequency table.

References

	1

	Zipf, G. K., “Selected Studies of the Principle of Relative
Frequency in Language,” Cambridge, MA: Harvard Univ. Press,
1932.

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy import special # doctest: +SKIP

Truncate s values at 50 so plot is interesting:

>>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a) / special.zetac(a) # doctest: +SKIP
>>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP
>>> plt.show()

openpiv.tools module

The openpiv.tools module is a collection of utilities and tools.

	
class openpiv.tools.Multiprocesser(data_dir: pathlib.Path, pattern_a: str, pattern_b: Optional[str] = None)

	Bases: object

	
run(func, n_cpus=1)

	Start to process images.

	Parameters

	
	func (python function which will be executed for each) – image pair. See tutorial for more details.

	n_cpus (int) – the number of processes to launch in parallel.
For debugging purposes use n_cpus=1

	
openpiv.tools.convert_16bits_tif(filename, save_name)

	convert 16 bits TIFF to an openpiv readable image

	Parameters

	
	filename (_type_) – filename of a 16 bit TIFF

	save_name (_type_) – new image filename

	
openpiv.tools.display(message)

	Display a message to standard output.

	Parameters

	message (string) – a message to be printed

	
openpiv.tools.display_vector_field(filename: Union[pathlib.Path, str], on_img: Optional[bool] = False, image_name: Union[pathlib.Path, str, None] = None, window_size: Optional[int] = 32, scaling_factor: Optional[float] = 1.0, ax: Optional[Any] = None, width: Optional[float] = 0.0025, show_invalid: Optional[bool] = True, **kw)

	Displays quiver plot of the data stored in the file

	Parameters

	
	filename (string) – the absolute path of the text file

	on_img (Bool, optional) – if True, display the vector field on top of the image provided by
image_name

	image_name (string, optional) – path to the image to plot the vector field onto when on_img is True

	window_size (int, optional) – when on_img is True, provide the interrogation window size to fit the
background image to the vector field

	scaling_factor (float, optional) – when on_img is True, provide the scaling factor to scale the background
image to the vector field

	show_invalid (bool, show or not the invalid vectors, default is True) –

	Key arguments(additional parameters, optional)

	scale: [None | float]
width: [None | float]

matplotlib.pyplot.quiver

Examples

— only vector field
>>> openpiv.tools.display_vector_field(‘./exp1_0000.txt’,scale=100,

width=0.0025)

— vector field on top of image
>>> openpiv.tools.display_vector_field(Path(‘./exp1_0000.txt’), on_img=True,

image_name=Path(‘exp1_001_a.bmp’),
window_size=32, scaling_factor=70,
scale=100, width=0.0025)

	
openpiv.tools.display_windows_sampling(x, y, window_size, skip=0, method='standard')

	Displays a map of the interrogation points and windows

	Parameters

	
	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	window_size (the interrogation window size, in pixels) –

	skip (the number of windows to skip on a row during display.) – Recommended value is 0 or 1 for standard method, can be more for random method
-1 to not show any window

	method (can be only <standard> (uniform sampling and constant window size)) – <random> (pick randomly some windows)

Examples

>>> openpiv.tools.display_windows_sampling(x, y, window_size=32, skip=0, method='standard')

	
openpiv.tools.edges(list_img, filename)

	

	
openpiv.tools.find_boundaries(threshold, list_img1, list_img2, filename, picname)

	

	
openpiv.tools.find_reflexions(list_img, filename)

	

	
openpiv.tools.imread(filename, flatten=0)

	Read an image file into a numpy array
using imageio imread

	Parameters

	
	filename (string) – the absolute path of the image file

	flatten (bool) – True if the image is RGB color or False (default) if greyscale

	Returns

	frame – a numpy array with grey levels

	Return type

	np.ndarray

Examples

>>> image = openpiv.tools.imread('image.bmp')
>>> print image.shape
 (1280, 1024)

	
openpiv.tools.imsave(filename, arr)

	Write an image file from a numpy array
using imageio imread

	Parameters

	
	filename (string) – the absolute path of the image file that will be created

	arr (2d np.ndarray) – a 2d numpy array with grey levels

Example

>>> image = openpiv.tools.imread('image.bmp')
>>> image2 = openpiv.tools.negative(image)
>>> imsave('negative-image.tif', image2)

	
openpiv.tools.mark_background(threshold: float, list_img: list, filename: str) → numpy.ndarray

	marks background

	Parameters

	
	threshold (float) – threshold

	list_img (list of images) – _description_

	filename (str) – image filename to save the mask

	Returns

	description

	Return type

	type

	
openpiv.tools.mark_background2(list_img, filename)

	

	
openpiv.tools.natural_sort(file_list: List[pathlib.Path]) → List[pathlib.Path]

	Creates naturally sorted list

	
openpiv.tools.negative(image)

	Return the negative of an image

image : 2d np.ndarray of grey levels

	Returns

	(255-image)

	Return type

	2d np.ndarray of grey levels

	
openpiv.tools.rgb2gray(rgb: numpy.ndarray) → numpy.ndarray

	converts rgb image to gray

	Parameters

	rgb (_type_) – numpy.ndarray, image size, three channels

	Returns

	numpy.ndarray of the same shape, one channel

	Return type

	gray

	
openpiv.tools.save(filename: Union[pathlib.Path, str], x: numpy.ndarray, y: numpy.ndarray, u: numpy.ndarray, v: numpy.ndarray, flags: Optional[numpy.ndarray] = None, mask: Optional[numpy.ndarray] = None, fmt: str = '%.4e', delimiter: str = '\t') → None

	Save flow field to an ascii file.

	Parameters

	
	filename (string) – the path of the file where to save the flow field

	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	u (2d np.ndarray) – a two dimensional array containing the u velocity components,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity components,
in pixels/seconds.

	flags (2d np.ndarray) – a two dimensional integers array where elements corresponding to
vectors: 0 - valid, 1 - invalid (, 2 - interpolated)
default: None, will create all valid 0

	mask (2d np.ndarray boolean, marks the image masked regions (dynamic and/or static)) – default: None - will be all False

	fmtstring

	a format string. See documentation of numpy.savetxt
for more details.

	delimiterstring

	character separating columns

Examples

	openpiv.tools.save(‘field_001.txt’, x, y, u, v, flags, mask, fmt=’%6.3f’,

	delimiter=’ ‘)

	
openpiv.tools.sorted_unique(array: numpy.ndarray) → numpy.ndarray

	Creates sorted unique array

	
openpiv.tools.transform_coordinates(x, y, u, v)

	Converts coordinate systems from/to the image based / physical based

Input/Output: x,y,u,v

image based is 0,0 top left, x = columns to the right, y = rows downwards
and so u,v

physical or right hand one is that leads to the positive vorticity with
the 0,0 origin at bottom left to be counterclockwise

openpiv.validation module

A module for spurious vector detection.

	
openpiv.validation.global_std(u: numpy.ndarray, v: numpy.ndarray, std_threshold: int = 5) → numpy.ndarray

	Eliminate spurious vectors with a global threshold defined by the
standard deviation

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with NaN (Not a Number) if at least
one of the two velocity components is out of a specified global range.

	Parameters

	
	u (2d masked np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d masked np.ndarray) – a two dimensional array containing the v velocity component.

	std_threshold (float) – If the length of the vector (actually the sum of squared components) is
larger than std_threshold times standard deviation of the flow field,
then the vector is treated as an outlier. [default = 3]

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.global_val(u: numpy.ndarray, v: numpy.ndarray, u_thresholds: Tuple[int, int], v_thresholds: Tuple[int, int]) → numpy.ndarray

	Eliminate spurious vectors with a global threshold.

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with Nan (Not a Number) if at
least one of the two velocity components is out of a specified global
range.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_thresholds (two elements tuple) – u_thresholds = (u_min, u_max). If u<u_min or u>u_max
the vector is treated as an outlier.

	v_thresholds (two elements tuple) – v_thresholds = (v_min, v_max). If v<v_min or v>v_max
the vector is treated as an outlier.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.local_median_val(u, v, u_threshold, v_threshold, size=1)

	Eliminate spurious vectors with a local median threshold.

This validation method tests for the spatial consistency of the data.
Vectors are classified as outliers and replaced with Nan (Not a Number) if
the absolute difference with the local median is greater than a user
specified threshold. The median is computed for both velocity components.

	The image masked areas (obstacles, reflections) are marked as masked array:

	u = np.ma.masked(u, flag = image_mask)

and it should not be replaced by the local median, but remain masked.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_threshold (float) – the threshold value for component u

	v_threshold (float) – the threshold value for component v

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

	
openpiv.validation.sig2noise_val(s2n: numpy.ndarray, threshold: float = 1.0) → numpy.ndarray

	Marks spurious vectors if signal to noise ratio is below a specified threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – a two or three dimensional array containing the u velocity component.

	v (2d or 3d np.ndarray) – a two or three dimensional array containing the v velocity component.

	s2n (2d np.ndarray) – a two or three dimensional array containing the value of the signal to
noise ratio from cross-correlation function.

	w (2d or 3d np.ndarray) – a two or three dimensional array containing the w (in z-direction)
velocity component.

	threshold (float) – the signal to noise ratio threshold value.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

References

	
	Keane and R. J. Adrian, Measurement Science & Technology, 1990,

1, 1202-1215.

	
openpiv.validation.typical_validation(u: numpy.ndarray, v: numpy.ndarray, s2n: numpy.ndarray, settings: PIVSettings) → numpy.ndarray

	validation using gloabl limits and std and local median,

with a special option of ‘no_std’ for the case of completely
uniform shift, e.g. in tests.

see windef.PIVSettings() for the parameters:

	MinMaxUtwo elements tuple

	sets the limits of the u displacment component
Used for validation.

	MinMaxVtwo elements tuple

	sets the limits of the v displacment component
Used for validation.

	std_thresholdfloat

	sets the threshold for the std validation

	median_thresholdfloat

	sets the threshold for the median validation

openpiv.widim module

openpiv.windef module

Created on Fri Oct 4 14:04:04 2019

@author: Theo
@modified: Alex, Erich

	
class openpiv.windef.PIVSettings(filepath_images: Union[pathlib.Path, str] = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/openpiv/envs/stable/lib/python3.7/site-packages/openpiv/data/test1'), save_path: pathlib.Path = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/openpiv/envs/stable/lib/python3.7/site-packages/openpiv/data'), save_folder_suffix: str = 'test1', frame_pattern_a: str = 'exp1_001_a.bmp', frame_pattern_b: str = 'exp1_001_b.bmp', roi: Union[Tuple[int, int, int, int], str] = 'full', dynamic_masking_method: Optional[str] = None, dynamic_masking_threshold: float = 0.005, dynamic_masking_filter_size: int = 7, static_mask: Optional[numpy.ndarray] = None, correlation_method: str = 'circular', normalized_correlation: bool = False, windowsizes: Tuple[int, ...] = (64, 32, 16), overlap: Tuple[int, ...] = (32, 16, 8), num_iterations: int = 3, subpixel_method: str = 'gaussian', use_vectorized: bool = False, deformation_method: str = 'symmetric', interpolation_order: int = 3, scaling_factor: float = 1.0, dt: float = 1.0, sig2noise_method: Optional[str] = 'peak2mean', sig2noise_mask: int = 2, sig2noise_threshold: float = 1.0, sig2noise_validate: bool = True, validation_first_pass: bool = True, min_max_u_disp: Tuple = (-30, 30), min_max_v_disp: Tuple = (-30, 30), std_threshold: int = 10, median_threshold: int = 3, median_size: int = 1, replace_vectors: bool = True, smoothn: bool = False, smoothn_p: float = 0.05, filter_method: str = 'localmean', max_filter_iteration: int = 4, filter_kernel_size: int = 2, save_plot: bool = False, show_plot: bool = False, scale_plot: int = 100, show_all_plots: bool = False, invert: bool = False, fmt: str = '%.4e')

	Bases: object

All the PIV settings for the batch analysis with multi-processing and
window deformation. Default settings are set at the initiation

	
correlation_method = 'circular'

	

	
deformation_method = 'symmetric'

	

	
dt = 1.0

	

	
dynamic_masking_filter_size = 7

	

	
dynamic_masking_method = None

	None for no masking
‘edges’ for edges masking,
‘intensity’ for intensity masking

	
dynamic_masking_threshold = 0.005

	

	
filepath_images = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/openpiv/envs/stable/lib/python3.7/site-packages/openpiv/data/test1')

	

	
filter_kernel_size = 2

	

	
filter_method = 'localmean'

	

	
fmt = '%.4e'

	

	
frame_pattern_a = 'exp1_001_a.bmp'

	

	
frame_pattern_b = 'exp1_001_b.bmp'

	

	
interpolation_order = 3

	

	
invert = False

	

	
max_filter_iteration = 4

	

	
median_size = 1

	

	
median_threshold = 3

	

	
min_max_u_disp = (-30, 30)

	

	
min_max_v_disp = (-30, 30)

	

	
normalized_correlation = False

	

	
num_iterations = 3

	

	
overlap = (32, 16, 8)

	

	
replace_vectors = True

	

	
roi = 'full'

	

	
save_folder_suffix = 'test1'

	

	
save_path = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/openpiv/envs/stable/lib/python3.7/site-packages/openpiv/data')

	

	
save_plot = False

	

	
scale_plot = 100

	

	
scaling_factor = 1.0

	

	
show_all_plots = False

	

	
show_plot = False

	

	
sig2noise_mask = 2

	

	
sig2noise_method = 'peak2mean'

	

	
sig2noise_threshold = 1.0

	

	
sig2noise_validate = True

	

	
smoothn = False

	

	
smoothn_p = 0.05

	

	
static_mask = None

	

	
std_threshold = 10

	

	
subpixel_method = 'gaussian'

	

	
use_vectorized = False

	

	
validation_first_pass = True

	

	
windowsizes = (64, 32, 16)

	

	
openpiv.windef.create_deformation_field(frame, x, y, u, v, interpolation_order=3)

	Deform an image by window deformation where a new grid is defined based
on the grid and displacements of the previous pass and pixel values are
interpolated onto the new grid.

	Parameters

	
	frame (2d np.ndarray, dtype=np.int32) – an two dimensions array of integers containing grey levels of
the first frame.

	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	u (2d np.ndarray) – a two dimensional array containing the u velocity component,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component,
in pixels/seconds.

	interpolation_order (scalar) – the degree of the interpolation of the B-splines over the rectangular mesh

	Returns

	
	x,y (new grid (after meshgrid))

	u,v (deformation field)

	
openpiv.windef.deform_windows(frame, x, y, u, v, interpolation_order=1, interpolation_order2=3, debugging=False)

	Deform an image by window deformation where a new grid is defined based
on the grid and displacements of the previous pass and pixel values are
interpolated onto the new grid.

	Parameters

	
	frame (2d np.ndarray, dtype=np.int32) – an two dimensions array of integers containing grey levels of
the first frame.

	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	u (2d np.ndarray) – a two dimensional array containing the u velocity component,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component,
in pixels/seconds.

	interpolation_order (scalar) – the degree of the frame interpolation (deformation) of the image

	interpolation_order2 (scalar) – the degree of the interpolation of the B-splines over the rectangular mesh

	Returns

	a deformed image based on the meshgrid and displacements of the
previous pass

	Return type

	frame_def

	
openpiv.windef.first_pass(frame_a, frame_b, settings)

	First pass of the PIV evaluation.

This function does the PIV evaluation of the first pass. It returns
the coordinates of the interrogation window centres, the displacment
u and v for each interrogation window as well as the mask which indicates
wether the displacement vector was interpolated or not.

	Parameters

	
	frame_a (2d np.ndarray) – the first image

	frame_b (2d np.ndarray) – the second image

	window_size (int) – the size of the interrogation window

	overlap (int) – the overlap of the interrogation window, typically it is window_size/2

	subpixel_method (string) – the method used for the subpixel interpolation.
one of the following methods to estimate subpixel location of the peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’

	Returns

	
	x (2d np.array) – array containg the x coordinates of the interrogation window centres

	y (2d np.array) – array containg the y coordinates of the interrogation window centres

	u (2d np.array) – array containing the u displacement for every interrogation window

	v (2d np.array) – array containing the u displacement for every interrogation window

	s2n (2d np.array of the signal to noise ratio)

	
openpiv.windef.multipass_img_deform(frame_a: numpy.ndarray, frame_b: numpy.ndarray, current_iteration: int, x_old: numpy.ndarray, y_old: numpy.ndarray, u_old: numpy.ndarray, v_old: numpy.ndarray, settings: openpiv.windef.PIVSettings)

	Multi pass of the PIV evaluation.

This function does the PIV evaluation of the second and other passes.
It returns the coordinates of the interrogation window centres,
the displacement u, v for each interrogation window as well as
the signal to noise ratio array (which is full of NaNs if opted out)

	Parameters

	
	frame_a (2d np.ndarray) – the first image

	frame_b (2d np.ndarray) – the second image

	window_size (tuple of ints) – the size of the interrogation window

	overlap (tuple of ints) – the overlap of the interrogation window, e.g. window_size/2

	x_old (2d np.ndarray) – the x coordinates of the vector field of the previous pass

	y_old (2d np.ndarray) – the y coordinates of the vector field of the previous pass

	u_old (2d np.ndarray) – the u displacement of the vector field of the previous pass
in case of the image mask - u_old and v_old are MaskedArrays

	v_old (2d np.ndarray) – the v displacement of the vector field of the previous pass

	subpixel_method (string) – the method used for the subpixel interpolation.
one of the following methods to estimate subpixel location of the peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’

	interpolation_order (int) – the order of the spline interpolation used for the image deformation

	mask_coords (list of x,y coordinates (pixels) of the image mask,) – default is an empty list

	Returns

	
	x (2d np.array) – array containg the x coordinates of the interrogation window centres

	y (2d np.array) – array containg the y coordinates of the interrogation window centres

	u (2d np.array) – array containing the horizontal displacement for every interrogation
window [pixels]

	u (2d np.array) – array containing the vertical displacement for every interrogation
window it returns values in [pixels]

	grid_mask (2d boolean np.array with the image mask in the x,y coordinates)

	flags (2D np.array of integers, flags marking 0 - valid, 1 - invalid vectors)

	
openpiv.windef.piv(settings)

	the func fuction is the “frame” in which the PIV evaluation is done

	
openpiv.windef.prepare_images(file_a: pathlib.Path, file_b: pathlib.Path, settings: openpiv.windef.PIVSettings) → Tuple[numpy.ndarray, numpy.ndarray, Optional[numpy.ndarray]]

	prepares two images for the PIV pass

	Parameters

	
	file_a (pathlib.Path) – filename of frame A

	file_b (pathlib.Path) – filename of frame B

	settings (_type_) – windef.Settings()

	
openpiv.windef.simple_multipass(frame_a: numpy.ndarray, frame_b: numpy.ndarray, settings: Optional[PIVSettings] = None) → Tuple

	summary

	Parameters

	
	frame_a (np.ndarray) – frame A image as an array

	frame_b (np.ndarray) – frame B,

	settings (Optional["PIVSettings"], optional) – _description_. Defaults to None.

	Returns

	description

	Return type

	Tuple

Module contents

	
openpiv.test()

	

Tutorial on using OpenPIV with PIV Uncertainty Quantification

Authors: @lento234, @alexlib

Documentation: https://pivuq.readthedocs.io/en/latest/

[1]:

If you have not installed pivuq yet:
!conda activate openpiv
!pip install pivuq # or !pip install git+https://github.com/lento234/pivuq

[2]:

%load_ext watermark

[3]:

import pivuq
from openpiv import tools, pyprocess, scaling, validation, filters
import numpy as np
import matplotlib.pyplot as plt

ModuleNotFoundError Traceback (most recent call last)
/home/user/Documents/repos/openpiv-python/openpiv/docs/src/openpiv_pivuq.ipynb Cell 4 in <cell line: 1>()
----> 1 import pivuq
 2 from openpiv import tools, pyprocess, scaling, validation, filters
 3 import numpy as np

ModuleNotFoundError: No module named 'pivuq'

[]:

%watermark -iv

pivuq : 0.3.1
numpy : 1.21.2
openpiv : 0.23.8
matplotlib: 3.5.2
sys : 3.9.7 (default, Sep 16 2021, 16:59:28) [MSC v.1916 64 bit (AMD64)]

Obtain images and ground truth data from pivuq

[]:

we can run it from any folder
path = os.path.dirname(os.path.abspath(__file__))

frame_a = tools.imread('https://github.com/lento234/pivuq/raw/main/examples/data/particledisparity_code_testdata/B00010.tif')
frame_b = tools.imread('https://github.com/lento234/pivuq/raw/main/examples/data/particledisparity_code_testdata/B00011.tif')

image_pair = np.clip(np.array([frame_a, frame_b]), 0, 255).astype('uint8')

[]:

plt.figure(figsize=(12,12))
plt.imshow(np.stack([image_pair[0],0*image_pair[0],image_pair[1]],axis=2)*3)

<matplotlib.image.AxesImage at 0x1b7aaa8af40>

[image: ../_images/src_openpiv_pivuq_7_1.png]

PIV cross-correlation using OpenPIV

[]:

%%time

window_size = 24
overlap = int(window_size * 0.5)
search_area_size = 32

u, v, sig2noise = pyprocess.extended_search_area_piv(
 frame_a, frame_b,
 window_size=window_size,
 overlap=overlap,
 dt=1,
 search_area_size=search_area_size,
 sig2noise_method='peak2peak')

print(u,v,sig2noise)

x, y = pyprocess.get_coordinates(image_size=frame_a.shape, search_area_size=search_area_size, overlap=overlap)
flags_s2n = validation.sig2noise_val(u, v, sig2noise, threshold = 1.3)
flags_g = validation.global_val(u, v, (-1000, 2000), (-1000, 1000))
flags = flags_g | flags_s2n
u, v = filters.replace_outliers(u, v, flags, method='localmean', max_iter=10, kernel_size=2)
x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = 1)#96.52)

Save
tools.save('test_uq.vec', x, y, u, v, flags)

Wall time: 714 ms

[]:

fig, ax = plt.subplots(figsize=(5,5))
tools.display_vector_field('test_uq.vec', scale=50, width=0.0035, ax = ax)

[image: ../_images/src_openpiv_pivuq_10_0.png]

(<Figure size 360x360 with 1 Axes>, <AxesSubplot:>)

Uncertainty quantification

Based on paper and source code:

	Sciacchitano, A., Wieneke, B., & Scarano, F. (2013). PIV uncertainty quantification by image matching. Measurement Science and Technology, 24 (4). https://doi.org/10.1088/0957-0233/24/4/045302.

	http://piv.de/uncertainty/?page_id=221

The mean of disparity set inside a window is defined as:

\[\begin{align}\begin{aligned} \mu = \frac{1}{N}\sum_{i\in N} c_i d_i,\\where :math:`c_i = \sqrt{\Pi(x_i)}` for :math:`i=1,2,...,N`.\end{aligned}\end{align} \]

The standard deviation of disparity set inside a window is defined as:

\[\sigma = \sqrt{\frac{\sum_{i\in N}c_i (d_i - \mu)^2}{\sum_{i\in N}c_i}}.\]

Thus, the instantaneous error (estimate) vector is defined as:

\[\hat{\boldsymbol{\delta}} = \{\hat{\delta}_u,\hat{\delta}_v\} = \sqrt{\boldsymbol{\mu}^2 + \left(\frac{\boldsymbol{\sigma}}{\sqrt{N}}\right)^2}\]

Loading PIV vectors

[]:

data = np.loadtxt('test_uq.vec', skiprows=1).T

I, J = np.unique(data[0]).shape[0], np.unique(data[1]).shape[0]
X = np.reshape(data[0], (I, J)) # x-coordinates
Y = np.reshape(data[1], (I, J)) # y-coordinates
U = np.stack((np.reshape(data[2], (I, J)), np.reshape(data[3], (I, J))))
X_i, Y_i = np.meshgrid(np.arange(I)*overlap, np.arange(J)*overlap)

[]:

fig, axes = plt.subplots(ncols=3, sharex=True, sharey=True, figsize=(15, 5))

for i, (ax, var) in enumerate(zip(axes[:2], ["U", "V"])):
 im = ax.pcolormesh(X, Y, U[i])
 fig.colorbar(im, ax=ax)
 ax.set(title=f"${var}$")

ax = axes[-1]
im = ax.pcolormesh(X, Y, np.linalg.norm(U, axis=0), vmax=3)
fig.colorbar(im, ax=ax)
ax.set(title="Magnitude")

for ax in axes:
 ax.set(xlabel="i", ylabel="j")

[image: ../_images/src_openpiv_pivuq_14_0.png]

UQ using PIVUQ

[]:

%%time
X_d, Y_d, delta, N, mu, sigma = pivuq.disparity.sws(
 image_pair,
 U,
 window_size=window_size, # Similar to PIV window size
 window="gaussian", # Best
 radius=1,
 sliding_window_subtraction=True,
 roi=[10, 450, 220, 430],
 velocity_upsample_kind="linear",
 warp_direction="center", # Depends on original PIV algorithm: "center" is typical
 warp_order=-1, # Whittaker interpolation
 warp_nsteps=1, # Depends on original PIV: 1 step is standard
)

Wall time: 1.45 s

Plot disparity fields

[]:

fig, axes = plt.subplots(ncols=4, sharex=True, sharey=True, figsize=(20, 5))

Magnitude
ax = axes[0]
im = ax.pcolormesh(X, Y, np.linalg.norm(U, axis=0))
fig.colorbar(im, ax=ax)
ax.set(title="Velocity magnitude")

Disparity error components
for i, (ax, var) in enumerate(zip(axes[1:3], ["x", "y"])):
 im = ax.contourf(X_d, Y_d, delta[i], np.linspace(-0.5, 0.5, 11))
 fig.colorbar(im, ax=ax)
 ax.set(title=f"δ_{var}")

Disparity error norm
ax = axes[3]
im = ax.contourf(X_d, Y_d, np.linalg.norm(delta, axis=0), np.linspace(0, 1, 11))
fig.colorbar(im, ax=ax)
ax.set(title="Disparity error norm $|\delta|$");

[image: ../_images/src_openpiv_pivuq_18_0.png]

Plot disparity histogram

[]:

fig, axes = plt.subplots(ncols=3, figsize=(15, 3))

for i, (ax, label) in enumerate(zip(axes[:2], [r"δ_x (px)", r"δ_y (px)"])):
 values = delta[i].ravel() # Ignoring *zero*-disparity region
 ax.hist(values[np.abs(values) > 0], bins=100, density=True)
 ax.set(title=label)

ax = axes[-1]
values = np.linalg.norm(delta, axis=0).ravel()
ax.hist(values[np.abs(values) > 0], bins=50, density=True)
ax.set(title="$|\delta|$ (px)");

[image: ../_images/src_openpiv_pivuq_20_0.png]

openpiv.filters._gaussian_kernel

	
openpiv.filters._gaussian_kernel(half_width: int = 1) → numpy.ndarray

	A normalized 2D Gaussian kernel array

	Parameters

	half_width (int) – the half width of the kernel. Kernel
has shape 2*half_width + 1 (default half_width = 1, i.e.
a Gaussian of 3 x 3 kernel)

Examples

>>> from openpiv.filters import _gaussian_kernel
>>> _gaussian_kernel(1)
array([[0.04491922, 0.12210311, 0.04491922],
 [0.12210311, 0.33191066, 0.12210311],
 [0.04491922, 0.12210311, 0.04491922]])

openpiv.filters.gaussian

	
openpiv.filters.gaussian(u: numpy.ndarray, v: numpy.ndarray, half_width: int = 1) → Tuple[numpy.ndarray, numpy.ndarray]

	Smooths the velocity field with a Gaussian kernel.

	Parameters

	
	u (2d np.ndarray) – the u velocity component field

	v (2d np.ndarray) – the v velocity component field

	half_width (int) – the half width of the kernel. Kernel
has shape 2*half_width+1, default = 1

	Returns

	
	uf (2d np.ndarray) – the smoothed u velocity component field

	vf (2d np.ndarray) – the smoothed v velocity component field

openpiv.filters.replace_outliers

	
openpiv.filters.replace_outliers(u: numpy.ndarray, v: numpy.ndarray, flags: numpy.ndarray, w: Optional[numpy.ndarray] = None, method: str = 'localmean', max_iter: int = 5, tol: float = 0.001, kernel_size: int = 1) → Tuple[numpy.ndarray, ...]

	
	Replace invalid vectors in an velocity field using an iterative image

	inpainting algorithm.

The algorithm is the following:

	For each element in the arrays of the u and v components,
replace it by a weighted average
of the neighbouring elements which are not invalid themselves. The
weights depends of the method type. If method=localmean weight
are equal to 1/((2*kernel_size+1)**2 -1)

	Several iterations are needed if there are adjacent invalid elements.
If this is the case, inforation is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – the u velocity component field

	v (2d or 3d np.ndarray) – the v velocity component field

	w (2d or 3d np.ndarray) – the w velocity component field

	flags (2d array of positions with invalid vectors) –

	grid_mask (2d array of positions masked by the user) –

	max_iter (int) – the number of iterations

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the type of kernel used for repairing missing vectors

	Returns

	
	uf (2d or 3d np.ndarray) – the smoothed u velocity component field, where invalid vectors have
been replaced

	vf (2d or 3d np.ndarray) – the smoothed v velocity component field, where invalid vectors have
been replaced

	wf (2d or 3d np.ndarray) – the smoothed w velocity component field, where invalid vectors have
been replaced

openpiv.lib.replace_nans

	
openpiv.lib.replace_nans(array, max_iter, tol, kernel_size=2, method='disk')

	
	Replace NaN elements in an array using an iterative image inpainting

	algorithm.

The algorithm is the following:

	For each element in the input array, replace it by a weighted average
of the neighbouring elements which are not NaN themselves. The weights
depend on the method type. See Methods below.

	Several iterations are needed if there are adjacent NaN elements.
If this is the case, information is “spread” from the edges of the
missing regions iteratively, until the variation is below a certain
threshold.

Methods:

	localmean - A square kernel where all elements have the same value,

	weights are equal to n/((2*kernel_size+1)**2 -1),
where n is the number of non-NaN elements.

	disk - A circular kernel where all elements have the same value,

	
	kernel is calculated by::

	
	if ((S-i)**2 + (S-j)**2)**0.5 <= S:

	kernel[i,j] = 1.0

	else:

	kernel[i,j] = 0.0

where S is the kernel radius.

	distance - A circular inverse distance kernel where elements are

	weighted proportional to their distance away from the
center of the kernel, elements farther away have less
weight. Elements outside the specified radius are set
to 0.0 as in ‘disk’, the remaining of the weights are
calculated as:

maxDist = ((S)**2 + (S)**2)**0.5
kernel[i,j] = -1*(((S-i)**2 + (S-j)**2)**0.5 - maxDist)

where S is the kernel radius.

	Parameters

	
	array (2d or 3d np.ndarray) – an array containing NaN elements that have to be replaced
if array is a masked array (numpy.ma.MaskedArray), then
the mask is reapplied after the replacement

	max_iter (int) – the number of iterations

	tol (float) – On each iteration check if the mean square difference between
values of replaced elements is below a certain tolerance tol

	kernel_size (int) – the size of the kernel, default is 1

	method (str) – the method used to replace invalid values. Valid options are
localmean, disk, and distance.

	Returns

	filled – a copy of the input array, where NaN elements have been replaced.

	Return type

	2d or 3d np.ndarray

openpiv.lib.sincinterp

openpiv.preprocess.dynamic_masking

	
openpiv.preprocess.dynamic_masking(image, method='edges', filter_size=7, threshold=0.005)

	Dynamically masks out the objects in the PIV images

	Parameters

	
	image (image) – a two dimensional array of uint16, uint8 or similar type

	method (string) – ‘edges’ or ‘intensity’:
‘edges’ method is used for relatively dark and sharp objects,
with visible edges, on
dark backgrounds, i.e. low contrast
‘intensity’ method is useful for smooth bright objects or dark objects
or vice versa,
i.e. images with high contrast between the object and the background

	filter_size (integer) – a scalar that defines the size of the Gaussian filter

	threshold (float) – a value of the threshold to segment the background from the object
default value: None, replaced by sckimage.filter.threshold_otsu value

	Returns

	
	image (array of the same datatype as the incoming image with the)

	object masked out

	as a completely black region(s) of zeros (integers or floats).

Example

frame_a = openpiv.tools.imread(‘Camera1-001.tif’)
imshow(frame_a) # original

frame_a = dynamic_masking(frame_a,method=’edges’,filter_size=7,
threshold=0.005)
imshow(frame_a) # masked

openpiv.process.CorrelationFunction

openpiv.process.correlate_windows

openpiv.process.extended_search_area_piv

openpiv.process.get_coordinates

openpiv.process.get_field_shape

openpiv.process.normalize_intensity

openpiv.pyprocess.correlate_windows

	
openpiv.pyprocess.correlate_windows(window_a, window_b, correlation_method='fft', convolve2d=<function convolve2d>, rfft2=<function rfft2>, irfft2=<function irfft2>)

	Compute correlation function between two interrogation windows.
The correlation function can be computed by using the correlation
theorem to speed up the computation.
:param window_a: a two dimensions array for the first interrogation window
:type window_a: 2d np.ndarray
:param window_b: a two dimensions array for the second interrogation window
:type window_b: 2d np.ndarray
:param correlation_method: ‘circular’ - FFT based without zero-padding

‘linear’ - FFT based with zero-padding
‘direct’ - linear convolution based
Default is ‘fft’, which is much faster.

	Parameters

	
	convolve2d (function) – function used for 2d convolutions

	rfft2 (function) – function used for rfft2

	irfft2 (function) – function used for irfft2

	Returns

	
	corr (2d np.ndarray) – a two dimensions array for the correlation function.

	Note that due to the wish to use 2^N windows for faster FFT

	we use a slightly different convention for the size of the

	correlation map. The theory says it is M+N-1, and the

	’direct’ method gets this size out

	the FFT-based method returns M+N size out, where M is the window_size

	and N is the search_area_size

	It leads to inconsistency of the output

openpiv.pyprocess.find_first_peak

	
openpiv.pyprocess.find_first_peak(corr)

	Find row and column indices of the first correlation peak.

	Parameters

	corr (np.ndarray) – the correlation map fof the strided images (N,K,M) where
N is the number of windows, KxM is the interrogation window size

	Returns

	
	(i,j) (integers, index of the peak position)

	peak (amplitude of the peak)

openpiv.pyprocess.find_second_peak

	
openpiv.pyprocess.find_second_peak(corr, i=None, j=None, width=2)

	Find the value of the second largest peak.

The second largest peak is the height of the peak in
the region outside a 3x3 submatrxi around the first
correlation peak.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	i,j (ints) – row and column location of the first peak.

	width (int) – the half size of the region around the first correlation
peak to ignore for finding the second peak.

	Returns

	
	i (int) – the row index of the second correlation peak.

	j (int) – the column index of the second correlation peak.

	corr_max2 (int) – the value of the second correlation peak.

openpiv.pyprocess.find_subpixel_peak_position

	
openpiv.pyprocess.find_subpixel_peak_position(corr, subpixel_method='gaussian')

	Find subpixel approximation of the correlation peak.

This function returns a subpixels approximation of the correlation
peak by using one of the several methods available. If requested,
the function also returns the signal to noise ratio level evaluated
from the correlation map.

	Parameters

	
	corr (np.ndarray) – the correlation map.

	subpixel_method (string) – one of the following methods to estimate subpixel location of the
peak:
‘centroid’ [replaces default if correlation map is negative],
‘gaussian’ [default if correlation map is positive],
‘parabolic’.

	Returns

	subp_peak_position – the fractional row and column indices for the sub-pixel
approximation of the correlation peak.
If the first peak is on the border of the correlation map
or any other problem, the returned result is a tuple of NaNs.

	Return type

	two elements tuple

openpiv.pyprocess.get_coordinates

	
openpiv.pyprocess.get_coordinates(image_size: Tuple[int, int], search_area_size: int, overlap: int, center_on_field: bool = True) → Tuple[numpy.ndarray, numpy.ndarray]

	Compute the x, y coordinates of the centers of the interrogation windows.
for the SQUARE windows only, see also get_rect_coordinates

the origin (0,0) is like in the image, top left corner
positive x is an increasing column index from left to right
positive y is increasing row index, from top to bottom

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns.

	search_area_size (int) – the size of the search area windows, sometimes it’s equal to
the interrogation window size in both frames A and B

	overlap (int = 0 (default is no overlap)) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	
	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

Coordinate system 0,0 is at the top left corner, positive
x to the right, positive y from top downwards, i.e.
image coordinate system

openpiv.pyprocess.get_field_shape

	
openpiv.pyprocess.get_field_shape(image_size: Tuple[int, int], search_area_size: Tuple[int, int], overlap: Tuple[int, int]) → Tuple[int, int]

	Compute the shape of the resulting flow field.

Given the image size, the interrogation window size and
the overlap size, it is possible to calculate the number
of rows and columns of the resulting flow field.

	Parameters

	
	image_size (two elements tuple) – a two dimensional tuple for the pixel size of the image
first element is number of rows, second element is
the number of columns, easy to obtain using .shape

	search_area_size (tuple) – the size of the interrogation windows (if equal in frames A,B)
or the search area (in frame B), the largest of the two

	overlap (tuple) – the number of pixel by which two adjacent interrogation
windows overlap.

	Returns

	field_shape – the shape of the resulting flow field

	Return type

	2-element tuple

openpiv.pyprocess.moving_window_array

	
openpiv.pyprocess.moving_window_array(array, window_size, overlap)

	This is a nice numpy trick. The concept of numpy strides should be
clear to understand this code.

Basically, we have a 2d array and we want to perform cross-correlation
over the interrogation windows. An approach could be to loop over the array
but loops are expensive in python. So we create from the array a new array
with three dimension, of size (n_windows, window_size, window_size), in
which each slice, (along the first axis) is an interrogation window.

openpiv.pyprocess.normalize_intensity

	
openpiv.pyprocess.normalize_intensity(window)

	
	Normalize interrogation window or strided image of many windows,

	by removing the mean intensity value per window and clipping the
negative values to zero

	Parameters

	window (2d np.ndarray) – the interrogation window array

	Returns

	window – the interrogation window array, with mean value equal to zero and
intensity normalized to -1 +1 and clipped if some pixels are
extra low/high

	Return type

	2d np.ndarray

openpiv.pyprocess.piv

openpiv.scaling.uniform

	
openpiv.scaling.uniform(x, y, u, v, scaling_factor)

	Apply an uniform scaling

	Parameters

	
	x (2d np.ndarray) –

	y (2d np.ndarray) –

	u (2d np.ndarray) –

	v (2d np.ndarray) –

	scaling_factor (float) – the image scaling factor in pixels per meter

	Returns

	
	x (2d np.ndarray)

	y (2d np.ndarray)

	u (2d np.ndarray)

	v (2d np.ndarray)

openpiv.tools.Multiprocesser

	
class openpiv.tools.Multiprocesser(data_dir: pathlib.Path, pattern_a: str, pattern_b: Optional[str] = None)

	
	
__init__(data_dir: pathlib.Path, pattern_a: str, pattern_b: Optional[str] = None) → None

	A class to handle and process large sets of images.

This class is responsible of loading image datasets
and processing them. It has parallelization facilities
to speed up the computation on multicore machines.

It currently support only image pair obtained from
conventional double pulse piv acquisition. Support
for continuos time resolved piv acquistion is in the
future.

	Parameters

	
	data_dir (str) – the path where image files are located

	pattern_a (str) – a shell glob pattern to match the first (A) frames.

	pattern_b (str) – a shell glob pattern to match the second (B) frames.

	Options –
	pattern_a = ‘image_*_a.bmp’

	pattern_b = ‘image_*_b.bmp’

	or

	pattern_a = ‘000*.tif’
pattern_b = ‘(1+2),(2+3)’
will create PIV of these pairs: 0001.tif+0002.tif, 0002.tif+0003.tif …

	or

	pattern_a = ‘000*.tif’
pattern_b = ‘(1+3),(2+4)’
will create PIV of these pairs: 0001.tif+0003.tif, 0002.tif+0004.tif …

	or

	pattern_a = ‘000*.tif’
pattern_b = ‘(1+2),(3+4)’
will create PIV of these pairs: 0001.tif+0002.tif, 0003.tif+0004.tif …

Examples

>>> multi = openpiv.tools.Multiprocesser('/home/user/images', 'image_*_a.bmp', 'image_*_b.bmp')

Methods

openpiv.tools.display

	
openpiv.tools.display(message)

	Display a message to standard output.

	Parameters

	message (string) – a message to be printed

openpiv.tools.display_vector_field

	
openpiv.tools.display_vector_field(filename: Union[pathlib.Path, str], on_img: Optional[bool] = False, image_name: Union[pathlib.Path, str, None] = None, window_size: Optional[int] = 32, scaling_factor: Optional[float] = 1.0, ax: Optional[Any] = None, width: Optional[float] = 0.0025, show_invalid: Optional[bool] = True, **kw)

	Displays quiver plot of the data stored in the file

	Parameters

	
	filename (string) – the absolute path of the text file

	on_img (Bool, optional) – if True, display the vector field on top of the image provided by
image_name

	image_name (string, optional) – path to the image to plot the vector field onto when on_img is True

	window_size (int, optional) – when on_img is True, provide the interrogation window size to fit the
background image to the vector field

	scaling_factor (float, optional) – when on_img is True, provide the scaling factor to scale the background
image to the vector field

	show_invalid (bool, show or not the invalid vectors, default is True) –

	Key arguments(additional parameters, optional)

	scale: [None | float]
width: [None | float]

matplotlib.pyplot.quiver

Examples

— only vector field
>>> openpiv.tools.display_vector_field(‘./exp1_0000.txt’,scale=100,

width=0.0025)

— vector field on top of image
>>> openpiv.tools.display_vector_field(Path(‘./exp1_0000.txt’), on_img=True,

image_name=Path(‘exp1_001_a.bmp’),
window_size=32, scaling_factor=70,
scale=100, width=0.0025)

openpiv.tools.imread

	
openpiv.tools.imread(filename, flatten=0)

	Read an image file into a numpy array
using imageio imread

	Parameters

	
	filename (string) – the absolute path of the image file

	flatten (bool) – True if the image is RGB color or False (default) if greyscale

	Returns

	frame – a numpy array with grey levels

	Return type

	np.ndarray

Examples

>>> image = openpiv.tools.imread('image.bmp')
>>> print image.shape
 (1280, 1024)

openpiv.tools.save

	
openpiv.tools.save(filename: Union[pathlib.Path, str], x: numpy.ndarray, y: numpy.ndarray, u: numpy.ndarray, v: numpy.ndarray, flags: Optional[numpy.ndarray] = None, mask: Optional[numpy.ndarray] = None, fmt: str = '%.4e', delimiter: str = '\t') → None

	Save flow field to an ascii file.

	Parameters

	
	filename (string) – the path of the file where to save the flow field

	x (2d np.ndarray) – a two dimensional array containing the x coordinates of the
interrogation window centers, in pixels.

	y (2d np.ndarray) – a two dimensional array containing the y coordinates of the
interrogation window centers, in pixels.

	u (2d np.ndarray) – a two dimensional array containing the u velocity components,
in pixels/seconds.

	v (2d np.ndarray) – a two dimensional array containing the v velocity components,
in pixels/seconds.

	flags (2d np.ndarray) – a two dimensional integers array where elements corresponding to
vectors: 0 - valid, 1 - invalid (, 2 - interpolated)
default: None, will create all valid 0

	mask (2d np.ndarray boolean, marks the image masked regions (dynamic and/or static)) – default: None - will be all False

	fmtstring

	a format string. See documentation of numpy.savetxt
for more details.

	delimiterstring

	character separating columns

Examples

	openpiv.tools.save(‘field_001.txt’, x, y, u, v, flags, mask, fmt=’%6.3f’,

	delimiter=’ ‘)

openpiv.validation.global_std

	
openpiv.validation.global_std(u: numpy.ndarray, v: numpy.ndarray, std_threshold: int = 5) → numpy.ndarray

	Eliminate spurious vectors with a global threshold defined by the
standard deviation

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with NaN (Not a Number) if at least
one of the two velocity components is out of a specified global range.

	Parameters

	
	u (2d masked np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d masked np.ndarray) – a two dimensional array containing the v velocity component.

	std_threshold (float) – If the length of the vector (actually the sum of squared components) is
larger than std_threshold times standard deviation of the flow field,
then the vector is treated as an outlier. [default = 3]

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

openpiv.validation.global_val

	
openpiv.validation.global_val(u: numpy.ndarray, v: numpy.ndarray, u_thresholds: Tuple[int, int], v_thresholds: Tuple[int, int]) → numpy.ndarray

	Eliminate spurious vectors with a global threshold.

This validation method tests for the spatial consistency of the data
and outliers vector are replaced with Nan (Not a Number) if at
least one of the two velocity components is out of a specified global
range.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_thresholds (two elements tuple) – u_thresholds = (u_min, u_max). If u<u_min or u>u_max
the vector is treated as an outlier.

	v_thresholds (two elements tuple) – v_thresholds = (v_min, v_max). If v<v_min or v>v_max
the vector is treated as an outlier.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

openpiv.validation.local_median_val

	
openpiv.validation.local_median_val(u, v, u_threshold, v_threshold, size=1)

	Eliminate spurious vectors with a local median threshold.

This validation method tests for the spatial consistency of the data.
Vectors are classified as outliers and replaced with Nan (Not a Number) if
the absolute difference with the local median is greater than a user
specified threshold. The median is computed for both velocity components.

	The image masked areas (obstacles, reflections) are marked as masked array:

	u = np.ma.masked(u, flag = image_mask)

and it should not be replaced by the local median, but remain masked.

	Parameters

	
	u (2d np.ndarray) – a two dimensional array containing the u velocity component.

	v (2d np.ndarray) – a two dimensional array containing the v velocity component.

	u_threshold (float) – the threshold value for component u

	v_threshold (float) – the threshold value for component v

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

openpiv.validation.sig2noise_val

	
openpiv.validation.sig2noise_val(s2n: numpy.ndarray, threshold: float = 1.0) → numpy.ndarray

	Marks spurious vectors if signal to noise ratio is below a specified threshold.

	Parameters

	
	u (2d or 3d np.ndarray) – a two or three dimensional array containing the u velocity component.

	v (2d or 3d np.ndarray) – a two or three dimensional array containing the v velocity component.

	s2n (2d np.ndarray) – a two or three dimensional array containing the value of the signal to
noise ratio from cross-correlation function.

	w (2d or 3d np.ndarray) – a two or three dimensional array containing the w (in z-direction)
velocity component.

	threshold (float) – the signal to noise ratio threshold value.

	Returns

	flag – a boolean array. True elements corresponds to outliers.

	Return type

	boolean 2d np.ndarray

References

	
	Keane and R. J. Adrian, Measurement Science & Technology, 1990,

1, 1202-1215.

 _images/src_openpiv_pivuq_18_0.png
Velocity magnitude Disparity error norm ||

100 260 00 20 0 40 50 100 200

_images/src_openpiv_pivuq_20_0.png
o mn b o @ BE

x (px)

5 (p0)

181 (px)

o0

01

02

03 04 05

05 o7

01

02 03

o8

01

02

03

03 05

0 o7

_images/src_openpiv_pivuq_10_0.png
500

w00

00

20

100

100

X0 W

@ sio

_images/src_openpiv_pivuq_14_0.png
Magnitude

w0 20 0 00 20 ;0 w0 20 0

_images/src_piv_basics_18_0.png
Correlation map — peak is the most probable shift

_images/src_piv_basics_19_1.png

_images/src_openpiv_pivuq_7_1.png

_images/src_piv_basics_15_0.png

_images/src_piv_basics_24_0.png
500

w00

00

20

100

100

P
/

'\ N\
Ny

ES)

60

ED

_images/src_piv_basics_29_0.png
500

w00

00

20

100

32 x 32 int. win. + 32 x 32 0-padded search win

32 x 32 int. win. + 64 x 64 unpadded search win.

P - 20
el PP
NN NI

NN 20 Ve
ot IEEREE: coart !
. N IS N

N EREEE S P
N I PN A

,

T R T m & m ® %

_images/src_masking_30_0.png
1200

_images/src_masking_4_0.png
100

_images/src_masking_22_0.png

_images/src_masking_25_1.png

_images/src_masking_6_1.png

_images/src_piv_basics_4_0.png
100

nav.xhtml

 Table of Contents

 		
 OpenPIV: a python package for PIV image analysis.

 		
 Basics of the PIV algorithms

 		
 Installation instruction

 		
 OpenPIV tutorial

 		
 Multi-grid window deformation algorithm tutorial

 		
 OpenPIV masking tutorial

 		
 Information for developers and contributors

 		
 API reference

 		
 Frequently Asked Questions about PIV parameters

_images/src_piv_basics_9_0.png
Difference when A n shifted by 1 pixel

_images/src_masking_20_0.png

_images/src_tutorial1_18_0.png
.........
ssssss

_images/src_piv_basics_6_0.png

_images/src_piv_basics_8_0.png
Without shift

_images/src_windef_8_0.png
400

00

20

_static/ajax-loader.gif

_images/src_tutorial1_4_0.png

_images/src_windef_6_1.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

