
OpenMW Documentation
Release (0, 41, 0)

Bret Curtis

January 08, 2017

Contents

1 Components 1
1.1 OpenMW Source Documentation . 1
1.2 OpenMW CS user manual . 33
1.3 OpenMW Modding Reference . 42

2 Indices and tables 51

i

ii

CHAPTER 1

Components

1.1 OpenMW Source Documentation

1.1.1 ./mwbase

namespace MWBase

class DialogueManager
#include <dialoguemanager.hpp> Interface for dialogue manager (implemented in MWDialogue)

Public Functions

DialogueManager()

virtual void clear() = 0

virtual ~DialogueManager()

virtual bool isInChoice() const = 0

virtual void startDialogue(const MWWorld::Ptr &actor) = 0

virtual void addTopic(const std::string &topic) = 0

virtual void askQuestion(const std::string &question, int choice) = 0

virtual void goodbye() = 0

virtual void say(const MWWorld::Ptr &actor, const std::string &topic) const = 0

virtual void keywordSelected(const std::string &keyword) = 0

virtual void goodbyeSelected() = 0

virtual void questionAnswered(int answer) = 0

virtual bool checkServiceRefused() = 0

virtual void persuade(int type) = 0

virtual int getTemporaryDispositionChange() const = 0

virtual void applyDispositionChange(int delta) = 0 Note
This change is temporary and gets discarded when dialogue ends.

virtual int countSavedGameRecords() const = 0

1

OpenMW Documentation, Release (0, 41, 0)

virtual void write(ESM::ESMWriter &writer, Loading::Listener &progress) const = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type) = 0

virtual void modFactionReaction(const std::string &faction1, const std::string &faction2, int
diff) = 0

Changes faction1’s opinion of faction2 by diff.

virtual void setFactionReaction(const std::string &faction1, const std::string &faction2, int
absolute) = 0

virtual int getFactionReaction(const std::string &faction1, const std::string &faction2)
const = 0

Return

faction1’s opinion of faction2

virtual void clearInfoActor(const MWWorld::Ptr &actor) const = 0
Removes the last added topic response for the given actor from the journal.

Private Functions

DialogueManager(const DialogueManager&)
not implemented

DialogueManager &operator=(const DialogueManager&)
not implemented

namespace MWBase

class Environment
#include <environment.hpp> Central hub for mw-subsystems.

This class allows each mw-subsystem to access any others subsystem’s top-level manager class.

Attention Environment takes ownership of the manager class instances it is handed over in the set* func-
tions.

Public Functions

Environment()

~Environment()

void setWorld(World *world)

void setSoundManager(SoundManager *soundManager)

void setScriptManager(MWBase::ScriptManager *scriptManager)

void setWindowManager(WindowManager *windowManager)

void setMechanicsManager(MechanicsManager *mechanicsManager)

void setDialogueManager(DialogueManager *dialogueManager)

void setJournal(Journal *journal)

void setInputManager(InputManager *inputManager)

void setStateManager(StateManager *stateManager)

void setFrameDuration(float duration)
Set length of current frame in seconds.

2 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

World *getWorld() const

SoundManager *getSoundManager() const

ScriptManager *getScriptManager() const

WindowManager *getWindowManager() const

MechanicsManager *getMechanicsManager() const

DialogueManager *getDialogueManager() const

Journal *getJournal() const

InputManager *getInputManager() const

StateManager *getStateManager() const

float getFrameDuration() const

void cleanup()
Delete all mw*-subsystems.

Public Static Functions

static const Environment &get()
Return instance of this class.

Private Functions

Environment(const Environment&)
not implemented

Environment &operator=(const Environment&)
not implemented

Private Members

World *mWorld

SoundManager *mSoundManager

ScriptManager *mScriptManager

WindowManager *mWindowManager

MechanicsManager *mMechanicsManager

DialogueManager *mDialogueManager

Journal *mJournal

InputManager *mInputManager

StateManager *mStateManager

float mFrameDuration

1.1. OpenMW Source Documentation 3

OpenMW Documentation, Release (0, 41, 0)

Private Static Attributes

Environment *sThis

namespace MWBase

class InputManager
#include <inputmanager.hpp> Interface for input manager (implemented in MWInput)

Public Functions

InputManager()

virtual void clear() = 0
Clear all savegame-specific data.

virtual ~InputManager()

virtual bool isWindowVisible() = 0

virtual void update(float dt, bool disableControls, bool disableEvents = false) = 0

virtual void changeInputMode(bool guiMode) = 0

virtual void processChangedSettings(const std::set<std::pair<std::string, std::string>>
&changed) = 0

virtual void setDragDrop(bool dragDrop) = 0

virtual void toggleControlSwitch(const std::string &sw, bool value) = 0

virtual bool getControlSwitch(const std::string &sw) = 0

virtual std::string getActionDescription(int action) = 0

virtual std::string getActionKeyBindingName(int action) = 0

virtual std::string getActionControllerBindingName(int action) = 0

virtual std::string sdlControllerAxisToString(int axis) = 0

virtual std::string sdlControllerButtonToString(int button) = 0

virtual std::vector<int> getActionKeySorting() = 0
Actions available for binding to keyboard buttons.

virtual std::vector<int> getActionControllerSorting() = 0
Actions available for binding to controller buttons.

virtual int getNumActions() = 0

virtual void enableDetectingBindingMode(int action, bool keyboard) = 0
If keyboard is true, only pay attention to keyboard events. If false, only pay attention to controller
events (excluding esc)

virtual void resetToDefaultKeyBindings() = 0

virtual void resetToDefaultControllerBindings() = 0

virtual bool joystickLastUsed() = 0
Returns if the last used input device was a joystick or a keyboard
Return true if joystick, false otherwise

virtual int countSavedGameRecords() const = 0

4 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void write(ESM::ESMWriter &writer, Loading::Listener &progress) = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type) = 0

Private Functions

InputManager(const InputManager&)
not implemented

InputManager &operator=(const InputManager&)
not implemented

namespace MWBase

class Journal
#include <journal.hpp> Interface for the player’s journal (implemented in MWDialogue)

Public Types

typedef std::deque<MWDialogue::StampedJournalEntry> TEntryContainer

typedef TEntryContainer::const_iterator TEntryIter

typedef std::map<std::string, MWDialogue::Quest> TQuestContainer

typedef TQuestContainer::const_iterator TQuestIter

typedef std::map<std::string, MWDialogue::Topic> TTopicContainer

typedef TTopicContainer::const_iterator TTopicIter

Public Functions

Journal()

virtual void clear() = 0

virtual ~Journal()

virtual void addEntry(const std::string &id, int index, const MWWorld::Ptr &actor) = 0
Add a journal entry.
Parameters

• actor: Used as context for replacing of escape sequences (name, etc).

virtual void setJournalIndex(const std::string &id, int index) = 0
Set the journal index without adding an entry.

virtual int getJournalIndex(const std::string &id) const = 0
Get the journal index.

virtual void addTopic(const std::string &topicId, const std::string &infoId, const MWWorld::Ptr
&actor) = 0

virtual void removeLastAddedTopicResponse(const std::string &topicId, const std::string
&actorName) = 0

Note

topicId must be lowercase Removes the last topic response added for the given topicId and actor
name.

topicId must be lowercase

1.1. OpenMW Source Documentation 5

OpenMW Documentation, Release (0, 41, 0)

virtual TEntryIter begin() const = 0
Iterator pointing to the begin of the main journal.

Note Iterators to main journal entries will never become invalid.

virtual TEntryIter end() const = 0
Iterator pointing past the end of the main journal.

virtual TQuestIter questBegin() const = 0
Iterator pointing to the first quest (sorted by topic ID)

virtual TQuestIter questEnd() const = 0
Iterator pointing past the last quest.

virtual TTopicIter topicBegin() const = 0
Iterator pointing to the first topic (sorted by topic ID)

Note The topic ID is identical with the user-visible topic string.

virtual TTopicIter topicEnd() const = 0
Iterator pointing past the last topic.

virtual int countSavedGameRecords() const = 0

virtual void write(ESM::ESMWriter &writer, Loading::Listener &progress) const = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type) = 0

Private Functions

Journal(const Journal&)
not implemented

Journal &operator=(const Journal&)
not implemented

namespace MWBase

class MechanicsManager
#include <mechanicsmanager.hpp> Interface for game mechanics manager (implemented in MWMechan-
ics)

Public Types

enum OffenseType
Values:

OT_Theft

OT_Assault

OT_Murder

OT_Trespassing

OT_SleepingInOwnedBed

OT_Pickpocket

enum PersuasionType
Values:

6 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

PT_Admire

PT_Intimidate

PT_Taunt

PT_Bribe10

PT_Bribe100

PT_Bribe1000

Public Functions

MechanicsManager()

virtual ~MechanicsManager()

virtual void add(const MWWorld::Ptr &ptr) = 0
Register an object for management.

virtual void remove(const MWWorld::Ptr &ptr) = 0
Deregister an object for management.

virtual void updateCell(const MWWorld::Ptr &old, const MWWorld::Ptr &ptr) = 0
Moves an object to a new cell.

virtual void drop(const MWWorld::CellStore *cellStore) = 0
Deregister all objects in the given cell.

virtual void watchActor(const MWWorld::Ptr &ptr) = 0
On each update look for changes in a previously registered actor and update the GUI accordingly.

virtual void update(float duration, bool paused) = 0
Update objects

Parameters
• paused: In game type does not currently advance (this usually means some GUI component

is up).

virtual void advanceTime(float duration) = 0

virtual void setPlayerName(const std::string &name) = 0
Set player name.

virtual void setPlayerRace(const std::string &id, bool male, const std::string &head, const
std::string &hair) = 0

Set player race.

virtual void setPlayerBirthsign(const std::string &id) = 0
Set player birthsign.

virtual void setPlayerClass(const std::string &id) = 0
Set player class to stock class.

virtual void setPlayerClass(const ESM::Class &class_) = 0
Set player class to custom class.

virtual void rest(bool sleep) = 0
If the player is sleeping or waiting, this should be called every hour.
Parameters

• sleep: is the player sleeping or waiting?

1.1. OpenMW Source Documentation 7

OpenMW Documentation, Release (0, 41, 0)

virtual int getHoursToRest() const = 0
Calculate how many hours the player needs to rest in order to be fully healed.

virtual int getBarterOffer(const MWWorld::Ptr &ptr, int basePrice, bool buying) = 0
This is used by every service to determine the price of objects given the trading skills of the player
and NPC.

virtual int getDerivedDisposition(const MWWorld::Ptr &ptr, bool addTemporaryDisposi-
tionChange = true) = 0

Calculate the diposition of an NPC toward the player.

virtual int countDeaths(const std::string &id) const = 0
Return the number of deaths for actors with the given ID.

virtual bool awarenessCheck(const MWWorld::Ptr &ptr, const MWWorld::Ptr &observer) = 0
Check if observer is potentially aware of ptr. Does not do a line of sight check!

virtual void startCombat(const MWWorld::Ptr &ptr, const MWWorld::Ptr &target) = 0
Makes ptr fight target. Also shouts a combat taunt.

virtual bool commitCrime(const MWWorld::Ptr &ptr, const MWWorld::Ptr &victim, OffenseType
type, int arg = 0, bool victimAware = false) = 0

Note

victim may be empty
Return was the crime seen?
Parameters

• arg: Depends on type, e.g. for Theft, the value of the item that was stolen.
• victimAware: Is the victim already aware of the crime? If this parameter is false, it will be

determined by a line-of-sight and awareness check.

virtual bool actorAttacked(const MWWorld::Ptr &victim, const MWWorld::Ptr &attacker) = 0 Return
false if the attack was considered a “friendly hit” and forgiven

virtual void actorKilled(const MWWorld::Ptr &victim, const MWWorld::Ptr &attacker) = 0
Notify that actor was killed, add a murder bounty if applicable
Note No-op for non-player attackers

virtual void itemTaken(const MWWorld::Ptr &ptr, const MWWorld::Ptr &item, const MW-
World::Ptr &container, int count) = 0

Utility to check if taking this item is illegal and calling commitCrime if so
Parameters

• container: The container the item is in; may be empty for an item in the world

virtual void objectOpened(const MWWorld::Ptr &ptr, const MWWorld::Ptr &item) = 0
Utility to check if opening (i.e. unlocking) this object is illegal and calling commitCrime if so.

virtual bool sleepInBed(const MWWorld::Ptr &ptr, const MWWorld::Ptr &bed) = 0
Attempt sleeping in a bed. If this is illegal, call commitCrime.
Return was it illegal, and someone saw you doing it?

virtual void getPersuasionDispositionChange(const MWWorld::Ptr &npc, Persuasion-
Type type, bool &success, float &tem-
pChange, float &permChange) = 0

Perform a persuasion action on NPC.

virtual void forceStateUpdate(const MWWorld::Ptr &ptr) = 0
Forces an object to refresh its animation state.

virtual bool playAnimationGroup(const MWWorld::Ptr &ptr, const std::string &groupName,
int mode, int number = 1, bool persist = false) = 0

Run animation for a MW-reference. Calls to this function for references that are currently not in the
scene should be ignored.

8 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

Return Success or error
Parameters

• mode: 0 normal, 1 immediate start, 2 immediate loop
• count: How many times the animation should be run
• persist: Whether the animation state should be stored in saved games and persist after cell

unload.

virtual void skipAnimation(const MWWorld::Ptr &ptr) = 0
Skip the animation for the given MW-reference for one frame. Calls to this function for references
that are currently not in the scene should be ignored.

virtual bool checkAnimationPlaying(const MWWorld::Ptr &ptr, const std::string &group-
Name) = 0

virtual void persistAnimationStates() = 0
Save the current animation state of managed references to their RefData.

virtual void updateMagicEffects(const MWWorld::Ptr &ptr) = 0
Update magic effects for an actor. Usually done automatically once per frame, but if we’re currently
paused we may want to do it manually (after equipping permanent enchantment)

virtual bool toggleAI() = 0

virtual bool isAIActive() = 0

virtual void getObjectsInRange(const osg::Vec3f &position, float radius,
std::vector<MWWorld::Ptr> &objects) = 0

virtual void getActorsInRange(const osg::Vec3f &position, float radius,
std::vector<MWWorld::Ptr> &objects) = 0

virtual std::list<MWWorld::Ptr> getActorsSidingWith(const MWWorld::Ptr &actor) = 0
Returns the list of actors which are siding with the given actor in fights.

ie AiFollow or AiEscort is active and the target is the actor

virtual std::list<MWWorld::Ptr> getActorsFollowing(const MWWorld::Ptr &actor) = 0

virtual std::list<int> getActorsFollowingIndices(const MWWorld::Ptr &actor) = 0

virtual std::list<MWWorld::Ptr> getActorsFighting(const MWWorld::Ptr &actor) = 0
Returns a list of actors who are fighting the given actor within the fAlarmDistance.

ie AiCombat is active and the target is the actor

virtual std::list<MWWorld::Ptr> getEnemiesNearby(const MWWorld::Ptr &actor) = 0

virtual void playerLoaded() = 0

virtual int countSavedGameRecords() const = 0

virtual void write(ESM::ESMWriter &writer, Loading::Listener &listener) const = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type) = 0

virtual void clear() = 0

virtual bool isAggressive(const MWWorld::Ptr &ptr, const MWWorld::Ptr &target) = 0

virtual void keepPlayerAlive() = 0
Resurrects the player if necessary.

virtual bool isReadyToBlock(const MWWorld::Ptr &ptr) const = 0

virtual void confiscateStolenItems(const MWWorld::Ptr &player, const MWWorld::Ptr
&targetContainer) = 0

1.1. OpenMW Source Documentation 9

OpenMW Documentation, Release (0, 41, 0)

virtual std::vector<std::pair<std::string, int>> getStolenItemOwners(const std::string
&itemid) = 0

List the owners that the player has stolen this item from (the owner can be an NPC or a faction).
<Owner, item count>

virtual bool isItemStolenFrom(const std::string &itemid, const std::string &ownerid) = 0
Has the player stolen this item from the given owner?

virtual bool isAllowedToUse(const MWWorld::Ptr &ptr, const MWWorld::CellRef &cellref,
MWWorld::Ptr &victim) = 0

virtual void setWerewolf(const MWWorld::Ptr &actor, bool werewolf) = 0
Turn actor into werewolf or normal form.

virtual void applyWerewolfAcrobatics(const MWWorld::Ptr &actor) = 0
Sets the NPC’s Acrobatics skill to match the fWerewolfAcrobatics GMST. It only applies to the cur-
rent form the NPC is in.

virtual void cleanupSummonedCreature(const MWWorld::Ptr &caster, int creatureActorId)
= 0

Private Functions

MechanicsManager(const MechanicsManager&)
not implemented

MechanicsManager &operator=(const MechanicsManager&)
not implemented

namespace MWBase

class ScriptManager
#include <scriptmanager.hpp> Interface for script manager (implemented in MWScript)

Public Functions

ScriptManager()

virtual ~ScriptManager()

virtual void run(const std::string &name, Interpreter::Context &interpreterContext) = 0
Run the script with the given name (compile first, if not compiled yet)

virtual bool compile(const std::string &name) = 0
Compile script with the given namen
Return Success?

virtual std::pair<int, int> compileAll() = 0
Compile all scripts
Return count, success

virtual const Compiler::Locals &getLocals(const std::string &name) = 0
Return locals for script name.

virtual MWScript::GlobalScripts &getGlobalScripts() = 0

10 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

Private Functions

ScriptManager(const ScriptManager&)
not implemented

ScriptManager &operator=(const ScriptManager&)
not implemented

namespace MWSound

Typedefs

typedef boost::shared_ptr<Sound_Decoder> DecoderPtr

namespace MWBase

Typedefs

typedef boost::shared_ptr<MWSound::Sound> SoundPtr

typedef boost::shared_ptr<MWSound::Stream> SoundStreamPtr

class SoundManager
#include <soundmanager.hpp> Interface for sound manager (implemented in MWSound)

Public Types

enum PlayMode
Values:

Play_Normal = 0

Play_Loop = 1<<0

Play_NoEnv = 1<<1

Play_RemoveAtDistance = 1<<2

Play_NoPlayerLocal = 1<<3

Play_LoopNoEnv = Play_Loop | Play_NoEnv

Play_LoopRemoveAtDistance = Play_Loop | Play_RemoveAtDistance

enum PlayType
Values:

Play_TypeSfx = 1<<4

Play_TypeVoice = 1<<5

Play_TypeFoot = 1<<6

Play_TypeMusic = 1<<7

Play_TypeMovie = 1<<8

Play_TypeMask = Play_TypeSfx|Play_TypeVoice|Play_TypeFoot|Play_TypeMusic|Play_TypeMovie

1.1. OpenMW Source Documentation 11

OpenMW Documentation, Release (0, 41, 0)

Public Functions

SoundManager()

virtual ~SoundManager()

virtual void processChangedSettings(const std::set<std::pair<std::string, std::string>>
&settings) = 0

virtual void stopMusic() = 0
Stops music if it’s playing.

virtual void streamMusic(const std::string &filename) = 0
Play a soundifle
Parameters

• filename: name of a sound file in “Music/” in the data directory.

virtual void startRandomTitle() = 0
Starts a random track from the current playlist.

virtual bool isMusicPlaying() = 0
Returns true if music is playing.

virtual void playPlaylist(const std::string &playlist) = 0
Start playing music from the selected folder
Parameters

• name: of the folder that contains the playlist

virtual void say(const MWWorld::ConstPtr &reference, const std::string &filename) = 0
Make an actor say some text.
Parameters

• filename: name of a sound file in “Sound/” in the data directory.

virtual void say(const std::string &filename) = 0
Say some text, without an actor ref
Parameters

• filename: name of a sound file in “Sound/” in the data directory.

virtual bool sayDone(const MWWorld::ConstPtr &reference = MWWorld::ConstPtr()) const = 0
Is actor not speaking?

virtual void stopSay(const MWWorld::ConstPtr &reference = MWWorld::ConstPtr()) = 0
Stop an actor speaking.

virtual float getSaySoundLoudness(const MWWorld::ConstPtr &reference) const = 0
Check the currently playing say sound for this actor and get an average loudness value (scale [0,1]) at
the current time position. If the actor is not saying anything, returns 0.

virtual SoundStreamPtr playTrack(const MWSound::DecoderPtr &decoder, PlayType type) = 0
Play a 2D audio track, using a custom decoder.

virtual void stopTrack(SoundStreamPtr stream) = 0
Stop the given audio track from playing.

virtual double getTrackTimeDelay(SoundStreamPtr stream) = 0
Retives the time delay, in seconds, of the audio track (must be a sound returned by playTrack). Only
intended to be called by the track decoder’s read method.

virtual SoundPtr playSound(const std::string &soundId, float volume, float pitch, PlayType type
= Play_TypeSfx, PlayMode mode = Play_Normal, float offset = 0)
= 0

Play a sound, independently of 3D-position

12 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

Parameters
• offset: Number of seconds into the sound to start playback.

virtual MWBase::SoundPtr playSound3D(const MWWorld::ConstPtr &reference, const
std::string &soundId, float volume, float pitch,
PlayType type = Play_TypeSfx, PlayMode mode =
Play_Normal, float offset = 0) = 0

Play a 3D sound attached to an MWWorld::Ptr. Will be updated automatically with the Ptr’s position,
unless Play_NoTrack is specified.
Parameters

• offset: Number of seconds into the sound to start playback.

virtual MWBase::SoundPtr playSound3D(const osg::Vec3f &initialPos, const std::string &soun-
dId, float volume, float pitch, PlayType type =
Play_TypeSfx, PlayMode mode = Play_Normal, float
offset = 0) = 0

Play a 3D sound at initialPos. If the sound should be moving, it must be updated using
Sound::setPosition.

virtual void stopSound(SoundPtr sound) = 0
Stop the given sound from playing.

virtual void stopSound3D(const MWWorld::ConstPtr &reference, const std::string &soundId) =
0

Stop the given object from playing the given sound,.

virtual void stopSound3D(const MWWorld::ConstPtr &reference) = 0
Stop the given object from playing all sounds.

virtual void stopSound(const MWWorld::CellStore *cell) = 0
Stop all sounds for the given cell.

virtual void stopSound(const std::string &soundId) = 0
Stop a non-3d looping sound.

virtual void fadeOutSound3D(const MWWorld::ConstPtr &reference, const std::string &soun-
dId, float duration) = 0

Fade out given sound (that is already playing) of given object
Parameters

• reference: Reference to object, whose sound is faded out
• soundId: ID of the sound to fade out.
• duration: Time until volume reaches 0.

virtual bool getSoundPlaying(const MWWorld::ConstPtr &reference, const std::string &soun-
dId) const = 0

Is the given sound currently playing on the given object? If you want to check if sound played with
playSound is playing, use empty Ptr

virtual void pauseSounds(int types = Play_TypeMask) = 0
Pauses all currently playing sounds, including music.

virtual void resumeSounds(int types = Play_TypeMask) = 0
Resumes all previously paused sounds.

virtual void update(float duration) = 0

virtual void setListenerPosDir(const osg::Vec3f &pos, const osg::Vec3f &dir, const
osg::Vec3f &up, bool underwater) = 0

virtual void updatePtr(const MWWorld::ConstPtr &old, const MWWorld::ConstPtr &updated)
= 0

virtual void clear() = 0

1.1. OpenMW Source Documentation 13

OpenMW Documentation, Release (0, 41, 0)

Private Functions

SoundManager(const SoundManager&)
not implemented

SoundManager &operator=(const SoundManager&)
not implemented

namespace MWBase

class StateManager
#include <statemanager.hpp> Interface for game state manager (implemented in MWState)

Public Types

enum State
Values:

State_NoGame

State_Ended

State_Running

typedef std::list<MWState::Character>::const_iterator CharacterIterator

Public Functions

StateManager()

virtual ~StateManager()

virtual void requestQuit() = 0

virtual bool hasQuitRequest() const = 0

virtual void askLoadRecent() = 0

virtual State getState() const = 0

virtual void newGame(bool bypass = false) = 0
Start a new game.

Parameters
• bypass: Skip new game mechanics.

virtual void endGame() = 0

virtual void deleteGame(const MWState::Character *character, const MWState::Slot *slot) = 0

virtual void saveGame(const std::string &description, const MWState::Slot *slot = 0) = 0
Write a saved game to slot or create a new slot if slot == 0.

Note Slot must belong to the current character.

virtual void loadGame(const std::string &filepath) = 0
Load a saved game directly from the given file path. This will search the CharacterManager for a
Character containing this save file, and set this Character current if one was found. Otherwise, a new
Character will be created.

14 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void loadGame(const MWState::Character *character, const std::string &filepath) = 0
Load a saved game file belonging to the given character.

virtual void quickSave(std::string = “Quicksave”) = 0
Simple saver, writes over the file if already existing.

Used for quick save and autosave

virtual void quickLoad() = 0
Simple loader, loads the last saved file.

Used for quickload

virtual MWState::Character *getCurrentCharacter() = 0 Note
May return null.

virtual CharacterIterator characterBegin() = 0
Any call to SaveGame and getCurrentCharacter can invalidate the returned iterator.

virtual CharacterIterator characterEnd() = 0

virtual void update(float duration) = 0

Private Functions

StateManager(const StateManager&)
not implemented

StateManager &operator=(const StateManager&)
not implemented

namespace MWGui

Enums

enum ShowInDialogueMode
Values:

ShowInDialogueMode_IfPossible

ShowInDialogueMode_Only

ShowInDialogueMode_Never

namespace MWBase

class WindowManager
#include <windowmanager.hpp> Interface for widnow manager (implemented in MWGui)

Public Types

typedef std::vector<int> SkillList

1.1. OpenMW Source Documentation 15

OpenMW Documentation, Release (0, 41, 0)

Public Functions

WindowManager()

virtual ~WindowManager()

virtual void update() = 0
Should be called each frame to update windows/gui elements. This could mean updating sizes of gui
elements or opening new dialogs.

virtual void playVideo(const std::string &name, bool allowSkipping) = 0 Note
This method will block until the video finishes playing (and will continually update the window
while doing so)

virtual void setNewGame(bool newgame) = 0

virtual void pushGuiMode(MWGui::GuiMode mode) = 0

virtual void popGuiMode() = 0

virtual void removeGuiMode(MWGui::GuiMode mode) = 0
can be anywhere in the stack

virtual void goToJail(int days) = 0

virtual void updatePlayer() = 0

virtual MWGui::GuiMode getMode() const = 0

virtual bool containsMode(MWGui::GuiMode) const = 0

virtual bool isGuiMode() const = 0

virtual bool isConsoleMode() const = 0

virtual void toggleVisible(MWGui::GuiWindow wnd) = 0

virtual void forceHide(MWGui::GuiWindow wnd) = 0

virtual void unsetForceHide(MWGui::GuiWindow wnd) = 0

virtual void disallowAll() = 0
Disallow all inventory mode windows.

virtual void allow(MWGui::GuiWindow wnd) = 0
Allow one or more windows.

virtual bool isAllowed(MWGui::GuiWindow wnd) const = 0

virtual MWGui::DialogueWindow *getDialogueWindow() = 0

virtual MWGui::InventoryWindow *getInventoryWindow() = 0

virtual MWGui::CountDialog *getCountDialog() = 0

virtual MWGui::ConfirmationDialog *getConfirmationDialog() = 0

virtual MWGui::TradeWindow *getTradeWindow() = 0

virtual void useItem(const MWWorld::Ptr &item) = 0
Make the player use an item, while updating GUI state accordingly.

virtual void updateSpellWindow() = 0

virtual void setConsoleSelectedObject(const MWWorld::Ptr &object) = 0

virtual void setValue(const std::string &id, const MWMechanics::AttributeValue &value) = 0
Set value for the given ID.

16 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void setValue(int parSkill, const MWMechanics::SkillValue &value) = 0

virtual void setValue(const std::string &id, const MWMechanics::DynamicStat<float> &value)
= 0

virtual void setValue(const std::string &id, const std::string &value) = 0

virtual void setValue(const std::string &id, int value) = 0

virtual void setDrowningTimeLeft(float time, float maxTime) = 0
Set time left for the player to start drowning (update the drowning bar)
Parameters

• time: time left to start drowning
• maxTime: how long we can be underwater (in total) until drowning starts

virtual void setPlayerClass(const ESM::Class &class_) = 0
set current class of player

virtual void configureSkills(const SkillList &major, const SkillList &minor) = 0
configure skill groups, each set contains the skill ID for that group.

virtual void updateSkillArea() = 0
update display of skills, factions, birth sign, reputation and bounty

virtual void changeCell(const MWWorld::CellStore *cell) = 0
change the active cell

virtual void setFocusObject(const MWWorld::Ptr &focus) = 0

virtual void setFocusObjectScreenCoords(float min_x, float min_y, float max_x, float
max_y) = 0

virtual void setCursorVisible(bool visible) = 0

virtual void getMousePosition(int &x, int &y) = 0

virtual void getMousePosition(float &x, float &y) = 0

virtual void setDragDrop(bool dragDrop) = 0

virtual bool getWorldMouseOver() = 0

virtual bool toggleFogOfWar() = 0

virtual bool toggleFullHelp() = 0
show extra info in item tooltips (owner, script)

virtual bool getFullHelp() const = 0

virtual void setActiveMap(int x, int y, bool interior) = 0
set the indices of the map texture that should be used

virtual void setDrowningBarVisibility(bool visible) = 0
sets the visibility of the drowning bar

virtual void setHMSVisibility(bool visible) = 0
sets the visibility of the hud health/magicka/stamina bars

virtual void setMinimapVisibility(bool visible) = 0
sets the visibility of the hud minimap

virtual void setWeaponVisibility(bool visible) = 0

virtual void setSpellVisibility(bool visible) = 0

virtual void setSneakVisibility(bool visible) = 0

1.1. OpenMW Source Documentation 17

OpenMW Documentation, Release (0, 41, 0)

virtual void activateQuickKey(int index) = 0

virtual std::string getSelectedSpell() = 0

virtual void setSelectedSpell(const std::string &spellId, int successChancePercent) = 0

virtual void setSelectedEnchantItem(const MWWorld::Ptr &item) = 0

virtual void setSelectedWeapon(const MWWorld::Ptr &item) = 0

virtual void unsetSelectedSpell() = 0

virtual void unsetSelectedWeapon() = 0

virtual void showCrosshair(bool show) = 0

virtual bool getSubtitlesEnabled() = 0

virtual bool toggleGui() = 0

virtual void disallowMouse() = 0

virtual void allowMouse() = 0

virtual void notifyInputActionBound() = 0

virtual void addVisitedLocation(const std::string &name, int x, int y) = 0

virtual void removeDialog(MWGui::Layout *dialog) = 0
Hides dialog and schedules dialog to be deleted.

virtual void exitCurrentGuiMode() = 0
Gracefully attempts to exit the topmost GUI mode.

No guarentee of actually closing the window

virtual void MWBase::WindowManager::messageBox(const std::string & message, enum MWGui::ShowInDialogueMode showInDialogueMode = MWGui::ShowInDialogueMode_IfPossible) = 0

virtual void staticMessageBox(const std::string &message) = 0

virtual void removeStaticMessageBox() = 0

virtual void interactiveMessageBox(const std::string &message, const
std::vector<std::string> &buttons = std::vector<
std::string >(), bool block = false) = 0

virtual int readPressedButton() = 0
returns the index of the pressed button or -1 if no button was pressed (->MessageBoxmanager-
>InteractiveMessageBox)

virtual void onFrame(float frameDuration) = 0

virtual std::map<int, MWMechanics::SkillValue> getPlayerSkillValues() = 0

virtual std::map<int, MWMechanics::AttributeValue> getPlayerAttributeValues() = 0

virtual SkillList getPlayerMinorSkills() = 0

virtual SkillList getPlayerMajorSkills() = 0

virtual std::string getGameSettingString(const std::string &id, const std::string &default_)
= 0

Fetches a GMST string from the store, if there is no setting with the given ID or it is not a string the
default string is returned.

Parameters
• id: Identifier for the GMST setting, e.g. “aName”
• default: Default value if the GMST setting cannot be used.

18 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void processChangedSettings(const std::set<std::pair<std::string, std::string>>
&changed) = 0

virtual void windowResized(int x, int y) = 0

virtual void executeInConsole(const std::string &path) = 0

virtual void enableRest() = 0

virtual bool getRestEnabled() = 0

virtual bool getJournalAllowed() = 0

virtual bool getPlayerSleeping() = 0

virtual void wakeUpPlayer() = 0

virtual void showCompanionWindow(MWWorld::Ptr actor) = 0

virtual void startSpellMaking(MWWorld::Ptr actor) = 0

virtual void startEnchanting(MWWorld::Ptr actor) = 0

virtual void startRecharge(MWWorld::Ptr soulgem) = 0

virtual void startSelfEnchanting(MWWorld::Ptr soulgem) = 0

virtual void startTraining(MWWorld::Ptr actor) = 0

virtual void startRepair(MWWorld::Ptr actor) = 0

virtual void startRepairItem(MWWorld::Ptr item) = 0

virtual void startTravel(const MWWorld::Ptr &actor) = 0

virtual void startSpellBuying(const MWWorld::Ptr &actor) = 0

virtual void startTrade(const MWWorld::Ptr &actor) = 0

virtual void openContainer(const MWWorld::Ptr &container, bool loot) = 0

virtual void showBook(const MWWorld::Ptr &item, bool showTakeButton) = 0

virtual void showScroll(const MWWorld::Ptr &item, bool showTakeButton) = 0

virtual void showSoulgemDialog(MWWorld::Ptr item) = 0

virtual void changePointer(const std::string &name) = 0

virtual void setEnemy(const MWWorld::Ptr &enemy) = 0

virtual const Translation::Storage &getTranslationDataStorage() const = 0

virtual void setKeyFocusWidget(MyGUI::Widget *widget) = 0
Warning: do not use MyGUI::InputManager::setKeyFocusWidget directly. Instead use this.

virtual Loading::Listener *getLoadingScreen() = 0

virtual bool getCursorVisible() = 0
Should the cursor be visible?

virtual void clear() = 0
Clear all savegame-specific data.

virtual void write(ESM::ESMWriter &writer, Loading::Listener &progress) = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type) = 0

virtual int countSavedGameRecords() const = 0

1.1. OpenMW Source Documentation 19

OpenMW Documentation, Release (0, 41, 0)

virtual bool isSavingAllowed() const = 0
Does the current stack of GUI-windows permit saving?

virtual void exitCurrentModal() = 0
Send exit command to active Modal window.

virtual void addCurrentModal(MWGui::WindowModal *input) = 0
Sets the current Modal.

Used to send exit command to active Modal when Esc is pressed

virtual void removeCurrentModal(MWGui::WindowModal *input) = 0
Removes the top Modal.

Used when one Modal adds another Modal
Parameters

• input: Pointer to the current modal, to ensure proper modal is removed

virtual void pinWindow(MWGui::GuiWindow window) = 0

virtual void fadeScreenIn(const float time, bool clearQueue = true) = 0
Fade the screen in, over time seconds.

virtual void fadeScreenOut(const float time, bool clearQueue = true) = 0
Fade the screen out to black, over time seconds.

virtual void fadeScreenTo(const int percent, const float time, bool clearQueue = true) = 0
Fade the screen to a specified percentage of black, over time seconds.

virtual void setBlindness(const int percent) = 0
Darken the screen to a specified percentage.

virtual void activateHitOverlay(bool interrupt = true) = 0

virtual void setWerewolfOverlay(bool set) = 0

virtual void toggleDebugWindow() = 0

virtual void cycleSpell(bool next) = 0
Cycle to next or previous spell.

virtual void cycleWeapon(bool next) = 0
Cycle to next or previous weapon.

virtual std::string correctIconPath(const std::string &path) = 0

virtual std::string correctBookartPath(const std::string &path, int width, int height) = 0

virtual std::string correctTexturePath(const std::string &path) = 0

virtual bool textureExists(const std::string &path) = 0

virtual void removeCell(MWWorld::CellStore *cell) = 0

virtual void writeFog(MWWorld::CellStore *cell) = 0

Private Functions

WindowManager(const WindowManager&)
not implemented

WindowManager &operator=(const WindowManager&)
not implemented

namespace MWWorld

20 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

Typedefs

typedef std::vector<std::pair<MWWorld::Ptr, MWMechanics::Movement>> PtrMovementList

namespace MWBase

class World
#include <world.hpp> Interface for the World (implemented in MWWorld)

Public Types

enum DetectionType
Values:

Detect_Enchantment

Detect_Key

Detect_Creature

Public Functions

World()

virtual ~World()

virtual void preloadCommonAssets() = 0

virtual void startNewGame(bool bypass) = 0 Parameters

• bypass: Bypass regular game start.

virtual void clear() = 0

virtual int countSavedGameRecords() const = 0

virtual int countSavedGameCells() const = 0

virtual void write(ESM::ESMWriter &writer, Loading::Listener &listener) const = 0

virtual void readRecord(ESM::ESMReader &reader, uint32_t type, const std::map<int, int>
&contentFileMap) = 0

virtual MWWorld::CellStore *getExterior(int x, int y) = 0

virtual MWWorld::CellStore *getInterior(const std::string &name) = 0

virtual MWWorld::CellStore *getCell(const ESM::CellId &id) = 0

virtual void useDeathCamera() = 0

virtual void setWaterHeight(const float height) = 0

virtual bool toggleWater() = 0

virtual bool toggleWorld() = 0

virtual void adjustSky() = 0

virtual const Fallback::Map *getFallback() const = 0

virtual MWWorld::Player &getPlayer() = 0

1.1. OpenMW Source Documentation 21

OpenMW Documentation, Release (0, 41, 0)

virtual MWWorld::Ptr getPlayerPtr() = 0

virtual const MWWorld::ESMStore &getStore() const = 0

virtual std::vector<ESM::ESMReader> &getEsmReader() = 0

virtual MWWorld::LocalScripts &getLocalScripts() = 0

virtual bool hasCellChanged() const = 0
Has the set of active cells changed, since the last frame?

virtual bool isCellExterior() const = 0

virtual bool isCellQuasiExterior() const = 0

virtual osg::Vec2f getNorthVector(const MWWorld::CellStore *cell) = 0
get north vector for given interior cell

virtual void getDoorMarkers(MWWorld::CellStore *cell, std::vector<DoorMarker> &out) = 0
get a list of teleport door markers for a given cell, to be displayed on the local map

virtual void setGlobalInt(const std::string &name, int value) = 0
Set value independently from real type.

virtual void setGlobalFloat(const std::string &name, float value) = 0
Set value independently from real type.

virtual int getGlobalInt(const std::string &name) const = 0
Get value independently from real type.

virtual float getGlobalFloat(const std::string &name) const = 0
Get value independently from real type.

virtual char getGlobalVariableType(const std::string &name) const = 0
Return ‘ ‘, if there is no global variable with this name.

virtual std::string getCellName(const MWWorld::CellStore *cell = 0) const = 0
Return name of the cell.

Note If cell==0, the cell the player is currently in will be used instead to generate a name.

virtual void removeRefScript(MWWorld::RefData *ref) = 0

virtual MWWorld::Ptr getPtr(const std::string &name, bool activeOnly) = 0
Return a pointer to a liveCellRef with the given name.
Parameters

• activeOnly: do non search inactive cells.

virtual MWWorld::Ptr searchPtr(const std::string &name, bool activeOnly) = 0
Return a pointer to a liveCellRef with the given name.
Parameters

• activeOnly: do non search inactive cells.

virtual MWWorld::Ptr searchPtrViaActorId(int actorId) = 0
Search is limited to the active cells.

virtual MWWorld::Ptr findContainer(const MWWorld::ConstPtr &ptr) = 0
Return a pointer to a liveCellRef which contains ptr.
Note Search is limited to the active cells.

virtual void enable(const MWWorld::Ptr &ptr) = 0

virtual void disable(const MWWorld::Ptr &ptr) = 0

22 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void advanceTime(double hours, bool incremental = false) = 0
Advance in-game time.

virtual void setHour(double hour) = 0
Set in-game time hour.

virtual void setMonth(int month) = 0
Set in-game time month.

virtual void setDay(int day) = 0
Set in-game time day.

virtual int getDay() const = 0

virtual int getMonth() const = 0

virtual int getYear() const = 0

virtual std::string getMonthName(int month = -1) const = 0
Return name of month (-1: current month)

virtual MWWorld::TimeStamp getTimeStamp() const = 0
Return current in-game time stamp.

virtual bool toggleSky() = 0 Return
Resulting mode

virtual void changeWeather(const std::string ®ion, const unsigned int id) = 0

virtual int getCurrentWeather() const = 0

virtual int getMasserPhase() const = 0

virtual int getSecundaPhase() const = 0

virtual void setMoonColour(bool red) = 0

virtual void modRegion(const std::string ®ionid, const std::vector<char> &chances) = 0

virtual float getTimeScaleFactor() const = 0

virtual void changeToInteriorCell(const std::string &cellName, const ESM::Position &po-
sition, bool adjustPlayerPos, bool changeEvent = true)
= 0

Move to interior cell.
Parameters

• changeEvent: If false, do not trigger cell change flag or detect worldspace changes

virtual void changeToExteriorCell(const ESM::Position &position, bool adjustPlayerPos,
bool changeEvent = true) = 0

Move to exterior cell.
Parameters

• changeEvent: If false, do not trigger cell change flag or detect worldspace changes

virtual void changeToCell(const ESM::CellId &cellId, const ESM::Position &position, bool
adjustPlayerPos, bool changeEvent = true) = 0

Parameters

• changeEvent: If false, do not trigger cell change flag or detect worldspace changes

virtual const ESM::Cell *getExterior(const std::string &cellName) const = 0
Return a cell matching the given name or a 0-pointer, if there is no such cell.

virtual void markCellAsUnchanged() = 0

virtual MWWorld::Ptr getFacedObject() = 0
Return pointer to the object the player is looking at, if it is within activation range.

1.1. OpenMW Source Documentation 23

OpenMW Documentation, Release (0, 41, 0)

virtual float getDistanceToFacedObject() = 0

virtual float getMaxActivationDistance() = 0

virtual std::pair<MWWorld::Ptr, osg::Vec3f> getHitContact(const MWWorld::ConstPtr &ptr,
float distance) = 0

Returns a pointer to the object the provided object would hit (if within the specified distance), and
the point where the hit occurs. This will attempt to use the “Head” node, or alternatively the “Bip01
Head” node as a basis.

virtual void adjustPosition(const MWWorld::Ptr &ptr, bool force) = 0
Adjust position after load to be on ground. Must be called after model load.
Parameters

• force: do this even if the ptr is flying

virtual void fixPosition(const MWWorld::Ptr &actor) = 0
Attempt to fix position so that the Ptr is no longer inside collision geometry.

virtual void deleteObject(const MWWorld::Ptr &ptr) = 0 Note
No-op for items in containers. Use ContainerStore::removeItem instead.

virtual void undeleteObject(const MWWorld::Ptr &ptr) = 0

virtual MWWorld::Ptr moveObject(const MWWorld::Ptr &ptr, float x, float y, float z) = 0 Return
an updated Ptr in case the Ptr’s cell changes

virtual MWWorld::Ptr moveObject(const MWWorld::Ptr &ptr, MWWorld::CellStore *newCell,
float x, float y, float z, bool movePhysics = true) = 0

Return

an updated Ptr

virtual void scaleObject(const MWWorld::Ptr &ptr, float scale) = 0

virtual void rotateObject(const MWWorld::Ptr &ptr, float x, float y, float z, bool adjust = false)
= 0

virtual MWWorld::Ptr placeObject(const MWWorld::ConstPtr &ptr, MWWorld::CellStore *cell,
ESM::Position pos) = 0

Place an object. Makes a copy of the Ptr.

virtual MWWorld::Ptr safePlaceObject(const MWWorld::ConstPtr &ptr, const MW-
World::ConstPtr &referenceObject, MW-
World::CellStore *referenceCell, int direction,
float distance) = 0

Place an object in a safe place next to referenceObject. direction and distance specify the wanted
placement relative to referenceObject (but the object may be placed somewhere else if the wanted
location is obstructed).

virtual void indexToPosition(int cellX, int cellY, float &x, float &y, bool centre = false) const
= 0

Convert cell numbers to position.

virtual void positionToIndex(float x, float y, int &cellX, int &cellY) const = 0
Convert position to cell numbers.

virtual void queueMovement(const MWWorld::Ptr &ptr, const osg::Vec3f &velocity) = 0
Queues movement for ptr (in local space), to be applied in the next call to doPhysics.

virtual bool castRay(float x1, float y1, float z1, float x2, float y2, float z2) = 0
cast a Ray and return true if there is an object in the ray path.

virtual bool toggleCollisionMode() = 0
Toggle collision mode for player. If disabled player object should ignore collisions and gravity.
Return Resulting mode

24 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual bool toggleRenderMode(MWRender::RenderMode mode) = 0
Toggle a render mode.
Return Resulting mode

virtual const ESM::Potion *createRecord(const ESM::Potion &record) = 0
Create a new record (of type potion) in the ESM store.
Return pointer to created record

virtual const ESM::Spell *createRecord(const ESM::Spell &record) = 0
Create a new record (of type spell) in the ESM store.
Return pointer to created record

virtual const ESM::Class *createRecord(const ESM::Class &record) = 0
Create a new record (of type class) in the ESM store.
Return pointer to created record

virtual const ESM::Cell *createRecord(const ESM::Cell &record) = 0
Create a new record (of type cell) in the ESM store.
Return pointer to created record

virtual const ESM::NPC *createRecord(const ESM::NPC &record) = 0
Create a new record (of type npc) in the ESM store.
Return pointer to created record

virtual const ESM::Armor *createRecord(const ESM::Armor &record) = 0
Create a new record (of type armor) in the ESM store.
Return pointer to created record

virtual const ESM::Weapon *createRecord(const ESM::Weapon &record) = 0
Create a new record (of type weapon) in the ESM store.
Return pointer to created record

virtual const ESM::Clothing *createRecord(const ESM::Clothing &record) = 0
Create a new record (of type clothing) in the ESM store.
Return pointer to created record

virtual const ESM::Enchantment *createRecord(const ESM::Enchantment &record) = 0
Create a new record (of type enchantment) in the ESM store.
Return pointer to created record

virtual const ESM::Book *createRecord(const ESM::Book &record) = 0
Create a new record (of type book) in the ESM store.
Return pointer to created record

virtual const ESM::CreatureLevList *createOverrideRecord(const ESM::CreatureLevList
&record) = 0

Write this record to the ESM store, allowing it to override a pre-existing record with the same ID.
Return pointer to created record

virtual const ESM::ItemLevList *createOverrideRecord(const ESM::ItemLevList
&record) = 0

Write this record to the ESM store, allowing it to override a pre-existing record with the same ID.
Return pointer to created record

virtual void update(float duration, bool paused) = 0

virtual MWWorld::Ptr placeObject(const MWWorld::ConstPtr &object, float cursorX, float cur-
sorY, int amount) = 0

copy and place an object into the gameworld at the specified cursor position
Parameters

• object:
• cursor: X (relative 0-1)

1.1. OpenMW Source Documentation 25

OpenMW Documentation, Release (0, 41, 0)

• cursor: Y (relative 0-1)
• number: of objects to place

virtual MWWorld::Ptr dropObjectOnGround(const MWWorld::Ptr &actor, const MW-
World::ConstPtr &object, int amount) = 0

copy and place an object into the gameworld at the given actor’s position
Parameters

• actor: giving the dropped object position
• object:
• number: of objects to place

virtual bool canPlaceObject(float cursorX, float cursorY) = 0 Return
true if it is possible to place on object at specified cursor location

virtual void processChangedSettings(const std::set<std::pair<std::string, std::string>>
&settings) = 0

virtual bool isFlying(const MWWorld::Ptr &ptr) const = 0

virtual bool isSlowFalling(const MWWorld::Ptr &ptr) const = 0

virtual bool isSwimming(const MWWorld::ConstPtr &object) const = 0

virtual bool isWading(const MWWorld::ConstPtr &object) const = 0

virtual bool isSubmerged(const MWWorld::ConstPtr &object) const = 0
Is the head of the creature underwater?

virtual bool isUnderwater(const MWWorld::CellStore *cell, const osg::Vec3f &pos) const = 0

virtual bool isWaterWalkingCastableOnTarget(const MWWorld::ConstPtr &target)
const = 0

virtual bool isOnGround(const MWWorld::Ptr &ptr) const = 0

virtual osg::Matrixf getActorHeadTransform(const MWWorld::ConstPtr &actor) const = 0

virtual void togglePOV() = 0

virtual bool isFirstPerson() const = 0

virtual void togglePreviewMode(bool enable) = 0

virtual bool toggleVanityMode(bool enable) = 0

virtual void allowVanityMode(bool allow) = 0

virtual void togglePlayerLooking(bool enable) = 0

virtual void changeVanityModeScale(float factor) = 0

virtual bool vanityRotateCamera(float *rot) = 0

virtual void setCameraDistance(float dist, bool adjust = false, bool override = true) = 0

virtual void setupPlayer() = 0

virtual void renderPlayer() = 0

virtual void activateDoor(const MWWorld::Ptr &door) = 0
open or close a non-teleport door (depending on current state)

virtual void activateDoor(const MWWorld::Ptr &door, int state) = 0
update movement state of a non-teleport door as specified
Note throws an exception when invoked on a teleport door
Parameters

• state: see MWClass::setDoorState

26 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual bool getPlayerStandingOn(const MWWorld::ConstPtr &object) = 0 Return
true if the player is standing on object

virtual bool getActorStandingOn(const MWWorld::ConstPtr &object) = 0 Return
true if any actor is standing on object

virtual bool getPlayerCollidingWith(const MWWorld::ConstPtr &object) = 0 Return
true if the player is colliding with object

virtual bool getActorCollidingWith(const MWWorld::ConstPtr &object) = 0 Return
true if any actor is colliding with object

virtual void hurtStandingActors(const MWWorld::ConstPtr &object, float dmgPerSecond) =
0

Apply a health difference to any actors standing on object. To hurt actors, healthPerSecond should be
a positive value. For a negative value, actors will be healed.

virtual void hurtCollidingActors(const MWWorld::ConstPtr &object, float dmgPerSecond)
= 0

Apply a health difference to any actors colliding with object. To hurt actors, healthPerSecond should
be a positive value. For a negative value, actors will be healed.

virtual float getWindSpeed() = 0

virtual void getContainersOwnedBy(const MWWorld::ConstPtr &npc,
std::vector<MWWorld::Ptr> &out) = 0

get all containers in active cells owned by this Npc

virtual void getItemsOwnedBy(const MWWorld::ConstPtr &npc, std::vector<MWWorld::Ptr>
&out) = 0

get all items in active cells owned by this Npc

virtual bool getLOS(const MWWorld::ConstPtr &actor, const MWWorld::ConstPtr &targetActor)
= 0

get Line of Sight (morrowind stupid implementation)

virtual float getDistToNearestRayHit(const osg::Vec3f &from, const osg::Vec3f &dir, float
maxDist, bool includeWater = false) = 0

virtual void enableActorCollision(const MWWorld::Ptr &actor, bool enable) = 0

virtual int canRest() = 0
check if the player is allowed to rest 0 - yes 1 - only waiting 2 - player is underwater 3 - enemies are
nearby (not implemented)

virtual MWRender::Animation *getAnimation(const MWWorld::Ptr &ptr) = 0

virtual const MWRender::Animation *getAnimation(const MWWorld::ConstPtr &ptr) const =
0

virtual void reattachPlayerCamera() = 0

virtual void screenshot(osg::Image *image, int w, int h) = 0

virtual bool findExteriorPosition(const std::string &name, ESM::Position &pos) = 0
Find default position inside exterior cell specified by name
Return false if exterior with given name not exists, true otherwise

virtual bool findInteriorPosition(const std::string &name, ESM::Position &pos) = 0
Find default position inside interior cell specified by name
Return false if interior with given name not exists, true otherwise

virtual void enableTeleporting(bool enable) = 0
Enables or disables use of teleport spell effects (recall, intervention, etc).

1.1. OpenMW Source Documentation 27

OpenMW Documentation, Release (0, 41, 0)

virtual bool isTeleportingEnabled() const = 0
Returns true if teleport spell effects are allowed.

virtual void enableLevitation(bool enable) = 0
Enables or disables use of levitation spell effect.

virtual bool isLevitationEnabled() const = 0
Returns true if levitation spell effect is allowed.

virtual bool getGodModeState() = 0

virtual bool toggleGodMode() = 0

virtual bool toggleScripts() = 0

virtual bool getScriptsEnabled() const = 0

virtual bool startSpellCast(const MWWorld::Ptr &actor) = 0
startSpellCast attempt to start casting a spell. Might fail immediately if conditions are not met.

Return true if the spell can be casted (i.e. the animation should start)
Parameters

• actor:

virtual void castSpell(const MWWorld::Ptr &actor) = 0

virtual void launchMagicBolt(const std::string &spellId, bool stack, const ESM::EffectList
&effects, const MWWorld::Ptr &caster, const std::string
&sourceName, const osg::Vec3f &fallbackDirection) = 0

virtual void launchProjectile(MWWorld::Ptr actor, MWWorld::ConstPtr projectile, const
osg::Vec3f &worldPos, const osg::Quat &orient, MW-
World::Ptr bow, float speed, float attackStrength) = 0

virtual const std::vector<std::string> &getContentFiles() const = 0

virtual void breakInvisibility(const MWWorld::Ptr &actor) = 0

virtual bool isDark() const = 0

virtual bool findInteriorPositionInWorldSpace(const MWWorld::CellStore *cell,
osg::Vec3f &result) = 0

virtual void teleportToClosestMarker(const MWWorld::Ptr &ptr, const std::string &id) =
0

Teleports ptr to the closest reference of id (e.g. DivineMarker, PrisonMarker, TempleMarker)
Note id must be lower case

virtual void listDetectedReferences(const MWWorld::Ptr &ptr,
std::vector<MWWorld::Ptr> &out, DetectionType
type) = 0

List all references (filtered by type) detected by ptr. The range is determined by the current magnitude
of the “Detect X” magic effect belonging to type.
Note This also works for references in containers.

virtual void updateDialogueGlobals() = 0
Update the value of some globals according to the world state, which may be used by dialogue entries.
This should be called when initiating a dialogue.

virtual void confiscateStolenItems(const MWWorld::Ptr &ptr) = 0
Moves all stolen items from ptr to the closest evidence chest.

virtual void goToJail() = 0

28 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

virtual void spawnRandomCreature(const std::string &creatureList) = 0
Spawn a random creature from a levelled list next to the player.

virtual void spawnBloodEffect(const MWWorld::Ptr &ptr, const osg::Vec3f &worldPosition)
= 0

Spawn a blood effect for ptr at worldPosition.

virtual void spawnEffect(const std::string &model, const std::string &textureOverride, const
osg::Vec3f &worldPos) = 0

virtual void explodeSpell(const osg::Vec3f &origin, const ESM::EffectList &effects,
const MWWorld::Ptr &caster, const MWWorld::Ptr &ignore,
ESM::RangeType rangeType, const std::string &id, const std::string
&sourceName) = 0

virtual void activate(const MWWorld::Ptr &object, const MWWorld::Ptr &actor) = 0

virtual bool isInStorm() const = 0 See
MWWorld::WeatherManager::isInStorm

virtual osg::Vec3f getStormDirection() const = 0 See
MWWorld::WeatherManager::getStormDirection

virtual void resetActors() = 0
Resets all actors in the current active cells to their original location within that cell.

virtual bool isWalkingOnWater(const MWWorld::ConstPtr &actor) const = 0

virtual osg::Vec3f aimToTarget(const MWWorld::ConstPtr &actor, const MWWorld::ConstPtr
&target) = 0

Return a vector aiming the actor’s weapon towards a target.
Note The length of the vector is the distance between actor and target.

virtual float getHitDistance(const MWWorld::ConstPtr &actor, const MWWorld::ConstPtr
&target) = 0

Return the distance between actor’s weapon and target’s collision box.

virtual void removeContainerScripts(const MWWorld::Ptr &reference) = 0

virtual bool isPlayerInJail() const = 0

virtual float getTerrainHeightAt(const osg::Vec3f &worldPos) const = 0
Return terrain height at worldPos position.

virtual osg::Vec3f getHalfExtents(const MWWorld::ConstPtr &actor, bool rendering = false)
const = 0

Return physical or rendering half extents of the given actor.

Private Functions

World(const World&)
not implemented

World &operator=(const World&)
not implemented

struct DoorMarker

Public Members

std::string name

1.1. OpenMW Source Documentation 29

OpenMW Documentation, Release (0, 41, 0)

float x

float y

ESM::CellId dest

namespace OMW

class Engine
#include <engine.hpp> Main engine class, that brings together all the components of OpenMW.

Public Functions

Engine(Files::ConfigurationManager &configurationManager)

virtual ~Engine()

void enableFSStrict(bool fsStrict)
Enable strict filesystem mode (do not fold case)

Attention The strict mode must be specified before any path-related settings are given to the engine.

void setDataDirs(const Files::PathContainer &dataDirs)
Set data dirs.

void addArchive(const std::string &archive)
Add BSA archive.

void setResourceDir(const boost::filesystem::path &parResDir)
Set resource dir.

void setCell(const std::string &cellName)
Set start cell name (only interiors for now)

void addContentFile(const std::string &file)
addContentFile - Adds content file (ie. esm/esp, or omwgame/omwaddon) to the content files con-
tainer.

Parameters
• file: - filename (extension is required)

void setScriptsVerbosity(bool scriptsVerbosity)
Enable or disable verbose script output.

void setSoundUsage(bool soundUsage)
Disable or enable all sounds.

void setSkipMenu(bool skipMenu, bool newGame)
Skip main menu and go directly into the game

Parameters
• newGame: Start a new game instead off dumping the player into the game (ignored if !skip-

Menu).

void setGrabMouse(bool grab)

void go()
Initialise and enter main loop.

void setCompileAll(bool all)
Compile all scripts (excludign dialogue scripts) at startup?

30 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

void setCompileAllDialogue(bool all)
Compile all dialogue scripts at startup?

void setEncoding(const ToUTF8::FromType &encoding)
Font encoding.

void setFallbackValues(std::map<std::string, std::string> map)

void setScriptConsoleMode(bool enabled)
Enable console-only script functionality.

void setStartupScript(const std::string &path)
Set path for a script that is run on startup in the console.

void setActivationDistanceOverride(int distance)
Override the game setting specified activation distance.

void setWarningsMode(int mode)

void setScriptBlacklist(const std::vector<std::string> &list)

void setScriptBlacklistUse(bool use)

void enableFontExport(bool exportFonts)

void setSaveGameFile(const std::string &savegame)
Set the save game file to load after initialising the engine.

Private Functions

Engine(const Engine&)

Engine &operator=(const Engine&)

void executeLocalScripts()

void frame(float dt)

std::string loadSettings(Settings::Manager &settings)
Load settings from various files, returns the path to the user settings file.

void prepareEngine(Settings::Manager &settings)
Prepare engine for game play.

void createWindow(Settings::Manager &settings)

void setWindowIcon()

Private Members

SDL_Window *mWindow

std::auto_ptr<VFS::Manager> mVFS

std::auto_ptr<Resource::ResourceSystem> mResourceSystem

MWBase::Environment mEnvironment

ToUTF8::FromType mEncoding

ToUTF8::Utf8Encoder *mEncoder

Files::PathContainer mDataDirs

1.1. OpenMW Source Documentation 31

OpenMW Documentation, Release (0, 41, 0)

std::vector<std::string> mArchives

boost::filesystem::path mResDir

osg::ref_ptr<osgViewer::Viewer> mViewer

osg::ref_ptr<osgViewer::ScreenCaptureHandler> mScreenCaptureHandler

std::string mCellName

std::vector<std::string> mContentFiles

bool mVerboseScripts

bool mSkipMenu

bool mUseSound

bool mCompileAll

bool mCompileAllDialogue

int mWarningsMode

std::string mFocusName

std::map<std::string, std::string> mFallbackMap

bool mScriptConsoleMode

std::string mStartupScript

int mActivationDistanceOverride

std::string mSaveGameFile

bool mGrab

bool mExportFonts

Compiler::Extensions mExtensions

Compiler::Context *mScriptContext

Files::Collections mFileCollections

bool mFSStrict

Translation::Storage mTranslationDataStorage

std::vector<std::string> mScriptBlacklist

bool mScriptBlacklistUse

bool mNewGame

osg::Timer_t mStartTick

Files::ConfigurationManager &mCfgMgr

1.1.2 Indices and tables

• genindex

• search

32 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

1.2 OpenMW CS user manual

The following document is the complete user manual for OpenMW CS, the construction set for the OpenMW game
engine. It is intended to serve both as an introduction and a reference for the application. Even if you are familiar with
modding The Elder Scrolls III: Morrowind you should at least read the first few chapters to familiarise yourself with
the new interface.

Warning: OpenMW CS is still software in development. The manual does not cover any of its shortcomings, it is
written as if everything was working as inteded. Please report any software problems as bugs in the software, not
errors in the manual.

1.2.1 Foreword

<Some introductory lines here, explain nomenclature and abbreviations>

How to read the manual

The manual can be roughly divided into two parts: a tutorial part consisting of the first two (three) chapters and the
reference manual. We recommend all readers to work through the tutorials first, there you will be guided through the
creation of a fairly simple mod where you can familiarise yourself with the record-based interface. The tutorials are
very simple and teach you only what is necessary for the task, each one can be completed in under half an hour. It is
strongly recommended to do the tutorials in order.

When you are familiar with the CS in general and want to write your own mods it is time to move on to the reference
part of the manual. The reference chapters can be read out of order, each one covers only one topic.

1.2.2 A Tour through OpenMW CS: making a magic ring

In this first chapter we will create a mod that adds a new ring with a simple enchantment to the game. The ring will
give its wearer a permanent Night Vision effect while being worn. You don’t need prior knowledge about modding
Morrowind, but you should be familiar with the game itself. There will be no scripting necessary, we chan achieve
everything using just what the base game offers out of the box. Before continuing make sure that OpenMW is properly
installed and playable.

Adding the ring to the game’s records

In this first section we will define what our new ring is, what it looks like and what it does. Getting it to work is the
first step before we go further.

Starting up OpenMW CS

We will start by launching OpenMW CS, the location of the program depends on your operating system. You will be
presented with a dialogue with three options: create a new game, create a new addon, edit a content file.

The first option is for creating an entirely new game, that’s not what we want. We want to edit an existing game, so
choose the second one. When you save your addon you can use the third option to open it again.

You will be presented with another window where you get to chose the content to edit and the name of your project.
We have to chose at least a base game, and optionally a number of other addons we want to depend on. The name of
the project is arbitrary, it will be used to identify the addon later in the OpenMW launcher.

1.2. OpenMW CS user manual 33

OpenMW Documentation, Release (0, 41, 0)

Choose Morrowind as your content file and enter Ring of Night Vision as the name. We could also chose further
content files as dependencies if we wanted to, but for this mod the base game is enough.

Once the addon has been created you will be presented with a table. If you see a blank window rather than a table
choose World → Objects from the menu.

Let’s talk about the interface for a second. Every window in OpenMW CS has panels, these are often but not always
tables. You can close a panel by clicking the small “X” on the title bar of the panel, or you can detach it by either
dragging the title bar or clicking the icon with the two windows. A detached panel can be re-attached to a window by
dragging it by the title bar on top of the window.

Now let’s look at the panel itself: we have a filter text field, a very large table and a status bar. The filter will be very
useful when we want to find an entry in the table, but for now it is irrelevant. The table you are looking at contains all
objects in the game, these can be items, NPCs, creatures, whatever. Every object is an entry in that table, visible as a
row. The columns of the table are the attributes of each object.

Morrowind uses something called a relational database for game data. If you are not familiar with the term, it means
that every type of thing can be expressed as a table: there is a table for objects, a table for enchantments, a table for
icons, one for meshes, and so on. Properties of an entry must be simple values, like numbers or text strings. If we
want a more complicated property we need to reference an entry from another table. There are a few exceptions to this
though, some tables do have subtables. The effects of enchantments are one of those exceptions.

Defining a new record

Enough talk, let’s create the new ring now. Right-click anywhere in the objects table, choose Add Record and the status
bar will change into an input field. We need to enter an ID (short for identifier) and pick the type. The identifier is a
unique name by which the ring can later be identified; I have chosen ring_night_vision. For the type choose Clothing.

34 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

1.2. OpenMW CS user manual 35

OpenMW Documentation, Release (0, 41, 0)

36 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

The table should jump right to our newly created record, if not read further below how to use filters to find a record
by ID. Notice that the Modified column now shows that this record is new. Records can also be Base (unmodified),
Modified and Deleted. The other fields are still empty since we created this record from nothing. We can double-click
a table cell while holding Shift to edit it (this is a configurable shortcut), but there is a better way: right-click the row
of our new record and chose Edit Record, a new panel will open.

We can right-click the row of our new record and chose Edit Record, a new panel will open. Alternatively we can also
define a configurable shortcut instead of using the context menu; the default is double-clicking while holding down
the shift key.

You can set the name, weight and coin value as you like, I chose Ring of Night Vision, 0.1 and 2500 respectively. Make
sure you set the Clothing Type to Ring. We could set the other properties manually as well, but unless you have an
exceptional memory for identifiers and never make typos that’s not feasible. What we are going to do instead is find
the records we want in their respective tables and assign them from there.

Finding records using filters

We will add an icon first. Open the Icons table the same way you opened the Objects table: in the menu click Assets
→ Icons. If the window gets too crowded remember that you can detach panels. The table is huge and not every ring
icon starts with “ring”, so we have to use filters to find what we want.

Filters are a central element of OpenMW CS and a major departure from how the original Morrowind CS was used. In
fact, filters are so important that they have their own table as well. We won’t be going that far for now though. There
are three types of filters: Project filters are part of the project and are stored in the project file, session filter are only
valid until you exit the CS, and finally instant filter which are used only once and typed directly into the Filter field.

For this tutorial we will only use instant filters. We type the definition of the filter directly into the filter field rather
than the name of an existing filter. To signify that we are using an instant filter the have to use ! as the first character.
Type the following into the field:

1.2. OpenMW CS user manual 37

OpenMW Documentation, Release (0, 41, 0)

!string("id", ".*ring.*")

A filter is defined by a number of queries which can be logically linked. For now all that matters is that the
string(<property>, <pattern>) query will check whether <propery> matches <pattern>. The pattern is a regular
expression, if you don’t know about them you should learn their syntax. For now all that matters is that . stands for
any character and * stands for any amount, even zero. In other words, we are looking for all entries which have an
ID that contains the word “ring” somewhere in it. This is a pretty dumb pattern because it will also match words like
“ringmail”, but it’s good enough for now.

If you have typed the filter definition properly the text should change from red to black and our table will be narrowed
down a lot. Browse for an icon you like and drag & drop its table row onto the Icon field of our new ring.

That’s it, you have now assigned a reference to an entry in another table to the ring entry in the Objects table. Repeat
the same process for the 3D model, you can find the Meshes table under Assets → Meshes.

Adding the enchantment

Putting everything you have learned so far to practice we can add the final and most important part to our new ring:
the enchantment. You know enough to perform the following steps without guidance: Open the Enchantments table
(Mechanics → Enchantments) and create a new entry with the ID Cats Eye. Edit it so that it has Constant Effect
enchantment type.

To add an effect to the enchantment right-click the Magic Effects table and choose Add new row. You can edit the
effects by right-clicking their table cells. Set the effect to NightEye, range to Self, and both magnitudes to 50. The
other properties are irrelevant.

Once you are done add the new enchantment to our ring. That’s it, we now have a complete enchanted ring to play
with. Let’s take it for a test ride.

Playing your new addon

Launch OpenMW and in the launcher under Data Files check your addon. Load a game and open the console. We
have only defined the ring, but we haven’t placed any instance of it anywhere in the game world, so we have to create
one. In the console type:

player->AddItem "ring_night_vision" 1

The part in quotation marks is the ID of our ring, you have to adjust it if you chose a different ID. Exit the console and
you should find a new ring in your inventory. Equip it and you will instantly receive the Night Vision effect for your
character.

Conclusion

In this tutorial we have learned how to create a new addon, what tables are and how to create new records. We have
also taken a very brief glimpse at the syntax of filters, a feature you will be using a lot when creating larger mods.

This mod is a pure addition, it does not change any of the existing records. However, if you want to actually present
appealing content to the player rather than just offering abstract definitions you will have to change the game’s content.
In the next tutorial we will learn how to place the ring in the game world so the player can find it legitimately.

Adding the ring to the game’s world

Now that we have defined the ring it is time add it to the game world so the player can find it legitimately. We will
add the ring to a merchant, place it in a chest and put it somewhere in plain sight. To this end we will have to actually

38 Chapter 1. Components

OpenMW Documentation, Release (0, 41, 0)

modify the contents of the game.

Subsection to come...

1.2.3 Files and Directories

In this chapter of the manual we will cover the usage of files and directories by OpenMW CS. Files and directories are
file system concepts of your operating system, so we will not be going into specifics about that, we will only focus on
what is relevant to OpenMW CS.

Basics

Directories

OpenMW and OpenMW CS us multiple directories on the file system. First of all there is a user directory that holds
configuration files and a number of different sub-directories. The location of the user directory is hard-coded into the
CS and depends on your operating system.

Operating System User Dircetory
GNU/Linux <whatever>
OS X ~/Library/Application Support/openmw/
Windows <whatever>

In addition to to this single hard-coded directory both OpenMW and OpenMW CS need a place to seek for a actuals
data files of the game: textures, 3D models, sounds and record files that store objects in game; dialogues an so one.
These files are called content files. We support multiple such paths (we call them data paths) as specified in the
configuration. Usually one data path points to the directory where the original Morrowind game is either installed or
unpacked to. You are free to specify as many data paths as you would like, however, there is one special data path that,
as described later, which is used to store newly created content files.

Content files

The original Morrowind engine by Bethesda Softworks uses two types of content files: esm (master) and esp (plugin).
The distinction between those two is not clear, and often confusing. One would expect the esm (master) file to be
used to specify one master, which is then modified by the esp plugins. And indeed: this is the basic idea. However,
the official expansions were also made as ESM files, even though they could essentially be described as really large
plugins, and therefore would rather use esp files. There were technical reasons behind this decision – somewhat valid
in the case of the original engine, but clearly it is better to create a system that can be used in a more sensible way.
OpenMW achieves this with our own content file types.

We support both ESM and ESP files, but in order to make use of new features in OpenMW one should consider using
new file types designed with our engine in mind: game files and addon files, collectively called content files.

OpenMW content files The concepts of Game and Addon files are somewhat similar to the old concept of ESM and
ESP, but more strictly enforced. It is quite straight-formward: If you want to make new game using OpenMW as the
engine (a so called total conversion) you should create a game file. If you want to create an addon for an existing
game file create an addon file. Nothing else matters; the only distinction you should consider is if your project is about
changing another game or creating a new one. Simple as that.

Another simple thing about content files are the extensions: we are using .omwaddon for addon files and .omwgame
for game files.

1.2. OpenMW CS user manual 39

OpenMW Documentation, Release (0, 41, 0)

Morrowind content files Using our content files is recommended for projects that are intended to used with the
OpenMW engine. However, some players might wish to still use the original Morrowind engine. In addition thousands
of ESP/ESM files were created since 2002, some of them with really outstanding content. Because of this OpenMW
CS simply has no other choice but to support ESP/ESM files. If you decid to choose ESP/ESM file instead of using
our own content file types you are most likely aimng at compatibility with the original engine. This subject is covered
in it own chapter of this manual.

The actual creation of new files is described in the next chapter. Here we are going to focus only on the details you
need to know in order to create your first OpenMW CS file while fully understanding your needs. For now let’s jut
remember that content files are created inside the user directory in the the data subdirectory (that is the one special
data directory mentioned earlier).

Dependencies Since an addon is supposed to change the game it follows that it also depends on the said game to
work. We can conceptualise this with an examples: your modification is the changing prize of an iron sword, but what
if there is no iron sword in game? That’s right: we get nonsense. What you want to do is tie your addon to the files
you are changing. Those can be either game files (for example when making an expansion island for a game) or other
addon files (making a house on said island). Obviously It is a good idea to be dependent only on files that are really
changed in your addon, but sadly there is no other way to achieve this than knowing what you want to do. Again,
please remember that this section of the manual does not cover creating the content files – it is only a theoretical
introduction to the subject. For now just keep in mind that dependencies exist, and is up to you to decide whether your
content file should depend on other content files.

Game files are not intend to have any dependencies for a very simple reasons: the player is using only one game file
(excluding original and the dirty ESP/ESM system) at a time and therefore no game file can depend on other game
file, and since a game file makes the base for addon files it can not depend on addon files.

Project files Project files act as containers for data not used by the OpenMW game engine itself, but still useful for
OpenMW CS. The shining example of this data category are without doubt record filters (described in a later chapter
of the manual). As a mod author you probably do not need or want to distribute project files at all, they are meant to
be used only by you and your team.

As you would imagine, project files make sense only in combination with actual content files. In fact, each time you
start to work on new content file and a project file was not found, one will be created. The extensio of project files is
.project. The whole name of the project file is the whole name of the content file with appended extension. For
instance a swords.omwaddon file is associated with a swords.omwaddon.project file.

Project files are stored inside the user directory, in the projects subdirectory. This is the path location for both
freshly created project files, and a place where OpenMW CS looks for already existing files.

Resource files

Unless we are talking about a fully text based game, like Zork or Rogue, one would expect that a video game is using
some media files: 3D models with textures, images acting as icons, sounds and anything else. Since content files, no
matter whether they are ESP, ESM or new OpenMW file type, do not contain any of those, it is clear that they have to
be delivered with a different file. It is also clear that this, let’s call it “resources file“, has to be supported by the engine.
Without code handling those files it is nothing more than a mathematical abstraction – something, that lacks meaning
for human beings. Therefore this section must cover ways to add resources files to your content file, and point out
what is supported. We are going to do just that. Later, you will learn how to make use of those files in your content.

Audio OpenMW uses FFmpeg for audio playback, and so we support every audio type supported by that library.
This makes a huge list. Below is only small portion of the supported file types.

mp3 (MPEG-1 Part 3 Layer 3) A popular audio file format and de facto standard for storing audio. Used by the
Morrowind game.

40 Chapter 1. Components

http://ffmpeg.org

OpenMW Documentation, Release (0, 41, 0)

ogg An open source, multimedia container file using a high quality Vorbis audio codec. Recommended.

Video Video As in the case of audio files, we are using FFmepg to decode video files. The list of supported files is
long, we will cover only the most significant.

bik Videos used by the original Morrowind game.

mp4 A multimedia container which use more advanced codecs (MPEG-4 Parts 2, 3 and 10) with a better audio and
video compression rate, but also requiring more CPU intensive decoding – this makes it probably less suited for
storing sounds in computer games, but good for videos.

webm A new, shiny and open source video format with excellent compression. It needs quite a lot of processing
power to be decoded, but since game logic is not running during cutscenes we can recommend it for use with
OpenMW.

ogv Alternative, open source container using Theora codec for video and Vorbis for audio.

Textures and images The original Morrowind game uses DDS and TGA files for all kinds of two dimensional images
and textures alike. In addition, the engine supported BMP files for some reason (BMP is a terrible format for a video
game). We also support an extended set of image files – including JPEG and PNG. JPEG and PNG files can be useful
in some cases, for instance a JPEG file is a valid option for skybox texture and PNG can useful for masks. However,
please keep in mind that JPEG images can grow to large sizes quickly and are not the best option with a DirectX
rendering backend. You probably still want to use DDS files for textures.

1.2.4 OpenMW CS Starting Dialog

In this chapter we will cover starting up OpenMW CS and the starting interface. Start the CS the way intended for
your operating system and you will be presented with window and three main buttons and a small button with a
wrench-icon. The wrench will open the configuration dialog which we will cover later. The three main buttons are the
following:

Create A New Game Choose this option if you want to create an original game that does not depend on any other
content files. The distinction between game and addon in the original Morrowind engine was somewhat blurry,
but OpenMW is very strict about it: regardless of how large your addon is, if it depends on another content file
it is not an original game.

Create A New Addon Choose this option if you want to create an extension to an existing game. An addon can
depend on other addons as well optionally, but it must depend on a game.

Edit A Content File Choose this option is you wish to edit an existing content file, regardless of whether it is a game
or an addon.

Whether you create a game or an addon, a data file and a project file will be generated for you in you user directory.

You will have to choose a name for your content file and if you chose to create an addon you will also have to chose
a number of dependencies. You have to choose exactly one game and you can choose an arbitrary amount of addon
dependencies. For the sake of simplicity and maintainability choose only the addons you actually want to depend on.
Also keep in mind that your dependencies might have dependencies of their own, you have to depend on those as
well. If one of your dependencies nees something it will be indicated by a warning sign and automatically include its
dependencies when you choose it.

If you want to edit an existing content file you will be presented with a similar dialog, except you don’t get to choose
a file name (because you are editing files that already exist).

1.2. OpenMW CS user manual 41

http://www.vorbis.com
http://www.theora.org

OpenMW Documentation, Release (0, 41, 0)

1.3 OpenMW Modding Reference

The following document is the complete reference guide to modifying, or modding, your OpenMW setup. It does not
cover content creation itself, only how to alter or add to your OpenMW gameplay experience. To learn more about
creating new content for OpenMW, please refer to OpenMW CS user manual.

Warning: OpenMW is still software in development. This manual does not cover any of its shortcomings. It is
written as if everything was working as inteded. Please report any software problems as bugs in the software, not
errors in the manual.

1.3.1 Foreword

OpenMW is a complete game engine built to be content agnostic. The majority of this guide is applicable to any
non-Morrowind project using its engine. That being said, it was designed with the extensive modding community of
Morrowind in mind. Therefore, if you are already familiar with modding in Morrowind, you will likely be able to
start modding in OpenMW with little to no instruction. We do recommend you at least refer to Modding OpenMW
vs Morrowind to find out about what’s different between OpenMW and the original Morrowind engine. For everyone
else, or just a good refresher, read on!

1.3.2 Modding OpenMW vs Morrowind

A brief overview of the differences between the two engines.

OpenMW is designed to be able to use all the normal Morrowind mod files such as ESM/ESP plugins, texture replacers,
mesh replacers, etc.

Warning: All external programs and libraries that depend on morrowind.exe cannot function with OpenMW.
This means you should assume mods dependent on Morrowind Graphics Extender, Morrowind Code Patch, Mor-
rowind Script Extender, etc, will not work correctly, nor will the tools themselves.

Multiple Data Folders

The largest difference between OpenMW and Morrowind in terms of data structure is OpenMW’s support of multiple
data folders. This has many advantages, especially when it comes to unistalling mods and preventing unintentional
overwrites of files.

Warning: Most mods can still be installed into the root OpenMW data folder, but this is not recommended.

To install mods via this new feature:

1. Open openmw.cfg with your preffered text editor. It is located as described in
https://wiki.openmw.org/index.php?title=Paths and not in your OpenMW root directory.

2. Find or search for data=. This is located very near the bottom of the file.

3. Add a new line below this line and make a new entry of the format data=path/to/your/mod

4. Make as many of these entries as you need for each mod folder you want to include.

5. Save openmw.cfg

42 Chapter 1. Components

https://wiki.openmw.org/index.php?title=Paths

OpenMW Documentation, Release (0, 41, 0)

Note: All mod folders must adhere to the same file structure as ~/Morrowind/Data Files/.

To uninstall these mods simply delete that mod’s respective data= entry. The mods are loaded in the order of these
entries, with the top being overwritten by mods added towards the bottom.

Note: Mods that depend on ESM/ESP plugins can be rearranged within the OpenMW Launcher, but mesh/texture
replacer mods can only be reordered by moving their data= entry.

OpenMW Launcher

The launcher included with OpenMW is similar to the original Morrowind Launcher. Go to the Data Files tab to
enable and disable plugins. You can also drag list items to modify the load order. Content lists can be created at the
bottom by clicking the New Content List button, creating a list name, then setting up a new modlist. This is helpful
for different player profiles and testing out different load orders.

Settings.cfg

The settings.cfg file is essentially the same as the INI files for Morrowind. It is located in the same
directory as openmw.cfg. This is where many video, audio, GUI, input, etc. settings can be mod-
ified. Some are available in-game, but many are only available in this configuration file. Please see
https://wiki.openmw.org/index.php?title=Settings for the complete listing.

Open Source Resources Support

While OpenMW supports all of the original files that Morrowind supported, we’ve expanded support to many open
source file formats. These are summarized below:

<this will be a table of the type of file, the morrowind supported file, and the OpenMW supported file formats>

1.3.3 How To Install and Use Mods

The following is a detailed guide on how to install and enable mods in OpenMW using best practices.

Install

1. Your mod probably comes in some kind of archive, such as .zip, .rar, .7z, or something along those lines.
Unpack this archive into its own folder.

2. Ensure the structure of this folder is correct. #. Locate the plugin files, .esp or .omwaddon. The folder
containing the plugin files we will call your data folder #. Check that all resource folders (Meshes, Textures,
etc.) containing additional resource files (the actual meshes, textures, etc.) are in the data folder.

Note: There may be multiple levels of folders, but the location of the plugins must be the same as the resource folders.

1. Open your openmw.cfg file in your preferred plain text editor. It is located as described in
https://wiki.openmw.org/index.php?title=Paths and not in your OpenMW root directory.

1.3. OpenMW Modding Reference 43

https://wiki.openmw.org/index.php?title=Settings
https://wiki.openmw.org/index.php?title=Paths

OpenMW Documentation, Release (0, 41, 0)

2. Find or search for data=. This is located very near the bottom of the file. If you are using Morrowind, this
first entry should already point to your Morrowind data directory, Data Files; otherwise it will point to your
game file, .omwgame.

3. Create a new line underneath and type: data="path/to/your/data folder" Remember, the data
folder is where your mod’s plugin files are. The double quotes around this path name are required.

4. Save your openmw.cfg file.

You have now installed your mod. Any simple replacer mods that only contain resource files such as meshes or textures
will now automatically be loaded in the order of their data=* entry. This is important to note because replacer mods
that replace the same resource will overwrite previous ones as you go down the list.

Enable

Any mods that have plugin files must be enabled to work.

1.

1.3.4 Normal maps from Morrowind to OpenMW

• General introduction to normal map conversion

– Normal Mapping in OpenMW

– Activating normal mapping shaders in OpenMW

– Normal mapping in Morrowind with Morrowind Code Patch

– Normal mapping in Morrowind with MGE XE

• Converting PeterBitt’s Scamp Replacer (Mod made for the MGE XE PBR prototype)

– Tutorial - MGE

• Converting Lougian’s Hlaalu Bump mapped (MCP’s fake bump map function, part 1: without custom models)

– Tutorial - MCP, Part 1

• Converting Apel’s Various Things - Sacks (MCP’s fake bump map function, part 2: with custom models)

– Tutorial - MCP, Part 2

General introduction to normal map conversion

Authors Joakim (Lysol) Berg

Updated 2016-11-11

This page has general information and tutorials on how normal mapping works in OpenMW and how you can make
mods using the old fake normal mapping technique (such as Netch Bump mapped and Hlaalu Bump mapped, and
maybe the most (in)famous one to give shiny rocks in OpenMW, the mod On the Rocks!, featured in MGSO and
Morrowind Rebirth) work in OpenMW.

Note: The conversion made in the Converting Apel’s Various Things - Sacks-part of this tutorial require the use of the
application NifSkope. There are binaries available for Windows, but not for Mac or Linux. Reports say that NifSkope
versions 1.X will compile on Linux as long as you have Qt packages installed, while the later 2.X versions will not
compile.

44 Chapter 1. Components

http://www.nexusmods.com/morrowind/mods/42851/?
http://www.nexusmods.com/morrowind/mods/42396/?
http://mw.modhistory.com/download-44-14107

OpenMW Documentation, Release (0, 41, 0)

Another note: I will use the terms bump mapping and normal mapping simultaneously. Normal mapping is one form
of bump mapping. In other words, normal mapping is bump mapping, but bump mapping isn’t necessarily normal
mapping. There are several techniques for bump mapping, and normal mapping is the most common one today.

So let’s get on with it.

Normal Mapping in OpenMW

Normal mapping in OpenMW works in a very simple way: The engine just looks for a texture with a _n.dds suffix,
and you’re done.

So to expand on this a bit, let’s take a look at how a model seeks for textures.

Let us assume we have the model example.nif. In this model file, there should be a tag (NiSourceTexture) that states
what texture it should use and where to find it. Typically, it will point to something like exampletexture_01.dds. This
texture is supposed to be located directly in the Textures folder since it does not state anything else. If the model is a
custom made one, modders tend to group their textures in separate folders, just to easily keep track of them. It might
be something like ./Textures/moddername/exampletexture_02.dds.

When OpenMW finally adds normal mapping, it simply takes the NiSourceTexture file path, e.g., exampletex-
ture_01.dds, and looks for a exampletexture_01_n.dds. If it can’t find this file, no normal mapping is added. If it
does find this file, the model will use this texture as a normal map. Simple.

Activating normal mapping shaders in OpenMW

Before normal (and specular and parallax) maps will show up in OpenMW, you’ll need to activate them in the set-
tings.cfg-file. Add these rows where it would make sense:

[Shaders]
auto use object normal maps = true
auto use terrain normal maps = true

And while we’re at it, why not activate specular maps too just for the sake of it?

auto use object specular maps = true
auto use terrain specular maps = true

Lastly, if you want really nice lights in OpenMW, add these rows:

force shaders = true
clamp lighting = false

See OpenMW’s wiki page about texture modding to read further about this.

Normal mapping in Morrowind with Morrowind Code Patch

Conversion difficulty: Varies. Sometimes quick and easy, sometimes time-consuming and hard.

You might have bumped (pun intended) on a few bump-mapped texture packs for Morrowind that require the Mor-
rowind Code Patch (MCP). You might even be thinking: Why doesn’t OpenMW just support these instead of reinvent-
ing the wheel? I know it sounds strange, but it will make sense. Here’s how MCP handles normal maps:

Morrowind does not recognize normal maps (they weren’t really a “thing” yet in 2002), so even if you have a normal
map, Morrowind will not load and display it. MCP has a clever way to solve this issue, by using something Morrowind
does support, namely environment maps. You could add a tag for an environment map and then add a normal map as
the environment map, but you’d end up with a shiny ugly model in the game. MCP solves this by turning down the

1.3. OpenMW Modding Reference 45

https://wiki.openmw.org/index.php?title=Settings
https://wiki.openmw.org/index.php?title=Settings
https://wiki.openmw.org/index.php?title=TextureModding

OpenMW Documentation, Release (0, 41, 0)

brightness of the environment maps, making the model look kind of as if it had a normal map applied to it. I say kind
of because it does not really look as good as normal mapping usually does. It was a hacky way to do it, but it was the
only way at the time, and therefore the best way.

The biggest problem with this is not that it doesn’t look as good as it could – no, the biggest problem in my opinion is
that it requires you to state the file paths for your normal map textures in the models! For buildings, which often use
several textures for one single model file, it could take ages to do this, and you had to do it for dozens of model files
too. You also had to ship your texture pack with model files, making your mod bigger in file size.

These are basically the reasons why OpenMW does not support fake bump maps like MCP does. It is just a really bad
way to enhance your models, all the more when you have the possibility to do it in a better way.

Normal mapping in Morrowind with MGE XE

Conversion difficulty: Easy

The most recent feature on this topic is that the Morrowind Graphics Extender (MGE) finally started to support real
normal mapping in an experimental version available here: MGE XE (you can’t use MGE with OpenMW!). Not only
this but it also adds full support for physically based rendering (PBR), making it one step ahead of OpenMW in terms
of texturing techniques. However, OpenMW will probably have this feature in the future too – and let’s hope that
OpenMW and MGE will handle PBR in a similar fashion in the future so that mods can be used for both MGE and
OpenMW without any hassle.

I haven’t researched that much on the MGE variant yet but it does support real implementation of normal mapping,
making it really easy to convert mods made for MGE into OpenMW (I’m only talking about the normal map textures
though). There’s some kind of text file if I understood it correctly that MGE uses to find the normal map. OpenMW
does not need this, you just have to make sure the normal map has the same name as the diffuse texture but with the
correct suffix after.

Now, on to the tutorials.

Converting PeterBitt’s Scamp Replacer

Mod made for the MGE XE PBR prototype

Authors Joakim (Lysol) Berg

Updated 2016-11-11

So, let’s say you’ve found out that PeterBitt makes awesome models and textures featuring physically based rendering
(PBR) and normal maps. Let’s say that you tried to run his PBR Scamp Replacer in OpenMW and that you were
greatly disappointed when the normal map didn’t seem to work. Lastly, let’s say you came here, looking for some
answers. Am I right? Great. Because you’ve come to the right place!

A quick note before we begin: Please note that you can only use the normal map texture and not the rest of the materials,
since PBR isn’t implemented in OpenMW yet. Sometimes PBR textures can look dull without all of the texture files,
so have that in mind.

Tutorial - MGE

In this tutorial, I will use PeterBitt’s PBR Scamp Replacer as an example, but any mod featuring PBR that requires the
PBR version of MGE will do, provided it also includes a normal map (which it probably does).

So, follow these steps:

1. Go to the Nexus page for PeterBitt’s PBR Scamp Replacer

46 Chapter 1. Components

http://www.nexusmods.com/morrowind/mods/26348/?
http://www.nexusmods.com/morrowind/users/4381248/?
http://www.nexusmods.com/morrowind/mods/44314/?
http://www.nexusmods.com/morrowind/mods/44314/?
http://www.nexusmods.com/morrowind/mods/44314/?

OpenMW Documentation, Release (0, 41, 0)

2. Go to the files tab and download the main file and the “PBR materials” file.

3. Extract the main file as if you’d install a normal mod (Pro tip: Install using OpenMW’s Multiple data folders
function!)

4. Now, open the PBR materials file:

• Go to ./Materials/PB/.

• Select the tx_Scamp_normals.dds file, which is, obviously, the normal map texture.

• Extract this file to the place you extracted the main file to, but in the subdirectory ./Textures/PB/.

5. Rename your newly extracted file (tx_Scamp_normals.dds) to tx_Scamp_n.dds (which is exactly the
same name as the diffuse texture file, except for the added _n suffix before the filename extention).

6. You’re actually done!

So as you might notice, converting these mods is very simple and takes just a couple of minutes. It’s more or less just
a matter of renaming and moving a few files.

I totally recommend you to also try this on PeterBitt’s Nix Hound replacer and Flash3113’s various replacers. It should
be the same principle to get those to work.

And let’s hope that some one implements PBR shaders to OpenMW too, so that we can use all the material files of
these mods in the future.

Converting Lougian’s Hlaalu Bump mapped

Mod made for MCP’s fake bump function, without custom models

Authors Joakim (Lysol) Berg

Updated 2016-11-11

Converting textures made for the Morrowind Code Patch (MCP) fake bump mapping can be really easy or a real
pain, depending on a few circumstances. In this tutorial, we will look at a very easy, although in some cases a bit
time-consuming, example.

Tutorial - MCP, Part 1

We will be converting a quite popular texture replacer of the Hlaalu architecture, namely Lougian’s Hlaalu Bump
mapped. Since this is just a texture pack and not a model replacer, we can convert the mod in a few minutes by just
renaming a few dozen files and by not extracting the included model (.nif) files when installing the mod.

1. Download Lougian’s Hlaalu Bump mapped.

2. Install the mod by extracting the ./Textures folder to a data folder the way you usually install mods (Pro tip: Install using OpenMW’s Multiple data folders function!).

• Again, yes, only the ./Textures folder. Do not extract the Meshes folder. They are only there to
make the MCP hack work, which is not of any interest to us.

3. Go to your new texture folder. If you installed the mod like I recommended, you won’t have any trouble finding
the files. If you instead placed all your files in Morrowinds main Data Files folder (sigh), you need to check
with the mod’s .rar file to see what files you should look for. Because you’ll be scrolling through a lot of files.

4. Find all the textures related to the texture pack in the Textures folder and take note of all the ones that ends with
a _nm.dds.

5. The _nm.dds files are normal map files. OpenMW’s standard format is to have the normal maps with a _n.dds instead. Rename all the normal map textures to only have a _n.dds instead of the _nm.dds.

1.3. OpenMW Modding Reference 47

https://wiki.openmw.org/index.php?title=Mod_installation
http://www.nexusmods.com/morrowind/mods/42396/?
http://www.nexusmods.com/morrowind/mods/42396/?
http://www.nexusmods.com/morrowind/mods/42396/?
https://wiki.openmw.org/index.php?title=Mod_installation

OpenMW Documentation, Release (0, 41, 0)

• As a nice bonus to this tutorial, this pack actually included one specularity texture too. We should
use it of course. It’s the one called “tx_glass_amber_02_reflection.dds”. For OpenMW
to recognize this file and use it as a specular map, you need to change the _reflection.dds part to
_spec.dds, resulting in the name tx_glass_amber_01_spec.dds.

6. That should be it. Really simple, but I do know that it takes a few minutes to rename all those files.

Now – if the mod you want to change includes custom made models it gets a bit more complicated I’m afraid. But
that is for the next tutorial.

Converting Apel’s Various Things - Sacks

Mod made for MCP’s fake bump function, with custom models

Authors Joakim (Lysol) Berg

Updated 2016-11-09

In part one of this tutorial, we converted a mod that only included modified Morrowind model (.nif) files so that the
normal maps could be loaded in Morrowind with MCP. We ignored those model files since they are not needed with
OpenMW. In this tutorial however, we will convert a mod that includes new, custom made models. In other words, we
cannot just ignore those files this time.

Before we begin, you need to know that unless you want to build the NifSkope application from source yourself, you
will be needing a Windows OS to do this part, since the application only has binaries available for Windows.

Tutorial - MCP, Part 2

The sacks included in Apel’s Various Things - Sacks come in two versions – Without bump mapping, and with bump
mapping. Since we want the glory of normal mapping in our OpenMW setup, we will go with the bump-mapped
version.

1. Start by downloading Apel’s Various Things - Sacks from Nexus.

2. Once downloaded, install it the way you’d normally install your mods (Pro tip: Install using OpenMW’s Mul-
tiple data folders function!).

3. Now, if you ran the mod right away, your sacks will be made out of lead. This is because the normal map is
loaded as an environment map which MCP fixes so that it looks less shiny. We don’t use MCP, so therefore, it
looks kind of like the shack was made out of lead.

4. We need to fix this by removing some tags in the model files. You need to download NifSkope for this, which,
again, only have binaries available for Windows.

5. Go the place where you installed the mod and go to ./Meshes/o/ to find the model files.

• If you installed the mod like I suggested, finding the files will be easy as a pie, but if you installed it
by dropping everything into your main Morrowind Data Files folder, then you’ll have to scroll a lot to
find them. Check the mod’s zip file for the file names of the models if this is the case. The same thing
applies to when fixing the textures.

6. Open up each of the models in NifSkope and look for these certain blocks:

• NiTextureEffect

• NiSourceTexture with the value that appears to be a normal map file, in this mod, they have the suffix
_nm.dds.

7. Remove all these tags by selecting them one at a time and press right click>Block>Remove.

8. Repeat this on all the affected models.

48 Chapter 1. Components

http://www.nexusmods.com/morrowind/mods/42558/?
http://www.nexusmods.com/morrowind/mods/42558/?
https://wiki.openmw.org/index.php?title=Mod_installation
https://wiki.openmw.org/index.php?title=Mod_installation
http://imgur.com/bwpcYlc
http://niftools.sourceforge.net/wiki/NifSkope
http://imgur.com/VmQC0WG

OpenMW Documentation, Release (0, 41, 0)

9. If you launch OpenMW now, you’ll no longer have shiny models. But one thing is missing. Can you see it? It’s
actually hard to spot on still pictures, but we have no normal maps here.

10. Now, go back to the root of where you installed the mod. Now go to ./Textures/ and you’ll find the texture
files in question.

11. OpenMW detects normal maps if they have the same name as the base diffuse texture, but with a _n.dds suffix.
In this mod, the normal maps has a suffix of _nm.dds. Change all the files that ends with _nm.dds to instead end
with _n.dds.

12. Finally, we are done!

Since these models have one or two textures applied to them, the fix was not that time-consuming. It gets worse when
you have to fix a model that uses loads of textures. The principle is the same, it just requires more manual work which
is annoying and takes time.

1.3. OpenMW Modding Reference 49

http://imgur.com/vu1k7n1
http://imgur.com/yyZxlTw

OpenMW Documentation, Release (0, 41, 0)

50 Chapter 1. Components

CHAPTER 2

Indices and tables

• genindex

• search

51

OpenMW Documentation, Release (0, 41, 0)

52 Chapter 2. Indices and tables

Index

M
MWBase (C++ type), 1, 2, 4–6, 10, 11, 14, 15, 21
MWBase::Detect_Creature (C++ class), 21
MWBase::Detect_Enchantment (C++ class), 21
MWBase::Detect_Key (C++ class), 21
MWBase::DetectionType (C++ type), 21
MWBase::DialogueManager (C++ class), 1
MWBase::DialogueManager::~DialogueManager (C++

function), 1
MWBase::DialogueManager::addTopic (C++ function), 1
MWBase::DialogueManager::applyDispositionChange

(C++ function), 1
MWBase::DialogueManager::askQuestion (C++ func-

tion), 1
MWBase::DialogueManager::checkServiceRefused

(C++ function), 1
MWBase::DialogueManager::clear (C++ function), 1
MWBase::DialogueManager::clearInfoActor (C++ func-

tion), 2
MWBase::DialogueManager::countSavedGameRecords

(C++ function), 1
MWBase::DialogueManager::DialogueManager (C++

function), 1, 2
MWBase::DialogueManager::getFactionReaction (C++

function), 2
MWBase::DialogueManager::getTemporaryDispositionChange

(C++ function), 1
MWBase::DialogueManager::goodbye (C++ function), 1
MWBase::DialogueManager::goodbyeSelected (C++

function), 1
MWBase::DialogueManager::isInChoice (C++ function),

1
MWBase::DialogueManager::keywordSelected (C++

function), 1
MWBase::DialogueManager::modFactionReaction (C++

function), 2
MWBase::DialogueManager::operator= (C++ function),

2
MWBase::DialogueManager::persuade (C++ function), 1

MWBase::DialogueManager::questionAnswered (C++
function), 1

MWBase::DialogueManager::readRecord (C++ func-
tion), 2

MWBase::DialogueManager::say (C++ function), 1
MWBase::DialogueManager::setFactionReaction (C++

function), 2
MWBase::DialogueManager::startDialogue (C++ func-

tion), 1
MWBase::DialogueManager::write (C++ function), 1
MWBase::Environment (C++ class), 2
MWBase::Environment::~Environment (C++ function), 2
MWBase::Environment::cleanup (C++ function), 3
MWBase::Environment::Environment (C++ function), 2,

3
MWBase::Environment::get (C++ function), 3
MWBase::Environment::getDialogueManager (C++

function), 3
MWBase::Environment::getFrameDuration (C++ func-

tion), 3
MWBase::Environment::getInputManager (C++ func-

tion), 3
MWBase::Environment::getJournal (C++ function), 3
MWBase::Environment::getMechanicsManager (C++

function), 3
MWBase::Environment::getScriptManager (C++ func-

tion), 3
MWBase::Environment::getSoundManager (C++ func-

tion), 3
MWBase::Environment::getStateManager (C++ func-

tion), 3
MWBase::Environment::getWindowManager (C++ func-

tion), 3
MWBase::Environment::getWorld (C++ function), 2
MWBase::Environment::mDialogueManager (C++ mem-

ber), 3
MWBase::Environment::mFrameDuration (C++ mem-

ber), 3
MWBase::Environment::mInputManager (C++ member),

3
MWBase::Environment::mJournal (C++ member), 3

53

OpenMW Documentation, Release (0, 41, 0)

MWBase::Environment::mMechanicsManager (C++
member), 3

MWBase::Environment::mScriptManager (C++ mem-
ber), 3

MWBase::Environment::mSoundManager (C++ mem-
ber), 3

MWBase::Environment::mStateManager (C++ member),
3

MWBase::Environment::mWindowManager (C++ mem-
ber), 3

MWBase::Environment::mWorld (C++ member), 3
MWBase::Environment::operator= (C++ function), 3
MWBase::Environment::setDialogueManager (C++

function), 2
MWBase::Environment::setFrameDuration (C++ func-

tion), 2
MWBase::Environment::setInputManager (C++ func-

tion), 2
MWBase::Environment::setJournal (C++ function), 2
MWBase::Environment::setMechanicsManager (C++

function), 2
MWBase::Environment::setScriptManager (C++ func-

tion), 2
MWBase::Environment::setSoundManager (C++ func-

tion), 2
MWBase::Environment::setStateManager (C++ func-

tion), 2
MWBase::Environment::setWindowManager (C++ func-

tion), 2
MWBase::Environment::setWorld (C++ function), 2
MWBase::Environment::sThis (C++ member), 4
MWBase::InputManager (C++ class), 4
MWBase::InputManager::~InputManager (C++ func-

tion), 4
MWBase::InputManager::changeInputMode (C++ func-

tion), 4
MWBase::InputManager::clear (C++ function), 4
MWBase::InputManager::countSavedGameRecords

(C++ function), 4
MWBase::InputManager::enableDetectingBindingMode

(C++ function), 4
MWBase::InputManager::getActionControllerBindingName

(C++ function), 4
MWBase::InputManager::getActionControllerSorting

(C++ function), 4
MWBase::InputManager::getActionDescription (C++

function), 4
MWBase::InputManager::getActionKeyBindingName

(C++ function), 4
MWBase::InputManager::getActionKeySorting (C++

function), 4
MWBase::InputManager::getControlSwitch (C++ func-

tion), 4

MWBase::InputManager::getNumActions (C++ func-
tion), 4

MWBase::InputManager::InputManager (C++ function),
4, 5

MWBase::InputManager::isWindowVisible (C++ func-
tion), 4

MWBase::InputManager::joystickLastUsed (C++ func-
tion), 4

MWBase::InputManager::operator= (C++ function), 5
MWBase::InputManager::processChangedSettings (C++

function), 4
MWBase::InputManager::readRecord (C++ function), 5
MWBase::InputManager::resetToDefaultControllerBindings

(C++ function), 4
MWBase::InputManager::resetToDefaultKeyBindings

(C++ function), 4
MWBase::InputManager::sdlControllerAxisToString

(C++ function), 4
MWBase::InputManager::sdlControllerButtonToString

(C++ function), 4
MWBase::InputManager::setDragDrop (C++ function), 4
MWBase::InputManager::toggleControlSwitch (C++

function), 4
MWBase::InputManager::update (C++ function), 4
MWBase::InputManager::write (C++ function), 4
MWBase::Journal (C++ class), 5
MWBase::Journal::~Journal (C++ function), 5
MWBase::Journal::addEntry (C++ function), 5
MWBase::Journal::addTopic (C++ function), 5
MWBase::Journal::begin (C++ function), 5
MWBase::Journal::clear (C++ function), 5
MWBase::Journal::countSavedGameRecords (C++ func-

tion), 6
MWBase::Journal::end (C++ function), 6
MWBase::Journal::getJournalIndex (C++ function), 5
MWBase::Journal::Journal (C++ function), 5, 6
MWBase::Journal::operator= (C++ function), 6
MWBase::Journal::questBegin (C++ function), 6
MWBase::Journal::questEnd (C++ function), 6
MWBase::Journal::readRecord (C++ function), 6
MWBase::Journal::removeLastAddedTopicResponse

(C++ function), 5
MWBase::Journal::setJournalIndex (C++ function), 5
MWBase::Journal::TEntryContainer (C++ type), 5
MWBase::Journal::TEntryIter (C++ type), 5
MWBase::Journal::topicBegin (C++ function), 6
MWBase::Journal::topicEnd (C++ function), 6
MWBase::Journal::TQuestContainer (C++ type), 5
MWBase::Journal::TQuestIter (C++ type), 5
MWBase::Journal::TTopicContainer (C++ type), 5
MWBase::Journal::TTopicIter (C++ type), 5
MWBase::Journal::write (C++ function), 6
MWBase::MechanicsManager (C++ class), 6

54 Index

OpenMW Documentation, Release (0, 41, 0)

MWBase::MechanicsManager::~MechanicsManager
(C++ function), 7

MWBase::MechanicsManager::actorAttacked (C++
function), 8

MWBase::MechanicsManager::actorKilled (C++ func-
tion), 8

MWBase::MechanicsManager::add (C++ function), 7
MWBase::MechanicsManager::advanceTime (C++ func-

tion), 7
MWBase::MechanicsManager::applyWerewolfAcrobatics

(C++ function), 10
MWBase::MechanicsManager::awarenessCheck (C++

function), 8
MWBase::MechanicsManager::checkAnimationPlaying

(C++ function), 9
MWBase::MechanicsManager::cleanupSummonedCreature

(C++ function), 10
MWBase::MechanicsManager::clear (C++ function), 9
MWBase::MechanicsManager::commitCrime (C++ func-

tion), 8
MWBase::MechanicsManager::confiscateStolenItems

(C++ function), 9
MWBase::MechanicsManager::countDeaths (C++ func-

tion), 8
MWBase::MechanicsManager::countSavedGameRecords

(C++ function), 9
MWBase::MechanicsManager::drop (C++ function), 7
MWBase::MechanicsManager::forceStateUpdate (C++

function), 8
MWBase::MechanicsManager::getActorsFighting (C++

function), 9
MWBase::MechanicsManager::getActorsFollowing

(C++ function), 9
MWBase::MechanicsManager::getActorsFollowingIndices

(C++ function), 9
MWBase::MechanicsManager::getActorsInRange (C++

function), 9
MWBase::MechanicsManager::getActorsSidingWith

(C++ function), 9
MWBase::MechanicsManager::getBarterOffer (C++

function), 8
MWBase::MechanicsManager::getDerivedDisposition

(C++ function), 8
MWBase::MechanicsManager::getEnemiesNearby (C++

function), 9
MWBase::MechanicsManager::getHoursToRest (C++

function), 7
MWBase::MechanicsManager::getObjectsInRange (C++

function), 9
MWBase::MechanicsManager::getPersuasionDispositionChange

(C++ function), 8
MWBase::MechanicsManager::getStolenItemOwners

(C++ function), 9

MWBase::MechanicsManager::isAggressive (C++ func-
tion), 9

MWBase::MechanicsManager::isAIActive (C++ func-
tion), 9

MWBase::MechanicsManager::isAllowedToUse (C++
function), 10

MWBase::MechanicsManager::isItemStolenFrom (C++
function), 10

MWBase::MechanicsManager::isReadyToBlock (C++
function), 9

MWBase::MechanicsManager::itemTaken (C++ func-
tion), 8

MWBase::MechanicsManager::keepPlayerAlive (C++
function), 9

MWBase::MechanicsManager::MechanicsManager (C++
function), 7, 10

MWBase::MechanicsManager::objectOpened (C++ func-
tion), 8

MWBase::MechanicsManager::operator= (C++ func-
tion), 10

MWBase::MechanicsManager::persistAnimationStates
(C++ function), 9

MWBase::MechanicsManager::playAnimationGroup
(C++ function), 8

MWBase::MechanicsManager::playerLoaded (C++ func-
tion), 9

MWBase::MechanicsManager::readRecord (C++ func-
tion), 9

MWBase::MechanicsManager::remove (C++ function), 7
MWBase::MechanicsManager::rest (C++ function), 7
MWBase::MechanicsManager::setPlayerBirthsign (C++

function), 7
MWBase::MechanicsManager::setPlayerClass (C++

function), 7
MWBase::MechanicsManager::setPlayerName (C++

function), 7
MWBase::MechanicsManager::setPlayerRace (C++

function), 7
MWBase::MechanicsManager::setWerewolf (C++ func-

tion), 10
MWBase::MechanicsManager::skipAnimation (C++

function), 9
MWBase::MechanicsManager::sleepInBed (C++ func-

tion), 8
MWBase::MechanicsManager::startCombat (C++ func-

tion), 8
MWBase::MechanicsManager::toggleAI (C++ function),

9
MWBase::MechanicsManager::update (C++ function), 7
MWBase::MechanicsManager::updateCell (C++ func-

tion), 7
MWBase::MechanicsManager::updateMagicEffects

(C++ function), 9

Index 55

OpenMW Documentation, Release (0, 41, 0)

MWBase::MechanicsManager::watchActor (C++ func-
tion), 7

MWBase::MechanicsManager::write (C++ function), 9
MWBase::OffenseType (C++ type), 6
MWBase::OT_Assault (C++ class), 6
MWBase::OT_Murder (C++ class), 6
MWBase::OT_Pickpocket (C++ class), 6
MWBase::OT_SleepingInOwnedBed (C++ class), 6
MWBase::OT_Theft (C++ class), 6
MWBase::OT_Trespassing (C++ class), 6
MWBase::PersuasionType (C++ type), 6
MWBase::Play_Loop (C++ class), 11
MWBase::Play_LoopNoEnv (C++ class), 11
MWBase::Play_LoopRemoveAtDistance (C++ class), 11
MWBase::Play_NoEnv (C++ class), 11
MWBase::Play_NoPlayerLocal (C++ class), 11
MWBase::Play_Normal (C++ class), 11
MWBase::Play_RemoveAtDistance (C++ class), 11
MWBase::Play_TypeFoot (C++ class), 11
MWBase::Play_TypeMask (C++ class), 11
MWBase::Play_TypeMovie (C++ class), 11
MWBase::Play_TypeMusic (C++ class), 11
MWBase::Play_TypeSfx (C++ class), 11
MWBase::Play_TypeVoice (C++ class), 11
MWBase::PlayMode (C++ type), 11
MWBase::PlayType (C++ type), 11
MWBase::PT_Admire (C++ class), 6
MWBase::PT_Bribe10 (C++ class), 7
MWBase::PT_Bribe100 (C++ class), 7
MWBase::PT_Bribe1000 (C++ class), 7
MWBase::PT_Intimidate (C++ class), 7
MWBase::PT_Taunt (C++ class), 7
MWBase::ScriptManager (C++ class), 10
MWBase::ScriptManager::~ScriptManager (C++ func-

tion), 10
MWBase::ScriptManager::compile (C++ function), 10
MWBase::ScriptManager::compileAll (C++ function), 10
MWBase::ScriptManager::getGlobalScripts (C++ func-

tion), 10
MWBase::ScriptManager::getLocals (C++ function), 10
MWBase::ScriptManager::operator= (C++ function), 11
MWBase::ScriptManager::run (C++ function), 10
MWBase::ScriptManager::ScriptManager (C++ func-

tion), 10, 11
MWBase::SoundManager (C++ class), 11
MWBase::SoundManager::~SoundManager (C++ func-

tion), 12
MWBase::SoundManager::clear (C++ function), 13
MWBase::SoundManager::fadeOutSound3D (C++ func-

tion), 13
MWBase::SoundManager::getSaySoundLoudness (C++

function), 12
MWBase::SoundManager::getSoundPlaying (C++ func-

tion), 13

MWBase::SoundManager::getTrackTimeDelay (C++
function), 12

MWBase::SoundManager::isMusicPlaying (C++ func-
tion), 12

MWBase::SoundManager::operator= (C++ function), 14
MWBase::SoundManager::pauseSounds (C++ function),

13
MWBase::SoundManager::playPlaylist (C++ function),

12
MWBase::SoundManager::playSound (C++ function), 12
MWBase::SoundManager::playSound3D (C++ function),

13
MWBase::SoundManager::playTrack (C++ function), 12
MWBase::SoundManager::processChangedSettings

(C++ function), 12
MWBase::SoundManager::resumeSounds (C++ func-

tion), 13
MWBase::SoundManager::say (C++ function), 12
MWBase::SoundManager::sayDone (C++ function), 12
MWBase::SoundManager::setListenerPosDir (C++ func-

tion), 13
MWBase::SoundManager::SoundManager (C++ func-

tion), 12, 14
MWBase::SoundManager::startRandomTitle (C++ func-

tion), 12
MWBase::SoundManager::stopMusic (C++ function), 12
MWBase::SoundManager::stopSay (C++ function), 12
MWBase::SoundManager::stopSound (C++ function), 13
MWBase::SoundManager::stopSound3D (C++ function),

13
MWBase::SoundManager::stopTrack (C++ function), 12
MWBase::SoundManager::streamMusic (C++ function),

12
MWBase::SoundManager::update (C++ function), 13
MWBase::SoundManager::updatePtr (C++ function), 13
MWBase::SoundPtr (C++ type), 11
MWBase::SoundStreamPtr (C++ type), 11
MWBase::State (C++ type), 14
MWBase::State_Ended (C++ class), 14
MWBase::State_NoGame (C++ class), 14
MWBase::State_Running (C++ class), 14
MWBase::StateManager (C++ class), 14
MWBase::StateManager::~StateManager (C++ function),

14
MWBase::StateManager::askLoadRecent (C++ func-

tion), 14
MWBase::StateManager::characterBegin (C++ function),

15
MWBase::StateManager::characterEnd (C++ function),

15
MWBase::StateManager::CharacterIterator (C++ type),

14
MWBase::StateManager::deleteGame (C++ function), 14
MWBase::StateManager::endGame (C++ function), 14

56 Index

OpenMW Documentation, Release (0, 41, 0)

MWBase::StateManager::getCurrentCharacter (C++
function), 15

MWBase::StateManager::getState (C++ function), 14
MWBase::StateManager::hasQuitRequest (C++ func-

tion), 14
MWBase::StateManager::loadGame (C++ function), 14
MWBase::StateManager::newGame (C++ function), 14
MWBase::StateManager::operator= (C++ function), 15
MWBase::StateManager::quickLoad (C++ function), 15
MWBase::StateManager::quickSave (C++ function), 15
MWBase::StateManager::requestQuit (C++ function), 14
MWBase::StateManager::saveGame (C++ function), 14
MWBase::StateManager::StateManager (C++ function),

14, 15
MWBase::StateManager::update (C++ function), 15
MWBase::WindowManager (C++ class), 15
MWBase::WindowManager::~WindowManager (C++

function), 16
MWBase::WindowManager::activateHitOverlay (C++

function), 20
MWBase::WindowManager::activateQuickKey (C++

function), 17
MWBase::WindowManager::addCurrentModal (C++

function), 20
MWBase::WindowManager::addVisitedLocation (C++

function), 18
MWBase::WindowManager::allow (C++ function), 16
MWBase::WindowManager::allowMouse (C++ func-

tion), 18
MWBase::WindowManager::changeCell (C++ function),

17
MWBase::WindowManager::changePointer (C++ func-

tion), 19
MWBase::WindowManager::clear (C++ function), 19
MWBase::WindowManager::configureSkills (C++ func-

tion), 17
MWBase::WindowManager::containsMode (C++ func-

tion), 16
MWBase::WindowManager::correctBookartPath (C++

function), 20
MWBase::WindowManager::correctIconPath (C++ func-

tion), 20
MWBase::WindowManager::correctTexturePath (C++

function), 20
MWBase::WindowManager::countSavedGameRecords

(C++ function), 19
MWBase::WindowManager::cycleSpell (C++ function),

20
MWBase::WindowManager::cycleWeapon (C++ func-

tion), 20
MWBase::WindowManager::disallowAll (C++ function),

16
MWBase::WindowManager::disallowMouse (C++ func-

tion), 18

MWBase::WindowManager::enableRest (C++ function),
19

MWBase::WindowManager::executeInConsole (C++
function), 19

MWBase::WindowManager::exitCurrentGuiMode (C++
function), 18

MWBase::WindowManager::exitCurrentModal (C++
function), 20

MWBase::WindowManager::fadeScreenIn (C++ func-
tion), 20

MWBase::WindowManager::fadeScreenOut (C++ func-
tion), 20

MWBase::WindowManager::fadeScreenTo (C++ func-
tion), 20

MWBase::WindowManager::forceHide (C++ function),
16

MWBase::WindowManager::getConfirmationDialog
(C++ function), 16

MWBase::WindowManager::getCountDialog (C++ func-
tion), 16

MWBase::WindowManager::getCursorVisible (C++
function), 19

MWBase::WindowManager::getDialogueWindow (C++
function), 16

MWBase::WindowManager::getFullHelp (C++ func-
tion), 17

MWBase::WindowManager::getGameSettingString
(C++ function), 18

MWBase::WindowManager::getInventoryWindow (C++
function), 16

MWBase::WindowManager::getJournalAllowed (C++
function), 19

MWBase::WindowManager::getLoadingScreen (C++
function), 19

MWBase::WindowManager::getMode (C++ function),
16

MWBase::WindowManager::getMousePosition (C++
function), 17

MWBase::WindowManager::getPlayerAttributeValues
(C++ function), 18

MWBase::WindowManager::getPlayerMajorSkills (C++
function), 18

MWBase::WindowManager::getPlayerMinorSkills (C++
function), 18

MWBase::WindowManager::getPlayerSkillValues (C++
function), 18

MWBase::WindowManager::getPlayerSleeping (C++
function), 19

MWBase::WindowManager::getRestEnabled (C++ func-
tion), 19

MWBase::WindowManager::getSelectedSpell (C++
function), 18

MWBase::WindowManager::getSubtitlesEnabled (C++
function), 18

Index 57

OpenMW Documentation, Release (0, 41, 0)

MWBase::WindowManager::getTradeWindow (C++
function), 16

MWBase::WindowManager::getTranslationDataStorage
(C++ function), 19

MWBase::WindowManager::getWorldMouseOver (C++
function), 17

MWBase::WindowManager::goToJail (C++ function), 16
MWBase::WindowManager::interactiveMessageBox

(C++ function), 18
MWBase::WindowManager::isAllowed (C++ function),

16
MWBase::WindowManager::isConsoleMode (C++ func-

tion), 16
MWBase::WindowManager::isGuiMode (C++ function),

16
MWBase::WindowManager::isSavingAllowed (C++

function), 19
MWBase::WindowManager::notifyInputActionBound

(C++ function), 18
MWBase::WindowManager::onFrame (C++ function),

18
MWBase::WindowManager::openContainer (C++ func-

tion), 19
MWBase::WindowManager::operator= (C++ function),

20
MWBase::WindowManager::pinWindow (C++ function),

20
MWBase::WindowManager::playVideo (C++ function),

16
MWBase::WindowManager::popGuiMode (C++ func-

tion), 16
MWBase::WindowManager::processChangedSettings

(C++ function), 18
MWBase::WindowManager::pushGuiMode (C++ func-

tion), 16
MWBase::WindowManager::readPressedButton (C++

function), 18
MWBase::WindowManager::readRecord (C++ function),

19
MWBase::WindowManager::removeCell (C++ function),

20
MWBase::WindowManager::removeCurrentModal (C++

function), 20
MWBase::WindowManager::removeDialog (C++ func-

tion), 18
MWBase::WindowManager::removeGuiMode (C++

function), 16
MWBase::WindowManager::removeStaticMessageBox

(C++ function), 18
MWBase::WindowManager::setActiveMap (C++ func-

tion), 17
MWBase::WindowManager::setBlindness (C++ func-

tion), 20

MWBase::WindowManager::setConsoleSelectedObject
(C++ function), 16

MWBase::WindowManager::setCursorVisible (C++
function), 17

MWBase::WindowManager::setDragDrop (C++ func-
tion), 17

MWBase::WindowManager::setDrowningBarVisibility
(C++ function), 17

MWBase::WindowManager::setDrowningTimeLeft
(C++ function), 17

MWBase::WindowManager::setEnemy (C++ function),
19

MWBase::WindowManager::setFocusObject (C++ func-
tion), 17

MWBase::WindowManager::setFocusObjectScreenCoords
(C++ function), 17

MWBase::WindowManager::setHMSVisibility (C++
function), 17

MWBase::WindowManager::setKeyFocusWidget (C++
function), 19

MWBase::WindowManager::setMinimapVisibility (C++
function), 17

MWBase::WindowManager::setNewGame (C++ func-
tion), 16

MWBase::WindowManager::setPlayerClass (C++ func-
tion), 17

MWBase::WindowManager::setSelectedEnchantItem
(C++ function), 18

MWBase::WindowManager::setSelectedSpell (C++
function), 18

MWBase::WindowManager::setSelectedWeapon (C++
function), 18

MWBase::WindowManager::setSneakVisibility (C++
function), 17

MWBase::WindowManager::setSpellVisibility (C++
function), 17

MWBase::WindowManager::setValue (C++ function),
16, 17

MWBase::WindowManager::setWeaponVisibility (C++
function), 17

MWBase::WindowManager::setWerewolfOverlay (C++
function), 20

MWBase::WindowManager::showBook (C++ function),
19

MWBase::WindowManager::showCompanionWindow
(C++ function), 19

MWBase::WindowManager::showCrosshair (C++ func-
tion), 18

MWBase::WindowManager::showScroll (C++ function),
19

MWBase::WindowManager::showSoulgemDialog (C++
function), 19

MWBase::WindowManager::SkillList (C++ type), 15

58 Index

OpenMW Documentation, Release (0, 41, 0)

MWBase::WindowManager::startEnchanting (C++ func-
tion), 19

MWBase::WindowManager::startRecharge (C++ func-
tion), 19

MWBase::WindowManager::startRepair (C++ function),
19

MWBase::WindowManager::startRepairItem (C++ func-
tion), 19

MWBase::WindowManager::startSelfEnchanting (C++
function), 19

MWBase::WindowManager::startSpellBuying (C++
function), 19

MWBase::WindowManager::startSpellMaking (C++
function), 19

MWBase::WindowManager::startTrade (C++ function),
19

MWBase::WindowManager::startTraining (C++ func-
tion), 19

MWBase::WindowManager::startTravel (C++ function),
19

MWBase::WindowManager::staticMessageBox (C++
function), 18

MWBase::WindowManager::textureExists (C++ func-
tion), 20

MWBase::WindowManager::toggleDebugWindow (C++
function), 20

MWBase::WindowManager::toggleFogOfWar (C++
function), 17

MWBase::WindowManager::toggleFullHelp (C++ func-
tion), 17

MWBase::WindowManager::toggleGui (C++ function),
18

MWBase::WindowManager::toggleVisible (C++ func-
tion), 16

MWBase::WindowManager::unsetForceHide (C++ func-
tion), 16

MWBase::WindowManager::unsetSelectedSpell (C++
function), 18

MWBase::WindowManager::unsetSelectedWeapon (C++
function), 18

MWBase::WindowManager::update (C++ function), 16
MWBase::WindowManager::updatePlayer (C++ func-

tion), 16
MWBase::WindowManager::updateSkillArea (C++ func-

tion), 17
MWBase::WindowManager::updateSpellWindow (C++

function), 16
MWBase::WindowManager::useItem (C++ function), 16
MWBase::WindowManager::wakeUpPlayer (C++ func-

tion), 19
MWBase::WindowManager::WindowManager (C++

function), 16, 20
MWBase::WindowManager::windowResized (C++ func-

tion), 19

MWBase::WindowManager::write (C++ function), 19
MWBase::WindowManager::writeFog (C++ function),

20
MWBase::World (C++ class), 21
MWBase::World::~World (C++ function), 21
MWBase::World::activate (C++ function), 29
MWBase::World::activateDoor (C++ function), 26
MWBase::World::adjustPosition (C++ function), 24
MWBase::World::adjustSky (C++ function), 21
MWBase::World::advanceTime (C++ function), 22
MWBase::World::aimToTarget (C++ function), 29
MWBase::World::allowVanityMode (C++ function), 26
MWBase::World::breakInvisibility (C++ function), 28
MWBase::World::canPlaceObject (C++ function), 26
MWBase::World::canRest (C++ function), 27
MWBase::World::castRay (C++ function), 24
MWBase::World::castSpell (C++ function), 28
MWBase::World::changeToCell (C++ function), 23
MWBase::World::changeToExteriorCell (C++ function),

23
MWBase::World::changeToInteriorCell (C++ function),

23
MWBase::World::changeVanityModeScale (C++ func-

tion), 26
MWBase::World::changeWeather (C++ function), 23
MWBase::World::clear (C++ function), 21
MWBase::World::confiscateStolenItems (C++ function),

28
MWBase::World::countSavedGameCells (C++ function),

21
MWBase::World::countSavedGameRecords (C++ func-

tion), 21
MWBase::World::createOverrideRecord (C++ function),

25
MWBase::World::createRecord (C++ function), 25
MWBase::World::deleteObject (C++ function), 24
MWBase::World::disable (C++ function), 22
MWBase::World::DoorMarker (C++ class), 29
MWBase::World::DoorMarker::dest (C++ member), 30
MWBase::World::DoorMarker::name (C++ member), 29
MWBase::World::DoorMarker::x (C++ member), 29
MWBase::World::DoorMarker::y (C++ member), 30
MWBase::World::dropObjectOnGround (C++ function),

26
MWBase::World::enable (C++ function), 22
MWBase::World::enableActorCollision (C++ function),

27
MWBase::World::enableLevitation (C++ function), 28
MWBase::World::enableTeleporting (C++ function), 27
MWBase::World::explodeSpell (C++ function), 29
MWBase::World::findContainer (C++ function), 22
MWBase::World::findExteriorPosition (C++ function),

27
MWBase::World::findInteriorPosition (C++ function), 27

Index 59

OpenMW Documentation, Release (0, 41, 0)

MWBase::World::findInteriorPositionInWorldSpace
(C++ function), 28

MWBase::World::fixPosition (C++ function), 24
MWBase::World::getActorCollidingWith (C++ func-

tion), 27
MWBase::World::getActorHeadTransform (C++ func-

tion), 26
MWBase::World::getActorStandingOn (C++ function),

27
MWBase::World::getAnimation (C++ function), 27
MWBase::World::getCell (C++ function), 21
MWBase::World::getCellName (C++ function), 22
MWBase::World::getContainersOwnedBy (C++ func-

tion), 27
MWBase::World::getContentFiles (C++ function), 28
MWBase::World::getCurrentWeather (C++ function), 23
MWBase::World::getDay (C++ function), 23
MWBase::World::getDistanceToFacedObject (C++ func-

tion), 23
MWBase::World::getDistToNearestRayHit (C++ func-

tion), 27
MWBase::World::getDoorMarkers (C++ function), 22
MWBase::World::getEsmReader (C++ function), 22
MWBase::World::getExterior (C++ function), 21, 23
MWBase::World::getFacedObject (C++ function), 23
MWBase::World::getFallback (C++ function), 21
MWBase::World::getGlobalFloat (C++ function), 22
MWBase::World::getGlobalInt (C++ function), 22
MWBase::World::getGlobalVariableType (C++ func-

tion), 22
MWBase::World::getGodModeState (C++ function), 28
MWBase::World::getHalfExtents (C++ function), 29
MWBase::World::getHitContact (C++ function), 24
MWBase::World::getHitDistance (C++ function), 29
MWBase::World::getInterior (C++ function), 21
MWBase::World::getItemsOwnedBy (C++ function), 27
MWBase::World::getLocalScripts (C++ function), 22
MWBase::World::getLOS (C++ function), 27
MWBase::World::getMasserPhase (C++ function), 23
MWBase::World::getMaxActivationDistance (C++ func-

tion), 24
MWBase::World::getMonth (C++ function), 23
MWBase::World::getMonthName (C++ function), 23
MWBase::World::getNorthVector (C++ function), 22
MWBase::World::getPlayer (C++ function), 21
MWBase::World::getPlayerCollidingWith (C++ func-

tion), 27
MWBase::World::getPlayerPtr (C++ function), 21
MWBase::World::getPlayerStandingOn (C++ function),

26
MWBase::World::getPtr (C++ function), 22
MWBase::World::getScriptsEnabled (C++ function), 28
MWBase::World::getSecundaPhase (C++ function), 23
MWBase::World::getStore (C++ function), 22

MWBase::World::getStormDirection (C++ function), 29
MWBase::World::getTerrainHeightAt (C++ function), 29
MWBase::World::getTimeScaleFactor (C++ function),

23
MWBase::World::getTimeStamp (C++ function), 23
MWBase::World::getWindSpeed (C++ function), 27
MWBase::World::getYear (C++ function), 23
MWBase::World::goToJail (C++ function), 28
MWBase::World::hasCellChanged (C++ function), 22
MWBase::World::hurtCollidingActors (C++ function),

27
MWBase::World::hurtStandingActors (C++ function), 27
MWBase::World::indexToPosition (C++ function), 24
MWBase::World::isCellExterior (C++ function), 22
MWBase::World::isCellQuasiExterior (C++ function), 22
MWBase::World::isDark (C++ function), 28
MWBase::World::isFirstPerson (C++ function), 26
MWBase::World::isFlying (C++ function), 26
MWBase::World::isInStorm (C++ function), 29
MWBase::World::isLevitationEnabled (C++ function),

28
MWBase::World::isOnGround (C++ function), 26
MWBase::World::isPlayerInJail (C++ function), 29
MWBase::World::isSlowFalling (C++ function), 26
MWBase::World::isSubmerged (C++ function), 26
MWBase::World::isSwimming (C++ function), 26
MWBase::World::isTeleportingEnabled (C++ function),

27
MWBase::World::isUnderwater (C++ function), 26
MWBase::World::isWading (C++ function), 26
MWBase::World::isWalkingOnWater (C++ function), 29
MWBase::World::isWaterWalkingCastableOnTarget

(C++ function), 26
MWBase::World::launchMagicBolt (C++ function), 28
MWBase::World::launchProjectile (C++ function), 28
MWBase::World::listDetectedReferences (C++ func-

tion), 28
MWBase::World::markCellAsUnchanged (C++ func-

tion), 23
MWBase::World::modRegion (C++ function), 23
MWBase::World::moveObject (C++ function), 24
MWBase::World::operator= (C++ function), 29
MWBase::World::placeObject (C++ function), 24, 25
MWBase::World::positionToIndex (C++ function), 24
MWBase::World::preloadCommonAssets (C++ func-

tion), 21
MWBase::World::processChangedSettings (C++ func-

tion), 26
MWBase::World::queueMovement (C++ function), 24
MWBase::World::readRecord (C++ function), 21
MWBase::World::reattachPlayerCamera (C++ function),

27
MWBase::World::removeContainerScripts (C++ func-

tion), 29

60 Index

OpenMW Documentation, Release (0, 41, 0)

MWBase::World::removeRefScript (C++ function), 22
MWBase::World::renderPlayer (C++ function), 26
MWBase::World::resetActors (C++ function), 29
MWBase::World::rotateObject (C++ function), 24
MWBase::World::safePlaceObject (C++ function), 24
MWBase::World::scaleObject (C++ function), 24
MWBase::World::screenshot (C++ function), 27
MWBase::World::searchPtr (C++ function), 22
MWBase::World::searchPtrViaActorId (C++ function),

22
MWBase::World::setCameraDistance (C++ function), 26
MWBase::World::setDay (C++ function), 23
MWBase::World::setGlobalFloat (C++ function), 22
MWBase::World::setGlobalInt (C++ function), 22
MWBase::World::setHour (C++ function), 23
MWBase::World::setMonth (C++ function), 23
MWBase::World::setMoonColour (C++ function), 23
MWBase::World::setupPlayer (C++ function), 26
MWBase::World::setWaterHeight (C++ function), 21
MWBase::World::spawnBloodEffect (C++ function), 29
MWBase::World::spawnEffect (C++ function), 29
MWBase::World::spawnRandomCreature (C++ func-

tion), 28
MWBase::World::startNewGame (C++ function), 21
MWBase::World::startSpellCast (C++ function), 28
MWBase::World::teleportToClosestMarker (C++ func-

tion), 28
MWBase::World::toggleCollisionMode (C++ function),

24
MWBase::World::toggleGodMode (C++ function), 28
MWBase::World::togglePlayerLooking (C++ function),

26
MWBase::World::togglePOV (C++ function), 26
MWBase::World::togglePreviewMode (C++ function),

26
MWBase::World::toggleRenderMode (C++ function), 24
MWBase::World::toggleScripts (C++ function), 28
MWBase::World::toggleSky (C++ function), 23
MWBase::World::toggleVanityMode (C++ function), 26
MWBase::World::toggleWater (C++ function), 21
MWBase::World::toggleWorld (C++ function), 21
MWBase::World::undeleteObject (C++ function), 24
MWBase::World::update (C++ function), 25
MWBase::World::updateDialogueGlobals (C++ func-

tion), 28
MWBase::World::useDeathCamera (C++ function), 21
MWBase::World::vanityRotateCamera (C++ function),

26
MWBase::World::World (C++ function), 21, 29
MWBase::World::write (C++ function), 21
MWGui (C++ type), 15
MWGui::ShowInDialogueMode (C++ type), 15
MWGui::ShowInDialogueMode_IfPossible (C++ class),

15

MWGui::ShowInDialogueMode_Never (C++ class), 15
MWGui::ShowInDialogueMode_Only (C++ class), 15
MWSound (C++ type), 11
MWSound::DecoderPtr (C++ type), 11
MWWorld (C++ type), 20
MWWorld::PtrMovementList (C++ type), 21

O
OMW (C++ type), 30
OMW::Engine (C++ class), 30
OMW::Engine::~Engine (C++ function), 30
OMW::Engine::addArchive (C++ function), 30
OMW::Engine::addContentFile (C++ function), 30
OMW::Engine::createWindow (C++ function), 31
OMW::Engine::enableFontExport (C++ function), 31
OMW::Engine::enableFSStrict (C++ function), 30
OMW::Engine::Engine (C++ function), 30, 31
OMW::Engine::executeLocalScripts (C++ function), 31
OMW::Engine::frame (C++ function), 31
OMW::Engine::go (C++ function), 30
OMW::Engine::loadSettings (C++ function), 31
OMW::Engine::mActivationDistanceOverride (C++

member), 32
OMW::Engine::mArchives (C++ member), 31
OMW::Engine::mCellName (C++ member), 32
OMW::Engine::mCfgMgr (C++ member), 32
OMW::Engine::mCompileAll (C++ member), 32
OMW::Engine::mCompileAllDialogue (C++ member),

32
OMW::Engine::mContentFiles (C++ member), 32
OMW::Engine::mDataDirs (C++ member), 31
OMW::Engine::mEncoder (C++ member), 31
OMW::Engine::mEncoding (C++ member), 31
OMW::Engine::mEnvironment (C++ member), 31
OMW::Engine::mExportFonts (C++ member), 32
OMW::Engine::mExtensions (C++ member), 32
OMW::Engine::mFallbackMap (C++ member), 32
OMW::Engine::mFileCollections (C++ member), 32
OMW::Engine::mFocusName (C++ member), 32
OMW::Engine::mFSStrict (C++ member), 32
OMW::Engine::mGrab (C++ member), 32
OMW::Engine::mNewGame (C++ member), 32
OMW::Engine::mResDir (C++ member), 32
OMW::Engine::mResourceSystem (C++ member), 31
OMW::Engine::mSaveGameFile (C++ member), 32
OMW::Engine::mScreenCaptureHandler (C++ member),

32
OMW::Engine::mScriptBlacklist (C++ member), 32
OMW::Engine::mScriptBlacklistUse (C++ member), 32
OMW::Engine::mScriptConsoleMode (C++ member), 32
OMW::Engine::mScriptContext (C++ member), 32
OMW::Engine::mSkipMenu (C++ member), 32
OMW::Engine::mStartTick (C++ member), 32
OMW::Engine::mStartupScript (C++ member), 32

Index 61

OpenMW Documentation, Release (0, 41, 0)

OMW::Engine::mTranslationDataStorage (C++ mem-
ber), 32

OMW::Engine::mUseSound (C++ member), 32
OMW::Engine::mVerboseScripts (C++ member), 32
OMW::Engine::mVFS (C++ member), 31
OMW::Engine::mViewer (C++ member), 32
OMW::Engine::mWarningsMode (C++ member), 32
OMW::Engine::mWindow (C++ member), 31
OMW::Engine::operator= (C++ function), 31
OMW::Engine::prepareEngine (C++ function), 31
OMW::Engine::setActivationDistanceOverride (C++

function), 31
OMW::Engine::setCell (C++ function), 30
OMW::Engine::setCompileAll (C++ function), 30
OMW::Engine::setCompileAllDialogue (C++ function),

30
OMW::Engine::setDataDirs (C++ function), 30
OMW::Engine::setEncoding (C++ function), 31
OMW::Engine::setFallbackValues (C++ function), 31
OMW::Engine::setGrabMouse (C++ function), 30
OMW::Engine::setResourceDir (C++ function), 30
OMW::Engine::setSaveGameFile (C++ function), 31
OMW::Engine::setScriptBlacklist (C++ function), 31
OMW::Engine::setScriptBlacklistUse (C++ function), 31
OMW::Engine::setScriptConsoleMode (C++ function),

31
OMW::Engine::setScriptsVerbosity (C++ function), 30
OMW::Engine::setSkipMenu (C++ function), 30
OMW::Engine::setSoundUsage (C++ function), 30
OMW::Engine::setStartupScript (C++ function), 31
OMW::Engine::setWarningsMode (C++ function), 31
OMW::Engine::setWindowIcon (C++ function), 31

62 Index

	Components
	OpenMW Source Documentation
	OpenMW CS user manual
	OpenMW Modding Reference

	Indices and tables

