

    
      
          
            
  
OpenIMU Developer Manual
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OpenIMU is a precisely calibrated open source Inertial Measurement Unit platform.  Users
are able to quickly develop and deploy custom navigation/localization algorithms and custom sensor integrations on top of the OpenIMU platform.  OpenIMU also
has pre-built drivers in Python as well as a developer website - Aceinna Navigation Studio (ANS).  These tools make logging and plotting data, including
custom data structures and packets very simple.

Social: Twitter [https://twitter.com/MEMSsensortech] |
Medium [https://medium.com/@mikehorton]
















          

      

      

    

  

    
      
          
            
  
Overview

OpenIMU is a precisely calibrated, open-source Inertial Measurement Unit platform for the development of navigation and localization algorithms.
A free Visual Studio Code (VSCode) extension is installed which contains all the software and tools necessary to create and deploy custom
embedded sensor apps using OpenIMU.  Visual Studio Code is the recommended IDE and the extension configures VS Code to include easy access to compilation, code download, JTAG debug, IMU data logging
as well as OpenIMU platform updates and news.  A developer website called Aceinna Navigation Studio (ANS) includes additional support tools including
a GUI for controlling, plotting and managing data files logged by your Custom IMU.

[image: _images/Overview.png]
The OpenIMU and ANS platform and tool-chain are supported on all three Major OS cross-development platform:


	Windows 7 or 10


	MAC OS 10


	Ubuntu 14.0 or later





Note

Contributions to the public repositories related to this project are welcomed.  Please submit a pull request.



The following pages cover:


	What is OpenIMU


	What is the Acienna Navigation Studio


	Who is using OpenIMU and the Acienna Navigation Studio










          

      

      

    

  

    
      
          
            
  
What is OpenIMU?


	OpenIMU is an open software platform for development of high-performance navigation and localization
applications on top of a family of low-drift pre-calibrated Inertial Measurement Units (IMU).


	OpenIMU hardware consists of a 3-axis rate sensor (gyro), 3-axis accelerometer platform, and 3-axis magnetometer module.


	The module contains a low-power embedded ARM Cortex-M4 CPU with floating-point math support.  Extra IO and Ports make
connection of external peripherals such as GPS, Odometer, and other more advanced sensors possible.


	The OpenIMU hardware comes in different form-factors including:




Hardware Configurations








	Type

	Part Number

	Hardware Features



	EZ

	OpenIMU300ZI

	Easy to Embed 3-5V UART/SPI Industrial IMU Module



	CAN

	OpenIMU300RI

	Rugged, Waterproof 5-32V CAN/RS232 Industrial Module



	SMT

	OpenIMU330BI

	Triple Redundant, SMT, 2°/Hr IMU






Open-Source Embedded Software


	OpenIMU hardware runs an open-source stack written on top of standard ARM Cortex libraries.


	OpenIMU300 use FreeRTOS while OpenIMU330 uses a simple real-time scheduler


	The open-source stack includes EKF (Extended Kalman Filter) algorithms that can be used directly or
customized for application specific use.


	The overall system loop is typically configured to run at 800Hz ensuring high quality aliasing-free
measurements for processing.


	Also included in the OpenIMU embedded software platform are drivers for various GPS receivers, customizable
SPI, CAN, and UART messaging, and customizable settings that can be adjusted run-time and/or permanently.


	A number of predefined settings are defined for baud rate, output date rate, sensor filter settings, and XYZ axis transformations.


	The Core OpenIMU embedded software consists of the following:


	FreeRTOS


	Extended Kalman Filter Algorithms


	High-Speed Deterministic Sampling


	Messaging


	GPS Drivers


	Accurate Time Service


	Sensor Filtering


	Settings Module for Dynamic and Permanent Unit Configuration











          

      

      

    

  

    
      
          
            
  
What is Aceinna Navigation Studio?

[image: ../_images/ANSHome.png]

	The Aceinna Navigation Studio (https://developers.aceinna.com) is a navigation system developer’s website and web-platform.


	It consists of a graphical user interface to control and configure OpenIMU units.


	Using a JSON configuration file (“openimu.json”), the graphical user interface can be customized for user specific
messaging and settings without any additional coding. This aligns the embedded code with both the Python device server
and the GUI pages available on ANS (https://developers.aceinna.com).


	Online tools include graphing, mapping, logging, and simulation.


	User Forum is available at (https://forum.aceinna.com).




Python & the Acienna Navigation Studio

The Acienna Navigation Studio (ANS) requires Python to operate.  If the user has not installed Python, it can be installed from
https://www.python.org/downloads/.  Download and install the latest version.

An open-source Python driver for OpenIMU is available and required.  The Python driver can be used directly from the terminal
to load, log, and test your application. The driver leverages the PySerial library to connect to an OpenIMU of a serial connection.  The python script supports configuring units, firmware updates (JTAG is faster for debugging), and local data logging.

In addition, the open-source Python driver can acts as a server connecting the OpenIMU hardware with our ANS developer platform for a GUI experience,
cloud data storage and retrieval, as well as stored file charting/plotting tools.

The Aceinna VS Code extension ensures a python environment automatically.  The OpenIMU python code can be installed independently by cloning the repository https://github.com/python-openimu or using pip as shown below.

pip install openimu





Connection


	Connection Status is shown on the link symbol at the top right hand side of the page.


	Device information is exposed on the main IMU page. (https://developers.aceinna.com/devices/record-next)


	The baseline OpenIMU firmware provides a set of “standard settings” such as baud rate, output data rate, and more.


	Custom options are added by adding additional options to “UserConfiguration” in both the OpenIMU embedded C code as
well as the the openimu.json file which provides a summary of the descriptions and potential values for the UI.




[image: ../_images/ANSIMU.png]
Graphing

Use the play, record, and stop buttons to log data.

[image: ../_images/ANSRecord.png]
File Retrieval

Logged files are retrieved on the My Files page which opens up a zoomable graph view.
Requires Login

[image: ../_images/ANSFiles.png]



          

      

      

    

  

    
      
          
            
  
Who is using it?

The OpenIMU project is recommended for autonomous system developers with challenging navigation and localization requirements.
The system is being used by several autonomous driving teams globally.




          

      

      

    

  

    
      
          
            
  
WARNING!!!! Before You Start Development


Contents


	Save unit image:


	Recover unit image:






Before You start developing it is recommended to read whole unit image and save it to binary file to be able to recover unit if something unexpected happened

Unit image consists of:


	Bootloader


	Original (factory) application image


	Calibration and Configuration partitions.




If bootloader or calibration tables are damaged - unit will not work properly!!!.


Save unit image:


	Install ST-Link Utility from here: https://www.st.com/en/development-tools/stsw-link004.html


	Connect ST-Link debugger to OpenIMU Evaluation Kit. and to PC


	Power On Evaluation Kit


	Start ST-Link utility on your PC.


	Click Device->Connect.


	Enter value 0x80000 for OpenIMU300 and 0x20000 for OpenIMU330 into Size box and hit enter


	Click File->SaveAs and save image to well known location. For OpenIMU300 image size should be 512K bytes. For OpenIMU330 image size should be 128 KBytes.


[image: _images/UnitImageSave.png]









Recover unit image:


	Connect ST-Link debugger to OpenIMU Evaluation Kit. and to PC


	Power On Evaluation Kit


	Start ST-Link utility on your PC.


	Click Device->Connect.


	Click File->open and open previously saved file.


	Click Target->Program&Verify.


	Make sure that Start address is 0x08000000 and click Start.


[image: _images/UnitImageRestore.png]





	After reprogramming of OpenIMU300 unit (RI or ZI) perform write protection of sectors 0 and 2


	After reprogramming of OpenIMU330BI unit perform write protection of last 6 sectors (58 to 63)


[image: _images/UnitImageProtect.png]











          

      

      

    

  

    
      
          
            
  
Tools

This section reviews more detail on various Tools available for OpenIMU development environment:



	PC Tools Installation

	Development Tools











          

      

      

    

  

    
      
          
            
  
PC Tools Installation

Platforms - Computers with the following Operating Systems



	Windows 10 or 7


	Ubuntu version 14.0 or later


	MAC OS







Visual Studio Code

Visual Studio Code - can be downloaded from here:  https://code.visualstudio.com

ST-LINK Debugger Driver


	MacOS - ST-LINK drivers are automatically installed for MAC OS.


	Windows - ST-LINK drivers should be also installed automatically. But in case if it was not - ST-LINK V2 driver can be manually installed for Windows.  The Windows driver is downloaded from the following page link:
http://www.st.com/en/development-tools/st-link-v2.html


	Ubuntu - please see step 5.




Installation of OpenIMU development platform

To install OpenIMU development platform:


	Start Visual Studio Code.


	On leftmost toolbar find “Extensions” icon and click on it.


	In the text box “Search extensions on Marketplace” type “Aceinna” and hit enter


	Install Aceinna Extension and Follow prompts.


[image: _images/AddExtension.png]







First steps


After installation of “Aceinna” extension click on “Home” icon at the bottom of the screen. It will bring
up Aceinna OpenIMU platform homepage. Click on “Custom IMU examples”, chose desired example and click “Import”.

[image: _images/HomePage.png]
The required example will be imported into working directory in folder:

C:\Users\<username>\Documents\platformio\Projects\ProjectName

Now you can edit, build and test the project. All your changes will remain in the above-mentioned directory and subdirectories.
Next time when you return to development - open Aceinna “Home” page and click “Open Project”, choose “Projects” and select
required project from the list.

The source tree of imported project tree has the following structure:

project directory -|
                   |
                   |
                   |--- .pio --|
                   |           |-- build --|
                   |           |           |-- board-|
                   |           |                     |-- binary image (firmware.bin)
                   |           |                     |-- elf image (firmware.elf)
                   |           |                     .
                   |           |                     .
                   |           |                     .
                   |           |
                   |           |- libdeps -|
                   |           |           |-- board-|  Library dependencies
                   |                                 |
                   |                                 |--library1 src tree
                   |                                 |
                   |                                 |--library2 src tree
                   |                                 |
                   |                                 |--library3 src tree
                   |                                 |
                   |                                 .
                   |                                 .
                   |
                   |
                   |--include (optional user include files)
                   |
                   |--lib (optional user library directory tree)
                   |
                   |--src (user source files tree)
                   |





Compile and JTAG Code Loading

Once you have imported an example project, a good first step is to compile and download this application using your ST-LINK.
At the bottom of the VS Code window is the shortcut toolbar shown below.  To load an application to the OpenIMU with JTAG,
simply click the Install/Download button while the ST-LINK is connected to your EVB.

[image: _images/VSCodeToolBar.png]
The OpenIMU development environment uses PlatformIO’s powerful open-source builder and IDE.  This on-line manual focuses on
on OpenIMU specific information, and it does not attempt to fully discuss all of the IDE’s powerful features in depth. For more information on PlatformIO builder and IDE features include command line interface, scripting and more please see the
PlatformIO [https://docs.platformio.org]




5.  ST-LINK Install for Ubuntu (Manual Version)


Go to https://github.com/texane/stlink and read instructions carefully.

On local Ubuntu machine, you will clone the aforementioned repository and make the project.  This requires
the following packages to be installed:



	CMake > v2.8.7


	Gcc compiler


	Libusb v1.0







# Run from source directory stlink/
$make release
$cd build/Release
$sudo make install

# Plug ST-LINK/V2 into USB, and check the device is present
$ls /dev/stlink-v2











          

      

      

    

  

    
      
          
            
  
Development Tools

[image: _images/Ecosystem.png]
The OpenIMU development environment consists of the following main components:


	Acienna Navigation Studio (ANS)


	Visual Studio Code IDE (VSCode)


	Debugging using the PlatformIO Debugger and the JTAG Debug Adapter


	In System Firmware Update


	Python Interface


	‘openimu.json’ Configuration File







The easy way to get stared quickly is to purchase an OpenIMU Developer’s Kit from Aceinna https://www.aceinna.com or a local distributor.
The developer’s kit includes an OpenIMU300EZ inertial measurement unit, JTAG Pod, Eval board, and precision test fixture.
The precision test fixture makes it easy to properly align and install the IMU in a target vehicle for integration testing.




          

      

      

    

  

    
      
          
            
  
Aceinna Navigation Studio

[image: ../../_images/ANSHome1.png]
Aceinna Navigation Studio is a web-portal and UI for your OpenIMU.  To run it, first ensure the Python OpenIMU driver is installed, then
start the server form the command line interface as shown below.

$openimu
Connected ....OpenIMU300ZI - 0.0.1      SN:1808629112





Supported browsers are Chrome, Opera, and Edge.  Firefox also works but requires an extra step described here. https://stackoverflow.com/questions/11768221/firefox-websocket-security-issue

To plot data go to the link https://developers.aceinna.com/devices/record-next and click play. You can also log from this GUI.

The settings as well as available packet types that show up in ANS graphical user interface are controlled by openimu.json and their corresponding code in userConfiguration.c.  Select the
packet that you would like to display.

Once a file is logged you can retrieve the file at https://developers.aceinna.com/devices/files


Note

Your data file list is only shown to you and is tied to your login credentials.  The file list is not available to other users.






          

      

      

    

  

    
      
          
            
  
Visual Studio Code IDE

[image: ../../_images/ToolsHome.png]
At the heart of the OpenIMU IDE is a custom extension built for Visual Studio Code.  The installation of this extension is detailed in Quick Start.
Aceinna’s OpenIMU extension is a custom version of the popular open-source embedded development extension PlatformIO. PlatformIO provides many additional features
including an extensive set of command line tools which are are not documented on this site. Please visit https://docs.platformio.org for more details.

The Aceinna Visual Studio extension adds an easy to find home button at the bottom of the Visual Studio tool bar.  This is shown below.  Click the home button
any time to return to the launch screen for embedded OpenIMU development within Visual Studio Code.

[image: ../../_images/HomeButton.png]
The Aceinna Visual Studio extension also automatically installs additional supporting tools.  Importantly if your local system does not already have Python,
the extension will install Python which enables a large number of features on the platform including serial drivers and a small server which can connect your IMU to
the Aceinna Navigation Studio developer’s site for charting, graphing, and configuration.

The basic functions such as compile, clean, and upload code to device are also easily accessed from the tool bar at the bottom of
the VSCode extension.


Note

Do not install the PlatformIO extension.  Instead install the Aceinna extension.  This will install all the PlatformIO tools automatically, as well as the IMU source
code and Python drivers.






          

      

      

    

  

    
      
          
            
  
Debugging using the PlatformIO Debugger and the JTAG Debug Adapter

There are two primary methods to debug a program on OpenIMU.


	Use Visual Studio Code with ST-Link JTAG pod.


	Use the debug serial port to output debug messages.




1. Debugging Using Visual Studio Code and JTAG Debugger


Visual Studio Code with installed Aceinna extension supports in-system debugging via ST-LINK JTAG pod.
It allows to load and run application, stop in any place of the code by using breakpoints, observe and set values of local and global variables,
observe device memory contents. The following screen shots show Visual Studio Code screen in debug mode.

[image: ../../_images/VsCodeDebugging.png]
Debug mode can be entered by clicking on “Debug” icon - fourth from top on very left of the screen and then clicking on green arrow “PlatformIO debugger” on top of the screen
or alternatively from the menu “Debug->Start Debugging”. After entering debug mode use debug control icons
on top of the screen or commands from “Debug’ menu. After clicking “Debug” icon on the left of the screen while in debug mode allows to observe variables, memory, registers, call stack, etc.




2. Debugging Using Debug Serial Port


User defined ASCII messages can be sent out via debug serial connection. Default baud rate is 38.4 KBaud.
One can easily change debug port baud rate in main.c file:

// Initialize the DEBUG USART (serial) port
InitDebugSerialCommunication(38400); // debug_usart.c





Custom printf-like syntax outputs ASCII data on debug serial port

int  tprintf(char *format, ...);





Alternative macros for outputting type-specific values defined in the debug.h file.

OpenIMU unit has built-in CLI which can be enabled by uncommenting next line in file platformio.ini :

-D CLI

[image: ../../_images/CLI.png]
It allows to send custom ASCII commands to OpenIMU unit via debug serial port using any serial terminal program.
CLI engine reside in CLI directory in libraries source tree.
Please note that while unit connected to PC via USB port it is visible as four consecutive virtual serial ports. Third port in a row will be debug serial port.





Note


	The Acienna VSCode extension uses the underlying PlatformIO debugging feature.


	PlatformIO now provides free JTAG debugging for all users.







Note

Visual Studio Code with installed Aceinna extension provides download of application image into device memory via JTAG by clicking “Right Arrow” icon on the bottom of the screen.
This is the fastest method to download code and generally requires just a few seconds.




Note

The documentation and tutorials on this site assume use of the ST-LINK JTAG pod.  The JTAG pod is shipped with every OpenIMU developer’s kit.






          

      

      

    

  

    
      
          
            
  
In-System Update

All OpenIMU hardware modules come shipped pre-configured with a special
bootloader resident in their FLASH memory. This bootloader allows for
in-system code updates using a UART connection without using JTAG.  Sample code that utilizes this
Bootloader can be found in the OpenIMU Python driver.  An example of how to invoke the Python driver
for code loading is here.

The full details of the bootloader serial protocol is described below.  These commands are executed
using OpenIMU’s standard serial interface:

Bootloader Initialization


A user can initiate bootloader at any time by sending ‘JI’ command
(see below command’s format) to application program. This command
forces the unit to enter bootloader mode.  The unit will communicate
at 57.6Kbps baud rate regardless of the original baud rate the unit
is configured to. The Bootloader always communicates at 57.6Kbps
until the firmware upgrade is complete.

As an additional device recovery option immediately after powering
up, every OpenIMU will enter a recovery window of 100ms prior to
application start.  During this 100mS window, the user can send
‘JI’ command at 57.6Kbs to the Bootloader in order to force the
unit to remain in Bootloader mode.

Once the device enters Bootloader mode via the ‘JI’ command either
during recovery window or from normal operation, a user can send
a sequence of ‘WA’ commands to write a complete application image
into the device’s FLASH.

After loading the entire firmware image with successive ‘WA’
commands, a ‘JA’ command is sent to instruct the unit to exit
Bootloader mode and begin application execution.  At this point
the device will return to its original baud rate.

Optionally, the system can be rebooted by toggling the power or toggling
nRst (pull low and release) to restart the system.




Firmware Update Commands


The commands detailed below are used for
upgrading a new firmware version via the UART at 57.6Kbps.

Jump to Bootloader Command











	Jump To Bootloader (‘JI’=0x4A49)



	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x4A49

	0x00

	
	CRC(U2)






The command allows system to enter bootloader mode.




Write App Command











	Write APP (‘WA’=0x5741)



	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x5741

	len+5

	
	CRC(U2)






The command allows users to write binary sequentially to flash memory
in bootloader mode. The total length is the sum of payload’s length and
4-byte address followed by 1-byte data length. See the following table
of the payload’s format.











	WA Payload Contents



	Byte Offset

	Name

	Format

	Scaling

	Units

	Description



	0

	staringAddr

	U4

	
	




	bytes

	
The FLASH
word offset

to begin
writing data






	4

	byteLength

	U1

	
	




	bytes

	
The word
length of the

the data to
write






	5

	dataByte0

	U1

	
	




	
	




	Flash data



	6

	dataByte1

	U1

	
	




	
	




	Falsh data



	…

	…

	
	
	
	


	4+byteLength

	dataByte

	U1

	
	




	
	




	Flash data






Payload starts from 4-byte address of flash memory where the binary is
located. The fifth byte is the number of bytes of dataBytess, but less
than 240 bytes. User must truncate the binary to less than 240-byte blocks
and fill each of blocks into payload starting from the sixth-byte. See
the reference code, function write_block(), in Appendix F.




Jump to Application Command











	Jump To Application (‘JA”=0x4A41)



	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x4A41

	0x00

	
	CRC(U2)






The command allows system directly to enter application mode.










          

      

      

    

  

    
      
          
            
  
Python Interface

The OpenIMU Python driver supports communication with the hardware for data logging and
device configuration over the main user UART interface of the OpenIMU hardware.  When
run in server mode, it allows connection of the OpenIMU with the developer’s website
Aceinna Navigation Studio and its friendly GUI interface.

The Python driver attempts to automatically find a connected OpenIMU hardware by scanning available ports
at various baud rates.  Once a connection is established, this connection is recorded in a file named
connection.json.  On the next use of the driver, the driver will first attempt communication on this port
speeding up connection time.

The Python driver reads a JSON file by default named openimu.json to understand
the messages - both primary output packets, as well as command/response type packets from the IMU.
These can be customized by changing the JSON file and the Python script will use that information
to parse data (literally the byte stream) from the OpenIMU in real-time appropriately.

Here are a few samples function you can call with the driver.

# Create a device and connect to it
imu = OpenIMU()
imu.find_device()

# Get all parameters by issuing 'gA' command
imu.openimu_get_all_param()

# Update a parameter by issuing 'uP' command
# See openimu.json for the parameter numbers
# This example changes output packet rate to 100Hz
imu.openimu_update_param(4,100)

# Save parameter changes by issuing 'sC' command
imu.openimu_save_config()

# Log data for 1Hr
# Data is logged into data directory with time of day string as default filename
imu.start_log()
time.sleep(3600)
imu.stop_log()

# Update units firmware
# bin file is stored in .pioenvs directory and created after compilation
# the file most be moved to where the Python driver can find it
imu.openimu_upgrade_fw('myapp.bin')





You can also run the python code as a CLI interface to the unit.  The CLI is defined in commands.py.  If you have installed the python driver
with pip install, then navigate to a directory that contains a valid openimu.json for your unit, and you can type:

$openimu
Connected ....OpenIMU300ZI - 0.0.1      SN:1808629112
>>help
Usage:
help : CLI help menu
exit : exit CLI
run : Operations defined by users
save : Save the configuration into EEPROM
connect : Find OpenIMU device
upgrade : Upgrade firmware
record : Record output data of OpenIMU on local machine
stop : stop recording outputs on local machine
server_start : start server thread and must use exit command to quit
get : Read the current configuration and output data
set : Write parameters to OpenIMU
>>






Note

As you develop code and customize your OpenIMU, you should also update openimu.json to keep it in sync with your changes.  This
way both the Python driver and developers website, ANS, will function properly and understand your units special
programmed characteristics.  The openimu.json file updates the Python driver functions as well as the ANS website UI.






          

      

      

    

  

    
      
          
            
  
openimu.json Configuration File

The openimu.json file is used to describe the input and output messages and the configuration parameters of the OpenIMU.  An example
file is shown below.  The two sections that are edited during development are “userConfiguration” and “userMessages”. These sections of
the JSON file correspond to equivalent sections of code in the your custom application.  The description provided in the openimu.json
file is used by the Python driver to  support additional configuration parameters and messages that you add to your unit.  For example,
if you add a custom output message, the Python driver can automatically log it in a properly delimited CSV file format.  In addition,
the openimu.json file provides user friendly names and features that then appear in the ANS website automatically. Using the same custom
output message as an example, the openimu.json file can describe the graphs and plots that are shown on the “Record” page of the website.
The openimu.json file lets you reuse driver and UI code with little or no modification.

In the main OpenIMU source tree, you will find the “user” directory for your project.  This is where your custom IMU app code is integrated and built.
The files userConfiguration.h/userConfiguration.c describes the various configuration parameters in the unit.
The files userMessaging.h/userMessaging.c describes both the default and custom messages for your OpenIMU app.  These sections of c-code
are then described in the “userConfiguration” and “userMessages” section of in openimu.json as shown below.  If you add a new parameter in userConfiguration.c,
then you add a new parameter in “userConfiguration” following the examples.  Note each parameter must have a unique “paramId”.  If you add
a unique output message, you will add that both to the “Packet Type” options array, and as a new “outputPacket”  in “userMessages”.  When adding
a new message the key point is to properly describe the payload in the order that the data is sent in userMessaging.c.

{
  "name" : "OpenIMU300-EZ",
  "type" : "openimu",
  "description" : "9-axis OpenIMU with triaxial rate, acceleration, and magnetic measurement",
  "userConfiguration" : [
      { "paramId": 0, "paramType" : "disabled", "type" : "uint64", "name": "Data CRC"  },
      { "paramId": 1, "paramType" : "disabled", "type" : "uint64", "name": "Data Size" },
      { "paramId": 2, "paramType" : "select", "type" : "int64", "name": "Baud Rate", "options" : [38400, 57600, 115200]},
      { "paramId": 3, "paramType" : "select", "type" : "char8", "name": "Packet Type", "options" : ["z1", "zT"]},
      { "paramId": 4, "paramType" : "select", "type" : "int64", "name": "Packet Rate", "options" : [200, 100, 50, 20, 10, 0]},
      { "paramId": 5, "paramType" : "select", "type" : "int64", "name": "Accel LPF", "options" : [50, 25, 40, 20, 10, 5, 2]},
      { "paramId": 6, "paramType" : "select", "type" : "int64", "name": "Rate LPF", "options" : [50, 25, 40, 20, 10, 5, 2]},
      { "paramId": 7, "paramType" : "select", "type" : "char8", "name": "Orientation", "options" : ["+X+Y+Z"]}
  ],
  "userMessages" : {
       "inputPackets" : [
            {
              "name" : "pG",
              "description" : "Get device serial number & factory ID",
              "inputPayload" : {
              },
              "responsePayload" : {
                  "type" : "string",
                  "name" : "Device ID and SN"
              }
            },
            {
              "name" : "gV",
              "description" : "Get user app version",
              "inputPayload" : {},
              "responsePayload" : {
                  "type" : "string",
                  "name" : "User Version"
              }
            },
            {
              "name" : "gA",
              "description" : "Get All Configuration Parameters",
              "inputPayload" : {},
              "responsePayload" : {
                  "type" : "userConfiguration",
                  "name" : "Full Current Configuration"
              }
            },
            {
              "name" : "gP",
              "description" : "Get a Configuration Parameter",
              "inputPayload" : {
                  "type" : "paramId",
                  "name" : "Request Parameter Id"
              },
              "responsePayload" : {
                  "type" : "userParameter",
                  "name" : "User Parameter"
              }
            },
            {
              "name" : "sC",
              "description" : "Save Configuration Parameters to Flash",
              "inputPayload" : {},
              "responsePayload" : {}
            },
            {
              "name" : "uP",
              "description" : "Update Configuration Parameter",
              "inputPayload" : {
                  "type" : "userParameter",
                  "name" : "Parameter to be Updated"
              },
              "responsePayload" : {
                  "type" : "paramId",
                  "name" : "ID of the Updated Parameter"
              }
            }
       ],
       "outputPackets" : [
          {
              "name": "z1",
              "description": "Scaled 9-Axis IMU",
              "payload" : [
                  {
                      "type" : "uint32",
                      "name" : "time",
                      "unit" : "s"
                  },
                  {
                      "type" : "float",
                      "name" : "xAccel",
                      "unit" : "G"
                  },
                  {
                      "type" : "float",
                      "name" : "yAccel",
                      "unit" : "G"
                  },
                  {
                      "type" : "float",
                      "name" : "zAccel",
                      "unit" : "G"
                  },
                  {
                      "type" : "float",
                      "name" : "xRate",
                      "unit" : "deg/s"
                  },
                  {
                      "type" : "float",
                      "name" : "yRate",
                      "unit" : "deg/s"
                  },
                  {
                      "type" : "float",
                      "name" : "zRate",
                      "unit" : "deg/s"
                  },
                  {
                      "type" : "float",
                      "name" : "xMag",
                      "unit" : "Gauss"
                  },
                  {
                      "type" : "float",
                      "name" : "yMag",
                      "unit" : "Gauss"
                  },
                  {
                      "type" : "float",
                      "name" : "zMag",
                      "unit" : "Gauss"
                  }
              ],
              "graphs" : [
                  {
                      "name" : "Acceleration",
                      "units" : "m/s/s",
                      "xAxis" : "Time (s)",
                      "yAxes" : [ "xAccel", "yAccel", "zAccel"],
                      "colors" : [ "#FF0000", "#00FF00", "#0000FF" ],
                      "yMax" : 80
                  },
                  {
                      "name" : "Angular Rate",
                      "units" : "deg/s",
                      "xAxis" : "Time (s)",
                      "yAxes" : [ "xRate", "yRate", "zRate"],
                      "colors" : [ "#FF0000", "#00FF00", "#0000FF" ],
                      "yMax" : 400
                  }
              ]
          },
          {
              "name": "z2",
              "description": "Arbitrary type Values",
              "payload" : [
                  {
                      "type" : "uint32",
                      "name" : "time",
                      "unit" : "s"
                  },
                  {
                      "type" : "uchar",
                      "name" : "c",
                      "unit" : ""
                  },
                  {
                      "type" : "int16",
                      "name" : "s",
                      "unit" : ""
                  },
                  {
                      "type" : "int32",
                      "name" : "i",
                      "unit" : ""
                  },
                  {
                      "type" : "int64",
                      "name" : "ll",
                      "unit" : ""
                  },
                  {
                      "type" : "double",
                      "name" : "d",
                      "unit" : ""
                  }
              ],
              "graphs" : [
                  {
                      "name" : "Angular Rate",
                      "units" : "deg/s",
                      "xAxis" : "Time (s)",
                      "yAxes" : [ "xRate", "yRate", "zRate"],
                      "colors" : [ "#FF0000", "#00FF00", "#0000FF" ],
                      "yMax" : 400
                  }
              ]
          },
          {
              "name": "z3",
              "description": "Scaled 6-Axis IMU Values",
              "payload" : [
                  {
                      "type" : "int",
                      "name" : "timestamp",
                      "unit" : "ms"
                  },
                  {
                      "type" : "float",
                      "name" : "xAccel",
                      "unit" : "m/s/s"
                  },
                  {
                      "type" : "float",
                      "name" : "yAccel",
                      "unit" : "m/s/s"
                  },
                  {
                      "type" : "float",
                      "name" : "zAccel",
                      "unit" : "m/s/s"
                  },
                  {
                      "type" : "float",
                      "name" : "xRate",
                      "unit" : "rad/s"
                  },
                  {
                      "type" : "float",
                      "name" : "yRate",
                      "unit" : "rad/s"
                  },
                  {
                      "type" : "float",
                      "name" : "zRate",
                      "unit" : "rad/s"
                  }
              ],
              "graphs" : [
                  {
                      "name"   : "Acceleration",
                      "units"  : "m/s/s",
                      "xAxis"  : "timestamp (ms)",
                      "yAxes"  : [ "xRate", "yRate", "zRate"],
                      "colors" : [ "#FF0000", "#00FF00", "#0000FF" ],
                      "yMax"   : 100
                  }
              ]
          }
              ]
  },
  "bootloaderMessages": [
      {
          "name" : "JI",
          "description" : "Jump to Bootloader",
          "inputPayload" : {},
          "responsePayload" : {
              "type" : "ack",
              "response" : "Acknowledgement"
          }
      },
      {
          "name" : "JA",
          "description" : "Jump to App",
          "inputPayload" : {},
          "responsePayload" : {
              "type" : "none",
              "response" : "Empty"
          }
      },
      {
          "name" : "WA",
          "description" : "Write App Block",
          "inputPayload" : {
              "type" : "block",
              "name" : "4 byte block address followed by up to 240 bytes data"
          },
          "responsePayload" : {
              "type": "ack",
              "response" : "Acknowledgement"
          }
      }
  ]
}






Note

Don’t modify the “bootloaderMessages” section of openimu.json.  This section is used by the Python driver for the
in-system programming bootloader.  It should not be changed






          

      

      

    

  

    
      
          
            
  
Ready-to-Use Applications

OpenIMU ships with a number of ready to use, downloadable applications to help the user get started.
These apps can be compiled without modification and downloaded to your unit.  All OpenIMU modules
by default ship with the IMU app described on the IMU App page.

To learn about ready to use apps available for immediate download to your OpenIMU, please see the the following
page: Aceinna Navigation Studio - Getting Started [https://developers.aceinna.com/docs/install]


Note

Use the browser back button to return to the OpenIMU documentation.



To install ready-made apps to your IMU, please make sure the user have installed the OpenIMU python driver described
in the “Development Tools - Python Interface” subsection and started the server.

To build a custom app, please follow the tutorial provided later in the OpenIMU documentation at
“Tutorial - What The User Needs to Know to Build The First Application”

The following Ready-To-Use Applications are available:


	Inertial Measurement Unit (IMU) App


	Leveler App


	AHRS/VG Dynamic Attitude App


	GPS/INS App










          

      

      

    

  

    
      
          
            
  
IMU App

The App name, IMU, stands for Inertial Measurement Unit,
and the name is indicative of the basic inertial measurement unit
functionality provided by this APP. The IMU App signal
processing chain consists of high-speed sampling of the 9-DOF sensor cluster
(accelerometers, rate sensors, and magnetometers), programmable
low-pass filters, and the execution of built-in calibration models.

Additionally any configuration parameters
settings such as axes rotation are applied to the IMU data. The 200Hz
IMU data is continuously being maintained inside the IMU APP, and is
Digital IMU data is output over the UART port at a selectable fixed rate (200, 100, 50, 25, 20,
10, 5 or 2 Hz). The digital IMU data is available in one of several measurement
packet formats including Scaled Sensor Data (‘z1’ Packet).

[image: image1]




          

      

      

    

  

    
      
          
            
  
Leveler App

Leveler App Description - To Be Provided




          

      

      

    

  

    
      
          
            
  
AHRS/VG Dynamic Attitude App

The Attitude and Heading Reference System (AHRS) and Vertical Gyro (VG) application
supports all of the features and operating modes of the
IMU APP, and it links in additional internal software, running on the
processor, for the computation of dynamic roll, pitch.
In addition to the Roll,Pitch and IMU data, the dynamic heading measurement is optionally stabilized
using the 3-axis magnetometer as a magnetic north reference.  Roll, Pitch
measurements are often referred to as “VG” or Vertical Gyro measurements.
When heading stabilized by a magnetometer is added, the solution is often referred to
as an “AHRS” or Attitude Heading Reference System.  Hence the name of tis APP
is AHRS/VG APP.

At a fixed 200Hz rate, the VG/AHRS APP continuously maintains the digital
IMU data as well as the dynamic roll, pitch, and heading. As shown in diagram
after the Sensor Calibration Block, the IMU data is
passed to the Integration to Orientation block. The Integration to
Orientation block integrates body frame sensed angular rate to
orientation at a fixed 200 times per second within all of the OpenIMU
Series products.

As also shown in the software block diagram, the Integration to
Orientation block receives drift corrections from the Extended Kalman
Filter or Drift Correction Module. In general, rate sensors and
accelerometers suffer from bias drift, misalignment errors, acceleration
errors (g-sensitivity), nonlinearity (square terms), and scale factor
errors. The largest error in the orientation propagation is associated
with the rate sensor bias terms. The Extended Kalman Filter (EKF) module
provides an on-the-fly calibration for drift errors, including the rate
sensor bias, by providing corrections to the Integration to Orientation
block and a characterization of the gyro bias state. In the AHRS/VG APP,
the internally computed gravity reference vector and the distortion
corrected magnetic field vector provide an attitude
reference measurement for the EKF when the unit is in quasi-static
motion to correct roll, pitch, and heading angle drift and to estimate
the X, Y and Z gyro rate bias. The AHRS/VG APP adaptively tunes the EKF
feedback gains in order to best balance the bias estimation and attitude
correction with distortion free performance during dynamics when the
object is accelerating either linearly (speed changes) or centripetally
(false gravity forces from turns). Because centripetal and other dynamic
accelerations are often associated with yaw rate, the AHRS/VG APP
maintains a low-passed filtered yaw rate signal and compares it to the
turnSwitch threshold field (user adjustable). When the user platform
exceeds the turnSwitch threshold yaw rate,
the AHRS/VG APP lowers the feedback gains from the accelerometers to allow
the attitude estimate to coast through the dynamic situation with
primary reliance on angular rate sensors. This situation is indicated by
the softwareStatus - turnSwitch status flag. Using the turn switch
maintains better attitude accuracy during short-term dynamic situations,
but care must be taken to ensure that the duty cycle of the turn switch
generally stays below 10% during the vehicle mission. A high turn switch
duty cycle does not allow the system to apply enough rate sensor bias
correction and could allow the attitude estimate to become unstable.

The AHRS/VG APP algorithm also has two major phases of operation. The first phase of
operation is the attitude initialization phase. During the
initialization phase, the OpenIMU unit is expected to be stationary or
quasi-static to rapidly estimate the X, Y, and Z rate sensor bias, and the initial attitude.
The initialization phase lasts approximately 2 seconds.
After the initialization phase, the EKF algorithm in the AHRS/VP APP dynamically tunes the
feedback (also referred to as EKF gain) from the accelerometers and
magnetometers to continuously estimate and correct for roll, pitch, and
heading (yaw) errors, as well as to estimate X, Y, and Z rate sensor
bias.


The Definitions of The Output Packets of The VG/AHRS App


“a1” packet

The default VG/AHRS app output packet type is “a1”, and it is defined in the following two tables.











	(‘a1’ = 0x6131)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6131

	47

	
	<CRC (U2)>






Payload:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer of

sensors sampling




	U4

	
LSB First

msec






	4

	
Above timer converted

to a double type




	D

	
LSB First

second






	12

	Roll

	F4

	
LSB First

deg






	16

	Pitch

	F4

	
LSB First

deg






	20

	corrected X gyro

	F4

	
LSB First

deg/s






	24

	corrected Y gyro

	F4

	
LSB First

deg/s






	28

	corrected Z gyro

	F4

	
LSB First

deg/s






	32

	X Accel

	F4

	
LSB First

m/s/s






	36

	Y Accel

	F4

	
LSB First

m/s/s






	40

	Z Accel

	F4

	
LSB First

m/s/s






	44

	Operation mode 1

	U1

	LSB First



	45

	Linear accel switch 2

	U1

	LSB First



	46

	Turn switch 3

	U1

	LSB First











“a2” packet

If you want to output the yaw angle, you can choose the “a2” packet. For the VG app, the yaw angle is from integrating the gyro rate,
and for the AHRS app, the yaw angle gets corrected by magnetometer measurements.











	(‘a2’ = 0x6132)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6132

	48

	
	<CRC (U2)>






Payload:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer of

sensors sampling




	U4

	
LSB First

msec






	4

	
Above timer converted

to a double type




	D

	
LSB First

second






	12

	Roll

	F4

	
LSB First

deg






	16

	Pitch

	F4

	
LSB First

deg






	20

	Yaw

	F4

	
LSB First

deg






	24

	corrected X gyro

	F4

	
LSB First

deg/s






	28

	corrected Y gyro

	F4

	
LSB First

deg/s






	32

	corrected Z gyro

	F4

	
LSB First

deg/s






	36

	X Accel

	F4

	
LSB First

m/s/s






	40

	Y Accel

	F4

	
LSB First

m/s/s






	44

	Z Accel

	F4

	
LSB First

m/s/s














“e1” packet

If you further want to output the magnetometer measurements, you can choose the “e1”
packet.











	(‘e1’ = 0x6531)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6531

	75

	
	<CRC (U2)>






Payload:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer of

sensors sampling




	U4

	
LSB First

msec






	4

	
Above timer converted

to a double type




	D

	
LSB First

second






	12

	Roll

	F4

	
LSB First

deg






	16

	Pitch

	F4

	
LSB First

deg






	20

	Yaw

	F4

	
LSB First

deg






	24

	X Accel

	F4

	
LSB First

g






	28

	Y Accel

	F4

	
LSB First

g






	32

	Z Accel

	F4

	
LSB First

g






	36

	X gyro

	F4

	
LSB First

deg/s






	40

	Y gyro

	F4

	
LSB First

deg/s






	44

	Z gyro

	F4

	
LSB First

deg/s






	48

	X gyro bias

	F4

	
LSB First

deg/s






	52

	Y gyro bias

	F4

	
LSB First

deg/s






	56

	Z gyro bias

	F4

	
LSB First

deg/s






	60

	X magnetometer

	F4

	
LSB First

Gauss






	64

	Y magnetometer

	F4

	
LSB First

Gauss






	68

	Z magnetometer

	F4

	
LSB First

Gauss






	72

	Operation mode 1

	U1

	LSB First



	73

	Linear accel switch 2

	U1

	LSB First



	74

	Turn switch 3

	U1

	LSB First










	1(1,2)

	Operation mode of the algorithm. 0 for waiting for the system to stabilize, 1 for initialzing attiude,
2 and 3 for VG/AHRS mode, and 4 for INS mode. Please refer to the source code for details.



	2(1,2)

	0 if linear acceleration is detected, 1 if no linear acceleration. Please refer to the source code for details.



	3(1,2)

	Indicate if the filtered yaw rate exceeds the turn switch threshold. 1 yes, 0 no. Please refer to the source code for details.






Note

In AHRS mode for proper operation of the stabilized heading measurement, the AHRS/VG
APP uses information from the internal 3-axis digital magnetometer. The AHRS APP must be installed
correctly and calibrated for hard-iron and soft iron effects to avoid
any system performance degradation.








          

      

      

    

  

    
      
          
            
  
GPS/INS App

The INS APP supports all of the features and operating modes of the
VG/AHRS APP, and it includes additional capability of interfacing
with an external GPS receiver and associated software running on the
processor, for the computation of navigation information as well as
orientation information. The APP name, GPS/INS APP, stands for Inertial
Navigation System, and it is indicative of the navigation reference
functionality that APP provides by outputting inertially-aided
navigation information (Latitude, Longitude, and Altitude),
inertially-aided 3D velocity information, as well as heading, roll,
and pitch measurements, in addition to digital IMU data.

The processor performs time-triggered trajectory propagation at 100Hz
and will synchronize the sensor sampling with the GPS UTC (Universal
Coordinated Time) second boundary when available.

As with the AHRS/VG APP, the algorithm has two major phases of
operation. Immediately after power-up, the INS APP uses the
accelerometers to compute the initial roll and pitch angles.
During the first 60 seconds of startup, the INS APP should
remain approximately motionless in order to properly initialize the rate
sensor bias. The initialization phase lasts approximately 60 seconds,
and the initialization phase can be monitored in the operation mode
transmitted by default in each measurement packet.

After initialization phase, the OpenIMU continuously maintains the digital
IMU data; the dynamic roll, pitch, and heading data; as well as the
navigation data. The body frame sensed angular rate is first integrated to
orientation at a fixed N times per second. For improved accuracy and to avoid
singularities when dealing with the cosine rotation matrix, a quaternion
formulation is used in the algorithm to provide attitude propagation.
Using the attitude, the body frame accelerometer signals are rotated into the NED frame and
integrated to velocity. And then, NED velocity is integrated to get position.
At this point, the data is blended with GPS
position and velocity data in the EKF, and output as a complete navigation solution.

The INS APP blends GPS derived heading and accelerometer measurements
into the EKF update depending on the health and status of the associated
sensors. If the GPS link is lost or poor, the Kalman Filter solution
stops tracking accelerometer bias, but the algorithm continues to apply
gyro bias correction and provides stabilized angle outputs. The EKF
tracking states are reduced to angles and gyro bias only. The
accelerometers will continue to integrate velocity, however,
accelerometer noise, bias, and attitude error will cause the velocity
estimates to start drifting within a few seconds. The attitude tracking
performance will degrade, the heading will freely drift, and the filter
will revert to the VG only EKF formulation. The UTC packet
synchronization will drift due to internal clock drift.


Quick Start

In this section, we explain how to get the INS app running with an external GPS receiver that
outputs NMEA GGA, VTG and RMC messages. The default baud rate for UART is 115200. Although NMEA is not recommended in our INS app due to
lack of some required information of the algorithm, it is chosen here because its popularity and simplicity.
Our GPS driver supports NMEA message decoding, so you don’t need to write a single line of code.

It is assumed that you are using our OpenIMU300ZI EVK.


Connect the GPS receiver to the EVK

In the following picture, the onboard 3.3V and GND are used to power the GPS receiver.
You can also choose your own power supply.

[image: ../_images/gps-receiver-connection.jpg]


Burn the INS App into The Unit

The unit has a built-in IMU app. The INS app need loaded by yourself. There are two recommended ways to do that.

Using the Python Driver

This is for people who only want to use the precompiled bin file.

The Python Driver loads the INS app by the built-in bootloader of the OpenIMU300ZI unit.
Please follow steps below.


	Connect the unit to the Python Driver.





Please refer to Python Interface. If the unit is successfully connected, you will see information like this.

[image: ../_images/connected_to_python_driver.png]




	Visist the App page of our Developer Site.





You can get access to all available apps in our Developer Site [https://developers.aceinna.com/code/apps].
The OpenIMU300ZI INS app is the one you need.


[image: ../_images/ins-app-fig-300.png]







	Burn the INS app.





Click “UPGRADE” and wait for it to complete.


[image: ../_images/ins-app-upgrade-fig-300.png]






Using Aceinna Extension in VS Code

If you want to modify our open-source code, you may want to try this way.

Please first refer to PC Tools Installation to install required tools and
then to Aceinna Extension for basic usage of the extention. After importing
the project of the INS app, you can modify the code, compile the project and upload the bin file to
the unit via ST-Link.

[image: ../_images/import-ins-app.png]


Get and Visualize the Output


	Connect the unit to the Python Driver.


	Visit our Developer Site [https://developers.aceinna.com/devices/record-next].





You can see the detailed information about the unit.

[image: ../_images/webgui-ins-connected.png]
Choose “Geo Map” as output, and click the play button, and you can see the live position on the map.

[image: ../_images/webgui-geomap-play.png]






How to Add Support of a New GPS Receiver Protocal

Currently we support NMEA, uBlox Nav-PVT and NovaTel Bestpos/Bestvel. If your receiver protocal is not in the list,
it is easy for you to add code to decode a new protocol. Let’s take uBlox nav-pvt for example to explain how to do this.


	define the name (UBLOX_BINARY) of the protocol in GlobalConstas.h.

// Choices for GPS protocol type
typedef enum{
    AUTODETECT              = -1,
    UBLOX_BINARY            =  0,
    NOVATEL_BINARY          =  1,
    NOVATEL_ASCII           =  2,
    NMEA_TEXT               =  3,
    DEFAULT_SEARCH_PROTOCOL =  NMEA_TEXT, // 3
    SIRF_BINARY             =  4,
    INIT_SEARCH_PROTOCOL    =  SIRF_BINARY, ///< 4 max value, goes through each until we hit AUTODETECT
    UNKNOWN                 = 0xFF
} enumGPSProtocol;









2. In driverGPSAllEntrance.c, add this new protocol in SetGpsProtocol(). After this, the new protocal can be set
in Aceinna Navigation Studio Web GUI.

BOOL  SetGpsProtocol(int protocol, int fApply)
{
    switch(protocol)
    {
        case NMEA_TEXT:
        case NOVATEL_BINARY:
        case UBLOX_BINARY:
            break;
        default:
            return FALSE;
    }
    if(fApply)
    {
        gGpsDataPtr->GPSProtocol = protocol;
    }

    return TRUE;
}






	In driverGPS.c, call the routine to decode this protocol.

switch(GPSData->GPSProtocol){
    case NMEA_TEXT:
        parseNMEAMessage(tmp, gpsMsg, GPSData);
        break;
    case NOVATEL_BINARY:
        parseNovotelBinaryMessage(tmp, gpsMsg, GPSData);
        break;
    case UBLOX_BINARY:
        parseUbloBinaryMessage(tmp, gpsMsg, GPSData);
        break;
    default:
        break;
        }
}









4. Implement the decoding routine (parseUbloBinaryMessage()) in a proper file. For this example,
it is implemented processUbloxGPS.c.



The Definition of The Deaulft Output Packet of The INS App

In the section Get and Visualize the Output, we can get INS app output data via the Python driver.
The Python driver receives output from the unit, deocde the output packts and then feed decoded results to the Web GUI.
If you want to decode the output by yourself, you need to know the structure of the output packet, which
is detailed in OpenIMU UART Messaging.
The default INS app output packet type is “e2”, and it is defined in the following two tables.











	(‘e2’ = 0x6532)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6532

	123

	
	<CRC (U2)>






Payload:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer of

sensors sampling




	U4

	
LSB First

msec






	4

	
Above timer converted

to a double type




	D

	
LSB First

second






	12

	Roll

	F4

	
LSB First

deg






	16

	Pitch

	F4

	
LSB First

deg






	20

	Yaw

	F4

	
LSB First

deg






	24

	X acceleration

	F4

	
LSB First

g






	28

	Y acceleration

	F4

	
LSB First

g






	32

	Z acceleration

	F4

	
LSB First

g






	36

	X acceleration bias

	F4

	
LSB First

m/s/s






	40

	Y acceleration bias

	F4

	
LSB First

m/s/s






	44

	Z acceleration bias

	F4

	
LSB First

m/s/s






	48

	X gyro

	F4

	
LSB First

deg/s






	52

	Y gyro

	F4

	
LSB First

deg/s






	56

	Z gyro

	F4

	
LSB First

deg/s






	60

	X gyro bias

	F4

	
LSB First

deg/s






	64

	Y gyro bias

	F4

	
LSB First

deg/s






	68

	Z gyro bias

	F4

	
LSB First

deg/s






	72

	North velocity

	F4

	
LSB First

m/s






	76

	East velocity

	F4

	
LSB First

m/s






	80

	Downward velocity

	F4

	
LSB First

m/s






	84

	X magnetometer

	F4

	
LSB First

Gauss






	88

	Y magnetometer

	F4

	
LSB First

Gauss






	92

	Z magnetometer

	F4

	
LSB First

Gauss






	96

	Latitude

	D

	
LSB First

deg






	104

	Longitude

	D

	
LSB First

deg






	112

	Altitude

	D

	
LSB First

m






	120

	Operation mode 1

	U1

	LSB First



	121

	Linear accel switch 2

	U1

	LSB First



	122

	Turn switch 3

	U1

	LSB First










	1

	Operation mode of the algorithm. 0 for waiting for the system to stabilize, 1 for initializing attitude,
2 and 3 for VG/AHRS mode, and 4 for INS mode. Please refer to the source code for details.



	2

	0 if linear acceleration is detected, 1 if no linear acceleration. Please refer to the source code for details.



	3

	Indicate if the filtered yaw rate exceeds the turn switch threshold. 1 yes, 0 no. Please refer to the source code for details.







Synchronization to One PPS GPS Signal

The OpenIMU300 has the ability to synchronize a One PPS signal provided by the GPS receiver.  The first step in the process is to
connect the signal to the correct input pin on the OpenIMU300.  In this case, Pin 2 serves as the input as described in
Connector Pinout.

See synchronization to external clock signals
for more information on how to use the 1 PPS synchronization signal.



About the GNSS/INS Fusion Algorithm

In the INS app, an 16-state extended Kalman filter is implemented to process measurements from a GPS receiver and an IMU unit.
If you want to know more details about the algorithm, please refer to EKF Algorithm.


Note

If you have any question, please search or post a new topic on Aceinna Forum [https://forum.aceinna.com].







          

      

      

    

  

    
      
          
            
  
Tutorial - What The User Needs to Know to Build The First Application




OpenIMU Core


The OpenIMU Core is the foundation for the Platform application and
all other example and custom applications.  However, it is not supplied as a separate application.
The OpenIMU Core provides the Board Support Package (BSP),
FreeRTOS, command line interface capability, filters, GPS interface capability, math functionality,
and various utilities, including the base examples for the C-language main function and the data
acquisition functionality.




EZ Embed Example Applications


The following applications are implicitly based on use of an EZ Embed* OpenIMU units, such as the OpenIMU300ZI and OpenIMU330BI.

To get you acquainted with the OpenIMU environment, let’s walk through the development of the
following applications:

IMU Application

The term Inertial Measurement Unit (IMU) refers to a device that returns calibrated inertial-sensor data.
This application forms the backbone of all other example applications as each requires inertial measurements to
generate other results.

Static-Leveler Application

The Static-Leveler application uses accelerometer readings to measure the local gravity-field
and compute the two-axis attitude (roll and pitch angles) of a body relative to the local-level
frame.  A Leveler application could be used to provide stabilization for cameras and other
systems that require linear and rotational stability.

VG&AHRS Applications

The Vertical Gyro (VG) application and the Attitude and Heading Reference System (AHRS) application
use rate-sensors, accelerometers, and (for the AHRS application)
magnetometers to compute the attitude and heading of a body in space.  Rate-sensors are
used to propagate the attitude forward in time at high output data-rates (ODR) while
accelerometers and magnetometers act as references, correcting for rate-sensor biases and
attitude errors.

INS Application

The Inertial Navigation System (INS) application supports all of the features and operating
modes of the VG&AHRS applications.  In addition it includes the additional capability of interfacing
with an external GPS receiver and associated software running on the processor for
computation of navigation position information as well as orientation information.




Robust CAN Example Applications


The CAN example applications are implemented for OpenIMU300RI unit with CAN interface.

Next example applications available for OpenIMU300RI unit:





	IMU application which are using SAE J1939 Messaging Standard.


	VG_AHRS application which are using SAE J1939 Messaging Standard.


	INS application which are using SAE J1939 Messaging Standard.













          

      

      

    

  

    
      
          
            
  
OpenIMU Core Details

All of the example applications and any custom applications are based on the OpenIMU Core firmware.
The elements provided by the OpenIMU Core that are available to all example
applications are as follows:



	Board Support Package (BSP) and FreeRTOS


	Default Pre-Filtering and Calibration Functions


	Default Data Acquisition Functions


	Default Message Functions


	Default Serial Debugging Functions


	Bootloader


	Python-Based Message Decoder


	Data Capture Functions Supporting the Aceinna Navigation Studio







Details of those elements are described in the following pages.







          

      

      

    

  

    
      
          
            
  
FreeRTOS & Board Support Package




FreeRTOS

The applications for all OpenIMU300 units use the FreeRTOS Real-Time Operating System (https://www.freertos.org), while OpenIMU330 units uses a simple real-time scheduler.
FreeRTOS is very widely used, as it is feature-rich, has a small footprint, and can be used in commercial application without
having to expose intellectual property.

FreeRTOS is licensed under the MIT Open Source License (https://www.freertos.org/a00114.html).

The critical feature of FreeRTOS:


	Scheduling Options



	Pre-emptive


	Co-operative


	Round robin with time slicing












	Fast task notifications





	Configurable & scalable with a      6K to 12K ROM footprint





	Mutexes & semaphores



	Mutexes with priority inheritance


	Recursive mutexes


	Binary and counting semaphores












	Chip and compiler agnostic





	Very efficient software timers





	Can be configured to never completely disable interrupts





	Easy to use API





	Easy to use message passing




Board Support Package - To Be Provided




          

      

      

    

  

    
      
          
            
  
Default Pre-Filtering and Calibration Functions




Several built-in digital filters are available to the user to provide additional filtering.  In
particular, a selection of second-order Butterworth low-pass filters are provided.  Butterworth
filters were chosen for their maximally flat passband and straight-forward frequency responses.
Available cutoff-frequencies are:



	50 Hz


	40 Hz


	25 Hz


	20 Hz


	10 Hz


	5 Hz


	2 Hz


	0 Hz (Unfiltered)







In the firmware, these filter are implemented using fixed-point math (which operate on sensor
counts, not floating-point values).  This was done done to take advantage of the speed associated
with integer-math operations.

Built-in filters are selected in several different ways:



	Cutoff frequencies can be set in the default user-configuration structure,
UserConfigurationStruct.  This is the approach taken in this example.


	The configuration can be changed (either temporarily or permanently) using the Aceinna
Navigation Studio interface.


	Commands can be sent to the unit over the serial interface.  This enables the cutoff
frequency to be changed during operation, if desired.







Calibration:

Once filtered, the OpenIMU firmware then applies calibration data to the sensor counts,
compensating for temperature-related bias effects, sensor scale-factors, and misalignment.




          

      

      

    

  

    
      
          
            
  
Default Data Acquisition Functions


Contents


	Acquiring Sensor Data









OpenIMU makes data-acquisition simple by reducing the steps required to get high-quality, inertial
sensor data.  Sensor drivers, filtering, and calibration are handled without the need for
additional user input.

The main routine controlling sensor sampling and processing is TaskDataAcquisition.  This task
calls the routines that acquire sensor measurements, filter the data, and apply calibration.  In
particular, the task calls the following, which provides functions to acquire sensor data:

inertialAndPositionDataProcessing(dacqRate);





After completion of the sensor processing steps, it then calls the algorithm that operates on
sensor readings to create processed output.


Acquiring Sensor Data

Inside inertialAndPositionDataProcessing() several getter-functions are provided.  These functions
obtain sensor data directly from the sensor data-buffers.  Function names, described in the following
table, were chosen to make the task of each function clear.


Sensor Measurement Getter Functions






	Getter Function

	Description

	Units





	GetAccelData_g()

	Obtain accelerometer data

	\([g]\)



	GetAccelData_mPerSecSq()

	\([{m / s^2}]\)



	GetRateData_radPerSec()

	Obtain rate-sensor data

	\([{r / s}]\)



	GetRateData_degPerSec()

	[°/s]



	GetMagData_G()

	Obtain magnetometer data

	\([G]\)



	GetBoardTempData()

	Obtain temperature data

	[°C]







Note

Most inertial algorithm development will use \([{m / s^2}]\), \([{r / s}]\), and
\([G]\).  However getters that provide accelerometer and rate-sensor data in \([g]\)
and [°/s] are also available for the designer who chooses to work in these units.



These getters work by populating the array whose address is provided as an argument to the
function.  In this example, the functions load the data directly into the data-structure elements
gIMU.accel_g, gIMU.rate_degPerSec, gIMU.mag_G, and gIMU.temp_C.


Note

Structure elements (accel_g, rate_degPerSec, etc.) are all defined as doubles in the data
structure created in UserMessaging.h.  This is done to match the datatype required by the
getter functions, described above.



// IMU data structure
typedef struct {
    // Timer output counter
    uint32_t timerCntr, dTimerCntr;

    // Algorithm states
    double accel_g[3];
    double rate_degPerSec[3];
    double mag_G[3];
    double temp_C;
} IMUDataStruct;

extern IMUDataStruct gIMU;









          

      

      

    

  

    
      
          
            
  
Default Message Functions


Contents


	Serial Message Definition


	UserMessaging.h Modifications


	UserMessaging.c Modifications


	Default Configuration Settings


	Testing using Serial Terminal Emulator







Serial Message Definition

A streaming, serial message can be generated by the OpenIMU platform. In this example, a message
matching the requirements, defined earlier, is created.  It consists of:



	An integer counter, representing time in \([ms]\)


	A floating-point representation of time, in \([s]\)


	Accelerometer readings, in \([g]\)


	Rate-Sensor readings, in [°/s]


	Magnetometer readings, in \([G]\)


	Board temperature, in [°C]







To generate this output, a serial-message was created in UserMessaging.c and UserMessaging.h.
In the firmware, the message is given the name, USR_OUT_SCALED1, along with the packet code “s1”
(with lower-case S representing scaled).

To form the message, the first step is to define the message components and determine the total
number of bytes the message will occupy.  The components of the message, variable type, and number
of bytes are listed in the following table:


User-Defined Serial Message Components








	Message Component

	Description

	
Number of

Variables




	
Total

Bytes






	Type

	Bytes





	Integer counter

	uint32_t

	4

	1

	4



	Time variable

	double

	8

	1

	8



	
Accelerometer

Readings (3 axis)




	float

	4

	3

	12



	
Rate-Sensor

Readings (3 axis)




	float

	4

	3

	12



	
Magnetometer

Readings (3 axis)




	float

	4

	3

	12



	
Board-Temperature

Readings (3 axis)




	float

	4

	1

	4






This shows that the payload section of the output message (not including preamble, message
type, or CRC) consists of 52 bytes.

Adding this message to the firmware requires modifications to two files: UserMessaging.c and
UserMessaging.h.



UserMessaging.h Modifications

The packet code and number of bytes must be added to UserMessaging.h. This requires adding the
output packet code to the packet-type enum variable:

// User output packet codes, change at will
typedef enum {
    USR_OUT_NONE = 0,  // 0
    USR_OUT_TEST,      // 1
    USR_OUT_DATA1,     // 2
    USR_OUT_DATA2,     // 3
// add new output packet type here, before USR_OUT_MAX
    USR_OUT_SCALED1,   // 4
    USR_OUT_MAX
} UserOutPacketType;





and creating a #define identifier to hold the payload length

#define USR_OUT_SCALED1_PAYLOAD_LEN (52)





These can be found in the IMU example code.



UserMessaging.c Modifications

With the above additions to UserMessaging.h made, the output message can be added to
UserMessaging.c, completing the process.  To accomplish this, add a new case to the
switch-statement found in HandleUserOutputPacket() using the output name added to
UserMessaging.h:

case USR_OUT_SCALED1:
{
    // The payload length (NumOfBytes) is based on the following:
    // 1 uint32_t (4 bytes) =  4 bytes
    // 1 double (8 bytes)   =  8 bytes
    // 3 floats (4 bytes)   = 12 bytes
    // 3 floats (4 bytes)   = 12 bytes
    // 3 floats (4 bytes)   = 12 bytes
    // 1 floats (4 bytes)   =  4 bytes
    // =================================
    //           NumOfBytes = 52 bytes
    *payloadLen = USR_OUT_LEV1_PAYLOAD_LEN;

    // Output time as represented by gIMU.timerCntr (uint32_t
    // incremented at each call of the algorithm)
    uint32_t *algoData_1 = (uint32_t*)(payload);
    *algoData_1++ = gIMU.timerCntr;

    // Output a double representation of time generated from
    // gLeveler.itow
    double *algoData_2 = (double*)(algoData_1);
    *algoData_2++ = 1.0e-3 * (double)(gIMU.timerCntr);

    // Set the pointer of the sensor array to the payload
    float *algoData_3 = (float*)(algoData_2);
    *algoData_3++ = (float)gIMU.accel_g[X_AXIS];
    *algoData_3++ = (float)gIMU.accel_g[Y_AXIS];
    *algoData_3++ = (float)gIMU.accel_g[Z_AXIS];

    *algoData_3++ = (float)gIMU.rate_degPerSec[X_AXIS];
    *algoData_3++ = (float)gIMU.rate_degPerSec[Y_AXIS];
    *algoData_3++ = (float)gIMU.rate_degPerSec[Z_AXIS];

    *algoData_3++ = (float)gIMU.mag_G[X_AXIS];
    *algoData_3++ = (float)gIMU.mag_G[Y_AXIS];
    *algoData_3++ = (float)gIMU.mag_G[Z_AXIS];

    *algoData_3++ = (float)gIMU.temp_C;
}
break;





Data is appended to the payload array using pointers.  This enables variables of different
datatypes to fit into the payload array (defined as an array of 8-bit unsigned integers); this
approach is highlighted in the previous code snippet and is done by generating a pointer of the
desired type to a typecast version of the payload address.  In the example above, 32-bit unsigned
integer data is appended to the payload, followed by double and floating-point variables.

Finally, the packet type must be added to the switch-statement in setUserPacketType() to allow
the firmware to select the packet:

case USR_OUT_SCALED1:          // packet with arbitrary data
    _outputPacketType = type;
    _userPayloadLen   = USR_OUT_SCALED1_PAYLOAD_LEN;
    break;





and the packet-code must be added to the list of user output packets, userOutputPackets.

// packet codes here should be unique -
// should not overlap codes for input packets and system packets
// First byte of Packet code should have value >= 0x61
usr_packet_t userOutputPackets[] = {
//   Packet Type                Packet Code
    {USR_OUT_NONE,              {0x00, 0x00}},
    {USR_OUT_TEST,              "zT"},
    {USR_OUT_DATA1,             "z1"},
    {USR_OUT_DATA2,             "z2"},
// place new type and code here
    {USR_OUT_SCALED1,           "s1"},
    {USR_OUT_MAX,               {0xff, 0xff}},   //  ""
};





These changes are found in UserMessaging.c.



Default Configuration Settings

To make the “s1” serial message (created previously) the default output, make changes to the
default user-configuration structure found in UserConfiguration.c:

// Default user configuration structure
// Saved into EEPROM of first startup after reloading the code
// or as a result of processing "rD" command
// Do Not remove - just add extra parameters if needed
// Change default settings  if desired
const UserConfigurationStruct gDefaultUserConfig = {
    .dataCRC             =  0,
    .dataSize            =  sizeof(UserConfigurationStruct),
    .userUartBaudRate    =  115200,
    .userPacketType      =  "s1",
    .userPacketRate      =  10,
    .lpfAccelFilterFreq  =  25,
    .lpfRateFilterFreq   =  25,
    .orientation         =  "+X+Y+Z"
    // add default parameter values here, if desired
} ;






Note

userPacketType was set to “s1” to cause the new packet to be broadcast by default.
Additionally, the desired message baud rate and message rate are set to 115.2 kbps and 10
[Hz], respectively.  Finally, the accelerometer and rate-sensor filters are set to 25 Hz.





Testing using Serial Terminal Emulator

At this point, the IMU application has been implemented and the output messaging created.  Build
and upload the firmware to the OpenIMU.  A serial terminal (such as TeraTerm) can be used to verify
if a message is being generated by the device.  In the following figure, output messaging creation
can be verified by searching for the string “UUs1”.  If present, the message is being generated;
whether the message is populated correctly requires the use of additional tools.


[image: IMUSerialMessageTest]

Test of Serial Message Output




Note

In the above figure the message preamble sometimes displays as “UU_1”.  This is solely a
TeraTerm glitch.  Other serial terminal programs (such as CoolTerm) do not show such
behavior.







          

      

      

    

  

    
      
          
            
  
Default Serial Debugging Functions


Contents


	Generating Debug Messages


	Compile and Test







Generating Debug Messages

Creating the Message:

Debug messages, using the built-in debugging capability of the OpenIMU platform, are added to the
IMU application to verify that the firmware obtains the correct sensor reading; the complete
implementation is found in dataProcessingAndPresentation.c in the IMU application code.  The
relevant debugger calls are:

DebugPrintFloat("Time: ", 0.001 * gIMU.timerCntr, 3);
DebugPrintFloat(", AccelZ: ", gIMU.accel_g[Z_AXIS], 3);
DebugPrintFloat(", RateZ: ", gIMU.rate_degPerSec[Z_AXIS], 3);
DebugPrintFloat(", MagX: ", gIMU.mag_G[X_AXIS], 3);
DebugPrintFloat(", Temp: ", gIMU.temp_C,2);
DebugPrintEndline();





In the output message, z-axis acceleration and rate-sensor measurements, provided in \([g]\)
and [°/s], are obtained along with x-axis magnetic-field readings (in \([G]\)) and
board-temperature (in [°C]).  This subset of sensor information is selected to test the
output of all sensors, while keeping the size of the debug message small.

Arguments to DebugPrintFloat() consist of:



	A character-string describing the output message


	The floating-point value to be output


	The number of significant digits in the output message







In this example, only DebugPrintFloat() is used to output a debug message, other debug message
functions are available. In particular, the following messages (provided in debug.c) form the
complete list:

DebugPrintString();
DebugPrintInt();
DebugPrintLongInt();
DebugPrintHex();
DebugPrintFloat();
DebugPrintEndline();







Compile and Test

The final step is to build and upload the firmware to the OpenIMU hardware using the PIO framework.
When complete, use a terminal program (such as TeraTerm in Windows) to connect to the appropriate
COM port to assess if the program is operating as expected.

Debug Communication Settings:

Debug messages are provided as serial messages over the third port of the OpenIMU platform. When
connected to a PC, the device generates four COM ports.  In this case, the ports are 40, 41, 42,
and 43. The first COM port is the serial messaging port (discussed in the
Platform Communications section), the
second port can be used for serial inputs to the platform (such as GPS), and the fourth is
unconnected.

The nominal serial baud-rate setting is 38.4 kbps. This can be set to other rates, such as 57.6
kbps, 115.2 kbps, or 230.4 kbps via the argument to InitDebugSerialCommunication(), found in
main.c.  For the IMU application, this value was changed to 230.4 kbps.

System Testing using Debug Communications:

To test the OpenIMU output, perform the following:



	Place the unit on a level table top


	With the unit sitting flat, the z-axis acceleration will be close to -1.0 \([g]\)


	Rotate the unit clockwise (about the positive z-axis) to generate a positive z-axis
angular-rate


	Orient the unit so the y-axis is aligned with magnetic-north.  This results in an x-axis
magnetic-filed reading close to zero \([G]\).  Orienting the unit’s x-axis in any other
compass direction will result in a non-zero magnetic-field reading that increases until the
axis is pointed along the north/south direction, at which it reaches its maximum value.


	Temperature readings reflect values slightly higher than the ambient temperature, as the
readings reflect the temperature of the electronics.







The results of these statements are found in the following figure:


[image: TerminalDebugOutput]

IMU Debug Output



This output provides confidence that the IMU is obtaining the correct sensor measurements.

Suggested Operation

During normal operations, when using the OpenIMU in your system, it is best to disable the debug
output.  This will reduce the load on the platform and free up the processing capability for other
tasks.





          

      

      

    

  

    
      
          
            
  
Bootloader




Each of the examples have its associated application pre-built as .bin files, which can be
downloaded directly onto the OpenIMU hardware directly from
Aceinna Navigation Studio [https://developers.aceinna.com].

Download Procedure

Connect to the OpenIMU Python Server

From the terminal window, issue the command to start the OpenIMU Python Server:


[image: PythonServerConnect]

Python Server Connection



Connect the Unit to the Aceinna Navigation Studio

From the Aceinna Navigation Studio [https://developers.aceinna.com] main page, select Code
and Apps from the menu on the left-hand side of the window


[image: ANS_AppPage]

ANS Applications



Downloading the Application

Navigate to the desired application and click the Download link at the bottom of the application
box.  In this case, select the IMU Application Download link.


[image: ANS_AppPage]

IMU Application



Once the Download link has been clicked, a progress bar at the top of the application box will
indicate how much time is left to download the application:


[image: ANS_AppProgress]

Application Download Progress



Download Progress View In Terminal

Additionally terminal messages in the window in which the Python server is running will indicate
progress.  Once complete, the terminal will indicate Success and restart the app.  At this
point the unit is now running the downloaded application.


[image: ANS_ServerTerminalProgress]

Terminal Download Progress Screen



The unit can now be connected to the Navigation Studio and data plotted or saved in an output file.




          

      

      

    

  

    
      
          
            
  
Python-Based Message Decoder


Contents


	Creating a python-based decoder







Creating a python-based decoder

The first step to using the OpenIMU decoder and spooling tools, python-openimu, to properly
decode an output message, is to define the message in the file openimu.json.  For the “s1”
message, the following is added to the file:

{
    "name": "s1",
    "description": "IMU Scaled-Sensor Output Message",
    "payload": [{
            "type": "uint32",
            "name": "timeCntr",
            "unit": "msec"
        },
        {
            "type": "double",
            "name": "time",
            "unit": "s"
        },
        {
            "type": "float",
            "name": "xAccel",
            "unit": "g"
        },
        {
            "type": "float",
            "name": "yAccel",
            "unit": "g"
        },
        {
            "type": "float",
            "name": "zAccel",
            "unit": "g"
        },
        {
            "type": "float",
            "name": "xRate",
            "unit": "deg/s"
        },
        {
            "type": "float",
            "name": "yRate",
            "unit": "deg/s"
        },
        {
            "type": "float",
            "name": "zRate",
            "unit": "deg/s"
        },
        {
            "type": "float",
            "name": "xMag",
            "unit": "G"
        },
        {
            "type": "float",
            "name": "yMag",
            "unit": "G"
        },
        {
            "type": "float",
            "name": "zMag",
            "unit": "G"
        },
        {
            "type": "float",
            "name": "temp",
            "unit": "degC"
        }
    ],
        "graphs": [{
            "name": "Acceleration",
            "units": "g",
            "xAxis": "Time (s)",
            "yAxes": ["xAccel", "yAccel", "zAccel"],
            "colors": ["#FF0000", "#00FF00", "#0000FF"],
            "yMax": 5
        },
        {
            "name": "Angular-Rate",
            "units": "deg/s",
            "xAxis": "Time (s)",
            "yAxes": ["xRate", "yRate", "zRate"],
            "colors": ["#FF0000", "#00FF00", "#0000FF"],
            "yMax": 200
        },
        {
            "name": "Magnetic-Field",
            "units": "G",
            "xAxis": "Time (s)",
            "yAxes": ["xMag", "yMag", "zMag"],
            "colors": ["#FF0000", "#00FF00", "#0000FF"],
            "yMax": 5
        },
        {
            "name": "Board-Temperature",
            "units": "degC",
            "xAxis": "Time (s)",
            "yAxes": ["temp"],
            "colors": ["#FF0000"],
            "yMax": 100
        }
    ]
}





This information tells the decoder the order of the output data in the serial message, its type
(float, double, int, etc.), as well as the units associated with the data.  It also defines how the
data should be plotted, including axis-titles and colors.


Note

A useful tool to check if the json-file is properly formatted is found at: https://jsonlint.com







          

      

      

    

  

    
      
          
            
  
Data Capture Functions Supporting the Aceinna Navigation Studio


Contents


	OpenIMU Server


	Connect to Aceinna Navigation Studio


	Displaying Data


	Logging Data






Capturing, Displaying, and Saving Data Using the Aceinna Navigation Studio

With the following complete:



	Serial output-message created and running on the OpenIMU hardware


	The message description added to openimu.json


	python-openimu installed on your system







you are now ready to collect IMU data.


OpenIMU Server

To capture data using the Aceinna Navigation Studio [https://developers.aceinna.com], the first
step is to start the python-based server that will capture the serial data streaming over the COM
port.  This can be done by sending the following command at a terminal prompt from the
python-openimu folder:

python commands.py





This initiates a search for the OpenIMU device on the machine’s COM ports. When detected, the
terminal returns a message similar to the following:


[image: ServerConnection_Pre]

Server-Connection Message at the Terminal Prompt



Once connected to the IMU type ‘start_server’ to start the server.  More instructions on the Python driver
are found here



Connect to Aceinna Navigation Studio [https://developers.aceinna.com]

To capture and display data on the Aceinna Navigation Studio [https://developers.aceinna.com],
open a browser to https://developers.aceinna.com and log in.  From the menu on the left, select
Devices and Connect.  The following will appear if connected properly:


[image: ANS_Connection]

Connection to IMU Server



If desired, the packet output rate and other settings can be changed here.

After connecting to the OpenIMU device, the terminal reflects this by displaying the configuration
of the unit:


[image: ServerConnection_Post]

Server-Connection Message at the Terminal Prompt





Displaying Data

For a live display of data from the device, select the Record menu then click on the Play
button. An example capture of the accelerometer data follows:


[image: ANS_AccelerationPlot]

Plot of IMU Accelerometer Data





Logging Data

To log data select the Log Control switch.  The output file consists of data found in the serial
message.  In particular the message consists of:



	Time (in counts and seconds)


	Accelerometer data (in \([g]\))


	Rate-Sensor data (in [°/s])


	Magnetometer data (in \([G]\))


	Board-Temperature data (in [°C])







The following figure shows the contents of the captured data file, indicating that all selected
data are saved as intended.


[image: ANS_OutputDataPlot]

IMU Angle Data File







          

      

      

    

  

    
      
          
            
  
Inertial Measurement Unit (IMU) Application

The Inertial Measurement Unit (IMU) application enables the OpenIMU hardware to provide
inertial-sensor data from accelerometers, rate-sensors, and magnetometers.

The exact combination of sensor data you use will depend upon the ultimate goal of your
project.  However, at least a subset of this data is required to create an application
that estimates attitude, position, and/or heading.

The IMU application performs the following functions:



	Sets the default OpenIMU configuration for the IMU application


	Acquires Sensor Data - acceleration, angular-rate, local magnetic-field, and sensor temperature data


	Generates and sends the following output message to the UART:



	A relative time measurement (both integer and decimal values)


	Acceleration readings in \([g]\)


	Rate-sensor readings in [°/s]


	Magnetic-field readings in \([G]\)


	Sensor temperature readings in [°C]

















          

      

      

    

  

    
      
          
            
  
Static-Leveler Application

The static-leveler application enables the OpenIMU hardware to provide roll and pitch estimates (the
angles that the x and y-axes are rotated away from level) using only accelerometer measurements.
This simple example is based on the IMU Example Application

The Static Leveler application performs the following functions:



	Sets the default OpenIMU configuration for the Leveler application


	Acquires Sensor Data - acceleration, angular-rate, local magnetic-field,
and sensor temperature data


	Executes the Leveler application algorithms and other relevant math
functions to create output data:



	Compute the acceleration unit-vector.


	Normalize using the magnetometer readings.


	Form the gravity vector in the body-frame.


	Form the roll and pitch Euler angles from the gravity unit vector.









	Generates a serial output message 1 consisting of the following:



	A relative time measurement (both integer and decimal values)


	Acceleration readings in \([g]\)


	Rate-sensor readings in [°/s]


	Magnetic-field readings in \([G]\)


	Sensor temperature readings in [°C]














Footnotes


	1

	The output message is the same as for the IMU application, but tailored by the Leveler algorithm








          

      

      

    

  

    
      
          
            
  
Vertical-Gyro / Attitude and Heading Reference System Application

The Vertical-Gyro (VG) / Attitude and Heading Reference System (AHRS) application enables the
OpenIMU hardware to fuse inertial-sensor information (accelerometers, rate-sensors, and — for the
AHRS — magnetometers) to generate an attitude solution.  The solution makes use of the high
data-rate (DR) rate-sensor output to propagate the attitude forward in time while using the
accelerometers and magnetometers as references to correct for estimated rate-bias errors and
attitude-errors at a lower DR.

The mathematics behind the algorithm are quite a bit more complicated than the math associated with
the Static-Leveler application.  The full description is not discussed here, as .  However, the
complete formulation is provided in the “Ready-to-use Applications” section.

The VG/AHRS example application performs the following functions:



	Sets the default OpenIMU configuration


	Acquires sensor data  - acceleration, angular-rate, local magnetic-field, and sensor temperature data


	Executes the VG/AHRS algorithm


	Populates the output data structure


	Generates and sends the following output message to the UART - the output message description is To Be Provided










          

      

      

    

  

    
      
          
            
  
Inertial Navigation System Application

The INS APP supports all of the features and operating modes of the
VG/AHRS App.  In addition it includes the capability of interfacing
with an external GPS receiver and associated software running on the
processor, allowing computation of navigation information as well as
orientation information. The application name, GPS/INS APP, stands for GPS Inertial
Navigation System, and it is indicative of the navigation reference
functionality that application provides by outputting inertially-aided
navigation information (Latitude, Longitude, and Altitude),
inertially-aided 3-axis velocity information, as well as heading, roll,
and pitch measurements, in addition to digital IMU data.

The mathematics behind the algorithm are more complicated than the math associated with
the VG/AHRS application.  The full description is not discussed here, as the
complete formulation is provided in the “Ready-to-use Applications” section.

The INS example application performs the following functions:



	Sets the default OpenIMU configuration


	Acquires sensor data  - acceleration, angular-rate, local magnetic-field, GPS, and sensor temperature data


	Populates the output data structure


	Generates and sends the following output message to the UART - the output message description is To Be Provided










          

      

      

    

  

    
      
          
            
  
OpenIMU Software Overview

This section reviews more detail on how OpenIMU platform code modules are structured and work together:


	Software Dataflow Diagram


	RTOS


	Sampling and Filtering


	UART Messaging


	SPI Messaging


	Settings


	Tutorial App


	CAN J1939 Messaging










          

      

      

    

  

    
      
          
            
  
Software DataFlow





	The OpenIMU software data flow is depicted in the following diagram.

	
	The double circle icons denote inputs


	The single circle icons denote software components


	The thick single circle icons denote outputs


	the double horizontal line icons denote data stores


	The arrow icons denote data that is sent from one software component, input, or data store to a software component









[image: ../_images/SoftwareDataFlow.png]




          

      

      

    

  

    
      
          
            
  
FreeRTOS

The applications for all OpenIMU300 units use the FreeRTOS Real-Time Operating System (FreeRTOS Site [https://www.freertos.org]), while OpenIMU330 units uses a simple real-time scheduler.
FreeRTOS is very widely used, as it is feature-rich, has a small footprint, and can be used in commercial application without
having to expose intellectual property.

FreeRTOS is licensed under the MIT Open Source License (FreeRTOS Licence Page [https://www.freertos.org/a00114.html]).

The FreeRTOS site provides a wealth of informative online documents and PDF books that can be downloaded.

The FreeRTOS source code is supplied, but the user is advised to not change anything in the code.

The many FreeRTOS header files are located in the “FreeRTOS library/include’ directory.  The user is urged to search in that directory when any FreeRTOS related API function prototype, data type, ‘#define’ literal constant, or any other FreeRTOS related item




          

      

      

    

  

    
      
          
            
  
Sampling and Filtering Modules

To Be Provided




          

      

      

    

  

    
      
          
            
  
OpenIMU UART Messaging Framework

1. General Settings


The serial port settings are: 1 start bit, 8 data bits, no
parity bit, 1 stop bit, and no flow control. Standard baud rates
supported are: 38400, 57600, 115200, 230400 and 460800.

Common definitions include:

A word is defined to be 2 bytes or 16 bits.

All communications to and from the unit are packets that start with a
single word alternating bit preamble 0x5555. This is the ASCII string
“UU”.

All communication packets end with a single word CRC (2 bytes). CRCs
are calculated on all packet bytes excluding the preamble and CRC
itself. Input packets with incorrect CRCs will be ignored.

All multiple byte values except CRC and packet code are transmitted in Little Endian format
(Least Significant Byte First).

Each complete communication packet must be transmitted to the OpenIMU300xx
inertial system within a 4 second period.




2. Number Formats


Number Format Conventions include:

0x as a prefix to hexadecimal values

single quotes (‘’) to delimit ASCII characters

no prefix or delimiters to specify decimal values.


Note


	All multiple byte number format are transmitted in little-endian format.
E.g., Bytes are transmitted LSB first, followed by lesser significant bytes.


	Bytes in strings are transmitted in left to right string byte order.






The table below defines variable formats:









	ID

	Type

	Size
(bytes)

	Range



	U1

	Unsigned
Char

	1

	0 to 255



	U2

	Unsigned
Short

	2

	0 to 65535



	U4

	Unsigned
Int

	4

	0 to 2^32-1



	U8

	Unsigned
long long

	8

	0 to 2^64-1



	F

	Float
IEEE-754

	4

	1.18^-38
to 3.4^38



	D

	Double
IEEE-754

	8

	2.23^-308
to 1.80^308



	I1

	Signed
Char

	1

	-128 to +127



	I2

	Signed
Short

	2

	-32768 to
32767



	I4

	Signed
Int

	4

	-2^31 to
2^31-1



	I8

	Signed
long long

	8

	-2^63 to
2^63-1



	ST

	String

	N

	ASCII









3. Packet Structure


Below provided description of OpenIMU framework messages. Messages described
the way they occur in serial line. Open IMU framework takes care of wrapping up user
payload and calculating CRC.

3.1 Generic Packet Format

All of the Input and Output packets, except the Ping command, conform to
the following structure:










	0x5555

	
<2-byte

packet code

(U2)>




	
<payload

byte-length

(U1)>




	
<variable

length

payload>




	

<2-byte



CRC (U2)>












3.2 Packet Header

The packet header is always the bit pattern 0x5555.

3.3 Packet Code

The packet code is always two bytes long in unsigned short integer
format. Most input and output packet types for convenience can be
interpreted as a pair of ASCII characters. For example code “aB” will
translate to hex value 0x6142”.

NOTE:



	First character value should be more or equal ‘a’ (0x61)


	Packet code transmitted in Big Endian format







3.4 Payload Length

The payload length is always a one byte unsigned character with a range
of 0-255. The payload length byte is the length (in bytes) of the
<variable length payload> portion of the packet ONLY, and does not
include the CRC.

3.5 Payload

The payload is of variable length based on the packet type.

3.6 16-bit CRC-CCITT

Packets end with a 16-bit CRC-CCITT calculated on the entire packet
excluding the 0x5555 header and the CRC field itself. A discussion of
the 16-bit CRC-CCITT and sample code for implementing the computation of
the CRC is included at the end of this document. This 16-bit CRC
standard is maintained by the International Telecommunication Union
(ITU). The highlights are:

Width = 16 bits

Polynomial 0x1021

Initial value = 0x1D0F

No XOR performed on the final value.

See Appendix A for sample code that implements the 16-bit CRC algorithm.

3.6 NAK Packet

NAK packet sent in response to the unknown or corrupted input message.
NAK packet has next format:










	0x5555

	
0x0000




	
2




	
code of

received

packet or 0




	

<2-byte



CRC (U2)>












4. Messaging Overview


Table below summarizes the messages initially introduced in OpenIMU300xx framework.
New messages can be easily added (please check chapter “Procedure for adding new message”)
Packet codes are assigned mostly using the ASCII mnemonics defined above
and are indicated in the summary table below and in the detailed
sections for each command. The payload byte-length is often related to
other data elements in the packet as defined in the table below. The
referenced variables are defined in the detailed sections following.
Output messages are sent from the OpenIMU Series inertial system to the
user system as a result of user request or a continuous packet output
setting. Interactive messages can be sent from the user system to the OpenIMU
Series inertial system and will result in an associated Reply Message or
NAK message. Note that reply messages typically have the same <2-byte
packet type (U2)> as the input message that evoked it but with a
different payload.





Messages Table








	ASCII

	
Code

(U2)




	
Payload

Length

(U1)




	Function

	Type



	
Interactive

Messages






	pG

	0x7047

	0

	
Ping







	
Input/Reply

Message






	uC

	0x7543

	N
(up to 248)

	
Update

Config

Command/

Response




	
Input/Reply

Message












	uP

	0x7550

	12

	
Update

Parameter

Command/

Response




	
Input/Reply

Message












	uA

	0x7541

	N
(up to 240)

	
Update

All

Command/

Response




	
Input/Reply

Message












	sC

	0x7343

	0

	
Save

Config

Command/

Response




	
Input/Reply

Message












	rD

	0x7244

	0

	
Restore

Defaults

Command/

Response




	
Input/Reply

Message












	sC

	0x7343

	0

	
Save

Config

Command/

Response




	
Input/Reply

Message












	gC

	0x6743

	8

	
Get

Config

Command/

Response




	
Input/Reply

Message












	gP

	0x6750

	4

	
Get

Parameter

Command/

Response




	
Input/Reply

Message












	gA

	0x6741

	0

	
Get

All Params

Command/

Response




	
Input/Reply

Message












	gV

	0x6756

	N

	
Get

Version

Command/

Response




	
Input/Reply

Message












	
Output

Messages






	zT

	0x7a54

	4

	
Counter







	
Output

Message






	z1

	0x7a31

	40

	
Scaled

Sensors

Data




	
Output

Message












5. OpenIMU Interactive Messages


5.1 User Ping Command









	Ping (‘pG’ = 0x7047)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7047

	0

	<CRC (U2)>






The user Ping command has no payload. Sending the Ping command will cause the
unit to send a Ping response with next format:










	Ping (‘pG’ = 0x7047)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7047

	N

	
Unit Model and Serial

Number  <S> (string)




	<CRC (U2)>






The user Ping response will return null-terminated string, containing unit model name
and unit serial number.

5.2 Update Config Command










	(‘uC’ = 0x7543)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7543

	8+8*N

	N Parameters

	<CRC (U2)>






The Update Config command used to update and apply N consecutive user-defined
configuration parameters at a time in unit. Parameter value is 64 bit (8 bytes)
and can have arbitrary type.

Update Config Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number of
consecutive

parameters
to update




	U4

	LSB First



	4

	
Offset of first
parameter in

unit config
structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception – each parameter is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure and also applied to the
system on-the-fly(if desired). If value of one parameter is invalid – all parameters
ignored.
Updated configuration parameters will be active until next unit power cycle or reset.

Update Config command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7543

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.3 Update Parameter Command










	(‘uP’ = 0x7550)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7550

	12

	
	<CRC (U2)>






The Update Parameter command used to update and apply single user-defined
configuration parameter in unit. Parameter value is 64 bit (8 bytes) and can have
arbitrary type.

Update Parameter Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception parameter value is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure and also applied to the
system on-the-fly(if desired). If value of the parameter is invalid – it ignored.
Updated configuration parameter will be active until next unit power cycle or reset.

Update Parameter command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7550

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.4 Update All Command










	(‘uA’ = 0x7541)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7541

	8N

	N (up to 30) parameters

	<CRC (U2)>






The Update All command used  to update/apply up to 30 consecutive user-defined configuration
parameters at a time in unit, starting from first parameter in user configuration
structure. Each parameter has size 8 bytes (64 bit) and can have arbitrary type.

Update All Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	Parameter Value
(first
parameter)

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	… … … … … … … … . .



	N*8

	Parameter Value
(last parameter)

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Upon reception – each parameter is validated (if desired) and if validation passes
parameter gets written into gUserConfiguration structure, starting from first parameter
(offset 0) and also applied to the system on-the-fly(if desired). If value of one parameter
is invalid – all parameters ignored. First two parameters are ignored.
Updated configuration parameters will be active until next unit power cycle or reset.

Update All command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7541

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.5 Save Config Command









	Save Config (‘sc’ = 0x7343)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7343

	0

	<CRC (U2)>






The Save Config command has no payload. Upon reception of “Save Config” command unit will
save current gUnitConfiguration structure into EEPROM and updated parameters will be applied to the
unit all the times upon startup (untill new changes will be made).

Save Config command will have next response in in case of success:









	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7343

	0

	<CRC (U2)>







Note

Save configuration command from serial port works on OpenIMU300ZI. It is not supported by OpenIMU300RI, but one can make permanent changes just by rebuilding the FW with desired default settings.



5.5 Restore Defaults**









	Restore defaults (‘rd’ = 0x7244)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7244

	0

	<CRC (U2)>






The Restore defaults command has no payload. Upon reception of “Restore Defaults” command unit will
save default configuration structure gDefaultUserConfig into EEPROM and updated parameters will be applied to the
unit all the times upon startup (untill new changes will be made).

Restore Defaults command will have next response in case of success:









	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x7244

	0

	<CRC (U2)>






5.6 Get Config Command










	(‘gC’ = 0x6743)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	8

	
	<CRC (U2)>






The Get Config command used to retrieve N consecutive user-defined
configuration parameters at a time from unit. Parameter value is 64 bit (8 bytes)
and can have arbitrary type.

Get Config Payload Format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First






Get Config command will have next response:










	(‘gC’ = 0x6743)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	8+8*N

	N parameters

	<CRC (U2)>






Get Config Response Payload Format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get Config Response Payload Format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6743

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.7 Get All Command









	(‘gA’ = 0x6741)

	
	
	


	Preamble

	Packet Type

	Length

	Termination



	0x5555

	0x6741

	0

	<CRC (U2)>






The Get All command used to retrieve N (up to 30) consecutive user-defined
configuration parameters at a time from unit, starting from first parameter in gUserConfiguration
structure. Parameter value is 64 bit (8 bytes) and can have arbitrary type.

Get All command will have next response:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6741

	8*N

	N parameters

	<CRC (U2)>






Get Config Response Payload Format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Number

Of

consecutive

parameters

to update




	U4

	LSB First



	4

	
Offset of

first

parameter

in unit config

structure




	U4

	LSB First



	8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First



	:

	:

	:

	:



	8+N*8

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get All Response Payload Format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6741

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.8 Get Parameter Command










	(‘gP’ = 0x6750)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	4

	
	<CRC (U2)>






The Get Parameter command used to retrieve one user-defined configuration parameter
from unit gUserConfiguration structure. Parameter value is 64 bit (8 bytes) and
can have arbitrary type.

Get Parameter command payload format









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First






Get Parameter command will have next response:










	(‘gP’ = 0x6750)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	12

	parameter

	<CRC (U2)>






Get Parameter response rayload format in case of success:









	Byte
Offset

	Name

	Format

	Notes



	0

	
Offset of

parameter

in unit config

structure




	U4

	LSB First



	4

	Parameter Value

	
U8 or I8
or F8 or

double or
S8 or A8




	LSB First






Get Parameter response payload format in case of error:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6750

	4

	Error Code (I4)

	<CRC (U2)>






Error code can be: (0) – “Success”, (-3) – “Invalid Payload Size”, (-1) – “Invalid parameter number”,
(-2) – “Invalid parameter value”

5.9 Get User Version Command









	(‘gV’ = 0x6756)

	
	
	


	Preamble

	Packet Code

	Length

	Termination



	0x5555

	0x6756

	0

	<CRC (U2)>






The Get Version command has no payload. Sending the Get Version command will cause the
unit to send a response with next format:










	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x6756

	N

	
User Version String




	<CRC (U2)>






The Get Version response will return null-terminated string, user version. User version string
defined in the UserMessaging.c file.




6. OpenIMU Output messages


Below provided examples of OpenIMU output messages implemented in OpenImu framework.
Users can easily add new messages or discard these examples at their discretion.
Output messages are to be continuously sent out by unit with preconfigured message rate.

6.1 User Test Message

User Test output message has next format:










	(‘zT’ = 0x7a54)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a54

	4

	
	<CRC (U2)>






User Test Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	Counter

	U4

	LSB First






Counter is simple message counter which will increase by 1 with in every consecutive Test message

“6.2 User Sensors Data Message*

User Sensors Data  message has next format:










	(‘z1’ = 0x7a31)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a31

	40

	
	<CRC (U2)>






User Sensors Data Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer at

the moment of

sensors sampling




	U4

	LSB First



	4

	
Acceleration

value for axis X

(in G)




	F4

	LSB First



	8

	
Acceleration

value for axis Y

(in G)




	F4

	LSB First



	12

	
Acceleration

value for axis Z

(in G)




	F4

	LSB First



	16

	
Rotation speed

for axis X (dps)




	F4

	LSB First



	20

	
Rotation speed

for axis Y (dps)




	F4

	LSB First



	24

	
Rotation speed

for axis Z (dps)




	F4

	LSB First



	28

	
Magnetic field

for axis X (G)




	F4

	LSB First



	32

	
Magnetic field

for axis Y (G)




	F4

	LSB First



	36

	
Magnetic field

for axis Z (G)




	F4

	LSB First






6.3 User Arbitrary Data Message

User Arbitrary Data  message has next format:










	(‘z2’ = 0x7a32)

	
	
	
	


	Preamble

	Packet Type

	Length

	Payload

	Termination



	0x5555

	0x7a32

	27

	
	<CRC (U2)>






User Arbitrary Data Message payload has next format:









	Byte
Offset

	Name

	Format

	Notes



	0

	
System Timer at

the moment of

sensors sampling




	U4

	LSB First



	4

	Data of type Byte

	U1

	


	5

	Data of type short

	I2

	LSB First



	7

	Data of type int

	I4

	LSB First



	11

	Data of type int64

	I8

	LSB First



	19

	Data of type double

	D4

	LSB First






6.4 Raw & Scaled Data Message

Factory Raw Data Packet M (Output Packet) & Scaled Sensor Packet M (Output Packet) has the next format, which is defined in the doc download




7 Steps to create your own interactive or output packet in embedded OpenIMU software framework


User packet processing engine located in the file UserMessaging.c.

7.1 To create new interactive packet


	Add new input packet type into the enumerator structure UserInPacketType in the file UserMessaging.h before USR_IN_MAX




typedef enum {
USR_IN_NONE         = 0 ,
USR_IN_PING             ,
USR_IN_UPDATE_CONFIG    ,
USR_IN_UPDATE_PARAM     ,
USR_IN_UPDATE_ALL       ,
USR_IN_SAVE_CONFIG      ,
USR_IN_RESTORE_DEFAULTS ,
USR_IN_GET_CONFIG       ,
USR_IN_GET_PARAM        ,
USR_IN_GET_ALL          ,
USR_IN_GET_VERSION      ,
// add new packet type here, before USR_IN_MAX
USR_IN_MAX              ,
}UserInPacketType;





2. Add new packet type and code into the structure UserInputPackets in the file UserMessaging.c. Packet code consists of
two bytes and can be chosen arbitrary, but first byte SHOULD have value more or equal 0x61.

usr_packet_t userInputPackets[] = {             //
{USR_IN_NONE,               {0,0}},   //  "  "
{USR_IN_PING,               "pG"},
{USR_IN_UPDATE_CONFIG,      "uC"},
{USR_IN_UPDATE_PARAM,       "uP"},
{USR_IN_UPDATE_ALL,         "uA"},
{USR_IN_SAVE_CONFIG,        "sC"},
{USR_IN_RESTORE_DEFAULTS,   "rD"},
{USR_IN_GET_CONFIG,         "gC"},
{USR_IN_GET_PARAM,          "gP"},
{USR_IN_GET_ALL,            "gA"},
{USR_IN_GET_VERSION,        "gV"},
// place new input packet code here, before USR_IN_MAX
{USR_IN_MAX,                {0xff, 0xff}},   //  ""
};





3. Add code which handles input packet into the function HandleUserInputPacket in the file UserMessaging.c . As a part of packet handling
fill up desired response payload (starting from address ptrUcbPacket->payload) and provide response payload length in the parameter
ptrUcbPacket->payloadLength. If no response payload required – provide payload length of 0. The packet code in the response will be
the same as in the command. If erroneous conditions discovered during packet processing – set valid variable to FALSE so system will
respond with NAK packet. Additional diagnostics in arbitrary format can be provided in the response payload (see uP packet example above).

case USR_IN_UPDATE_PARAM:
        UpdateUserParam((userParamPayload*)ptrUcbPacket->payload, &ptrUcbPacket->payloadLength);
        break;






	Done




7.2 To create new output packet


	Add new output packet type into the enumerator structure UserOutPacketType in the file UserMessaging.h




// User input packet codes, change at will
typedef enum {
USR_OUT_NONE  = 0,  // 0
USR_OUT_TEST,       // 1
USR_OUT_DATA1 ,     // 2
USR_OUT_DATA2 ,     // 2
// add new output packet type here, before USR_OUT_MAX
USR_OUT_MAX
}UserOutPacketType;





2. Add new packet type and code into the structure UserOutputPackets in the file UserMessaging.c. Packet code can be chosen arbitrary,
but first byte SHOULD have value more or equal 0x61 and the packet code should be unique among input and output packets.

// packet codes here should be unique -
// should not overlap codes for input packets and system packets
// First byte of Packet code should have value  >= 0x61
usr_packet_t userOutputPackets[] = {
//   Packet Type                Packet Code
{USR_OUT_NONE,              {0x00, 0x00}},
{USR_OUT_TEST,              "zT"},
{USR_OUT_DATA1,             "z1"},
{USR_OUT_DATA2,             "z2"},
// place new type and code here
{USR_OUT_MAX,               {0xff, 0xff}},   //  ""
};





3. Add code which handles input packet into the function HandleUserOutputPacket in the file UserMessaging.c. Fill up desired packet payload
(starting from address payload) and provide response payload length in the parameter payloadLen. If no response payload required – provide payload length of 0.

        case USR_OUT_DATA1:
{
    int n = 0;
    double accels[3];
    double mags[3];
    double rates[3];
    data1_payload_t *pld = (data1_payload_t *)payload;

                pld->timer  = platformGetDacqTime();
    GetAccelData_mPerSecSq(accels);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)accels[i];
    }
    GetRateData_degPerSec(rates);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)rates[i];
    }
    GetMagData_G(mags);
    for (int i = 0; i < 3; i++, n++){
        pld->sensorsData[n] = (float)mags[i];
    }
    *payloadLen = sizeof(data1_payload_t);
}





4. To activate output of the packet use function SetUserPacketType in file UserMessaging.c  and provide desired packet type as a parameter. Or provide output packet
type and packet rate in default user configuration in file UserConfiguration.c. Output of specific packet can also be changed “on-the-fly” by sending to unit
command “uP” with parameter number 3 and desired parameter value. Output packet rate can be changed “on-the-fly ” by sending to unit command “uP” with parameter
number 4 and desired parameter value.

// Default user configuration structure
// Saved into EEPROM of first startup after reloading the code
// or as a result of processing "rD" command
// Do Not remove - just add extra parameters if needed
// Change default settings  if desired
const UserConfigurationStruct gDefaultUserConfig = {
.dataCRC             =  0,
.dataSize            =  sizeof(UserConfigurationStruct),
.userUartBaudRate    =  115200,
.userPacketType      =  "z1",
.userPacketRate      =  50,
.lpfAccelFilterFreq  =  50,
.lpfRateFilterFreq   =  50,
.orientation         =  "+X+Y+Z"
// add default parameter values here, if desired
} ;






	Done










          

      

      

    

  

    
      
          
            
  
OpenIMU SPI Messaging Framework

1. Introduction


OpenIMU supports a SPI interface for data communications as a one of the choices. To enforce SPI interface mode ‘Data Ready’ signal needs to be forced HIGH of left unconnected on system startup. OpenIMU SPI interface signals described here.

OpenIMU operates as a slave device.




2. OpenIMU SPI communication model


OpenIMU has 128 8-bit registers accessible via SPI interface for reading and writing.
The usage of these registers is completely user-defined in time of FW development.
Access to the few registers is implemented in the examples as a reference:


Table 1. SPI registers used in the examples













	
Register Number







	
Access Type

OpenIMU300ZI




	
Access Type

OpenIMU330BI




	Function

	Notes



	4,5   (0x04, 0x5)

	r

	r

	X-Rate

	MSB in reg.4 (Note 1)



	6,7   (0x06, 0x7)

	r

	r

	Y-Rate

	MSB in reg.6 (Note 1)



	8,9   (0x08, 0x9)

	r

	r

	Z-Rate

	MSB in reg.8 (Note 1)



	10,11 (0x0A, 0xB)

	r

	r

	X-Accel

	MSB in reg.10 (Note 2)



	12,13 (0x0C, 0xD)

	r

	r

	Y-Accel

	MSB in reg.12 (Note 2)



	14,15 (0x0E, 0xF)

	r

	r

	Z-Accel

	MSB in reg.14 (Note 2)



	16,17 (0x10, 0x11)

	r

	N/A

	X-MAG

	MSB in reg.16 (Note 3)



	18,19 (0x12, 0x13)

	r

	N/A

	Y-MAG

	MSB in reg.18 (Note 3)



	20,21 (0x14, 0x15)

	r

	N/A

	Z-MAG

	MSB in reg.20 (Note 3)



	22,23 (0x16, 0x17)

	r

	r

	Board-Temp

	MSB in reg.22 (Note 4)



	24,25 (0x18, 0x19)

	r

	r

	Sensor-Temp

	MSB in reg.24 (Note 4)



	50    (0x32 )

	r

	N/A

	Mag Scale Factor

	(TBD)



	55    (0x37 )

	r/w

	r/w

	Drdy Rate

	See p.8



	56    (0x38 )

	r/w

	r/w

	Accel LPF

	See p.7



	61    (0x3D )

	r

	r

	
Burst Read VG







	VG Application
See p.4



	62    (0x3E )

	r

	r

	Burst Read

	See p.4



	61    (0x3F )

	r

	N/A

	
Burst Read MAG







	
IMU Application

See p.4






	70    (0x46 )

	r

	r

	Acel Scale Factor

	see p.13



	71    (0x47 )

	r

	r

	Rate Scale Factor

	see p.14



	72    (0x48,0x49)

	r

	N/A

	MAGX Hard Iron

	MSB in reg.72 (TBD)



	74    (0x4A,0x4B)

	r

	N/A

	MAGY Hard Iron

	MSB in reg.74 (TBD)



	76    (0x4C,0x4D)

	r

	N/A

	MAG SF Soft Iron

	MSB in reg.76 (TBD)



	78    (0x4E,0x4F)

	r

	N/A

	MAG Angle Soft

	MSB in reg.78 (TBD)



	80    (0x50)

	r/w

	N/A

	MAG Align command

	(TBD)



	81    (0x51)

	r

	N/A

	MAG Align status

	(TBD)



	82,83,84,88,89 (0x52
0x53,0x54,0x58,0x59)

	r

	r

	
Unit serial


number






	BCD format



	86, 87 (0x56, 0x57)

	r

	r

	Product ID

	
BCD format




3000 - OpenIMU300

3300 - OpenIMU330




	90,91 (0x5A, 0x5B)

	r

	r

	Master status

	see.p 10



	92,93 (0x5C, 0x5D)

	r

	r

	HW status

	see.p 11



	94,95 (0x5E, 0x5F)

	r

	r

	SW status

	see.p 12



	112   (0x70)

	r

	r/w

	Accel Range

	see.p 13



	113   (0x71)

	r

	r/w

	Rate Range

	see.p 14



	116,117 (0x74,0x75)

	r/w

	r/w

	Unit Orientation

	MSB in reg.78
See p.6



	118 (0x76)

	r/w

	r/w

	Save
Configuration

	See p.9



	120 (0x78)

	r/w

	r/w

	
Rate LPF







	See p.7



	126 (0x7E)

	r

	r

	
HW Version







	


	127 (0x7F)

	r

	r

	
SW Version







	






Note 1: Rate sensors scale is 64 LSB/dps. See p.13

Note 2: Accelerometer sensors scale is 4000 LSB/G. See p.14

Note 3: Magnetometer sensors scale  is 16354 LSB/Gauss.

Note 4: Temperature sensors data conversion:


Temperature (deg C) = Temp_Register_Value * 0.073111172849435 + 31.0










3. OpenIMU SPI Register Read Methodology

SPI master initiates a register read (for example register 0x04) by clocking in the address
followed by 0x00, i.e. 0x0400, via MOSI. This combination is referred to as a read-command.
It is followed by 16 zero-bits to complete the SPI data-transfer cycle.
As the master transmits the read command over MOSI, the OpenIMU transmits information back over MISO.

In this transmission, the first data-word sent by the OpenIMU (as the read-command is sent) consists
of 16-bits of non-applicable data. The subsequent 16-bit message contains information stored inside two consecutive registers (in this case registers 4 (MSB) and 5(LSB)).

Figure 1 illustrates register read over SPI interface:

[image: ../_images/SPI_RreadReg.png]
4. OpenIMU SPI Block Mode Read Methodology

User can implement reading blocks of data with arbitrary length and information. Specific dedicated register address will indicate request specific block of data.

For example, register address 0x3e (62) indicates request for reading data block containing current data from unit sensors.  Next table lists corresponding parameters:



Table 2. Block mode message format











	Parameter Numer

	Size (bytes)

	Desctiption



	Status

	2

	Unit Status
(see.p 10)



	X_Rate

	2

	Rate Sensor output (X)
(64 LSB/deg/s)



	Y_Rate

	2

	Rate Sensor output (Y)
(64 LSB/deg/s)



	Z_Rate

	2

	Rate Sensor output (Z)
(64 LSB/deg/s)



	X_Accel

	2

	Accel Sensor output(X)
(4000LSB/G)



	Y_Accel

	2

	Accel Sensor output(Y)
(4000 LSB/G)



	Z_Accel

	2

	Accel Sensor output(Z)
(4000 LSB/G)



	Temp

	2

	Unit Temperature









Read of data block begins when the master requests a read from specific register address (i.e. 0x3E).
Figure 2 illustrates the read sequence:

[image: ../_images/SPI_ReadBlock.png]
Note: Number of SPI clock pulses should be exactly equal to the length of predefined data packet (in this case – 144 (16 for address 128 for data)) otherwise interface may go out of sync.

For VG_AHRS/INS application examples next block message supported (register 0x3D):



Table 3. Extended VG block mode message format











	Parameter Number

	Size (bytes)

	Description



	Status

	2

	Unit Status
(see p.10)



	X_Rate

	2

	Rate Sensor output (X)
(64 LSB/deg/s)



	Y_Rate

	2

	Rate Sensor output (Y)
(64 LSB/deg/s)



	Z_Rate

	2

	Rate Sensor output (Z)
(64 LSB/deg/s)



	X_Accel

	2

	Accel Sensor output(X)
(4000LSB/G)



	Y_Accel

	2

	Accel Sensor output(Y)
(4000 LSB/G)



	Z_Accel

	2

	Accel Sensor output(Z)
(4000 LSB/G)



	Temp

	2

	Unit Temperature



	Roll

	2

	Unit Roll Angle
(65536/(2*PI))LSB/RAD



	Pitch

	2

	Unit Pitch Angle
(65536/(2*PI))LSB/RAD



	Yaw

	2

	Unit Yaw angle
(65536/(2*PI)|LSB/RAD









For units with built-in magnetometer (OpenIMU330ZI) in some application examples next block message supported (register 0x3F):



Table 4. Extended MAG block mode message format











	Parameter Number

	Size (bytes)

	Description



	Status

	2

	Unit Status
see p.10



	X_Rate

	2

	Rate Sensor output (X)
(64 LSB/deg/s)



	Y_Rate

	2

	Rate Sensor output (Y)
(64 LSB/deg/s)



	Z_Rate

	2

	Rate Sensor output (Z)
(64 LSB/deg/s)



	X_Accel

	2

	Accel Sensor output(X)
(4000LSB/G)



	Y_Accel

	2

	Accel Sensor output(Y)
(4000 LSB/G)



	Z_Accel

	2

	Accel Sensor output(Z)
(4000 LSB/G)



	Temp

	2

	Unit Temperature



	MAG_X

	2

	Mag sensor output (X)
(16384 bits/Gauss)



	MAG_Y

	2

	Mag sensor output (Y)
(16384 bits/Gauss)



	MAG_Z

	2

	Mag sensor output (Z)
(16384 bits/Gauss)









5. OpenIMU SPI Register Write Methodology

The SPI master device can perform write into any register. The unit reaction on write operation is completely defined by the user. By default, corresponding data written without any reaction from unit. Written data can be read back.
Unlike reads, writes are performed one byte at a time.

The following example highlights how write-commands are formed:


	Select the write address of the desired register, for example 0x35


	Change the most-significant bit of the register address to 1 (the write-bit), e.g. 0x35 becomes 0xB5


	Create the write command by appending the write-bit/address combination with the value to be written to the register (for example 0x04) - 0xB504




Figure 3 illustrates the register write over SPI:

[image: ../_images/SPI_WriteReg.png]
6. OpenIMU Orientation programming

OpenIMU Orientation can be changed dynamically by writing corresponding values into the SPI registers 0x74 (MSB) and 0x75 (LSB). Data into register 0x74 should be written first.
There are 24 possible orientation configurations (see below). Setting/Writing the field to anything else has no effect.



Table 5. OpenIMU Orientation field values












	Registers
0x74/0x75

	X

	Y

	Z



	0x0000

	+Ux

	+Uy

	+Uz



	0x0009

	-Ux

	-Uy

	+Uz



	0x0023

	-Uy

	+Ux

	+Uz



	0x002A

	+Uy

	-Ux

	+Uz



	0x0048

	+Ux

	-Uy

	-Uz



	0x0062

	+Uy

	+Ux

	-Uz



	0x006B

	-Uy

	-Ux

	-Uz



	0x0085

	-Uz

	+Uy

	+Ux



	0x008C

	+Uz

	-Uy

	+Ux



	0x0092

	+Uy

	+Uz

	+Ux



	0x009B

	-Uy

	-Uz

	+Ux



	0x0041

	-Ux

	+Uy

	-Uz



	0x00C4

	+Uz

	+Uy

	-Ux



	0x00CD

	-Uz

	-Uy

	-Ux



	0x00D3

	-Uy

	+Uz

	-Ux



	0x00DA

	+Uy

	-Uz

	-Ux



	0x0111

	-Ux

	+Uz

	+Uy



	0x0118

	+Ux

	-Uz

	+Uy



	0x0124

	+Uz

	+Ux

	+Uy



	0x012D

	-Uz

	-Ux

	+Uy



	0x0150

	+Ux

	+Uz

	-Uy



	0x0159

	-Ux

	-Uz

	-Uy



	0x0165

	-Uz

	+Ux

	-Uy



	0x016C

	+Uz

	-Ux

	-Uy









The default factory axis setting for the OpenIMU300ZI for SPI interface is (-Uy, -Ux, -Uz) which defines the connector pointing in the +Z direction and the +X direction going from the connector through the serial number label at the end of the unit. The user axis set (X, Y, Z) as defined by this field setting is depicted in figure below:
Figure 4 illustrates unit orientation:

[image: ../_images/image62.png]
7. OpenIMU Digital Low Pass Filter selection

OpenIMU low pass filters can be changed dynamically for accelerometers and rate sensors writing corresponding values into the SPI registers 0x38 (for accelerometers) and 0x78 (for rate sensors).
There are 11 possible low pass filter options (see below). Setting/Writing the field to anything else has no effect.



Table 6. OpenIMU Digital filter choices











	
Value

Hex (dec)




	Cutoff Frequency

	Filter Type



	0x00 (0)

	N/A

	Unfiltered



	0x03 (3)

	40 Hz

	Bartlett



	0x04 (4)

	20 Hz

	Bartlett



	0x05 (5)

	10 Hz

	Bartlett



	0x06 (6)

	5 Hz

	Bartlett



	0x30 (48)

	50 Hz

	Butterworth



	0x40 (64)

	20 Hz

	Butterworth



	0x50 (80)

	10 Hz

	Butterworth



	0x60 (96)

	5 Hz

	Butterworth









8. OpenIMU DATA READY signal rate

OpenIMU DATA READY signal rate can be changed dynamically by writing corresponding values into the SPI register 0x37.
There are 10 possible options (see below). Setting/Writing the field to anything else has no effect.



Table 7. OpenIMU SPI ODR Rate choices










	
Value

Hex (dec)




	
Data Ready signal


rate (Hz)








	0x00 (0)

	0



	0x01 (1)

	200 Hz (default)



	0x02 (2)

	100 Hz



	0x03 (3)

	50 Hz



	0x04 (4)

	25 Hz



	0x05 (5)

	20 Hz



	0x06 (6)

	10 Hz



	0x07 (7)

	5 Hz



	0x08 (8)

	4  Hz



	0x09 (9)

	2 Hz









9. Saving unit configuration

Some configuration parameters can be saved in EEPROM and become active upon next unit restart (reset or power cycle).
To save all parameters value 0 or 0xFF needs to be written to the register 0x76. It’s possible to save only specific parameter
writing corresponding register address into register 0x76. Valid addresses are: 0x37, 0x38, 0x70, 0x71, 0x74, 0x75, 0x78.

10. Master Status Register

Master status register reflects current status of the unit. Next status indication bits are available:



Table 8. Master Status Register










	Bit

	Status



	0

	Master Fail (1 - error)



	1

	HW Error  (1 - error)



	2

	Reserved



	3

	SW Error  (1 - error)



	4  - 11

	Reserved



	12

	Sensor Status (1 - error)



	13 - 15

	Reserved









11. HW Status Register

HW status register reflects current status of the unit. Next status indication bits are available:



Table 9. HW Status Status Register










	Bit

	Status



	0 - 1

	Reserved



	2

	Sensor Error (1 - error)



	3

	Mag Error (1 - error)



	4

	Accel Error (1 - error)



	5

	Gyro Error (1 - error)



	6 - 15

	Reserved









12. SW Status Register

SW status register reflects current status of the unit. Next status indication bits are available:



Table 10. SW Status Status Register










	Bit

	Status



	0

	Algorithm Error (1 - error)



	1

	Data Error (1 - error)



	2

	Cal CRC Error (1 - error)



	3 - 15

	Reserved









14. Accelerometer sensors scale factors and range

Next accelerometer scale factors and ranges are applicable:



Table 11. Accelerometer sensors scale factors and ranges












	Unit

	Range & scale factor

	Value in register 0x70

	Value in register 0x46



	OpenIMU300ZI

	8G , 4000 LSB/G

	8  (r)

	4 (r)



	OpenIMU330BI

	8G , 4000 LSB/G

	8  (r/w)

	4 (r)



	OpenIMU330BI

	16G , 2000 LSB/G

	16 (r/w)

	2 (r)









15. Rate sensors scale factors and range

Next rate sensors scale factors and ranges are applicable:



Table 11. Rate sensors scale factors and ranges












	Unit

	Range & scale factor

	Value in register 0x71

	Value in register 0x47



	OpenIMU300ZI

	500 dps, 64 LSB/dps

	8  (r)

	64 (r)



	OpenIMU330BI

	500 dps, 64 LSB/dps

	8  (r/w)

	64 (r)



	OpenIMU330BI

	1000 dps, 32 LSB/dps

	16 (r/w)

	32 (r)



	OpenIMU330BI

	2000 dps, 16 LSB/dps

	32 (r/w)

	16 (r)









16. Suggested Operation

The following operational procedure and timing specifications should be adhered to while communicating
with the OpenIMU300/OpenIMU330 via SPI interface to ensure proper system operation.  These points are further highlighted later in this section.

Startup Timing


The following timing applies at system startup (Figure 4):


	During system setup, the OpenIMU should be held in reset (nRST line held low) until the SPI master is configured and the system is ready to begin communications with the OpenIMU


	After releasing the reset line, the OpenIMU requires about 250-500 msec (tSystem Delay) before the system is ready for use


	Data best to be read from the OpenIMU right after falling edge of DATA REady signal. But at if readings are not synced to DATA READY signal -  the latest available data sample
sample will be provided.







Figure 5 illustrates OpenIMU startup timings:

[image: ../_images/SPI_Startup.png]
SPI Timings

The timing requirements for the SPI interface are listed in Table 12 and illustrated in Figure  and Figure.
In addition, the following operational constraints apply to the SPI communications:





	The unit operates with CPOL = 1 (polarity) and CPHA = 1 (phase)


	Data is transmitted 16-bits words, Most Significant Bit (MSB) first







Table 12. SPI Timing Requirements













	
Parameter







	
Description







	
Value for

OpenIMU300ZI




	
Value for

OpenIMU330BI




	Units



	
fCL




	SPI clock frequency

	1

	1.2

	MHz



	
tDELAY







	
Time between successive

clock cycles




	9 (min)

	16

	uSec



	
tSU,NSS







	
nSS setup time prior to

clocking data




	133

	133

	nSec



	
th,NS







	
nSS hold time following


clock signal






	100

	100

	nSec



	
tV,MISO










	
Time after falling edge

of previous clock-edge

that MISO databit is invalid




	25

	25

	nSec



	
tSU,MOSI







	
Data input setup time

prior to rising edge of clock




	25

	25

	nSec



	
th,MOSI







	
Data input hold time following

rising edge of clock




	8

	8

	nSec









Figure 6 illustrates OpenIMU SPI bus timings:

[image: ../_images/SPI_Timings.png]



          

      

      

    

  

    
      
          
            
  
Settings Modules

Configuration parameters in EEPROM


OpenIMU software framework provides possibility for user to store arbitrary configuration parameters
in nonvolatile EEPROM. These parameters will be validated and applied to system upon reset or power-up.
Parameters which passed validation will override default factory settings.
User EEPROM has size 16KB. Each parameter in user EEPROM has size 8 bytes (64-bit word), so user EEPROM
can contain up to 2K parameters. If desired one can use few consecutive parameters to store arbitrary
value or data structure. One parameter is good for a value of double or long long type. Also it can be
considered as 8 bytes of arbitrary data (string or array). There are few pre-allocated recommended
parameters which can be useful while working with OpenIMU software framework. Initial definition of
parameters structure located in file UserConfiguration.h. New arbitrary parameters are welcome.

/// User defined configuration structure
///Please notice, that parameters are 64 bit to accommodate double types as well as string or byte array types






	typedef struct {

	uint64_t           dataCRC;             /// CRC of user configuration structure CRC-16
uint64_t           dataSize;            /// Size of the user configuration structure


	int64_t            userUartBaudRate;    /// baud rate of user UART, bps.

	/// valid options are:
/// 4800
/// 9600
/// 19200
/// 38400
/// 57600
/// 115200
/// 230400
/// 460800



	uint8_t            userPacketType[8];   /// User packet to be continuously sent by unit

	/// Packet types defined in structure UserOutPacketType
/// in file UserMessaging.h



	int64_t            userPacketRate;      /// Packet rate for continuously output packet, Hz.

	/// Valid settings are: 0 ,2, 5, 10, 20, 25, 50, 100, 200





int64_t            lpfAccelFilterFreq;  /// built-in lpf filter cutoff frequency selection for accelerometers
int64_t            lpfRateFilterFreq;   /// built-in lpf filter cutoff frequency selection for rate sensors


/// Options are:
/// 0  -  Filter turned off
/// 50 -  Butterworth LPF 50HZ
/// 20 -  Butterworth LPF 20HZ
/// 10 -  Butterworth LPF 10HZ
/// 05 -  Butterworth LPF 5HZ
/// 02 -  Butterworth LPF 2HZ
/// 25 -  Butterworth LPF 25HZ
/// 40 -  Butterworth LPF 40HZ





	uint8_t           orientation[8];

	/// unit orientation as string
/// “SFSRSD”
///  Where S is sign (+ or -)
///  F - forward axis (X or Y or Z)
///  R - right axis (X or Y or Z)
///  D - down axis (X or Y or Z)
///  For example “+X+Y+Z”





//***********************************************************************************
// here is the border between arbitrary parameters and platform configuration parameters
//***********************************************************************************

// place new arbitrary configuration parameters here
// parameter size should even to 8 bytes
// Add parameter offset in UserConfigParamOffset structure if validation or
// special processing required





} UserConfigurationStruct;




Default configuration


Default system parameters reside in the gDefaultUserConfig structure in file UserConfiguration.c.
They are becoming active each time new application image is loaded to the unit or upon reception of the “rD” command.




Mapping different values into 64-bit parameter


Below provided recommended mapping of the values of different types into 64-bit parameter.
The mapping though can be arbitrary and in that case should be processed accordingly.


	Mapping of 4-byte integer into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	MSB

	0

	0

	0

	0











	Mapping of 2-byte integer into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	MSB

	0

	0

	0

	0

	0

	0











	Mapping of 4-byte floating point value into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	MSB

	0

	0

	0

	0











	Mapping of 8-byte double value into 64-bit parameter (value is in Little Endian format)














	0

	1

	2

	3

	4

	5

	6

	7



	LSB

	
	
	
	
	
	
	MSB











	Mapping byte array or string into 64-bit parameter




Byte (character) indexes match offset in the 64-bit parameter














	0

	1

	2

	3

	4

	5

	6

	7









Adding new parameter

One can arbitrary add new configuration parameters. The steps are:


	Add required parameter into the UserConfigurationStruct in the file UserConfiguration.h after system parameters “border” (see above).


	Add new configuration parameter enumerator into UserConfigParamOffset in the file UserConfiguration.h after USER_LAST_SYSTEM_PARAM.


	Add default value of new parameter into structure gDefaultUserConfig in file UserConfiguration.c (if desired)


	Add validation of new parameter into function UpdateUserParameter (if desired) or explicitly use parameter at your discretion







Changing configuration parameters


Configuration parameters can be changed any time by sending specific commands (messages) to the unit ((“uP” “uA” “uC”).
Upon reception of corresponding message parameters are validated (if desired), placed into gUserConfiguration structure
and applied to the unit (if desired). See section Messaging Modules for details. Updated parameters will last until unit
reset or power cycle.




Retrieving configuration parameters.


Configuration parameters can be read from unit any time by sending commands “gC” “gP” or “gA” (see messaging-modules).




Saving configuration parameters


If desired, updated parameters can be saved into EEPROM and will be permanently active until changed. It can be achieved by sending “sC”
command to the unit. Upon reception of this command gUserConfiguration structure saved into EEPROM.




Restoring default configuration


If desired, default configuration can be restored and saved into EEPROM. It can be achieved by sending command “rD” to the unit.







          

      

      

    

  

    
      
          
            
  
Tutorial APP

A simple static tilt sensor demo is provided here to show how to add your own algorithm and output algorithm results.

OpenIMU provides a user-friendly interface to add your own algorithms. To do that, the user need to get sensor data, run the algorithm and output algorithm results. All interfaces related to these operations are handled in src/dataProcessingAndPresentation.c. And all user codes implementing the algorithms and results packaging are located in src/user/ directory.


Get algorithm input

The platform provides APIs to access all available sensor data, as shown in the following table.







	Sensors

	Get sensor data API





	Accelerometer

	void  GetAccelsData(double *data)



	Gyroscope

	void  GetRatesData(double *data)



	Magnetometer

	void  GetMagsData(double *data)



	GPS

	void  GetGPSData(gpsDataStruct_t *data)



	Accelerometer temperature

	void  GetAccelsTempData(double *temps)



	Gyroscope temperature

	void  GetRatesTempData(double *temps)



	Board temperature

	void  GetBoardTempData(double *temp)






Usually, the accelerometer and gyroscope data are already temperature-calibrated.



Run the algorithm

A user defined algorithm should provide its main procedure as:

void *RunUserNavAlgorithm(double *accels, double *rates, ……, int dacqRate)





where accels and rates are pointers to corresponding sensor measurements, and dacqRate is the sensor sampling rate.

This procedure is implemented in src/user/userAlgorithm.c as follows:

void *RunUserNavAlgorithm(double *accels, double *rates, double *mags,
                          gpsDataStruct_t *gps, int dacqRate)
{

   //---------------------------get accel data---------------------
   float a[3]; // accel of this step
   a[0] = accels[0];
   a[1] = accels[1];
   a[2] = accels[2];

   //-----------------------calculate euler angles------------------
   results[2] = a[0];
   results[3] = a[1];
   results[4] = a[2];
   float accel_norm = sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
   a[0] /= accel_norm;
   a[1] /= accel_norm;
   a[2] /= accel_norm;
   results[0] = asin(a[0]) * R2D;
   results[1] = atan2(-a[1], -a[2]) * R2D;

   //--------------------------return results-----------------------
   return &results;
}





It just gets the accelerometer measurement, normalizes it, calculates pitch and roll angles, and returns the results. I keep all the input parameters here. Indeed, I need only accels. The user could remove unused parameters in your algorithm.

results is a global variable declared as

// algorithm results, [pitch roll ax ay az], in units of deg and g
static float results[5];





and R2D is a macro converting radian to degree:

#define R2D 57.2957795130823





User may also need to implement an algorithm initialization procedure. It is not necessary in this demo, but will be shown here.

void InitUserAlgorithm()
{
   // place additional required initialization here
   // initialize sample rate and period
   results[0] = 0.0;
   results[1] = 0.0;
}





Now, a simple user-fined algorithm is done. The framework will automatically call InitUserAlgorithm at the initialization stage, and periodically call RunUserNavAlgorithm to run the user-defined algorithm and get results.



Output results via debug UART

This section shows how to use the debug UART (default baud rate is 38400) on the EVB to output algorithm results. The user could also output other information the user are interested in.

To use the debug UART, the user needs to include debug.h. For example, I want to output algorithm results after the algorithm is called in dataProcessingAndPresentation.c.


	include the header file in dataProcessingAndPresentation.c.




#include "debug.h"






	output algorithm results. The results are converted to plain text and then transmitted via the debug UART. The user can also choose to encode the results per user requirements.




// Output results via debug UART. Downsampled by osr due to limited UART bandwidth
static int out_cntr = 0;
int osr = 8;
out_cntr++;
if(out_cntr==osr)
{
    out_cntr = 0;
    // generate output string from results
    float *tlt = (float*)results;
    char buffer[128];
    sprintf(buffer,
            "pitch:%.3f\troll:%.3f\tax:%.3f\tay:%.3f\taz:%.3f\n",
            tlt[0], tlt[1], tlt[2], tlt[3], tlt[4]);
    // output to debug UART
    DebugPrintString(buffer);
}





Compile the project, upload the firmware, and the user can get result via debug UART.



Implementing user-defined packets via UART

The debug UART is mainly intended for debug usage. The user may want to output algorithm results via the interface UART (default baud rate is 57600) on the EVB. OpenIMU provides an easy-to-use framework for the user to define your own packets. User-defined packets are declared and implemented in UserMessaging.h and UserMessaging.c.


	Add your packet code in UserMessaging.h.




I added a USR_OUT_TLT packet as an example.

// User input packet codes, change at will
typedef enum {
   USR_OUT_NONE  = 0,  // 0
   USR_OUT_TEST,       // 1
   USR_OUT_DATA1 ,     // 2
   USR_OUT_TLT,        // 3
// place output packet definitions here
   USR_OUT_MAX
}UserOutPacketType;






	Add encoding procedure in UserMessaging.c.




User defined packets are encoded by this procedure:

BOOL HandleUserOutputPacket(uint8_t *payload, uint8_t *payloadLen)





After I added my encoding codes, this procedure is as follows.

BOOL HandleUserOutputPacket(uint8_t *payload, uint8_t *payloadLen)
{
   static uint32_t _testVal = 0;
   BOOL ret = TRUE;

       switch (_outputPacketType) {
       case USR_OUT_TEST:
           {  uint32_t *testParam = (uint32_t*)(payload);
            *payloadLen = USR_OUT_TEST_PAYLOAD_LEN;
            *testParam  = _testVal++;
           }
           break;
       case USR_OUT_DATA1:
           {   int n = 0;
               double accels[3];
               double mags[3];
               double rates[3];
               float *sensorData = (float*)(payload);
               *payloadLen = USR_OUT_DATA1_PAYLOAD_LEN;
               GetAccelsData(accels);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)accels[i];
               }
               GetRatesData(rates);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)rates[i];
               }
               GetMagsData(mags);
               for (int i = 0; i < 3; i++, n++){
                   sensorData[n] = (float)mags[i];
               }
           }
           break;
       // place additional user packet preparing calls here
       // case USR_OUT_XXXX:
       //      *payloadLen = YYYY; // total user payload length, including user packet type
       //      payload[0]  = ZZZZ; // user packet type
       //      prepare dada here
       //      break;
       case USR_OUT_TLT:
           {
               if ( tlt == NULL )
               {
                   *payloadLen = 0;
                   ret = FALSE;
               }
               else
               {
                   // get resutls
                   *payloadLen = sprintf((char*)payload,
                           "pitch:%.3f\troll:%.3f\tax:%.3f\tay:%.3f\taz:%.3f\n",
                           tlt[0], tlt[1], tlt[2], tlt[3], tlt[4]);
               }
           }
           break;

       default:
            *payloadLen = 0;
            ret         = FALSE;
            break;      /// unknown user packet, will send error in response
       }

       return ret;
}





This procedure will be called at the defined rate by the framework.

The framework default outputs calibrated IMU sensor data. To output your own packets, the user should tell the framework the packet code of your packet, and then feed the algorithm results to the encoding procedure we just implemented above.


	Register the user-defined packet in the framework.




This can be done by calling setOutputPacketCode when initializing user-defined algorithm in dataProcessingAndPresentation.c. To use setOutputPacketCode, the user need

#include "SystemConfiguration.h"





and then call it in

void initUserDataProcessingEngine()
{
   InitUserDataStructures();    // default implementation located in file UserData.c
   InitUserFilters();           // default implementation located in file UserFilters.c
   InitUserAlgorithm();         // default implementation located in file user_algorithm.c
   setOutputPacketCode(0x7A32);    // set output packet to user defined packets
}





In this way, the default packet will be replaced by the user-defined packet.


	Feed algorithm results to the encoding procedure.




In dataProcessingAndPresentation.c, after calling the user-defined algorithm, the framework will call

WriteResultsIntoOutputStream(results) ;   // default implementation located in file file UserMessaging.c





to feed results to UserMessaging.c. WriteResultsIntoOutputStream is implemented like this:

void WriteResultsIntoOutputStream(void *results)
{
   //  implement specific data processing/saving here
   tlt = (float*)results;
}





where tlt is a global variable declared as

static float *tlt;  // pointer to algorithm results





Now, compile the project, upload the firmware, and the user can get results via the interface UART.





          

      

      

    

  

    
      
          
            
  
CAN J1939 Messaging

CAN J1939 Example Application For OpenIMU330RI


	The example can be used as is or customized to suit the customer’s system requirements.


	The SAE J1939 standards document set specifies the requirements for systems based on J1939 messaging.
The SAE site provides a full list of the J1939 standard document set - Link [https://www.sae.org/standardsdev/groundvehicle/j1939a.htm]


	In particular:


	Section 3 of the SAE J1939 standards document provides the high-level technical requirements
for systems that use J1939 messaging.


	Section 5 of the SAE J1939-21 standards document provides the technical requirements
for J1939 data link layer for all SAE J1939 applications.


	The license for using an SAE standards document do not allow distribution of the documents.
SAE J1939 documents can be purchased online at the IHS Standards Store -
Link [https://global.ihs.com/search_res.cfm?&rid=Z56&mid=SAE&input_doc_number=J1939&input_doc_title=&sort=RELEVANCE]


	There are many J1939 related documents available that can be freely distributed.  We provide two such documents here:


	Vector Informatik GmbH provides a document which is a good introduction to
J1939 download link.


	Kvaser provides a J1939 Overview document - download link.













Note

If you use any links here, user your browser back button to return



The following pages describe the CAN J1939 Example Application Details:


	VSCode project for the J1939 CAN Example Application


	Application Dataflow and Synchronization diagram


	Examples of the J1939 CAN messages implemented in the application.










          

      

      

    

  

    
      
          
            
  
VSCode project for the J1939 CAN IMU Example Application

The IMU project for OpenIMU300RI is the example which implements basic IMU functionality and transmits calibrated sensors data over CAN bus using J1939 protocol.


	The most important files are found in the bottom level ‘include’, ‘include/API’, ‘lib/J1939/include’, ‘lib/J1939/src’, ‘src’, and  ‘src/user’ directories.


	These directories provide the user visible and modifiable files, including the example application code and the
header files that provide the function prototypes for the user and library code and critical definitions.


	The directory structure and files are shown in the following screen capture from VSCode.





[image: ../../_images/OpenIMU300RI-can_J1939_Project.png]

Base folder from VSCode CAN J1939 Workspace






          

      

      

    

  

    
      
          
            
  
Example J1939 Application Diagrams

The following diagrams illustrate:


	The typical data processing flow in OpenIMU300RI applications





Note

An internal timer, set to provide a 200Hz tick, provides the basic timing
synchronization for all task functions.




[image: ../../_images/OpenIMU300RI_typical_data_flow.png]

J1939 Example Application data processing and events scheduling






          

      

      

    

  

    
      
          
            
  
CAN J1939 Messages

In next chapter provided description of the J1939 messages used in OpenIMU300RI application examples.
Users can keep the implemented messages as is, modify them, or add new messages.

The following message categories are used:


Requests


Set Requests. Set requests are used by Electronic Control Units (ECUs) to configure the OpenIMU300RI on the network.

Get Requests. Get requests are used for requesting information from the OpenIMU300RI.  If the request is for the OpenIMU300RI, it will build and send a response packet to the requesting node.




Data Packets


Data packets are broadcast periodic messages with controllable rates, usually from 0 Hz (quiet mode) to 100Hz. The types of transmitted by OpenIMU300RI messages can be controlled by Set Requests.
Also data packets can be arbitrary requested from OpenIMU by external ECUs using Get Requests.













          

      

      

    

  

    
      
          
            
  
CAN J1939 Set Request Messages




Set Commands

The following Set requests have been implemented in J1939 based application examples.
Users can modify provided requests and/or implement their own unique commands.


Set Commands









	Request

	
PF

(dec)







	
PS

(dec)







	
PGN










	
Payload

Length

(bytes)




	Purpose



	Save Configuration

	255

	81

	65361

	3

	
Save all configuration

data to non-volatile memory






	Reset Algorithm

	255

	80

	65360

	3

	Reset algorithm to initial conditions



	Mag Alignment

	255

	94

	65374

	2

	Mag alignment and status request



	Set Packet Rate Divider

	255

	85

	65365

	2

	
Set rate dividers to increase/decrease

rate packets are set






	Set Data Packet Type(s)

	255

	86

	65366

	2

	
Select packet types to be sent

periodically






	
Set Digital Filters

Cutoff Frequencies




	255

	87

	65367

	3

	
Set LPF cutoff frequency for rate

sensors and accelerometers






	Set Orientation

	255

	88

	65368

	3

	Set unit orientation



	Set Lever Arm (TBD)

	255

	95

	65375

	8

	Set unit Lever Arm (where applicable)



	
Set Bank of PS

Numbers for Bank0




	255

	240

	65520

	8

	
Reconfigure PS numbers for set

requests






	
Set Bank of PS

Numbers for Bank1




	255

	241

	65521

	8

	
Reconfigure PS numbers for set

requests










Note

PS values for all but the “Set Bank of PS Numbers for Bank0/Bank1” Set Commands can be changed by
the the commands “Set Bank of PS Numbers” (see below). Updated values can be saved in nonvolatile memory and will be active upon
following system restart/power-up. Provided in the table PS values are default values.



Save Configuration


The next table provides the descriptions of the payload fields of the
command and response messages.


Save Configuration Request/Response Payload Fields





	Byte

	Description/Values



	0

	Type: 0 = Request, 1 = Response



	1

	Destination Address



	2

	Response: 0 = Fail, 1 = Succeed









Reset Algorithm


The following table provides the descriptions of the payload fields of the
command and response messages.


Reset Algorithm Request/Response Payload Fields





	Byte

	Description/Values



	0

	Type: 0 = Request, 1 = Response



	1

	Destination Address



	2

	Response: 0 = Fail, 1 = Succeed









Mag Alignment (INS Application Example)


The following tables provides the descriptions of the payload fields of the
command and response messages.


Mag Alignment Request Payload Fields





	Byte

	Description/Values



	0

	Destination Address



	1

	
Commands:

0 - Status Request

1 - Start Alignment

5 - Confirm and Save










Payload Fields of 64 bit Response






	Bits

	Description

	Value



	
bits 0:7







	
Command







	
0 - Status request,

1 - Start alignment






	
bit  8:15










	
Alignment State










	
0  - Idle

12 - Alignment in process

11, 13 - Data Collection complete






	
bit  16:27




	
Estimated Hard Iron X Bias, Gauss




	
-8 G to +8 G , scale 1/256 G/bit, offset -8G






	
bits 28:39




	
Estimated Hard ron Y Bias, Gauss




	
-8 G to +8 G , scale 1/256 G/bit, offset -8G






	
bits 40:49




	
Estimated Soft Iron Ratio




	
0 to 1   1/1024 per Lsb






	
bits 50:63




	
Estimated Soft Iron Angle




	
-3.14 to 3.14 RAD, scale 0.0015339, offset -3.14159












Set Packet Rate Divider


The following table provides the values of the packet rate divider response payload


Set Packet Rate Divider Request/Response Payload Fields







	Byte

	Description

	Byte Value



	0

	
Destination

Address




	Unique



	1

	Packet
Divider
Value

	
Byte Value -
Packet Broadcast Rate (Hz)

0  - Quiet Mode - no broadcast

1  - 100 (default)

2  - 50

4  - 25

5  - 20

10 (0x0a) - 10

20 (0x14) -  5

25 (0x19) -  4

50 (0x32) -  2












Set Periodic Data Packet Type(s)


The following table provides the Set Data Packet Type(s) payload. Each bit in the request payload enables specific data packet for periodic transmission.
Any combination of data packets can be chosen.


Set Data Packet Type(s) Field






	Byte

	Description

	Byte Value



	0

	Destination
Address

	Unique



	1

	
Selected Data

Packet Type(s)

Bitmask (LSB)










	
Data Packet Type(s) Bitmask:

Bit 0 - SSI2

Bit 1 - Angular Rate

Bit 2 - Acceleration

Bit 3 - Magnetometer






	2

	
Selected Data

Packet Type(s)

Bitmask (MSB)




	
Reserved


















Set Digital Filter Cutoff Frequencies


The following table provides descriptions of the request payload


Digital Filter Cutoff Frequencies Request Payload






	
Payload

Byte




	Description/Values

	Values



	0

	Destination Address

	Unique



	1

	
Cutoff Frequencies (Hz) for

Angular Rate Sensors




	0, 2, 5, 10, 25, 40, or 50



	2

	
Cutoff Frequencies (Hz) for

Accelerometer Sensors




	0, 2, 5, 10, 25, 40, or 50









Set Orientation


The following table shows the payload layout


Set Orientation Payload Layout






	Byte

	Meaning

	Value



	0

	Destination Address

	Unique



	1

	Orientation Value (MSB)

	
see table below






	2

	Orientation VAlue (LSB)

	
see table below









The following table provides the orientation values and meanings:


Set Orientation Field Descriptions







	
Orientation

Value




	X/Y/Z Axis

	
Orientation

Value(cont)




	X/Y/Z Axis



	0x0000

	+Ux +Uy +Uz (default)

	0x00C4

	+Uz +Uy -Ux



	0x0009

	-Ux -Uy +Uz

	0x00CD

	-Uz -Uy -Ux



	0x0023

	-Uy +Ux +Uz

	0x00D3

	-Uy +Uz -Ux



	0x002A

	+Uy -Ux +Uz

	0x00DA

	+Uy -Uz -Ux



	0x0041

	-Ux +Uy -Uz

	0x0111

	-Ux +Uz +Uy



	0x0048

	+Ux -Uy -Uz

	0x0118

	+Ux -Uz +Uy



	0x0062

	+Uy +Ux -Uz

	0x0124

	+Uz +Ux +Uy



	0x006B

	-Uy -Ux -Uz

	0x012D

	-Uz -Ux +Uy



	0x0085

	-Uz +Uy +Ux

	0x0150

	+Ux +Uz -Uy



	0x008C

	+Uz -Uy +Ux

	0x0159

	-Ux -Uz -Uy



	0x0092

	+Uy +Uz +Ux

	0x0165

	-Uz +Ux -Uy



	0x009B

	-Uy -Uz +Ux

	0x016C

	+Uz -Ux -Uy









Set Lever Arm (TBD)


The following table shows the payload layout





Set Lever Arm payload





	Byte

	Description



	0

	Destination Address



	1

	reserved



	2

	Wheel Distance Value (LSB), mm



	3

	Wheel Distance Value (MSB), mm



	4

	Lever Arm Bx Value (LSB), mm



	5

	Lever Arm Bx Value (MSB), mm



	6

	Lever Arm By Value (LSB), mm



	7

	Lever Arm By Value (MSB), mm






Set Bank of PS Numbers


The following tables provide descriptions of the payload for Bank0 and Bank1 set commands


Set Bank of PS Numbers for Bank0 Payload





	Byte

	Parameters



	0

	Destination Address



	1

	Reset Algorithm PS number



	2

	Save Configuration PS number



	3

	Status Request  PS number



	4

	Mag Align Command  PS number



	5-7

	Reserved







Set Bank of PS Numbers for Bank1 Payload





	Byte

	Parameters



	0

	Destination Address



	1

	Set Packet Rate PS number



	2

	Set Packet Type(s) PS number



	3

	Set Digital Filer Cutoff Frequencies PS number



	4

	Set Orientation PS Number



	5

	Set User Behavior PS Number



	6

	Set Lever Arm PS Number



	7

	Reserved












          

      

      

    

  

    
      
          
            
  
CAN J1939 Get Request Messages


Contents


	Get Requests


	Responses to Get Requests










Get Requests

Get requests are used by other ECUs in the network
to retrieve information from the OpenIMU300RI.  All Get requests are formed as a
Request message as specified earlier.
The format and content of the Request message has next format:

Extended header:



PF      : 234,

PS      : 255,

DLC     : 3,

Priority: 6,

PGN     : 60159.







Request Payload





	Byte

	Description



	0

	N/A



	1

	PF of requested parameter



	2

	PS of requested parameter






In table below provided list of the parameters which can be requested from ECU, including their PF, PS and payload length of response messages


List of ECU parameters available for Requests







	Parameter

	
PF

(dec)







	
PS

(dec)

(See note)




	
Payload
Length
(bytes)






	Software Version

	254

	218

	5



	ECU ID

	253

	197

	8



	Packet Rate

	255

	85

	2



	Packet Type

	255

	86

	3



	Digital Cutoff Frequency

	255

	87

	3



	Orientation

	255

	88

	3



	Lever Arm(TBD)

	255

	95

	8







Note


	Provided PS values for all but the Get Software Version and Get ECU ID can be changed by the
“Set Bank of PS Numbers for Bank1” command.  The given values are the default values.


	In responses values of PF and PS field in extended headers have the same PF+PS values as requested.








Responses to Get Requests

The following table describe the payloads for responses to Get Requests


Software Version Response Payload





	Byte

	Description



	0

	Major Version Number



	1

	Minor Version Number



	2

	Patch Number



	3

	Stage Number



	4

	Build Number







ECU ID 64 Bit Response Payload





	Bits

	Contents



	
bits 0

bit  1:3

bit  4:7

bits 8:14

bits 15

bits 16:23

bits 24:28

bits 29:31

bits 32:42

bits 43:63




	
Arbitrary Address

Industry Group

Vehicle System Instance

System Bits

Reserved

Function Bits

Function Instance

ECU Bits

Manufacturer code

ID bits










Packet Rate Response Payload





	Byte

	Description



	0

	Source Address



	1

	Output Data Rate







Packet Type Response Payload





	Byte

	Description



	0

	Source Address



	1

	Packet Types Bitmask (LSB)



	2

	Packet Types Bitmask (MSB)







Digital Cutoff Frequency Response Payload





	Byte

	Description



	0

	Source Address



	1

	Acceleration Cutoff



	2

	Angular Rate Cutoff







Orientation Response Payload





	Byte

	Description



	0

	Source Address



	1

	Orientation Value (MSB)



	2

	Orientation Value (LSB)







Lever Arm Response Payload (TBD)





	Byte

	Description



	0

	Source Address



	1

	reserved



	2

	Wheel Distance Value (LSB), mm



	3

	Wheel Distance Value (MSB), mm



	4

	Lever Arm Bx Value (LSB), mm



	5

	Lever Arm Bx Value (MSB), mm



	6

	Lever Arm By Value (LSB), mm



	7

	Lever Arm By Value (MSB), mm







Note


	For Orientation, Cutoff Frequencies Packet Type and Packet Rate responses values of parameters will be the same as in the set commands for these parameters.










          

      

      

    

  

    
      
          
            
  
CAN J1939 Data Messages




The following Data messages are implemented in the example applications.
The user can modify provided messages or add messages as needed.
The rate of data messages can be configured by SET commands.


Data Messages









	Data Packet

	PF
(dec)

	PS
(dec)

	
	PGN

	(dec)






	Data Length
(bytes)

	Purpose



	
Slope Sensor

Information
Type 2




	240

	41

	61481

	8

	
Provide high accuracy

pitch & roll rates






	
Angular Rate

Sensor Data




	240

	42

	61482

	8

	
Provide moderate accuracy

pitch, roll and yaw rates






	
Acceleration

Sensor Data




	240

	45

	61485

	8

	
Provide moderate accuracy

X, Y, and Z axes acceleration






	
Magnetometer

Sensor Data




	255

	106

	65386

	8

	
Provide readings from magnetic

sensor for X, Y, and Z axes





















Slope Sensor Information - Type 2 (SSI2) Data Packet

The following table describes the SSI2 Data Packet Payload:


SSI2 Data Packet Payload








	Bytes

	Field Name

	Range

	Resolution

	Offset



	0:2

	Pitch

	-250 to +252 deg

	1/32768 deg/bit

	-250 deg



	3:5

	Roll

	-250 to +252 deg

	1/32768 deg/bit

	-250 deg



	6:7

	FoM,Latency

	Ignore

	Ignore

	Ignore







Note

SSI2 Data Packet is applicable for VG-AHRS or INS Applications only.















Angular Rate Data Packet

The following table describes the Angular Rate Data Packet:


Angular Rate Data Packet Payload








	Byte Number

	Parameter

	Range

	Resolution

	Offset



	0:1

	Angular Rate X

	-250 to +252 deg/s

	1/128 deg/second/bit

	-250 deg



	2:3

	Angular Rate Y

	-250 to +252 deg/s

	1/128 deg/second/bit

	-250 deg



	4:5

	Angular Rate Z

	-250 to +252 deg/s

	1/128 deg/second/bit

	-250 deg



	FoM,Latency

	FoM,Latency

	Ignore

	Ignore

	Ignore


















Acceleration Data Packet

The following table describes the Acceleration Data Packet:


Acceleration Data Packet Payload








	
Byte

Number




	Parameter

	Range

	Resolution

	Offset



	0:1

	Acceleration X

	-320 to 320/55 m/s**2

	0.01 m/s**2/bit

	-320 m/s**2



	2:3

	Acceleration Y

	-320 to 320/55 m/s**2

	0.01 m/s**2/bit

	-320 m/s**2



	4:5

	Acceleration Z

	-320 to 320/55 m/s**2

	0.01 m/s**2/bit

	-320 m/s**2



	6:7

	FoM,Latency

	Ignore

	Ignore

	Ignore


















Magnetometer Data Packet

The following table describes the Magnetometer Data Packet:


Magnetometer Data Packet Payload








	
Byte

Number




	
Parameter







	Range

	Resolution

	Offset



	0:1

	Magnetic Field X

	-8 to 8 Gauss

	4000 LSB/G

	-8 Gauss



	2:3

	Magnetic Field Y

	-8 to 8 Gauss

	4000 LSB/G

	-8 Gauss



	4:5

	Magnetic Field Z

	-8 to 8 Gauss

	4000 LSB/G

	-8 Gauss



	6:7

	FoM,Latency

	Ignore

	Ignore

	Ignore







Note

As with all multiple byte fields, the LSB of each of the Data Packet fields is transmitted first.






          

      

      

    

  

    
      
          
            
  
Algorithm Simulation System

GNSS-IMU-SIM is an IMU simulation project, which generates reference trajectories, IMU sensor output, GPS output,
odometer output and magnetometer output. Users choose/set up the sensor model, define the waypoints and provide algorithms,
and gnss-imu-sim can generated required data for the algorithms, run the algorithms, plot simulation results,
save simulations results, and generate a brief summary.

GitHub Link: GNSS-INS-SIM [https://github.com/Aceinna/gnss-ins-sim]

Use the browser’s back button to return.




          

      

      

    

  

    
      
          
            
  
Python Serial Driver


Contents


	OpenIMU Python Drivers


	Python Install







OpenIMU Python Drivers

The OpenIMU Python driver supports communication with the hardware for data logging and device configuration over the main
user UART interface of the OpenIMU hardware. When run in server mode, it allows connection of the OpenIMU with the developer’s
website Aceinna Navigation Studio and its friendly GUI interface.

You can start the OpenIMU server from GitHub Source code

GitHub Link: python-openimu [https://github.com/Aceinna/python-openimu]



Python Install

Please install either Python 2.7 or 3.8 onto your PC & follow Readme file Instructions to Install all dependencies.


	Python Link: Python-Download [https://www.python.org/downloads/]


	Readme Link: Install-Dependencies [https://github.com/Aceinna/python-openimu/blob/master/README.md]





Note

Use the browser’s back button to return to the OpenIMU documentation







          

      

      

    

  

    
      
          
            
  
OpenIMU300ZI - EZ Embed Industrial Module
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	Ready to Use Application






The following image shows the OpenIMU300ZI unit.

[image: _images/OpenIMU300EZ.png]
The OpenIMU300ZI EZ Embed module integrates highly-reliable MEMS inertial
sensors (acceleration, angular rate/gyro, and
magnetic field) in a miniature factory-calibrated package to provide
consistent performance through the extreme
operating environments.

OpenIMU300ZI has excellent acceleration and gyro performance that matches
systems ten times more expensive.
It is easy to synchronize and interface with external GPS, as well as other
sensors.


	Integrated 3-Axis Angular Rate


	Integrated 3-Axis Accelerometer


	Integrated 3-Axis Magnetic Sensor


	168MHz STM32 M4 CPU


	SPI / UART Interfaces


	Max ODR 200Hz


	Synchronization Input


	In-System Upgrade


	Small Size (24x37x9.5mm)


	Drop-in Upgrade for IMU380ZA, IMU381ZA


	Wide Temp Range -40 to 85 ° C


	High Reliability > 50,000hr MTBF





Specifications



	Environmental, Electrical,  and Physical Specifications

	OpenIMU300ZI EVK Mechanical Drawing

	EVB Schematic







Interfaces



	SPI and UART







Pinout



	Connector Pinout - Including GPS Sensor Interface

	ARM Cortex CPU







Eval Kit



	OpenIMU300ZI Eval Kit

	OpenIMU300ZI Evaluation Kit Setup

	OpenIMU300ZI Eval Board & Coordinate Frame







Ready to Use Application

To learn about Ready-to-Use-Apps information & available for immediate download to your OpenIMU, please see the following
pages:


	Ready-to-Use-Applications Information [https://openimu.readthedocs.io/en/latest/apps.html]


	Need to run the OpenIMU server before running one of the ready to use applications [https://developers.aceinna.com/devices/connect]


	Then upload a prebuilt app to your OpenIMU [https://developers.aceinna.com/code/apps]








          

      

      

    

  

    
      
          
            
  
Environmental, Electrical,  and Physical Specifications


	
ENVIRONMENT

	









	Specifications

	


	Operating Temperature
(°C)

	-40 to 105



	Non-Operating
Temperature (°C)

	-65 to 150



	Enclosure

	






	
ELECTRICAL

	









	Specifications

	


	Input Voltage (VDC)

	3.0 - 5.5



	Power Consumption (mW)

	< 250



	Digital Interface

	SPI or UART



	Output Date Rate

	up to 200Hz (SPI)



	up to 100Hz (UART)



	Input Clock Sync

	1KHz pulse
(Configurable)







	
PHYSICAL

	









	Specifications

	


	Size (mm)

	24.15 x 37.70 x 9.50



	Weight (gm)

	< 17



	Interface Connector

	20-Pin (10x2)
1.0mm pitch header









          

      

      

    

  

    
      
          
            
  
OpenIMU300ZI EVK Mechanical Drawing

[image: ../_images/8550-3885-01_EvalKit_OpenIMU300ZI.png]

Note

Use the browser’s back button to return to this page.



Mechanical Drawing download link




          

      

      

    

  

    
      
          
            
  
EVB Schematic

[image: ../_images/6310-6000-03_Rev.A.png]
Schematic download




          

      

      

    

  

    
      
          
            
  
SPI and UART


Contents


	Ports


	SPI & UART Messaging







Ports

The OpenIMU300ZI can be configured in a number of ways for communication with external world.  There are up to three external UART ports and one external SPI port.

Typical configurations include:







	3 UART Mode

	
	User UART


	GPS/External Sensor UART


	Debug UART







	UART + SPI Mode

	
	User SPI Port


	GPS/Debug UART












SPI & UART Messaging

To learn more about the OpenIMU SPI & UART Messaging Framework, please see the following pages:


	SPI Messaging Framework [https://openimu.readthedocs.io/en/latest/software/SPImessaging.html]


	UART Messsaging Framework [https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html]








          

      

      

    

  

    
      
          
            
  
Connector Pinout - Including GPS Sensor Interface

The OpenIMU300ZI main connector is a SAMTEC FTM-110-02-F-DV-P defined below. The mating connector that pairs with the main connector is the SAMTEC CLM-110-02.

[image: Connector.png]


OpenIMU300ZI Interface Connector




J2 is 20-pin connector and it used for connecting the OpenIMU300ZI unit into Open IMU evaluation board.  The connector pin definitions are defined in the table below.  The GPS-related signals are noted.

Interface Connector Pin Definitions









	Pin

	Main Function

	Alternative Function



	1

	GPIO  ( IO3 )

	Output by default



	2

	
Synchronization Input




	GPS 1PPS Input



	3

	
User UART TX  (Output)

(Serial Channel 0 )




	
SPI Clock (SCLK)

Input






	4

	
User UART RX  (Input)

(Serial Channel 0)




	
SPI Data  (MISO)

Output






	5

	
UART1 TX (Output)

(Serial Channel 1)




	
SPI Data  (MOSI)

Input






	6

	
UART1 RX  (Input)

(Serial Channel 1)




	
SPI Chip Select (SS)

Input






	7

	
SPI/UART Interface

Selector




	
Data Ready (SPI)

Active edge falling






	8

	External Reset (NRST))



	9

	GPIO ( IO2 )

	
Output by default






	10

	Power VIN (3-5 VDC)

	Power VIN (3-5 VDC)



	11

	Power VIN (3-5 VDC)

	Power VIN (3-5 VDC)



	12

	Power VIN (3-5 VDC)

	Power VIN (3-5 VDC)



	13

	Power GND

	Power GND



	14

	Power GND

	Power GND



	15

	Power GND

	Power GND



	16

	SWDIO (SWD debug interface)



	17

	

UART2 TX



(Serial Channel 2)




	
Debug interface

GPS






	18

	SWCLK (SWD debug interface)



	19

	

UART2 RX



(Serial Channel 2)




	
Debug Interface

GPS






	20

	Reference voltage for SWD debug interface









Power Input and Power Input Ground

Power is applied to the OpenIMU300ZI on pins 10 through 15. Pins 13-15 are
ground; Pins 10-12 accepts 3 to 5 VDC unregulated input. Note that these
are redundant power ground input pairs.


Note

Do not reverse the power leads or damage may occur. Do not add greater
than 5.5 volts on the power pins or damage may occur. This system has no
reverse voltage or over-voltage protection.




Note

Serial channel functions can be arbitrary assigned in the FW.
Default assignments are:


Serial channel 0 -> USER  UART (dedicated for user messages).

Serial channel 1 -> GPS   UART (dedicated for connecting external GPS).

Serial channel 2 -> DEBUG UART (dedicated for debug messages and CLI interface).



In some application examples (INS, VG_AHRS) in file main.c performed reassignment of serial channels to different functions.




Note

Pin 7 needs to be grounded (LOW) upon unit startup to force unit into UART interface mode.
To force unit into SPI mode this pin needs to be either unconnected or connected to the input
or external device (can be externally pulled UP via 10K resistor).

In SPI mode only serial channel 2 available and can be used for communication with GPS or as DEBUG channel.






          

      

      

    

  

    
      
          
            
  
ARM Cortex CPU

The OpenIMU300ZI uses ST’s powerful Cortex M4 series of Microcontrollers.


	FPU


	DSP instructions


	1MByte Flash


	192KB SRAM


	168 MHz


	Rich Set of peripherals




Learn more about OpenIMU300ZI’s CPU at http://www.st.com/en/microcontrollers/stm32f405rg.html.




          

      

      

    

  

    
      
          
            
  
OpenIMU300ZI Eval Kit

The OpenIMU300ZI evaluation kit consists of a robust and easy-to-use eval board, a test fixture, the OpenIMU300ZI IMU module, and an ST-LINK J-TAG pod.

[image: ../_images/OpenIMUKit.png]
[image: ../_images/STLink1.png]
Overview

1. Introduction


The OpenIMU evaluation kit is a hardware platform to evaluate the OpenIMU300ZI
inertial navigation system and develop various applications based on this platform.
Supported by the Aceinna Navigation Studio the kit provides easy access to the features
OpenIMU300ZI and explains how to integrate the device in a custom design.
The OpenIMU evaluation kit include OpenIMU300ZI, evaluation board with various interface
connectors and test adapter for mounting OpenIMU300ZI unit.

[image: ../_images/EvalKit.png]



2. Components



	OpenIMU Evaluation board, which includes:



	Virtual COM-port USB interface, providing connectivity to OpenIMU300ZI unit from PC


	Connector for programming and debugging target via Serial Wire Debug (SWD) interface


	Connector for interfacing OpenIMU300ZI from custom-designed system.


	Test terminals for connecting oscilloscope or logic analyzers to the dedicated OpenIMU300ZI signals.









	OpenIMU300ZI unit. Please note, that it installed on the bottom side of evaluation board.


	Test fixture adapter for convenient aligned mounting of OpenIMU evaluation board and OpenIMU300ZI unit


	ST-Link debugger for in-system development of application code







2.1 OpenIMU300ZI unit


OpenIMU300ZI is 9 DOF (degrees of freedom) fully calibrated inertial unit. It is used as the base for development custom
inertial navigation applications.




2.2 OpenIMU Evaluation board


OpenIMU Evaluation board designed to provide convenient way for communicating with OpenIMU300ZI unit from PC, to
expose serial and SPI interfaces to developer and to debug applications using ST-Link debugger vis SWD interface.




2.3 OpenIMU test adapter


OpenIMU test adapter used to firmly secure OpenIMU300ZI unit and Open IMU evaluation board in precisely aligned position.




2.4 ST-Link debugger


St-Link debugger is standard debugger provided by STMicroelectronics company. It used for in-system debugging of applications via SWD interface.




3. Open IMU evaluation board Headers and Connectors


3.1 Connector for plugging in OpenIMU300ZI unit (J2).

J2 is 20-pin connector and it used for connecting the OpenIMU300ZI unit into Open IMU evaluation board.  The pin functions are described in the table on the “OpenIMU Modules » OpenIMU300ZI - EZ Embed Automotive Module » Connector Pinout - Including GPS Sensor Interface” page
accessible from the Contents bar on the left.





3.2 Extension Header (P4)

OpenIMU evaluation board has 12-pin extension header. It designed to expose IMU interface signals to
external system. The extension header pin functions described in table below








	Pin

	Main Function

	Alternative Function



	1

	Power GND

	Power GND



	2

	Power GND

	Power GND



	3

	
Serial Channel 1 RX

(Input)




	
SPI Chip Select (SS)

(Input)






	4

	
IMU Data Ready

(SPI interface Mode)




	
GPIO

(UART interface mode)






	5

	
User UART TX

(Serial Channel 0)

(Output)




	
SPI Clock (SCK)


(Output)











	6

	
Synchronization Input




	1PPS Input from  GPS



	7

	
Serial Channel 1 TX

(Output)




	
SPI Data (MOSI))

(Input)






	8

	External Reset (NRST))



	9

	
User UART RX

(Serial Channel 0

(Input)




	
SPI Data (MISO)

(Output)









	10

	GPIO Output (IO2)

	GPIO Input



	11

	Power VIN  5 VDC

	Power VIN 5 VDC



	12

	GPIO Output (IO3)

	GPIO Input






3.4 IMU interface type selection header (P1).


Pins 1-2 define IMU Interface Mode:


If there is no connection between pins 1 and 2 (jumper is OFF) - SPI mode.

if there is connection between pins 1 and 2 (jumper is ON) - UART mode (default).



In SPI mode:


Jumpers between pins 3-4 and 5-6 need to be taken OFF to prevent interference
between SPI bus signals (SS and MISO) and serial interface signals
from FTDI chip.

IMU SPI interface signals (MISO, MOSI, SS, SCK, DRDY)
routed to header P4.










Note

On SPI interface IMU acts as a SLAVE device.




Note

Not all provided application examples support SPI interface mode.
Please refer to specific example for details.





In UART mode:


Jumper between pins 3-4 should be “ON” (default) if IMU Serial Channel 0 ( USER main channel ) needs to be routed to PC via USB connection (on first in the row enumerated USB virtual COM port. See p.6).




Jumper between pins 3-4 should be OFF if IMU Serial Channel 0 needs to be accessed from P2 connector.




Jumper between pins 5-6 should be ON (default) if IMU Serial Channel 1 needs to be routed to PC via USB connection (on second in the row enumerated USB virtual COM port. See p.6).




Jumper between pins 5-6 should be OFF if IMU Serial channel 1 needs to be accessed from P2 connector.
For example if Serial Channel 1 used for connection with some external device (GPS or other)






3.5 IMU Serial Channel 2 mode selection header (P2).



Jumpers between pins 1-2 and 3-4 should be ON if IMU Serial Channel 2 needs to be routed to PC via USB
connection, for example in case of using IMU Serial Channel 2 for streaming out debug information to PC
or as CLI interface (on third in the row enumerated USB virtual COM port. See p.6).




Jumpers between pins 1-2 and 3-4 should be OFF if IMU Serial Channel 2 needs to be routed to some external
device (for example GPS). In this case pin 2 is RX (to IMU) and pin 4 is TX (from IMU).






3.6 SWD (JTAG) connector (P3).

20-pin connector P3 used for connecting ST-Link or J-Link debuggers to the IMU for
in-system debugging of applications via SWD interface. It has standard pin-out.







	Pin

	Main Function



	1, 2

	Vref



	4, 6, 8, 10 , 12,
14, 16, 18, 20

	GND



	7

	SWDIO



	9

	SWCLK



	15

	nRST



	19

	3.3V from debugger






3.7 USB connector (J3)

USB connector used for powering up the IMU and evaluation board. Also its used to providing connectivity
from PC to IMU via virtual serial ports. Up to 3 exposed IMU serial interfaces can be routed to PC.




4. OpenIMU evaluation board LED indicators


Evaluation board has few LED indicators for visual monitoring of data traffic on serial ports:

LED2 indicator reflects activity on RX line of IMU main (user) serial interface (traffic to IMU)

LED1 indicator reflects activity on TX line of IMU main (user) serial interface (traffic from IMU)

LED3 indicator while lit indicates presence of the power (in case switch SW1 is “ON”)

LED4 indicator reflects activity on GPIO3 (lit if high)

LED5 indicator reflects activity on GPIO2 (lit if high)




5. Open IMU evaluation board power


Power to OpenIMU evaluation board provided by USB.
To power system up - connect USB cable to connector J1 and turn “ON” switch SW1.




6. Communication with IMU from PC



The OpenIMU evaluation board has an FTDI chip FT4232 installed. This chip provides 4 virtual serial ports.
When evaluation board set up to force IMU interface in UART mode (see p.3.4) up to 3 serial ports on IMU can communicate with PC.
When evaluation board connected to PC and power switch turned “ON” in Device Manager board will appear as 4 new consecutive virtual COM ports.





First in a row virtual port is routed to IMU’s main UART channel (Serial channel 0) (pins 3 and 4 on J2), and usually dedicated for sending commands
to IMU and capturing responses and periodic messages from IMU. It usually used by python driver to establish communication between IMU and Aceinna Navigation Studio.




Second in a row virtual port routed to IMU’s Serial Channel 1 (pins 5 and 6 on J2) and potentially can be used for modeling or cloud data processing - sending GPS messages from PC to IMU and back.




Third in a row virtual port routed to IMU’s Serial channel 2 (pins 17 and 19 on J2) and usually used as a debug/CLI serial channel .











OpenIMU300ZI Evaluation Kit Setup


To set up OpenIMU300ZI evaluation kit for development you’ll need to perform next steps:





	Unpack OpenIMU300ZI evaluation kit.


	Push power switch to “OFF” position.


	Connect OpenIMU300ZI evaluation board to the PC via USB cable. USB connection provides power to the test setup as well as connectivity between PC and IMU serial ports.


	Connect ST-Link debugger to the PC via USB cable.


	Connect OpenIMU300ZI evaluation board to ST-Link debugger using provided 20-pin flat cable.


	Push power switch to “ON” position.







Now you are ready to debug and test your application.


	The following activities are addressed in the “Tools/Development Tools” section:


	Download App with JTAG


	Debugging with PlatformIO Debugger and JTAG Debug Adapter


	Graphing & Logging IMU Data using the Acienna Navigation Studio








OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not (yet)
comply with some or any technical or legal requirements that are applicable to finished products,
including, without limitation, directives regarding electromagnetic compatibility, recycling (WEEE),
FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied this board/kit
"AS IS," without any warranties, with all faults, at the buyer's and further users' sole risk. The
user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies Aceinna from all claims arising from the handling or use of the goods. Due to
the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge and any other technical or legal concerns.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA
SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
No license is granted under any patent right or other intellectual property right of Aceinna covering
or relating to any machine, process, or combination in which such Aceinna products or services might
be or are used.








          

      

      

    

  

    
      
          
            
  
OpenIMU300ZI Eval Board & Coordinate Frame


OpenIMU300ZI Eval Board and Fixture

[image: ../_images/OpenIMU_EVB.png]
The OpenIMU300ZI Eval Board is attached to a fixture for easy handling and isolation of the back side of the board from any contact.
The EVB interfaces to the main connector of the OpenIMU300EZ as well as the OpenIMU330 evaluation module.  The EVB and IMU module are mounted together to a precision fixture to assist in testing.  The OpenIMU300EVB uses an
FTDI 4-port Serial-to-USB converter to allow you to communicate with between the OpenIMU serial ports and a laptop computer.  There are also
jumper connections to use to connect to the device’s primary SPI port. Use the JTAG interface to directly download compiled code to the device
quickly.



OpenIMU300ZI Eval Module Default Coordinate System

The OpenIMU  default coordinate systems is shown below.  In the reference IMU apps, a configuration setting is provided
to control the coordinate system.  These configurable elements are known as Configuration Parameters.

[image: image8]





          

      

      

    

  

    
      
          
            
  
OpenIMU300RI - Rugged Industrial CAN Module
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	Ready to Use Application






The following image shows the OpenIMU300RI unit.

[image: _images/OpenIMU300RI-module.png]
The following diagram shows the default coordinate frame for the OpenIMU300RI.
The coordinate frame can be changed using a UART or CAN message.


[image: _images/OpenIMU300RI_CoordinateFrame.png]

OpenIMU300RI Default Coordinate Frame



The OpenIMU300RI Robust Industrial CAN module integrates highly-reliable MEMS inertial
sensors (acceleration, angular rate/gyro, and magnetic field) in a miniature
factory-calibrated package to provide consistent performance through the extreme
operating environments.

OpenIMU300RI has excellent acceleration and gyro performance that matches
systems ten times more expensive.


	Hardware


	Precision 3-axis MEMS Accelerometer


	Low-Drift 3-axis MEMS angular rate sensor


	High Performance 3-axis AMR Magnetometer


	168 MHz ARM M4 microcontroller


	Wide Temp Range, -40C to +85C


	Wide Supply Voltage Range, 5 V – 32 V


	High Reliability, MTBF > 50k hours


	IP67 Ampseal Connector


	CAN 2.0 interface






	UART - conditionally, one of the following:


	Debug Console interface


	-or- Aceinna Navigation Studio interface






	SPI and I2C buses for communicating with internal sensor peripherals


	SPI - Angular Rate sensor


	I2C - Accelerometer and Magnetometer (if present)










	Firmware and Firmware Support


	In-System Firmware Upgrade


	Open Source Tool Chain


	Open Source Algorithms (VG / AHRS / INS)


	Built in 16-State Open Source Extended State Kalman Filter


	Open Community & Support









Specifications



	Electrical,  and Physical Specifications

	OpenIMU300RI Mechanical Diagram and Mounting Specifications







Interfaces



	CAN and UART







Pinout



	OpenIMU300RI Connector Pinout

	ARM Cortex-M4 CPU







Eval Kit



	OpenIMU300RI Eval Kit

	OpenIMU300RI Evaluation Kit Setup

	OpenIMU300RI Eval Kit Fixture and Board







Ready to Use Application

To learn about Ready-to-Use-Apps information & available for immediate download to your OpenIMU, please see the following
pages:


	Ready-to-Use-Applications Information [https://openimu.readthedocs.io/en/latest/apps.html]


	Need to run the OpenIMU server before running one of the ready to use applications [https://developers.aceinna.com/devices/connect]


	Then upload a prebuilt app to your OpenIMU [https://developers.aceinna.com/code/apps]








          

      

      

    

  

    
      
          
            
  
Electrical,  and Physical Specifications

[image: ../_images/OpenIMU300RI-Specifications.png]



          

      

      

    

  

    
      
          
            
  
OpenIMU300RI Mechanical Diagram and Mounting Specifications

The following diagram shows the mechanical drawings for the OpenIMU300RI. The mechanical dimensions are in mm.


Note

Mounting Specifications


	Use 4 - M5 Alloy Steel Socket Head Screws to secure the OpenIMU300RI


	Torque the screws to 2.37 N-m (21 inch-pounds)


	It is recommended to use thread lock.


	If a washer and lock washer are used, the washer outer diameter must
not be larger than the outer diameter of the bushing. A washer
diameter of 10 mm is recommended if a washer is used.







[image: ../_images/OpenIMU300RIMechanical.png]

OpenIMU300RI Mechanical Diagram






          

      

      

    

  

    
      
          
            
  
CAN and UART


Contents
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	UART Messaging







Ports

The OpenIMU300RI has two external ports; one UART port and one CAN bus port.
Based on these available external ports, the OpenIMU300RI can be configured
in several modes for communication with the external world.

The usage modes are:







	UART Mode

	
	Typically used during early development


	Single UART for all messages,
debug output, and firmware update







	CAN + UART Mode

	
	Typically used during late development


	Uses CAN Port for messages and
firmware update


	Single UART for all messages,
debug output, and firmware update







	CAN Mode

	
	Typically used for production


	Uses CAN Port for messages and
firmware update












CAN Messaging

To learn about CAN J1939 Messaging & Example Application For OpenIMU330RI, please see the following
page:


	CAN J1939 Messaging & Example Application [https://openimu.readthedocs.io/en/latest/software/CAN/CAN_J1939_Application.html]






UART Messaging

To learn more about the OpenIMU UART Messaging Framework, please see the following pages:


	UART Messsaging Framework [https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html]








          

      

      

    

  

    
      
          
            
  
OpenIMU300RI Connector Pinout

The OpenIMU300RI mating connector is the TE Connectivity 776531-1 (Ampseal-16 Housing “AS 16, 6P PLUG ASSY, RD, KEY 1” )
or equivalent.


[image: ../_images/AMPSEAL16.png]

OpenIMU300RI Connector



The pinout for that connector is shown in the following diagram.
Pin 1 is in the upper right corner of the diagram.


[image: ../_images/OpenIMU300RI_CAN_PinDiagram.png]

OpenIMU300RI Connector Pinout



The connector pin definitions are defined in the table below.


[image: ../_images/OpenIMU300RI_CAN_PinDefinition.png]

OpenIMU300RI Connector Pinout




Note

Power is applied to the OpenIMU300RI on pin 6. Pin 3 is ground.  The OpenIMU300RI
accepts an unregulated 4.9 to 32 VDC input. It is reverse polarity and ESD protected internally






          

      

      

    

  

    
      
          
            
  
ARM Cortex-M4 CPU

The OpenIMU300RI uses one of the powerful ST-Micro Cortex-M4 Microcontroller.


	FPU


	DSP instructions


	1MByte Flash


	192KB SRAM


	168 MHz Clock


	Rich set of peripherals




Learn more about the SoC used in the OpenIMU300RI at http://www.st.com/en/microcontrollers/stm32f405rg.html.




          

      

      

    

  

    
      
          
            
  
OpenIMU300RI Eval Kit

The OpenIMU300RI evaluation kit includes:


	A robust and easy-to-use test fixture.


	An OpenIMU300RI IMU module attached to the test fixture with JTAG (SWD) 20-pin connector.


	An ST-LINK J-TAG debugger, a debugger cable, and a USB cable.


	A multiple-connector cable for RS232/CAN/Power connection.




[image: ../_images/OpenIMU-Unlabeled-box.png]
[image: ../_images/STLink.png]
OpenIMU300RI Evaluation Kit Introduction

The OpenIMU evaluation kit is a hardware platform used to evaluate the
OpenIMU300RI inertial navigation system and develop various applications
based on this platform.  It is supported by the Aceinna Navigation Studio,
which provides easy access to the features of the
OpenIMU300RI and explains how to integrate the device in a custom design.
The Components section below provides the contents of the kit.


Note

An external DC power supply is required.  The power supply must be able to provide 400mA at 4.9VDC to 32VDC.

The cable shown in the Evaluation Kit figure may look different than the cable that will be provided with the Evaluation Kit









	
[image: ../_images/OpenIMU300RI_DevKit.png]
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OpenIMU300RI Evaluation Unit

installed on test fixture with JTAG connector




	
OpenIMU300RI Evaluation Kit












OpenIMU300RI Evaluation Kit components


OpenIMU300RI unit


OpenIMU300RI is 9 DOF (degrees of freedom) fully calibrated inertial unit. It is used as the base for development custom
inertial navigation applications.




OpenIMU300RI Evaluation Kit fixture and JTAG header board


The OpenIMU300RI unit with JTAG header board are mounted on the text fixture.
The JTAG header provides means to debug/upload applications on evaluation unit.




ST-Link debugger


The ST-Link debugger is a standard JTAG SWD debugger provided by STMicroelectronics company.
It is used for in-system debugging/uploading of applications via SWD interface.




OpenIMU300RI Breakout Cable


An included cable provides means of connecting unit to PC via RS232 interface, connecting unit to the CAN bus and powering up unit.


Next table provides connectors pin assignments in supplied cable
















	Signal Name

	
Unit

Connector




	
RS232

Connector




	
CAN

Connector




	
Power

Wires






	GND

	3

	5

	
	Black



	VIN

	6

	
	
	Red



	RS232 TX

	5

	2

	
	


	RS232 RX

	4

	3

	
	


	CAN H

	1

	
	7

	


	CAN L

	2

	
	2

	










OpenIMU300RI Evaluation Kit Setup


To set up OpenIMU300RI evaluation kit you’ll need to perform next steps:


	Install PC tools.


	Unpack OpenIMU300RI evaluation kit.


	Connect provided cable to OpenIMU300RI evaluation unit (see notes below).


	Connect cable connector marked “RS232” to the PC serial port or to UCB-to-Serial adapter.


	Connect cable connector marked “CAN” to the CAN bus or to the CAN traffic monitoring unit (like Vestor or Komodo or other).


	Connect ST-Link debugger to the PC via USB cable. Make sure that ST-Link device appeared in “Device Manager”.


	Connect 20-pin connector on OpenIMU300RI evaluation unit to ST-Link debugger using provided 20-pin flat cable.


	Connect RED (+) and BLACK (GND) wires to external power supply (5 - 32V, 0.1A)


	Turn ON power supply.







Now you are ready to debug and test your application.


	The following activities are addressed in the “Tools/Development Tools” section:


	Download App with JTAG


	Debugging with PlatformIO Debugger and JTAG Debug Adapter


	Graphing & Logging IMU Data using the Acienna Navigation Studio









Note

The RS232/CAN/Power cable shown in the image is similar to the cable that will be supplied with the kit.  It is for information only.




Note

The following directions are applicable for connecting cable to OpenIMU300RI evaluation unit:


	Align the keys on the unit and the cable connector.


	Push the 6-pin cable connector into the unit connector until lock clicks.


	If an extra lock required - push the red latch under the black latch.  This prevents the disengagement button from being depressed.







Note

The following directions are applicable for disconnecting cable from OpenIMU300RI evaluation unit:


	If engaged, pull the red latch away from the connector toward the cable.


	Push down on the black disengagement button in the middle of the connector.


	Pull the cable connector away from the unit.






Next table provide connectors pin assignments in provided cable











	Signal Name

	
Unit

Connector




	
RS232

Connector




	
CAN

Connector




	
Power

Wires






	GND

	3

	5

	
	Black



	VIN

	6

	
	
	Red



	RS232 TX

	5

	2

	
	


	RS232 RX

	4

	3

	
	


	CAN H

	1

	
	7

	


	CAN L

	2

	
	2

	









[image: ../_images/OpenIMU300RI-ConnectorCloseup.png]

OpenIMU300RI Connector

OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not (yet)
comply with some or any technical or legal requirements that are applicable to finished products,
including, without limitation, directives regarding electromagnetic compatibility, recycling (WEEE),
FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied this board/kit
"AS IS," without any warranties, with all faults, at the buyer's and further users' sole risk. The
user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies Aceinna from all claims arising from the handling or use of the goods. Due to
the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge and any other technical or legal concerns.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA
SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
No license is granted under any patent right or other intellectual property right of Aceinna covering
or relating to any machine, process, or combination in which such Aceinna products or services might
be or are used.








          

      

      

    

  

    
      
          
            
  
OpenIMU300RI Eval Kit Fixture and Board


Note

The Power/CAN/RS232 cable shown is not the cable that will be provided in the kit.  It is similar and is provided temporarily until an image of the actual cable is available.




[image: ../_images/OpenIMU300RI-EvalKit.png]

OpenIMU300RI Eval Kit Fixture and Board



The OpenIMU300RI module and the JTAG header board are
mounted together on a precision fixture to assist in
testing.  The OpenIMU300RI Eval Kit provides interfaces to the main
connector of the OpenIMU300RI and to the JTAG header board.
The JTAG header, the OpenIMU300RI 9-pin D-sub
connector, and the CAN 9-pin D-sub connector provide the
means to connect the OpenIMU300RI Eval Kit to a PC.

OpenIMU300RI Default Coordinate System

The OpenIMU  default coordinate systems is shown below.  In the reference IMU apps, a configuration setting is provided
to control the coordinate system.  These configurable elements are known as Configuration Parameters.

[image: ../_images/OpenIMU300RI_CoordinateFrame1.png]



          

      

      

    

  

    
      
          
            
  
OpenIMU330BI - Triple Redundant, 1.5 °/Hr, SMT Module


Contents


	Specifications


	SMT Process


	Interfaces


	Pinout


	Eval Kit


	Firmware Update


	Ready to Use Application






The following image shows the OpenIMU330BI unit.

[image: _images/OpenIMU330Ruler.png]
The OpenIMU330BI module integrates highly-reliable MEMS inertial
sensors (acceleration, angular rate/gyro) in a miniature factory-calibrated package to provide
consistent performance through the extreme
operating environments.

It is easy to synchronize and interface with external GPS, as well as other
sensors.
The main feature of OpenIMU300BI is tripple redundancy for each inertial sensor.


	Integrated tripple redundant 3-Axis Angular Rate Sensors


	Integrated tripple redundant 3-Axis Accelerometer


	80MHz STM32 M4 CPU with FPU


	SPI / UART Interfaces


	Sensors highest ODR is 200Hz


	Synchronization Input


	In-System Upgrade


	Ultra Small Size: 11x15x3 mm


	Wide Temp Range -40 to 85 ° C


	High Reliability > 50,000hr MTBF


	Low power





Specifications



	OpenIMU330BI Environmental, Electrical,  and Physical Specifications

	OpenIMU330BI EVB Schematic







SMT Process



	OpenIMU330BI SMT Process







Interfaces



	SPI and UART







Pinout



	OpenIMU330BI Pinout and Function Descriptions

	ARM Cortex M4 CPU







Eval Kit



	OpenIMU330BI Eval Kit

	OpenIMU330BI Evaluation Kit Setup

	OpenIMU330BI Eval Board & Coordinate Frame







Firmware Update



	OpenIMU330BI Firmware Update







Ready to Use Application

To learn about Ready-to-Use-Apps information & available for immediate download to your OpenIMU, please see the following
pages:


	Ready-to-Use-Applications Information [https://openimu.readthedocs.io/en/latest/apps.html]


	Need to run the OpenIMU server before running one of the ready to use applications [https://developers.aceinna.com/devices/connect]


	Then upload a prebuilt app to your OpenIMU [https://developers.aceinna.com/code/apps]








          

      

      

    

  

    
      
          
            
  
OpenIMU330BI Environmental, Electrical,  and Physical Specifications


	
ENVIRONMENT

	









	Specifications

	


	Operating Temperature
(°C)

	-40 to 85



	Non-Operating
Temperature (°C)

	-40 to 85



	Enclosure

	






	
ELECTRICAL

	









	Specifications

	


	Input Voltage (VDC)

	3.0 - 5.5



	Power Consumption (mW)

	< 250



	Digital Interface

	SPI or UART



	Output Date Rate

	up to 200Hz (SPI)



	up to 200Hz (UART)



	Input Clock Sync

	1KHz pulse
(Configurable)







	
ABSOLUTE MAXIMUM RATINGS

	









	Specifications

	


	Input Voltage (VDD)

	3.0 to 5.5 V



	Digital Input
Voltage to GND

	-0.3 to 3.6 V



	Digital Output
Voltage to GND

	-0.3 to 3.6 V



	Calibration
Temperature Range

	-40 to 85 C



	Operating
Temperature Range

	-40 to 85 C



	Non-Operating
Temperature Range

	-40 to 85 C







	
PHYSICAL

	









	Specifications

	


	Size (mm)

	11x15x3



	Weight (gm)

	1.0



	Inteface Connector

	44 ball, BGA







	
VOLTAGE VALUES

	









	Specifications

	


	Nominal voltage

	3.3 V



	All Pins Voltage

	5 V



	Reset Pin Max Voltage

	3.6 V







	
VALUES

	




	Moisture Sensitivity Level (MSL) = 3


	The mechanical shock = 500 m/s2





	
COMPLIANCE

	




	OpenIMU330BI is RoHS and Reach Compliant.


	RoHS  Compliant download


	Reach Compliant download





	
INPUT VOLTAGE TOLERANCE

	













	No

	MCU Pin

	Name

	Type

	Description

	



Input Voltage

Tolerance






	A1

	
	GND

	P

	Ground

	


	A2

	
	GND

	P

	Ground

	


	A3

	
	GND

	P

	Ground

	


	A4

	
	GND

	P

	Ground

	


	A5

	
	GND

	P

	Ground

	


	A6

	
	GND

	P

	Ground

	


	A7

	
	GND

	P

	Ground

	


	A8

	
	GND

	P

	Ground

	


	B3

	
	GND

	P

	Ground

	


	B4

	
	GND

	P

	Ground

	


	B5

	
	GND

	P

	Ground

	


	B6

	PB11

	DEBUG-RX

	I

	
Receive debug data

from user to IMU




	5V



	C2

	PB10

	DEBUG-TX

	O

	
Transmit debug data

from IMU to user




	5V



	C3

	
	DNC

	
	




	Not Used

	


	C6

	
	GND

	P

	Ground

	


	C7

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	D3

	
	GND

	P

	Ground

	


	D6

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V-5.5V




	


	E2

	
	GND

	P

	Ground

	


	E3

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	E6

	
	GND

	P

	Ground

	


	E7

	PA11

	GPIO1

	I/O

	GPIO

	5V



	F1

	PA9

	USER_UART_TX

	O

	
Transmit IMU data

to user




	5V



	F3

	NRST

	RST

	I

	Reset Signal Input

	3.6V



	F6

	
	GND

	P

	Ground

	


	F8

	
	GND

	P

	Ground

	


	G2

	
	GND

	P

	Ground

	


	G3

	PB12

	CS

	I

	
SPI interface slave

mode, CS signal




	5V



	G6

	PB15

	DIN

	I

	
SPI interface slave

mode, MOSI signal




	5V



	G7

	PA10

	USER_UART_RX

	I

	
Receive commands from

user to IMU




	5V



	H1

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	H3

	PB14

	DOUT

	O

	
SPI interface slave

mode, MISO signal




	5V



	H6

	PB13

	SCLK

	I

	
SPI interface slave

mode, Clock signal




	5V



	H8

	
	GND

	P

	Ground

	


	J2

	PA13

	SWDIO

	I/O

	Data IO of SWD

	5V



	J3

	PB3

	PPS/SYNC

	I

	
Sync signal from external

device or 1PPS signal

from GNSS module




	5V



	J4

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	J5

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	J6

	PB5

	DR

	O

	Data ready signal

	5V



	J7

	
	GND

	P

	Ground

	


	K1

	PH3

	BOOT0

	I

	IMU boot mode control

	5V



	K3

	PA14

	SWCLK

	I

	Clock signal of SWD

	5V



	K6

	
	VDD

	P

	
DC3.3V typical,input

voltage range DC3.0V - 5.5V




	


	K8

	PA12

	GPIO2

	I/O

	GPIO

	5V






OpenIMU330BI Pin Voltage Tolerance doc download




          

      

      

    

  

    
      
          
            
  
OpenIMU330BI EVB Schematic

[image: ../_images/6310-6000-03_Rev.A1.png]
Schematic download




          

      

      

    

  

    
      
          
            
  
OpenIMU330BI SMT Process


Contents


	LAND PATTERN


	SOLDER REFLOW PROFILE


	PACKAGE OUTLINE DRAWING







LAND PATTERN


	Recommended land pattern of PCB is shown in Figure 1.





[image: ../_images/OpenIMU330BI_Land_Pattern_PCB.png]

Figure 1: Recommended land pattern (unit: mm)





SOLDER REFLOW PROFILE


	BGA ball material is SAC305.


	The carrier board material of OpenIMU330BI is suggested Tg180 FR4.


	Reflow profile for Pb free process


	Reflow is limited by 2 times. Second reflow should be applied after device has cooled down to room temperature (25℃).


	Recommended reflow profile for Pb free process is shown in Figure 2. The time duration of peak temperature (260℃) should be limited to 10 seconds.


	Type 4 solder paste is recommended for a better SMT quality.


	Use no clean flux to avoid product contaminated by cleaning solvent.


	It is recommended use underfill glue to manage certain threats to the integrity of the solder joints of the OpenIMU330BI, including peeling stress and extended exposure to vibration. and underfill glue was not required that do not anticipate exposure to these types of mechanical stresses.





[image: ../_images/OpenIMU330BI_Solder_Reflow_Profile.png]

Figure 2: Recommended solder reflow profile





PACKAGE OUTLINE DRAWING

Dimensions are in mm


[image: ../_images/OpenIMU330BI_Mechanical_Package.png]

Figure 3: Mechanical package outline dimensions



OpenIMU330BI Land Pattern,Solder Reflow Profile and Package Outline doc  download





          

      

      

    

  

    
      
          
            
  
SPI and UART


Contents


	Ports


	SPI & UART Messaging







Ports

The OpenIMU300BI can be configured in a number of ways for communication with external world.  There are two UART ports and one external SPI port.

Typical configurations include:







	2 UART Mode

	
	User UART


	Debug UART


	Debug UART







	UART + SPI Mode

	
	User SPI Port


	Debug UART












SPI & UART Messaging

To learn more about the OpenIMU SPI & UART Messaging Framework, please see the following pages:


	SPI Messaging Framework [https://openimu.readthedocs.io/en/latest/software/SPImessaging.html]


	UART Messsaging Framework [https://openimu.readthedocs.io/en/latest/software/UARTmessaging.html]








          

      

      

    

  

    
      
          
            
  
OpenIMU330BI Pinout and Function Descriptions

Dimensions are in mm


[image: ../_images/8150-1800-02_Drawing_OpenIMU330BI.png]

OpenIMU330BI Module Mechanical Drawing



Schematic download


[image: ../_images/OpenIMU330BI_PinBottomView.png]

Pin Assignments, Bottom View




[image: ../_images/OpenIMU330BI_PowerInterface.PNG]

OpenIMU330BI pin assignment provided here - download link.




          

      

      

    

  

    
      
          
            
  
ARM Cortex M4 CPU

The OpenIMU330BI uses ST’s Cortex M4 series of Microcontrollers.


	FPU


	DSP instructions


	128KB Flash


	64KB SRAM


	80 MHz


	Rich Set of peripherals


	Low power




Learn more about OpenIMU330BI’s CPU at https://www.mouser.com/datasheet/2/389/stm32l431cb-956249.pdf




          

      

      

    

  

    
      
          
            
  
OpenIMU330BI Eval Kit

The OpenIMU330BI evaluation kit consists of a robust and easy-to-use eval board, a test fixture, the OpenIMU330BI IMU module, and an ST-LINK J-TAG pod.

[image: ../_images/OpenIMUKit1.png]
[image: ../_images/STLink2.png]
OpenIMU330BI Overview

1. Introduction


The OpenIMU evaluation kit is a hardware platform to evaluate the OpenIMU330BI
inertial navigation system and develop various applications based on this platform.
Supported by the Aceinna Navigation Studio the kit provides easy access to the features
OpenIMU330BI and explains how to integrate the device in a custom design.
The OpenIMU evaluation kit include OpenIMU330BI, evaluation board with various interface
connectors and test adapter for mounting OpenIMU330BI unit.

[image: ../_images/EvalKit1.png]



2. Components



	OpenIMU Evaluation board, which includes:



	Virtual COM-port USB interface, providing connectivity to OpenIMU330BI unit from PC


	Connector for programming and debugging target via Serial Wire Debug (SWD) interface


	Connector for interfacing OpenIMU330BI from custom-designed system.


	Test terminals for connecting oscilloscope or logic analyzers to the dedicated OpenIMU330BI signals.









	OpenIMU330BI unit. Please note, that it installed on the bottom side of evaluation board.


	Test fixture adapter for convenient aligned mounting of OpenIMU evaluation board and OpenIMU330BI unit


	ST-Link debugger for in-system development of application code







2.1 OpenIMU330BI unit


OpenIMU330BI is 9 DOF (degrees of freedom) fully calibrated tripple redundant inertial unit. It is used as the base for development custom
inertial navigation applications.




2.2 OpenIMU Evaluation board


OpenIMU Evaluation board designed to provide convenient way for communicating with OpenIMU330BI unit from PC, to
expose serial and SPI interfaces to developer and to debug applications using ST-Link debugger vis SWD interface.




2.3 OpenIMU test adapter


OpenIMU test adapter used to firmly secure OpenIMU330BI unit and Open IMU evaluation board in precisely aligned position.




2.4 ST-Link debugger


St-Link debugger is standard debugger provided by STMicroelectronics company. It used for in-system debugging of applications via SWD interface.




3. Open IMU evaluation board Headers and Connectors


3.1 Connector for plugging in OpenIMU330BI unit (J2).

J2 is 20-pin connector and it used for connecting the OpenIMU330BI unit into Open IMU evaluation board.  The pin functions are described in the table on the “OpenIMU Modules » OpenIMU330BI - EZ Embed Automotive Module » Connector Pinout - Including GPS Sensor Interface” page
accessible from the Contents bar on the left.





3.2 Extension Header (P4)

OpenIMU evaluation board has 12-pin extension header. It designed to expose IMU interface signals to
external system. The extension header pin functions described in table below








	Pin

	Main Function

	Alternative Function



	1

	Power GND

	Power GND



	2

	Power GND

	Power GND



	3

	
Serial Channel 1 RX

(Input)




	
SPI Chip Select (SS)

(Input)






	4

	
IMU Data Ready

(SPI interface Mode)




	
GPIO

(UART interface mode)






	5

	
User UART TX

(Serial Channel 0)

(Output)




	
SPI Clock (SCK)


(Output)











	6

	
Synchronization Input




	1PPS Input from  GPS



	7

	









	
SPI Data (MOSI))

(Input)






	8

	External Reset (NRST))



	9

	












	
SPI Data (MISO)

(Output)









	10

	GPIO Output (IO2)

	GPIO Input



	11

	Power VIN  5 VDC

	Power VIN 5 VDC



	12

	GPIO Output (IO3)

	GPIO Input



	17

	
Debug UART TX




	








	19

	
Debug UART RX




	











3.4 IMU interface type selection header (P1).


Pins 1-2 define IMU Interface Mode:


If there is no connection between pins 1 and 2 (jumper is OFF) - SPI mode.

if there is connection between pins 1 and 2 (jumper is ON) - UART mode (default).



In SPI mode:


Jumpers between pins 3-4 and 5-6 need to be taken OFF to prevent interference
between SPI bus signals (SS and MISO) and serial interface signals
from FTDI chip.

IMU SPI interface signals (MISO, MOSI, SS, SCK, DRDY)
routed to header P4.










Note

On SPI interface IMU acts as a SLAVE device.




Note

Not all provided application examples support SPI interface mode.
Please refer to specific example for details.





In UART mode:


Jumper between pins 3-4 should be “ON” (default) if IMU Serial Channel 0 ( USER main channel ) needs to be routed to PC via USB connection (on first in the row enumerated USB virtual COM port. See p.6).




Jumper between pins 3-4 should be OFF if IMU Serial Channel 0 needs to be accessed from P2 connector.






3.5 IMU Serial Debug Channel mode selection header (P2).



Jumpers between pins 1-2 and 3-4 should be ON if IMU Debug Serial needs to be routed to PC via USB
connection, for example in case of using IMU Debug Serial Channel for streaming out debug information to PC
or as CLI interface (on third in the row enumerated USB virtual COM port. See p.6).




Jumpers between pins 1-2 and 3-4 should be OFF if IMU Debug Serial Channel needs to be routed to some external
device (for example GPS). In this case pin 2 is RX (to IMU) and pin 4 is TX (from IMU).






3.6 SWD (JTAG) connector (P3).

20-pin connector P3 used for connecting ST-Link or J-Link debuggers to the IMU for
in-system debugging of applications via SWD interface. It has standard pin-out.







	Pin

	Main Function



	1, 2

	Vref



	4, 6, 8, 10 , 12,
14, 16, 18, 20

	GND



	7

	SWDIO



	9

	SWCLK



	15

	nRST



	19

	3.3V from debugger






3.7 USB connector (J3)

USB connector used for powering up the IMU and evaluation board. Also its used to providing connectivity
from PC to IMU via virtual serial ports. Up to 3 exposed IMU serial interfaces can be routed to PC.




4. OpenIMU evaluation board LED indicators


Evaluation board has few LED indicators for visual monitoring of data traffic on serial ports:

LED2 indicator reflects activity on RX line of IMU main (user) serial interface (traffic to IMU)

LED1 indicator reflects activity on TX line of IMU main (user) serial interface (traffic from IMU)

LED3 indicator while lit indicates presence of the power (in case switch SW1 is “ON”)

LED4 indicator reflects activity on GPIO3 (lit if high)

LED5 indicator reflects activity on GPIO2 (lit if high)




5. Open IMU evaluation board power


Power to OpenIMU evaluation board provided by USB.
To power system up - connect USB cable to connector J1 and turn “ON” switch SW1.




6. Communication with IMU from PC



The OpenIMU evaluation board has an FTDI chip FT4232 installed. This chip provides 4 virtual serial ports.
When evaluation board set up to force IMU interface in UART mode (see p.3.4) up to 3 serial ports on IMU can communicate with PC.
When evaluation board connected to PC and power switch turned “ON” in Device Manager board will appear as 4 new consecutive virtual COM ports.





First in a row virtual port is routed to IMU’s main UART channel (Serial channel 0) (pins 3 and 4 on J2), and usually dedicated for sending commands
to IMU and capturing responses and periodic messages from IMU. It usually used by python driver to establish communication between IMU and Aceinna Navigation Studio.




Third in a row virtual port routed to IMU’s Debug Serial Channel (pins 17 and 19 on J2) and usually used as a debug/CLI serial channel .











OpenIMU330BI Evaluation Kit Setup


To set up OpenIMU330BI evaluation kit for development you’ll need to perform next steps:





	Unpack OpenIMU330BI evaluation kit.


	Push power switch to “OFF” position.


	Connect OpenIMU330BI evaluation board to the PC via USB cable. USB connection provides power to the test setup as well as connectivity between PC and IMU serial ports.


	Connect ST-Link debugger to the PC via USB cable.


	Connect OpenIMU330BI evaluation board to ST-Link debugger using provided 20-pin flat cable.


	Push power switch to “ON” position.







Now you are ready to debug and test your application.


	The following activities are addressed in the “Development Tools” section:


	Download App with JTAG


	Debugging with PlatformIO Debugger and JTAG Debug Adapter


	Graphing & Logging IMU Data using the Acienna Navigation Studio








OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not (yet)
comply with some or any technical or legal requirements that are applicable to finished products,
including, without limitation, directives regarding electromagnetic compatibility, recycling (WEEE),
FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied this board/kit
"AS IS," without any warranties, with all faults, at the buyer's and further users' sole risk. The
user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies Aceinna from all claims arising from the handling or use of the goods. Due to
the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge and any other technical or legal concerns.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA
SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
No license is granted under any patent right or other intellectual property right of Aceinna covering
or relating to any machine, process, or combination in which such Aceinna products or services might
be or are used.






Note

In OpenIMU330BI EVK by default signs of readings on X and Z axes are flipped in comparison to the Coordinate Frame drawing on top of the EVK board since OpenIMU330BI unit mounted upside-down in the EVK.






          

      

      

    

  

    
      
          
            
  
OpenIMU330BI Eval Board & Coordinate Frame


OpenIMU330BI Eval Board and Fixture

[image: ../_images/OpenIMU_EVB1.png]
The OpenIMU330BI Eval Board is attached to a fixture for easy handling and isolation of the back side of the board from any contact.
The EVB interfaces to the main connector of the OpenIMU330 evaluation module.  The EVB and IMU module are mounted together to a precision fixture to assist in testing.  The OpenIMU330EVB uses an
FTDI 4-port Serial-to-USB converter to allow you to communicate with between the OpenIMU serial ports and a laptop computer.  There are also
jumper connections to use to connect to the device’s primary SPI port. Use the JTAG interface to directly download compiled code to the device
quickly.



OpenIMU330BI Eval Module Default Coordinate System

The OpenIMU  default coordinate systems is shown below.  In the reference IMU apps, a configuration setting is provided
to control the coordinate system.  These configurable elements are known as Configuration Parameters.

[image: image8]





          

      

      

    

  

    
      
          
            
  
OpenIMU330BI Firmware Update

In comparison to OpenIMU300ZI and OpenIMU300RI, OpenIMU330BI does not have built-in bootloader. The reason behind it that OpenIMU300BI uses processor with less resources and sometimes if application is big – there would be now room to fit it in if bootloader present.
There are two scenarios how FW update can be performed for OpenIMU330BI.


Using JTAG (SWD) interface

OpenIMU330BI has standard SWD interface. Next pins are used:








	Pin #

	Pin Function

	Note



	K3

	SWCLK

	


	J2

	SWDIO

	


	F3

	RESET

	


	
	VIN

	Reference voltage



	
	GND

	Ground






SWD interface allows to perform programming of application into unit from development environment or using special utilities, for example ST-Link Utility.


Note


	Application image should be programmed from address 0x08000000


	Last 6 sectors of MCU flash should not be erased during programming. They contain calibration parameters.


	For unit to work properly last 6 sectors need to be write-protected. Write protection performed at the factory but in case of unit recovery it needs to be performed again.


	To be able to recover unit read and save full original image first (from address 0x08000000, length 0x20000).








Using built-in MCU bootloader

Application image can be programmed into the unit via serial interface using built into the processor boot loading capability.

Next pins on OpenIMU330BI are used in this case:








	Pin #

	Pin Function

	Notes



	K1

	BOOT0

	3.3 V



	G7

	USER_UART_RX (to unit)

	0 – 3.3V



	F1

	USER_USRT_TX (from unit)

	0 – 3.3V



	F3

	RESET

	0 – 3.3V Optional



	
	GND

	





Next sequence needs to be executed to force unit into boot loading mode:


	Connect serial RS232 interface from PC to unit using RS232-TTL convertor. There may be also direct USB-TTL serial adapter.


	Provide HIGH level on BOOT0 pin.


	Power up unit or apply RESET signal (active low. Time > 10 milliseconds).


	Start custom boot loading utility or ST Micro utility and follow the steps in the documentation.




User can choose to implement their own boot loader or use utilities provided by ST-Micro.

In first case find boot loading application note AN3155 here:


https://www.st.com/content/st_com/en/search.html#q=AN3155-t=resources-page=1




In second case find ST Flash Loader Utility here:


https://www.st.com/en/development-tools/flasher-stm32.html





Note


	In case if unit is not recognized by ST Flash Loader, place file STM32L4_128K.STmap (download below) into MAP directory (created during tool installation)


	Application image should be programmed from address 0x08000000


	Last 6 sectors of MCU flash should not be erased during programming. They contain calibration parameters.


	For unit to work properly last 6 sectors need to be write-protected. Write protection performed at the factory but in case of unit recovery it needs to be performed again.


	To be able to recover unit read and save full original image first (from address 0x08000000, length 0x20000).






File STM32L4_128K.STmap download





          

      

      

    

  

    
      
          
            
  
OpenIMU335RI - Triple-Redundant Rugged Industrial CAN Module
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Introduction


[image: _images/OpenIMU335RI-module.png]

OpenIMU335 Module



The ACEINNA OpenIMU335RI is an easy-to-use high-performance 6-DOF (9 DOF is optional) open inertial platform packaged in a rugged
sealed over-molded plastic housing. The OpenIMU335RI includes triple-redundant 3-Axis MEMS accelerometers and rate
gyros which are fully calibrated over the operating temperature range. A 3-axis magnetic sensor is also available as an
option. The processing power is provided by a 168MHz ARM M4 CPU with a Floating Point Unit. The OpenIMU335RI runs
the OpenIMU open-source stack that includes an optimized 16-state Kalman Filter for Attitude and GPS-Aided Position
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OpenIMU335RI Eval Kit

OpenIMU335RI Evaluation Kit Introduction

The OpenIMU evaluation kit is a hardware platform used to evaluate the
OpenIMU335RI inertial navigation system and develop various applications
based on this platform.  A difference to standard part is that a JTAG (SWD) 20-pin header is
brought out for code development.  It is supported by Aceinna Navigation Studio,
which enables the user to quickly evaluate the part.
The Components section below details the contents of the kit.


Note

An external DC power supply is required.  The power supply must be able to provide 100mA at 9VDC to 32VDC.



[image: ../_images/OpenIMU335_EvalKit.png]
OpenIMU335RI Evaluation Kit components

OpenIMU335RI Evaluation Kit fixture and JTAG header board


	The OpenIMU335RI unit with JTAG header board are mounted on the test fixture.
The JTAG header provides a means to debug/upload applications to the evaluation unit.

[image: ../_images/OpenIMU335_EvalBoard.png]




ST-Link debugger


	The ST-Link V2 programmer / debugger is a standard JTAG SWD debugger provided by STMicroelectronics company.
It is used for in-system debugging/uploading of applications via SWD interface.

[image: ../_images/STLink3.png]




OpenIMU335RI Breakout Cable


	An included cable provides a means of connecting the unit to a PC via RS232 interface, connecting the unit to the CAN bus, and powering the unit.
The next table shows the connector pin assignments of the supplied cable.










	Signal Name

	
Unit

Connector




	
RS232

Connector




	
CAN

Connector




	
Power

Wires






	GND

	3

	5

	
	Black



	VIN

	6

	
	
	Red



	RS232 TX

	5

	2

	
	


	RS232 RX

	4

	3

	
	


	CAN H

	1

	
	7

	


	CAN L

	2

	
	2

	









OpenIMU335RI Connector

The connector of the breakout cable is shown in the following image.
See the notes below for details of how to connect to and disconnect from the OpenIMU335RI.


[image: ../_images/OpenIMU335RI-ConnectorCloseup.png]

The pin numbers are as follows:


[image: ../_images/OpenIMU335RI_ConnectorPinNumbers.png]


Note

To connect the cable to the OpenIMU300RI evaluation unit:


	Align the keys on the unit and the cable connector.


	Push the 6-pin cable connector into the unit connector until lock clicks.


	If an extra lock is required - push the red latch under the black latch.  This prevents the disengagement button from being depressed.







Note

To disconnect the cable from the from OpenIMU335RI evaluation unit:


	If engaged, pull the red latch away from the connector toward the cable.


	Push down on the black disengagement button in the middle of the connector.


	Pull the cable connector away from the unit.








OpenIMU335RI Evaluation Kit Setup

To get started with the OpenIMU335RI evaluation kit connect the breakout cable to the evaluation kit.


	Connect the RS232 connector of the cable to a PC if you wish to evaluate using Aceinna Navigation Studio.


	To evaluate the part using the CAN interface simply connect to either a CAN analyzer, or network, and refer to the CAN Port Interface Definition section of the user manual [https://navview.blob.core.windows.net/web-resources/7430-3321-01%20User%20Manual%20OpenIMU335.pdf?_t=1621434422173].


	Connect RED (+) and BLACK (GND) wires to an external power supply (9 - 32V, 0.1A)




Refer to the Aceinna Navigation Studio website [https://developers.aceinna.com/] where there is documentation on how to:


	Download a PC server application that will allow you to evaluate the part over the RS-232 interface using the Chrome® web browser: https://developers.aceinna.com/devices/connect


	Update the firmware on the OpenIMU335RI using one of Aceinna’s pre-compiled applications: https://developers.aceinna.com/code/apps


	Install the OpenIMU programming environment for user code development: https://developers.aceinna.com/docs/install




The following activities are addressed in the Tools section:


	How to uload an App via JTAG


	Debugging with the PlatformIO Debugger and JTAG Debug Adapter


	Graphing & Logging IMU Data using the Acienna Navigation Studio




OpenIMU Evaluation Kit Important Notice

This evaluation kit is intended for use for FURTHER ENGINEERING, DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is not a finished product and may not (yet)
comply with some or any technical or legal requirements that are applicable to finished products,
including, without limitation, directives regarding electromagnetic compatibility, recycling (WEEE),
FCC, CE or UL (except as may be otherwise noted on the board/kit). Aceinna supplied this board/kit
"AS IS," without any warranties, with all faults, at the buyer's and further users' sole risk. The
user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies Aceinna from all claims arising from the handling or use of the goods. Due to
the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge and any other technical or legal concerns.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ACEINNA
SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
No license is granted under any patent right or other intellectual property right of Aceinna covering
or relating to any machine, process, or combination in which such Aceinna products or services might
be or are used.
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What is OpenIMU?


	OpenIMU is an open software platform for development of high-performance navigation and localization
applications on top of a family of low-drift pre-calibrated Inertial Measurement Units (IMU).


	OpenIMU hardware consists of a 3-axis rate sensor (gyro), 3-axis accelerometer platform, and 3-axis magnetometer module.


	The module contains a low-power embedded ARM Cortex-M4 CPU with floating-point math support.  Extra IO and Ports make
connection of external peripherals such as GPS, Odometer, and other more advanced sensors possible.


	The OpenIMU hardware comes in different form-factors including:




Hardware Configurations








	Type

	Part Number

	Hardware Features



	EZ

	OpenIMU300ZI

	Easy to Embed 3-5V UART/SPI Industrial IMU Module



	CAN

	OpenIMU300RI

	Rugged, Waterproof 5-32V CAN/RS232 Industrial Module



	SMT

	OpenIMU330BI

	Triple Redundant, SMT, 2°/Hr IMU






Open-Source Embedded Software


	OpenIMU hardware runs an open-source stack written on top of standard ARM Cortex libraries.


	OpenIMU300 use FreeRTOS while OpenIMU330 uses a simple real-time scheduler


	The open-source stack includes EKF (Extended Kalman Filter) algorithms that can be used directly or
customized for application specific use.


	The overall system loop is typically configured to run at 800Hz ensuring high quality aliasing-free
measurements for processing.


	Also included in the OpenIMU embedded software platform are drivers for various GPS receivers, customizable
SPI, CAN, and UART messaging, and customizable settings that can be adjusted run-time and/or permanently.


	A number of predefined settings are defined for baud rate, output date rate, sensor filter settings, and XYZ axis transformations.


	The Core OpenIMU embedded software consists of the following:


	FreeRTOS


	Extended Kalman Filter Algorithms


	High-Speed Deterministic Sampling


	Messaging


	GPS Drivers


	Accurate Time Service


	Sensor Filtering


	Settings Module for Dynamic and Permanent Unit Configuration
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OpenIMU Hardware/Software Interface

This section describes firmware-configurable connections from external hardware to the OpenIMU platform.  In particular,
it describes how external connections are connected and how the platform code modules are inputs and work together.  If
the platform cannot support the connection (such as the OpenIMU300RI( then this section is not applicable.  Examples of
external sources include:



	Synchronization to external clock signals


	GPS receiver input


	Odometer input







If the input is provided via a software interface, such as CAN, then this section is not applicable.
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Synchronization to External Clock Signals


Contents


	Connecting an External Clock


	Configuration Settings


	Post-Synchronization Operations






External clock signals provide a way for the system to synchronize sensor sampling and processing, as
well as algorithm operations, to an external source.  In general, this can improve the performance of
inertial systems and algorithms by enhancing the time-relevancy measurement of the sensor output, via
a highly accurate timestamp with micro-second resolution, or by enabling algorithm updates with
information that is more timely.

By default the system is configured to synchronize to a 1 kHz signal; all that is required is to
connect the signal to the OpenIMU device.  However, to enable synchronization lock to an external 1 Hz
signal (such as the GPS PPS signal) the user must configure the firmware to operate with a 1 Hz
external clock by calling platformEnableGpsPps(TRUE); during system initialization.


Connecting an External Clock

To synchronize the system to an external clock, the first step is to connect the signal to the
appropriate pin for the device being used:



	OpenIMU300ZI: Pin 2 serves as the clock input (OpenIMU300ZI Connector Pinout)


	OpenIMU330BI: Pin J3 serves as the clock input (OpenIMU330BI Connector Pinout)


	OpenIMU300RI: No pin available for synchronization to external clock









Configuration Settings

The second step in synchronizing to an external clock signal is to configure the firmware to use the
external signal connected to the external clock pint.  As mentioned above, the system is automatically
configured to use a 1 kHz.  To connect and synchronize to a 1 Hz signal, the user must configure the
firmware by calling platformEnableGpsPps(TRUE);.  An ideal place to perform this task is during
initialization of the user-generated algorithm, commonly executed in dataProcessingAndPresentation.c.

The following code snippet shows how the INS application initializes the system to synchronize to the
1 PPS signal:

// Next function is common for all platforms, but implementation of the methods inside is
// platform-dependent.  Call to this function is made from DataAcquisitionTask during the
// initialization phase.  All user algorithm and data structures should be initialized
// here, if used.
void initUserDataProcessingEngine()
{
    InitUserAlgorithm();         // default implementation located in file user_algorithm.c
    platformEnableGpsPps(TRUE);  // Init PPS sync engine
}







Post-Synchronization Operations

Once the system is configured to synchronize to the expected input clock signal, there are a variety
of functions available to take advantage of the synchronization.  Two such functions are:



	platformGetSolutionTstampAsDouble()


	platformGetEstimatedITOW()







Additionally, users can take advantage of the PPS synchronization by monitoring for, and responding to,
the PPS signal using the function platformGetPpsFlag(TRUE);, where TRUE indicates that the PPS flag
is reset after reading.

The time delay between the PPS signal and the availability of the GPS data can be measured using the
function getSystemTime().  This measurement can then be used to account for by the delay in the
algorithm.
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Connecting to a GPS Receiver Input Signal
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THIS IS A PLACEHOLDER PAGE

External GPS receiver signals provide a way for the system to acquire knowledge of the system position
and velocity in the Earth’s reference frame.  This page serves as a placeholder for the description of
the connection to the GPS receiver.  In addition to connecting to the receiver, the unit needs to know
what format the input signal will be (for example, NMEA or NovAtel) and what the message will be (GGA
vs VTG, etc.).


Connecting a GPS Receiver

To connect the system to an external GPS receiver, the first step is to connect the TX and RX lines
to the appropriate pins for the device being used:



	OpenIMU300ZI: Pins 17 and 19 serve as the GPS input pins (OpenIMU300ZI Connector Pinout)


	OpenIMU330BI: Pin X and Y serve as the GPS input pins (OpenIMU330BI Connector Pinout)


	OpenIMU300RI: No pin available for connection to GPS receiver









Configuration Settings

The second step in connecting to a GPS receiver is to configure the firmware to use the
signals.  An ideal place to perform this task is during
initialization of the user-generated algorithm, commonly executed in dataProcessingAndPresentation.c.



Post-Connection Operations

Once the system is configured to accept and decode the GPS receiver input, …



	Function1()


	Function2()
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Connecting to an External Odometer
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THIS IS A PLACEHOLDER PAGE

External odometer signals provide a way for the system to acquire knowledge of the system velocity and
heading relative to the vehicle-frame.  This page serves as a placeholder for the description of
the connection to the odometer.  In addition to connecting to the odometer, the unit needs to know
what format the input signal will be and what the message will be.


Connecting an Odometer

To connect the system to a non CAN-based, external odometer, the first step is to connect the signal lines
to the appropriate pins for the device being used:



	OpenIMU300ZI: Pins X and Y serve as the input pins (OpenIMU300ZI Connector Pinout)


	OpenIMU330BI: Pin X and Y serve as the input pins (OpenIMU330BI Connector Pinout)


	OpenIMU300RI: No pin available for connection to odometer









Configuration Settings

The second step in connecting to an odometer is to configure the firmware to use the signals.  An ideal
place to perform this task is during initialization of the user-generated algorithm, commonly executed
in dataProcessingAndPresentation.c.



Post-Connection Operations

Once the system is configured to accept and decode the odometer input, …



	Function1()


	Function2()
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EKF Algorithms

This section develops the equations that form the basis of an Extended Kalman Filter (EKF), which
calculates position, velocity, and orientation of a body in space1.  In a VG, AHRS, or
INS2 application, inertial sensor readings are used to form high data-rate (DR)
estimates of the system states while less frequent or noisier measurements (GPS and inertial
sensors) act as references to correct errors in the system.

In addition to deriving the EKF equations, this description presents a measurement model based on
Euler angles, which result from accelerometers, magnetometers, and GPS readings.  Following that it
describes implementations that result in improved solutions under both static and dynamic
conditions.  Finally, a series of examples illustrate existing VG, AHRS, and INS algorithms.

The algorithm development description is broken up into a series of sections that build upon one
another, as follows:


	Coordinate Frames


	Attitude Parameters


	Sensors


	Extended Kalman Filter


	Process Models


	Measurement Model


	Measurement Vector


	Innovation (Measurement Error)


	Magnetic Alignment


	References








	1

	This discussion presupposes a certain amount of knowledge.  Details related to
differential equations, linear algebra, multi-variable calculus, stochastic
processes, etc. are not described.



	2

	A VG uses rate-sensors and accelerometers to estimate roll and pitch.  An AHRS
incorporates magnetometer readings to the VG to estimate heading.  An INS adds GPS
messages to the VG or AHRS to estimate position and velocity or provide a way to
estimate heading without magnetometers.
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Coordinate Frames

A body’s position and orientation can only be measured relative to another set of basis vectors
(coordinate-frame).  In this formulation, inertial sensors provide the information to compute the
attitude and position of a body in space relative to an “inertial” frame, such as the
Earth-Centered, Earth-Fixed frame (ECEF) or the North/East/Down-frame (NED)1.  The
equations to come use the superscripts listed in Table 1  to specify the frame in
which a variable is measured.


Table 1: Frames and their Identifiers used throughout Algorithm Derivation

	Frame

	Superscript

	Description





	ECEF-Frame

	E

	
Frame aligned with Earth’s axis (z-axis parallel to axis-of-

rotation, x-axis exits at the equator through the prime-

meridian); rotates with the Earth (not shown in Figure 1)






	NED-Frame

	N

	
Frame aligned with the local tangent-frame (z-axis parallel to

the gravity vector) with the x-axis aligned with true or

magnetic north.  Red lines in Figure 1.






	Perp-Frame

	\(\perp\)

	
Frame aligned with the local tangent-frame (\(z_\perp\)-axis

parallel to the gravity vector).  Dark blue lines in Figure 1






	Body-Frame

	B

	
Frame aligned with the body-frame.  \(x_\perp\)-axis lies in the

plane formed by the \(x_\perp\) and \(z_\perp\)-axes. Light

blues lines in Figure 1









Figure 1 shows the relative orientation of three of the four frames listed in Table 1 (ECEF not
shown) for a hypothetical body on the surface of the Earth with a roll of 20°, a pitch of 10°, and
a heading of 30°.  The dashed red lines illustrate the components of the \(\perp\)-frame axes in
the N-Frame while the dashed blue lines indicate the projection of the B-Frame axes onto the N-frame.


[image: CoordFrames]

Figure 1: Coordinate Frames used in Derivation (N, perp, and B-Frames)




	1

	Strictly speaking, neither the ECEF-frame nor the NED-frame are inertial.  Both move
and rotate relative to the stars; the NED-frame changes with location as well.
However, the two are sufficient for use with the OpenIMU line of products.
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Attitude Parameters


Contents


	Direction Cosine Matrices


	Quaternion Elements


	Euler Angles


	Mathematical Relationships between Attitude Parameters


	Attitude Parameters Example






This paper makes use of three different attitude parameters to specify the orientation of a body
(B) relative to another frame (such as the N-frame).



	Direction Cosine Matrices


	Quaternion Elements


	Euler Angles








Direction Cosine Matrices

The first of these, the direction cosine matrix1, \({^N}{R}{^B}\), specifies the
relationship of one frame relative to another by relaying how the basis-vectors of one frame relate
to the basis-vectors of another.  These matrices have the property that they can, in a
straightforward manner, transform vectors from one frame into another, such as from the Body to the
NED-frame:


\[\vec{x}{^N} = {^N}{R}{^B} \cdot \vec{x}{^B}\]

In the upcoming derivation, transformations based on the Body-Fixed 3-2-1 Rotation set2
and the formulation used by Thomas Kane3  are relied upon extensively.



Quaternion Elements

The second parameter used to convey orientation information are quaternion elements4
(also called Euler parameters), \({^N}{\vec{q}}{^B}\).  Quaternions are relatively easy to propagate in time and
do not possess singularities.  However, they are not intuitive.  Quaternions consist of a scalar
and a vector component:


\[\begin{split}{^N}{\vec{q}}{^B} &= { \begin{bmatrix} {
                                        q_{0} \hspace{5mm} \vec{q}_{v}
                       } \end{bmatrix}
                     }^{T} \\
                  {\hspace{5mm}} \\
&= { \begin{bmatrix} {q_{0} \hspace{5mm} q_{1} \hspace{5mm} q_{2} \hspace{5mm} q_{3}} \end{bmatrix} }^{T} \\
                  {\hspace{5mm}} \\
&= { \begin{bmatrix} {
                       \cos{\begin{pmatrix} \theta \over 2 \end{pmatrix}} \hspace{5mm}
                       \hat{u} \cdot \sin{\begin{pmatrix} \theta \over 2 \end{pmatrix}}
     } \end{bmatrix}
   }^{T}\end{split}\]



Euler Angles

The final parameter used to relay attitude information are Euler angles.  These are more intuitive
than quaternions but, unlike quaternions, experience singularities at certain angles (based on the
selected rotation sequence).  For a 321-rotation sequence5, the singularity occurs
at a pitch of 90°.



Mathematical Relationships between Attitude Parameters

All three parameters contain the same information.  The equations that relate the various
parameters follow6.  For a 321-rotation sequence, the expression relating the rotation
transformation matrix of the body-frame in the NED-frame, \({^N}{R}{^B}\) , to the quaternion elements,
\({^N}{\vec{q}}{^B}\), is:


\[{{^N}{R}{^B}} = {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       {{q_0}^2 + {q_1}^2 - {q_2}^2 - {q_3}^2} &
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 - q_0 \cdot q_3} \end{pmatrix} }} &
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 + q_0 \cdot q_2} \end{pmatrix} }}
                                                       \cr
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 + q_0 \cdot q_3} \end{pmatrix} }} &
                                                       {{q_0}^2 - {q_1}^2 + {q_2}^2 - {q_3}^2} &
                                                       {2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 - q_0 \cdot q_1} \end{pmatrix} }}
                                                       \cr
                                                       {2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 - q_0 \cdot q_2} \end{pmatrix} }} &
                                                       {2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 + q_0 \cdot q_1} \end{pmatrix} }} &
                                                       {{q_0}^2 - {q_1}^2 - {q_2}^2 + {q_3}^2}
                                    \end{array}
                  } \end{bmatrix}
                }\]

\({^N}{R}{^B}\) can also be expressed in terms of Euler-angles, \({{^N}{\vec{\Theta}}{^B}} = { \begin{bmatrix} { {{^\perp}{\phi}{^B }} \hspace{5mm} {{^\perp}{\theta}{^B }} \hspace{5mm} {{^N}{\psi}{^\perp}} } \end{bmatrix} }^{T}\):


\[{{^N}{R}{^B}} = {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { -\sin{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       { 0 }
                                                       \cr
                                                       { \sin{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^N}{\psi}{^\perp}} \end{pmatrix}} } &
                                                       {0}
                                                       \cr
                                                       {0} &
                                                       {0} &
                                                       {1}
                                    \end{array}
                  } \end{bmatrix}
                }
                \cdot
                {
                  \begin{bmatrix} {
                                    \begin{array}{ccc}
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { \sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { \sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                                       \cr
                                                       { 0 } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { -\sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                                       \cr
                                                       { -\sin{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \sin{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} } &
                                                       { \cos{\begin{pmatrix} {{^\perp}{\theta}{^B}} \end{pmatrix}} \cdot \cos{\begin{pmatrix} {{^\perp}{\phi}{^B}} \end{pmatrix}} }
                                    \end{array}
                  } \end{bmatrix}
                }\]

In this case, \({^N}{R}{^B}\) is broken up into two sequential transformations, which separate the roll
and pitch calculations from the heading (this method is used later to form attitude measurements
from the accelerometer and magnetometer readings):


\[{{^N}{R}{^B}} = {{^N}{R}{^\perp}} \cdot {{^\perp}{R}{^B}}\]

Finally, Euler angles, \({^N}{\vec{\Theta}}{^B}\), can be expressed in terms of quaternion-elements, \({^N}{\vec{q}}{^B}\):


\[\begin{split}{^\perp}{\phi}{^B}   &= {atan2}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_2 \cdot q_3 + q_0 \cdot q_1} \end{pmatrix} }, \hspace{2mm} {{q_0}^2 - {q_1}^2 - {q_2}^2 + {q_3}^2}
                             } \end{pmatrix}
                           } \\
                  {\hspace{5mm}} \\
{^\perp}{\theta}{^B} &= -{asin}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_1 \cdot q_3 - q_0 \cdot q_2} \end{pmatrix} }
                             } \end{pmatrix}
                           } \\
                  {\hspace{5mm}} \\
{^N}{\psi}{^\perp}   &= {atan2}{ \begin{pmatrix} {
                                               2 \cdot { \begin{pmatrix} {q_1 \cdot q_2 + q_0 \cdot q_3} \end{pmatrix} }, \hspace{2mm} {{q_0}^2 + {q_1}^2 - {q_2}^2 - {q_3}^2}
                             } \end{pmatrix}
                           }\end{split}\]


Note

Due to the way the roll and pitch are separated from the heading, the Euler angles,
\({^\perp}{\phi}{^B}\), \({^\perp}{\theta}{^B}\), and \({^N}{\psi}{^\perp}\) are the same if written as \({^N}{\phi}{^B}\), \({^N}{\theta}{^B}\),
and \({^N}{\psi}{^B}\).





Attitude Parameters Example

Using the direction cosine matrix formulation, the transformation to get from the body to
inertial-frame (ECEF) in Figure 1 is composed of multiple transformations:


\[{^E}{R}{^B} = {^E}{R}{^N} \cdot {^N}{R}{^\perp} \cdot {^\perp}{R}{^B}\]

Each transformation describes how one coordinate frame is related to the next in the sequence of
rotations.



	\({^\perp}{R}{^B}\): Transformation from the (light-blue) body-frame to the (dark blue) local
perpendicular-frame \((\perp)\)


	\({^N}{R}{^\perp}\): Transformation from the (dark blue) \(\perp\)-frame to the (red) local
NED-frame


	\({^E}{R}{^N}\): Transformation from the (red) NED-frame to the ECEF-frame (ECEF-Frame not shown;
black line are latitude and longitude lines).  \({^E}{R}{^N}\) is based on the WGS84 model.







This notation not only makes the formulation easier by simplifying the full complexity of the
transformation but it helps avoid confusion by explicitly specifying the frame used in each
calculation.

Some additional information about these frames:



	\({^E}{R}{^N}\), the transformation between the NED and Earth-frame (used in the INS formulation),
is solely a function of ECEF location, \({^E}{R}{^N} = f({\vec{r}}{^E})\), and is
based on the WGS84 model.


	\({^N}{R}{^B}\), the transformation between the NED and body-frame is solely a function of the
attitude of the body-frame (roll, pitch, and heading angles of the body) and can be measured
by the local gravity and magnetic-field vectors (or GPS heading),
\({^N}{R}{^B} = f({\vec{g}}, {\vec{b}})\)








	1

	Pronounced “R B-in-N” and refers to the orientation of the B-Frame in the N-Frame.
Also referred to as a rotation transformation matrix.



	2

	A 3-2-1 rotation set defines the attitude of one set of basis-vectors (local-frame)
relative to another by specifying the angles of rotation required to get from the
inertial (N) to the local-frame (L).  With the local and inertial-frames initially
aligned, the rotations are performed in the following order: the first is about the
local z-axis (3), followed by a rotation about the local y-axis (2), and finally by a
rotation about the local x-axis (1).  The resulting matrix, \({^N}{R}{^L}\) = \({R}_{321}\), is
composed of column vectors formed from the xyz-axes of the local-frame coordinatized
in the inertial-frame:
\({^N}{R}{^L}\) = \(\begin{bmatrix} {{{\hat{x}_{L}}{^N}} \hspace{5mm} {{\hat{y}_{L}}{^N}} \hspace{5mm} {{\hat{z}_{L}}{^N}}} \end{bmatrix}\).



	3

	Kane, Thomas R.; Levinson, David A. (1985), Dynamics, Theory and Applications,
McGraw-Hill series in mechanical engineering, McGraw Hill.  Note: one main
difference between Kane’s approach is the DCM is the transpose of the DCM of other
formulations; I think Kane’s formulation is more intuitive.



	4

	Commonly referred to simply as “quaternion”.  To make it easier to reference the
elements in c, c++, and python, the first quaternion-element (the scalar component
of the quaternion) will have the zero index and is expressed as
\({q}_{0}=\cos \begin{pmatrix} \theta / 2 \end{pmatrix}\).  The vector
component of the quaternion,
\({\vec{q}}_{v}=\hat{u} \cdot \sin \begin{pmatrix} \theta / 2 \end{pmatrix}\),
occupies elements 2, 3, and 4.



	5

	The 321-rotation sequence is the only rotation sequence considered in this
paper.



	6

	Based on unpublished notes by Keith Reckdahl (Direction Cosines, Rotations, and
Quaternions); this paper follows Kane’s approach closely.  Any reference on the
subject will work.
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Sensors

Various sensors are used to obtain the information needed to estimate the position, velocity, and
attitude of a system (Table 2) .  Measurements from these sensors, taken
over time, are combined using an Extended Kalman Filter (EKF) to arrive at an estimates that are
more accurate or more timely than ones based on any single measurement.


Table 2: Inertial Sensors and Measurement Type






	Measurement

	Sensor

	Description





	Position

	
GPS













	
GPS provides position (Latitude/Longitude/Altitude) and

supplemental information (like standard deviation) to

the algorithm.  This is used to update the errors in the

position (integrated velocity) estimate.






	Velocity

	
1) Accelerometer

2) GPS



















	
Accelerometers provide the high DR/low-noise signal

that is integrated to get high DR velocity information.

GPS provides velocity and supplemental information to

the algorithm (velocity, heading, latency, etc), which is

used to update errors due to integration of the

accelerometer signal (in particular, to estimate the

accelerometer bias).






	Roll/Pitch

	
1) Angular-Rate


Sensor



2) Accelerometer













	
Angular-rate sensors provide the high DR/low-noise

signal that is integrated to get high DR attitude

information.  Accelerometers are used as a gravity

reference to update errors due to integration of the rate-

sensor signal (in particular, to estimate the rate-sensor

bias).






	Heading

	
1) Angular-Rate


Sensor



2) Magnetometer

3) GPS



















	
Angular-rate sensors provide the high DR/low-noise

signal that is integrated to get high DR heading

information.  Magnetometers are used as a north-

reference to update errors due to integration of the rate-

sensor signal (in particular, to estimate the z-axis rate-

sensor bias).  GPS also provides heading information,

which is used in lieu of magnetometer readings and can

be more accurate (less prone to disturbances) than the

magnetometer but available less often.









Other sensors, such as odometers, barometers, cameras, etc., may be incorporated into the EKF
formulation to get improved results.  However, incorporating data from any additional sensors would
require a reformulation of the algorithm presented here.

Inertial sensors measure the true motion and attitude of a system, corrupted by bias, noise, and
external influences.  For instance, the accelerometer signal is a combination of platform motion
and gravity1, as well as sensor bias and noise.  Simplified equations for the
three sensors are provided below:


\[\begin{split}\vec{\omega}_{meas} &= \vec{\omega}_{true} + \vec{\omega}_{bias} + \vec{\omega}_{noise}\\
{\hspace{5mm}} \\
\vec{a}_{meas} &= \vec{a}_{motion} + \vec{a}_{grav} + \vec{a}_{bias} + \vec{a}_{noise}\\
{\hspace{5mm}} \\
\vec{m}_{meas} &= \vec{b}_{motion} + \vec{m}_{bias} + \vec{m}_{noise}\end{split}\]

Items, such as misalignment, cross-coupling, etc. are ignored in this formulation they are
accounted for during system calibration.

Additionally, sensor bias can be broken down further.  In this paper, bias is modeled as a
constant offset plus random drift:


\[\vec{\omega}_{bias} = \vec{\omega}_{offset} + \vec{\omega}_{drift}\]

The magnetic field vector, \(\vec{b}\), may be corrupted by hard and soft-iron sources present in the
system in which the part is installed.  Hard and soft-iron effects can be estimated by performing
a “magnetic-alignment”2 procedure once installed in the end-user’s system.  The
equations relating the hard and soft-iron effects3 on the measured magnetic field
is:


\[\vec{m}_{meas} = {\begin{pmatrix} {R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T}} \end{pmatrix}}^{-1} \cdot \vec{b} + \vec{m}_{HI} + \vec{m}_{bias} + \vec{m}_{noise}\]

Where \(R_{SI}\) and \(S_{SI}\) represent the rotation and scaling of the magnetic-field, \(\vec{b}\), due to
soft-iron effects; \(\vec{m}_{HI}\) is the bias change in the magnetic-field due to hard-iron in the system.
Sensor gain is measured during the calibration process with the system at room temperature; it does
not vary much over temperature.  Sensor bias, however, is strongly linked to temperature.  The
calibration process measures bias over temperature (from -40° C to +85° C).  The temperature effect
on the magnetometer is “ratiometric”; the unitized magnetic-field vector is unaffected by
temperature.

Finally, and most importantly for the Extended Kalman Filter application, all sensor noise signals
are assumed to be white, Gaussian, stationary, and independent.  This implies that a sensor’s noise
characteristics are:



	zero-mean (\(\mu = 0\))


	distributed according to a normal distribution with variance \(\sigma^2\)


	constant over time (\(\sigma^2 \ne f(t)\))


	uncorrelated with other signals (\(E{ \begin{bmatrix} { {\begin{pmatrix} {\sigma_{\omega,x} - E[\sigma_{\omega,x}]} \end{pmatrix}} \cdot {\begin{pmatrix} {\sigma_{\omega,y} - E[\sigma_{\omega,y}]} \end{pmatrix}} } \end{bmatrix} } = 0\))







The formulation of the covariance matrices relies heavily on these assumption.


Note

The process-noise vectors, \(\vec{w}\), result from sensor noise transmission through the
individual state-transition models, described in the sections to come.




	1

	Due to the way the accelerometer measures acceleration, gravity appears like a
deceleration and, as such, \(\vec{a}_{grav} = -\vec{g}\).  This is
gravity deflecting the proof-mass in the direction of the gravity vector; such
a deflection caused solely by acceleration would require the body to accelerate
in the negative direction.



	2

	During a magnetic alignment maneuver, the magnetic measurements are recorded as the
system rotates (about its z-axis) through 360 deg.  Upon completion of the maneuver,
a best-fit ellipse is determined and used to model the hard and soft-iron
distortions in the system (described later).



	3

	In general you want the magnetic sensor to be in as magnetically clean a location
as possible.  Even by correcting for hard and soft-iron using this relationship,
large hard and soft-iron errors lead to progressively worse solutions.
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Kalman Filter


Contents


	Prediction (High Dynamic Range (DR) Process)


	Innovation (Measurement Error)


	Update (Low DR Process)






The solution described in this document is based on a Kalman Filter that generates estimates of
attitude, position, and velocity from noisy sensor readings.  The classic Kalman Filter works
well for linear models, but not for non-linear models. Therefore, an Extended Kalman
Filter (EKF) is used due to the nonlinear nature of the process and measurements model.

Kalman filters operate on a predict/update cycle1.  The system state at the next
time-step is estimated from current states and system inputs.  For attitude calculations, this
input is the angular rate-sensor signal; velocity and position calculations use the
accelerometer signal.  The update stage corrects the state estimates for errors inherent in the
measurement signals (such as sensor bias and drift) using measurements of the true attitude,
position, and velocity estimated from the accelerometer, magnetometer, and GPS readings.  As these
signals are typically noisier2 or provided at a significantly lower rate than the
rate-sensor, they are not used to propagate the attitude, instead their information is used to
correct the errors in the estimate.

For a discrete-time system the prediction and update equations are:


Prediction (High Dynamic Range (DR) Process)

In this stage of the EKF, the attitude, velocity, and acceleration are propagated forward in time
from sensor readings.


\[\vec{x}_{k|k-1} = f\begin{pmatrix} {\vec{x}_{k-1|k-1}, \vec{u}_{k|k-1}} \end{pmatrix}\]


\[P_{k|k-1} = F_{k-1} \cdot P_{k-1|k-1} \cdot {F_{k-1} }^{T} + Q_{k-1}\]

The first equation (\(\vec{x}_{k|k-1}\)) is the State Prediction Model and the second
(\(P_{k|k-1}\)) is the Covariance Estimate.



Innovation (Measurement Error)

In this stage, the errors between the predicted states and the measurements are computed.


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]



Update (Low DR Process)

The final stage of the EKF generates updates (corrections) to the predictions based on the quality
of the process models, process inputs, and measurements.


\[\begin{split}S_{k} &= H_{k} \cdot P_{k|k-1} \cdot {H_{k} }^{T} + R_{k}
{\hspace{5mm}} \\
K_{k} &= P_{k|k-1} \cdot {H_{k} }^{T} \cdot  {S_{k}}^{-1}
{\hspace{5mm}} \\
\Delta{\vec{x}_{k}} &= K_{k} \cdot \vec{\nu}_{k}
{\hspace{5mm}} \\
\vec{x}_{k|k} &= \vec{x}_{k|k-1} + \Delta{\vec{x}_{k}}
{\hspace{5mm}} \\
\Delta{P_{k}} &= -K_{k} \cdot H_{k} \cdot P_{k|k-1}
{\hspace{5mm}}  \\
P_{k|k} &= P_{k|k-1} + \Delta{P_{k}}\end{split}\]

In the order listed, the above equations relate to:



	Innovation Covariance


	Kalman Gain


	State Error


	State Update


	Covariance Error


	Covariance Update







These terms will be defined in the sections that follow.


	1

	Kalman Filtering: Theory and Practice Using MATLAB, 3rd Edition, Mohinder S. Grewal,
Angus P. Andrews



	2

	In this case, noisier means that the sensor signals are corrupted, not just by
electrical noise, but by external influences as well.  In the case of the
accelerometer, the device picks up vehicle motion in addition to gravity
information.  The magnetometer signal is affected by external magnetic sources,
such as iron in passing vehicles and in roadways.









          

      

      

    

  

  
    

    State Transition Models
    

    
 
  

    
      
          
            
  
State Transition Models


System State-Transition Model Summary1

The state-transition models form the core of the EKF prediction stage by performing the following
roles:



	They form the equations that propagate the system states from one time-step to the next
(using high-quality sensor as the input)


	They define the process-noise vectors relating each state to sensor noise


	They enable computation of the process covariance matrix, Q, and process Jacobian, F.  Both
are used to propagate the system covariance, P, from one time-step to the next.







The complete system state equation consists of 16 total states2


\[\begin{split}\vec{x} = {
            \begin{Bmatrix} {
                              \begin{array}{c}
                                               {\vec{r}^{N}} \\
                                               {\vec{v}^{N}} \\
                                               {{^N}\vec{q}{^B}} \\
                                               {\vec{\omega}_{bias}^{B}} \\
                                               {\vec{a}_{bias}^{B}}
                              \end{array}
            } \end{Bmatrix}
          }
        = {
            \begin{Bmatrix} {
                              \begin{array}{c}
                                               {\text{NED Position (3)}} \\
                                               {\text{NED Velocity (3)}} \\
                                               {\text{Body Attitude (4)}} \\
                                               {\text{Angular-Rate Bias (3)}} \\
                                               {\text{Accelerometer Bias (3)}}
                              \end{array}
            } \end{Bmatrix}
          }\end{split}\]

with the state-transition model, \(\vec{f}\), made up of five individual models (developed
in upcoming sections):


\[\vec{x}_{k} = \vec{f} { \begin{pmatrix} {
                                          \vec{x}_{k-1}, \hspace{2mm}
                                          \vec{u}_{k-1}
                                        }
                        \end{pmatrix} } + \vec{w}_{k-1}\]

where \(\vec{x}\) is the state-vector, \(\vec{u}\) is the input-vector (consisting of sensor
signals) and \(\vec{w}\) is the process-noise vector.

The expanded state-transition vector, \(\vec{f}\), is:


\[\begin{split}\vec{f} { \begin{pmatrix} {
                            \vec{x}_{k-1}, \hspace{2mm}
                            \vec{u}_{k-1}
          } \end{pmatrix} } = { \begin{Bmatrix} {
                                                  \begin{array}{c}
                                                                   {\vec{r}_{k-1}^{N} + \vec{v}_{k-1}^{N} \cdot dt} \\
                                                                   {\vec{v}_{k-1}^{N} + \begin{bmatrix} {
                                                                                                         {{{^N}{R}_{k-1}^{B}} \cdot \begin{pmatrix} {
                                                                                                                                    \vec{a}_{meas,k-1}^{B} - \hat{a}_{bias,k-1}^{B}
                                                                                                                    } \end{pmatrix} - \vec{a}_{grav,k-1}^{N}
                                                                                                         }
                                                                                        } \end{bmatrix}  \cdot dt
                                                                   } \\
                                                                   { \begin{bmatrix} {
                                                                                       I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1}
                                                                                               } \end{pmatrix}
                                                                     } \end{bmatrix} \cdot {^N}\vec{q}_{k-1}^{B}
                                                                   } \\
                                                                   {I_3} \\
                                                                   {I_3}
                                                  \end{array}
                                } \end{Bmatrix}
          }\end{split}\]

and the process-noise vector, \(\vec{w}_{k-1}\), is:


\[\begin{split}\vec{w}_{k-1} = { \begin{Bmatrix} {
                                    \begin{array}{c}
                                                     {-{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}^{2}} \\
                                                     {-{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}} \\
                                                     {-{{dt} \over {2}} \cdot \Xi_{k-1} \cdot {\vec{w}_{noise}^{B}}} \\
                                                     { \vec{N} \begin{pmatrix} {
                                                                                 0, \hspace{1mm}
                                                                                 \sigma_{dd,\omega}^{2}
                                                               } \end{pmatrix} } \\
                                                     { \vec{N} \begin{pmatrix} {
                                                                                 0, \hspace{1mm}
                                                                                 \sigma_{dd,a}^{2}
                                                               } \end{pmatrix} }
                                    \end{array}
                  } \end{Bmatrix}
                }\end{split}\]

The sensor noise vectors, \(\vec{N}\), corresponding to the angular-rate and accelerometer bias
states, are each 3x1 vectors with elements described by a zero-mean Gaussian distribution with a
variance of either \(\sigma_{dd,\omega}^{2}\) or \(\sigma_{dd,a}^{2}\).



Individual State-Transition Models

Individual state-transition models are derived in the following sections:



	Quaternion State-Transition Model

	Velocity State-Transition Model

	Position State-Transition Model

	Rate and Acceleration Bias State-Transition Models






	1

	There are many papers describing the derivation and implementation issues for EKFs
and Complementary-Filters.  Several of the papers similar to this implementation are
referenced in the Reference section.



	2

	GPS measurements are in latitude/longitude/altitude.  These are converted to position
in the Earth-frame, \(\vec{r}{^E}\).  Position in the NED-frame is calculated
from the initial starting point at system startup.  The state estimate is generated
by integrating velocity (estimated from accelerometer data).
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Quaternion State-Transition Model

All state propagation equations used in this paper are based on the following Taylor-series
expansion:


\[\vec{x}_{k} = \vec{x}_{k-1} + \dot{\vec{x}}_{k-1} \cdot { {dt} \over {1!} } + \ddot{\vec{x}}_{k-1} \cdot { {dt}^2 \over {2!} } + \ldots\]

where terms higher than first-order are neglected.  For attitude, the quaternion is propagated
according to the expression:


\[\vec{q}_{k} \approx \vec{q}_{k-1} + \dot{\vec{q}}_{k-1} \cdot dt\]

where dt is the integration time-step (sampling interval) and \(\vec{q}_{k-1}\) is the
current estimate of system attitude.

The kinematical equation that describes the rate-of-change of the attitude quaternion,
\(\dot{\vec{q}}_{k-1}\), is a function of true angular velocity,
\(\vec{\omega}_{true}\), as follows:


\[\dot{\vec{q}}_{k-1} = { {1} \over {2} } \cdot \Omega_{true,k-1} \cdot \vec{{q}}_{k-1}\]

where \(\Omega_{true,k-1}\) is formed from the components of the angular rate vector,
\({\begin{pmatrix}{^{N}{\vec{\omega}_{true}}^{B}}\end{pmatrix}}^{B}\) and specifies the
angular-rate of the body relative to an inertially-fixed frame, measured in the body-frame.  As all
angular-rate measurements made with MEMS sensors are relative to the inertial-frame, the notation
is simplified to \({\vec{\omega}_{true}}^{B}\).


\[\vec{\omega}^{B} = { \begin{Bmatrix} {
                                         \begin{array}{c}
                                                  {\omega_{x}^{B}} \cr
                                                  {\omega_{y}^{B}} \cr
                                                  {\omega_{z}^{B}}
                                         \end{array}
                                     } \end{Bmatrix}
                   }\]

The quaternion propagation matrix, \(\Omega_{k-1}\), at time-step k-1 is:


\[\Omega_{k-1} = { \begin{bmatrix} {
                                   \begin{array}{cccc}
                                                       {0} &
                                                       {-\omega_{x,k-1}^{B}} &
                                                       {-\omega_{y,k-1}^{B}} &
                                                       {-\omega_{z,k-1}^{B}}
                                                       \cr
                                                       {\omega_{x,k-1}^{B}} &
                                                       {0} &
                                                       {\omega_{z,k-1}^{B}} &
                                                       {-\omega_{y,k-1}^{B}}
                                                       \cr
                                                       {\omega_{y,k-1}^{B}} &
                                                       {-\omega_{z,k-1}^{B}} &
                                                       {0} &
                                                       {\omega_{x,k-1}^{B}}
                                                       \cr
                                                       {\omega_{z,k-1}^{B}} &
                                                       {\omega_{y,k-1}^{B}} &
                                                       {-\omega_{x,k-1}^{B}} &
                                                       {0}
                                   \end{array}
                 } \end{bmatrix}
               }\]

where (as noted above) all the rate components are estimates of the “true” rate measurements.

From the above expressions, the full state-transition model for system-attitude is:


\[\vec{q}_{k} = \vec{q}_{k-1} + {{1} \over {2}} \cdot \Omega_{true,k-1} \cdot {\vec{q}}_{k-1} \cdot dt
            = { \begin{bmatrix} {
                                  I_4 + {{dt} \over {2}} \cdot \Omega_{true,k-1}
                } \end{bmatrix}
              } \cdot {\vec{q}}_{k-1}\]

To find the noise term in the state-transition model, \(\vec{w}_{q,k-1}\), expand the
expression for \(\Omega_{true,k-1}\) using the rate-sensor model described earlier to
explicitly show the constituent terms:


\[\Omega_{true,k-1} = \Omega_{meas,k-1} - \Omega_{bias,k-1} - \Omega_{noise,k-1}\]

Substitute this result into the expression for the attitude state-transition model:


\[\begin{split}\vec{q}_{k} &= { { \begin{bmatrix} {
                                     I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1} } \end{pmatrix}
                                     - {{dt} \over {2}} \cdot \Omega_{noise,k-1}
                   } \end{bmatrix}
                 } \cdot {\vec{q}}_{k-1}
               } \\
               {\hspace{5mm}} \\
            &= {
                 \Phi_{k-1} \cdot \vec{q}_{k-1} + \vec{w}_{q,k-1}
               }\end{split}\]

\(\Phi_{k-1}\) is the state-transition matrix, defined as:


\[\Phi_{k-1} \equiv I_4 + {{dt} \over {2}} \cdot \begin{pmatrix} { \Omega_{meas,k-1} - \Omega_{bias,k-1} } \end{pmatrix}\]

and \(\vec{w}_{q,k-1}\) is the quaternion process-noise vector:


\[\vec{w}_{q,k-1} = -{{dt} \over {2}} \cdot \Omega_{noise,k-1} \cdot \vec{q}_{k-1}\]


Note

In this expression, the components of \(\Omega_{noise}\) are the noise components of
the angular-rate signal, \(\sigma_{\omega}^{2}\).  This can be expressed in terms of the
sensor’s Angular Random Walk (ARW).



Recasting \(\vec{w}_{q,k-1}\), so the rate-sensor noise (\(\omega_{noise}^{B}\)) forms
the input vector, results in the final expression for the quaternion process-noise resulting from
rate-sensor noise:


\[\vec{w}_{q,k-1} = -{{dt} \over {2}} \cdot \Xi_{k-1} \cdot \vec{\omega}_{noise}^{B}\]

with the variable \(\Xi_{k-1}\) relating the change in process noise to system attitude


\[\begin{split}\Xi_{k-1} \equiv \begin{bmatrix} {
                                   \begin{array}{c}
                                                    {-\vec{q}_{v}^{T}} \\
                                                    {q_0 \cdot I_3 + \begin{bmatrix} {\vec{q}_{v} \times} \end{bmatrix}}
                                   \end{array}
                 } \end{bmatrix}\end{split}\]

and \(\begin{bmatrix} {\vec{q}_{v} \times} \end{bmatrix}\) is the cross-product matrix.

The quaternion process noise vector is used to form the elements of the process covariance
matrix (Q) related to the attitude state.  The covariance is computed according to the following
equation:


\[\Sigma_{ij} = cov \begin{pmatrix} {\vec{x}_{i}, \vec{x}_{j}} \end{pmatrix}
            = E \begin{bmatrix} {\begin{pmatrix} {\vec{x}_{i} - \mu_i} \end{pmatrix}
                                 \cdot
                                 \begin{pmatrix} {\vec{x}_{i} - \mu_j} \end{pmatrix}
                } \end{bmatrix}\]

As mentioned previously, all processes considered in this paper assume white (zero mean) sensor
noise that is uncorrelated across sensor channels.  This simplifies the expression for the
covariance to:


\[\Sigma_{q} = \vec{w}_{q,k-1} \cdot \vec{w}_{q,k-1}^{T}\]

In addition to the assumption that the noise terms are white and independent, all axes are assumed
to have the same noise characteristics (\(\sigma_{\omega}\)).  Resulting in the final expression
for \(\Sigma_{q}\):


\[\Sigma_{q} = { { \begin{pmatrix} {
                                   {\sigma_{\omega} \cdot dt } \over {2}
                 } \end{pmatrix} }^{2}
             }
             \cdot
             {
               \begin{bmatrix} {
                                 \begin{array}{cccc}
                                                       {1 - q_0^2} &
                                                       {-{q_0 \cdot q_1}} &
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_0 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_1}} &
                                                       {1 - q_1^2} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {-{q_1 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {1 - q_2^2} &
                                                       {-{q_2 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_3}} &
                                                       {-{q_1 \cdot q_3}} &
                                                       {-{q_2 \cdot q_3}} &
                                                       {1 - q_3^2}
                                 \end{array}
                 } \end{bmatrix}
               }\]
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Velocity State-Transition Model

The velocity propagation equation is based on the following first-order model:


\[\vec{v}_{k} = \vec{v}_{k-1} + \dot{\vec{v}}_{k-1} \cdot dt\]

\(\dot{\vec{v}}_{k-1}\) is an estimate of system acceleration (linear-acceleration corrected for
gravity) and is formed from the accelerometer signal with estimated accelerometer-bias and gravity
removed.


\[\vec{a}_{motion,k-1} = \vec{a}_{meas,k-1} - \vec{a}_{bias,k-1} - \vec{a}_{grav}\]

Substituting this expression (along with the noise term) into the velocity propagation equation, and
explicitly stating the frames in which the readings are made, leads to:


\[\vec{v}_{k}^N = \vec{v}_{k-1}^N + \begin{pmatrix} {
                                                    \vec{a}_{motion,k-1}^N - {^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B}
                                  } \end{pmatrix} \cdot {dt}\]

where


\[\vec{a}_{motion,k-1}^N = {^{N}{R}_{k-1}^{B}} \cdot \begin{pmatrix} {
                                                                     \vec{a}_{meas,k-1}^B - \hat{a}_{bias,k-1}^B
                                                    } \end{pmatrix} - \vec{a}_{grav}^{N}\]

The velocity process-noise vector resulting from accelerometer noise is:


\[\vec{w}_{v,k-1}^{N} = -{^{N}{R}_{k-1}^{B}} \cdot \vec{a}_{noise}^{B} \cdot {dt}\]

leading to the final formulation for the velocity state-transition model:


\[\vec{v}_{k}^N = \vec{v}_{k-1}^N + \vec{a}_{motion,k-1}^N \cdot dt + \vec{w}_{v,k-1}^{N}\]

The velocity process noise vector is used to compute the elements of the process covariance matrix
(\(Q\)) related to the velocity estimate, as follows:


\[\Sigma_{v} = {\vec{w}_{v,k-1}} \cdot {\vec{w}_{v,k-1}}^{T}\]

By making the assumption that all axes have the same noise characteristics
(\({\sigma_{a}}^{2}\)) and manipulating the expression, the result can be simplified to the
following:


\[\Sigma_{v} = { \begin{pmatrix} {
                                 \sigma_{a} \cdot dt
               } \end{pmatrix} }^{2} \cdot I_3\]




          

      

      

    

  

  
    

    Position State-Transition Model
    

    
 
  

    
      
          
            
  
Position State-Transition Model

The position process model is based on the following first-order model:


\[\vec{r}_{k} = \vec{r}_{k-1} + \dot{\vec{r}}_{k-1} \cdot dt\]

where \(\dot{\vec{r}}_{k-1}\) is the estimated velocity state, \(\vec{v}_{k-1}\).
Substituting in the velocity term (including noise) results in:


\[\vec{r}_{k} = \vec{r}_{k-1} + \vec{v}_{k-1} \cdot dt + \vec{w}_{r,k-1}\]

\(\vec{w}_{r,k-1}\) is the process noise associated with the position state-transition model,
which is directly related to the velocity process noise:


\[\begin{split}\vec{w}_{r,k-1}     &= {\vec{w}_{v,k-1}} \cdot dt\\
                {\hspace{5mm}} \\
                &= {^{N}{R}_{k-1}^{B}} \cdot {\vec{a}_{noise}^{B}} \cdot {dt}^{2}\end{split}\]

Like the previous process models, this expression is used to compute the elements of the process
covariance matrix (Q) related to the position estimate:


\[\Sigma_{r} = {\vec{w}_{r,k-1}} \cdot {\vec{w}_{r,k-1}}^{T}\]

By making the assumption that all axes have the same noise characteristics
(\({\sigma_{a}}^{2}\)), \(\Sigma_{r}\) simplifies to:


\[\Sigma_{r} = ({\sigma_{a} \cdot dt}^{2} )^{2} \cdot I_3\]
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Rate and Acceleration Bias State-Transition Models

The process models for the bias terms are based on the assumption that bias is made up of two
components:



	A constant bias offset (\(\vec{\omega}_{offset}^{B}\))


	A randomly varying component superimposed on the offset
(\(\vec{\omega}_{drift}^{B}\)) based on the measured bias-instability value of the sensor







For the rate-sensor, the bias model is


\[\vec{\omega}_{bias}^{B} = \vec{\omega}_{offset}^{B} + \vec{\omega}_{drift}^{B}\]

The drift model follows a random-walk process1, i.e. the drift value wanders according
to a Gaussian distribution.


\[\vec{\omega}_{drift,k}^{B} = \vec{\omega}_{drift,k-1}^{B} + \dot{\vec{\omega}}_{drift,k-1}^{B} \cdot dt\]

where


\[\dot{\vec{\omega}}_{drift,k-1}^{B} = N \begin{pmatrix} { 0,\sigma_{dd,\omega}^{2} } \end{pmatrix}\]


Note

The subscript dd stands for “drift-dot”.



Based on this model, the process variance for \(\vec{\omega}_{drift}^{B}\) at time, t, is given
by:


\[\sigma_{d,\omega}^{2}(t) = \begin{bmatrix} { (\sigma_{dd,\omega} \cdot \sqrt{dt}) \cdot \sqrt{t} } \end{bmatrix} ^{2}\]

An empirical study related \(\sigma_{dd,\omega}\) to the BI and ARW values as follows:


\[\sigma_{dd,\omega} = {{2 \cdot \pi} \over {ln(2)}} \cdot {{{BI}^{2}} \over {ARW}}\]

To find the rate-bias process-noise covariance, set \(t = dt\) in the process-variance model
(above), resulting in:


\[\Sigma_{\omega b} = \sigma_{d,\omega}^{2} (dt) \cdot I_3 = {\begin{pmatrix} { \sigma_{dd,\omega} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]

The accelerometer drift model mirrors this formulation and results in:


\[\Sigma_{ab} = \sigma_{d,a}^{2} (dt) \cdot I_3 = {\begin{pmatrix} { \sigma_{dd,a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


	1

	This is not a perfect assumption as the output of the model is unbounded while the
actual process is not.
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Process Models


Introduction

As the state-transition model is nonlinear, the state-transition vector cannot be directly used to
propagate the covariance forward in time.  Instead the state-transition vector, \(\vec{f}\), is
linearized based on the current system states and used for this task.  The resulting linearization
(computed from the partial derivatives of \(\vec{f}\) with respect to the system states,
\(\vec{x}\)) generates a matrix referred to as the Process Jacobian, \(F\).  This matrix is
used to propagate the covariance, \(P\), forward in time.

The covariance estimate is also affected by the process noise, which is related to sensor-noise
levels.  The more process noise that exists in a system, the larger the covariance estimate will be
at the next time step.  This noise is reflected in the process-noise covariance matrix, \(Q\).

Formulation of these matrices are described in the following sections.



Individual Process Models



	Process Jacobian

	Process Noise Covariance Matrix
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Process Jacobian

As the system is nonlinear, the vector \(\vec{f}\) cannot be used to propagate the covariance
matrix, \(P\).  Instead the Process Jacobian, \(F\), (a linearized version of the
state-transition vector) is computed at each time step (based on the current system states) to
propagate \(P\) forward in time:


\[F_{k-1} = \left.{ {\partial{\vec{f}}} \over {\partial{\vec{x}}} }\right|_{\vec{x}_{k-1},\vec{u}_{k-1}}\]

This requires taking the derivative of each state-equation with respect to each state.  Each row of
the Jacobian corresponds to a specific state-equation; each column of the matrix corresponds to a
specific system state.  Performing this operation results in:


\[F = I_{16} + {
               \begin{bmatrix} {
                                 \begin{array}{ccccc}
                                                     {0_{3}} &
                                                     {I_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {\partial{v}\partial{q}} &
                                                     {0_{3}} &
                                                     {-{^{N}{R}^{B}}}
                                                     \cr
                                                     {0_{4 \times 3}} &
                                                     {0_{4 \times 3}} &
                                                     {{{1} \over {2}} \cdot \Omega} &
                                                     {-{{1} \over {2}} \cdot \Xi} &
                                                     {0_{4 \times 3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                                     \cr
                                                     {0_{3}} &
                                                     {0_{3}} &
                                                     {0_{3 \times 4}} &
                                                     {0_{3}} &
                                                     {0_{3}}
                                 \end{array}
               } \end{bmatrix}
             } \cdot {dt}\]

The one new term in the matrix, \({\partial{v}\partial{q}}\) is defined as:


\[{\partial{v}\partial{q}} \equiv {
                                  2 \cdot \overline{Q}_{F} \cdot { \begin{bmatrix} {
                                                                                     \begin{array}{cc}
                                                                                                         {0} &
                                                                                                         {\begin{pmatrix} { {\vec{a}^{B}} } \end{pmatrix} ^{T}}
                                                                                                         \cr
                                                                                                         {\vec{a}^{B}} &
                                                                                                         {-\begin{bmatrix} { {\vec{a}^{B}} \times } \end{bmatrix}}
                                                                                     \end{array}
                                                                   } \end{bmatrix}
                                                                 }
                                }\]

where \(\overline{Q}_{F}\) is:


\[\begin{split}\overline{Q}_{F} &= {
                      \begin{bmatrix} {
                                        \begin{array}{cccc}
                                                            {q_{1}} &
                                                            {q_{0}} &
                                                            {-q_{3}} &
                                                            {q_{2}}
                                                            \cr
                                                            {q_{2}} &
                                                            {q_{3}} &
                                                            {q_{0}} &
                                                            {-q_{1}}
                                                            \cr
                                                            {q_{3}} &
                                                            {-q_{2}} &
                                                            {q_{1}} &
                                                            {q_{0}}
                                        \end{array}
                      } \end{bmatrix}
                    } \\
                    {\hspace{5mm}} \\
                 &= {
                      \begin{bmatrix} {
                                        {\vec{q}_{v}} \hspace{5mm} {q_0 \cdot I_{3} + \begin{bmatrix} { {\vec{q}_{v}} \times } \end{bmatrix}}
                      } \end{bmatrix}
                    }\end{split}\]

and


\[\vec{a}^{B} = \vec{a}_{meas}^{B} - \vec{a}_{bias}^{B}\]
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Process Noise Covariance Matrix

The process covariance acts as a weighting matrix for the system process.  It relates the covariance
between the \(i^{th}\) and \(j^{th}\) element of each process-noise vector.  It is defined
as:


\[\Sigma_{ij} = cov{ \begin{pmatrix} {
                                     \vec{x}_{i},\vec{x}_{j}
                   } \end{pmatrix}
                 }
            = E{ \begin{bmatrix} {
                                   { \begin{pmatrix} { \vec{x}_{i}-\mu_{i} } \end{pmatrix} }
                                   \cdot
                                   { \begin{pmatrix} { \vec{x}_{j}-\mu_{j} } \end{pmatrix} }
                 } \end{bmatrix}
               }\]

A Kalman Filter can be viewed the combination of Gaussian distributions to form state estimates.
\(Q\) provides a measure of the width of the Gaussian distribution related to each noise state.
The wider the distribution, the more uncertainty exists in the process model.  This leads to a
state-update that affects the state more than if the model had a tighter distribution, which results
in an update having less influence on the particular state.

Based on the state process-noise vectors, \(\vec{w}_{k}\) (found in previous sections), the
Process Noise Covariance Matrix is:


\[Q_{k} = {
               \begin{bmatrix} {
                                 \begin{array}{ccccc}
                                                      {\Sigma_{r}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {\Sigma_{v}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{4 \times 3}} &
                                                      {0_{4 \times 3}} &
                                                      {\Sigma_{q}} &
                                                      {0_{4 \times 3}} &
                                                      {0_{4 \times 3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {\Sigma_{\omega b}} &
                                                      {0_{3}}
                                                      \cr
                                                      {0_{3}} &
                                                      {0_{3}} &
                                                      {0_{3 \times 4}} &
                                                      {0_{3}} &
                                                      {\Sigma_{ab}}
                                 \end{array}
                 } \end{bmatrix}
               }\]

The individual process covariance are repeated here:


\[\Sigma_{r} = {\begin{pmatrix} { \sigma_{a} \cdot {dt}^{2} } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{v} = {\begin{pmatrix} { \sigma_{a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{q} = { { \begin{pmatrix} {
                                   {\sigma_{\omega} \cdot dt } \over {2}
                 } \end{pmatrix} }^{2}
             }
             \cdot
             {
               \begin{bmatrix} {
                                 \begin{array}{cccc}
                                                       {1 - q_0^2} &
                                                       {-{q_0 \cdot q_1}} &
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_0 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_1}} &
                                                       {1 - q_1^2} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {-{q_1 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_2}} &
                                                       {-{q_1 \cdot q_2}} &
                                                       {1 - q_2^2} &
                                                       {-{q_2 \cdot q_3}}
                                                       \cr
                                                       {-{q_0 \cdot q_3}} &
                                                       {-{q_1 \cdot q_3}} &
                                                       {-{q_2 \cdot q_3}} &
                                                       {1 - q_3^2}
                                 \end{array}
                 } \end{bmatrix}
               }\]


\[\Sigma_{\omega b} = {\begin{pmatrix} { \sigma_{dd,\omega} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]


\[\Sigma_{ab} = {\begin{pmatrix} { \sigma_{dd,a} \cdot dt } \end{pmatrix}}^{2} \cdot I_3\]
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Measurement Model




Overview


It is possible to choose among various measurement models for a given EKF implementation.  A
particular model is selected based on many factors, one being the limitations of the available
measurements.  This formulation being described was selected due to the incomplete knowledge of the
magnetic environment of the system  and uses the available sensor information as follows:


#. Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN

#. Magnetometers and/or GPS heading information align the \(\perp\)-frame with true or
magnetic north (\({^{N}}{\psi}{^{\perp}}\))

#. GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))




Based upon these steps, the measurement vector, \(\vec{z}_{k}\), is formed:


\[\vec{z}_{k} = {
                \begin{Bmatrix} {
                                \begin{array}{c}
                                                {\vec{r}_{GPS}^{N}}
                                                \cr
                                                {\vec{v}_{GPS}^{N}}
                                                \cr
                                                {^{N}}{\vec{\Theta}}{_{meas}^{B}}
                                \end{array}
                } \end{Bmatrix}
            }\]

with the corresponding measurement model, \(\vec{h}_{k}\):


\[\vec{h}_{k} = {
                \begin{Bmatrix} {
                                \begin{array}{c}
                                                {\vec{r}_{pred}^{N}}
                                                \cr
                                                {\vec{v}_{pred}^{N}}
                                                \cr
                                                {^{N}}{\vec{\Theta}}{_{pred}^{B}}
                                \end{array}
                } \end{Bmatrix}
            }\]

Both \({^{N}}{\vec{\Theta}}{_{meas}^{B}}\) and \({^{N}}{\vec{\Theta}}{_{pred}^{B}}\) are
3x1 column vectors containing the roll, pitch, and heading values.




Measurement Model


The measurement model, \({\vec{h}_{k}}\) relates the system states, \({\vec{x}_k}\), to
the system measurements.  The position and velocity
elements of this vector come directly from the position and velocity states, while
\({^{N}}{\Theta}{_{pred}^{B}}\) is computed from \({^N}\vec{q}_{pred}^{B}\), as follows:


\[\begin{split}{^{\perp}{\phi}_{pred}^{B}} &= atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{2} \cdot q_{3}+q_{0} \cdot q_{1}} \end{pmatrix},{q_{0}}^{2}-{q_{1}}^{2}-{q_{2}}^{2}+{q_{3}}^{2} } \end{bmatrix}\\
{\hspace{5mm}} \\
{^{\perp}{\theta}_{pred}^{B}} &= -asin \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{3}-q_{0} \cdot q_{2}} \end{pmatrix} } \end{bmatrix}\\
{\hspace{5mm}} \\
{^{N}{\psi}_{pred}^{\perp}} &= atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{2}+q_{0} \cdot q_{3}} \end{pmatrix},{q_{0}}^{2}+{q_{1}}^{2}-{q_{2}}^{2}-{q_{3}}^{2} } \end{bmatrix}\end{split}\]




Measurement Vector (:math:`vec{z}_{k}`)


The measurement vector, \(\vec{z}_{k}\) is comprised of position, velocity, and attitude
information as defined above.  It is formed from sensor measurements.  However, only the GPS
velocity is directly available from measurements; other information must be derived from sensor
readings using the relationships described below.




Roll and Pitch Measurements


Roll and pitch values are computed from the accelerometer signal.  Under static conditions,
measurements made by the accelerometer consists solely of gravity and sensor noise.  Along the axis
pointed in the direction of gravity, the sensor measures -1 [g].  This is due to the proof-mass
being pulled in the direction of gravity, which, in the absence of gravity, is equivalent to a
deceleration of 1 [g].


\[\vec{a}_{meas} = \vec{a}_{grav} = -\vec{g}\]

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame
(perp-Frame):


\[\begin{split}\vec{g}^{N} = \vec{g}^{\perp} = \begin{Bmatrix} \begin{array}{c}
                                                                0 \\
                                                                0 \\
                                                                1
                                                \end{array}
                                \end{Bmatrix}\end{split}\]

and can be transformed into the body frame through \({^{B}{R}^{\perp}}\):


\[\begin{split}\vec{g}^{B} = {^{B}{R}^{\perp}} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \begin{Bmatrix} \begin{array}{c}
                                                                                                                0 \\
                                                                                                                0 \\
                                                                                                                1
                                                                                                \end{array}
                                                                                \end{Bmatrix}\end{split}\]

Using the definition of \({^{\perp}{R}^{B}}\) (discussed in
Attitude Parameters)
and expanding the equation, the accelerometer measurements can be related to roll and pitch angles:


\[\vec{g}^{B} = -\vec{a}_{meas}^{B}\]


\[\begin{split}\begin{Bmatrix} {
                \begin{array}{c}
                                {-sin \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix}}
                                \cr
                                {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot sin \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                                \cr
                                {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot cos \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                \end{array}
} \end{Bmatrix} = {
                    \begin{Bmatrix} {
                                    \begin{array}{c}
                                                    {-a}_{mx}^{B} \\
                                                    {-a}_{my}^{B} \\
                                                    {-a}_{mz}^B
                                    \end{array}
                    } \end{Bmatrix}
                }\end{split}\]

From this result, the angles corresponding to the accelerometer signal are found:


\[{^{\perp}}{\phi}{_{meas}^{B}} =atan2(-a_{my}^{B},-a_{mz}^{B} )\]


\[{^{\perp}}{\theta}{_{meas}^{B}}  =-asin(-\hat{a}_{mx}^{B} )\]

where, \(\hat{a}_{mx}^{B}\) is the x-axis acceleration value normalized by the total
acceleration magnitude:


\[\hat{a}_{mx}^{B} = { {a_{mx}^B} \over \| {\vec{a}_{meas}^{B}} \|}\]

Normalization of the y and z-axis accelerometer values can be performed.  However this is not
required as the \(atan\) function uses the ratio of the two (the normalization factor cancels
out).




Heading Measurements


Heading measurements are determined from one (or both) of the following:



	Magnetometers


	GPS Velocity










Magnetometer-Based Heading


Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by
hard and soft-iron disturbances in the system or by changes in the external magnetic field.  Hard
and soft-iron effects are local to the system and can be accounted for; external field disturbances
cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed
according to the following equation:


\[\vec{m}_{corr}^{B} = R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T} \cdot (\vec{m}_{meas}^{B} - \vec{m}_{bias}^{B} - \vec{m}_{HI}^{B} )\]

where \(\vec{m}_{meas}^{B}\) is the measured magnetic field vector in the body-frame,
\(\vec{m}_{HI}^{B}\) is the hard-iron disturbance, and \(R_{SI}\) and \(S_{SI}\) are the
soft-iron disturbances.


Note

For this analysis the magnetometer bias is neglected; assumed to be negligible or lumped in
with the hard-iron.



Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver.


Note

The application of these corrections do not adjust individual magnetometer channels to match
the actual field strength.  Only the relative magnetic field is corrected, resulting in a
unit-circle for the xy magnetic-field.  However, as shown later, this enables the heading to be
calculated from the corrected signal.






Heading calculation


The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the
magnetic field is zero.  In the true-north NED-frame this is not the case; a magnetic declination
angle corrects for this.  The magnetic field at a given point can be found using the World Magnetic
Model (WMM) or from NOAA’s website (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm).  In San Jose,
CA, the magnetic field estimates are provided in Table:


[image: MagFieldStrength]

Magnetic Field Components based on WMM



Figure illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and
the perp-frame.  Declination is specified with \(\delta\) and heading is specified with
\(\psi\).


[image: MagFieldNandBFrames]

Relationship of Magnetic-Field to N and B-Frames



The magnetic field vector, \(\vec{b}\), can be broken down into two components:



	the xy-plane component and


	the vertical component







The relationship between heading and magnetic field is based on the components of
\(\vec{b}^{N}\) as measured in the NED-frame:


\[\begin{split}\vec{b}^{\perp} = {^{\perp}{R}^{N}} \cdot \vec{b}^{N} = {^{\perp}{R}^{N}} \cdot \begin{Bmatrix} \begin{array}{c}
                                                                                                                b_{xy} \\
                                                                                                                0 \\
                                                                                                                b_{z}
                                                                                                \end{array}
                                                                                \end{Bmatrix}\end{split}\]

Expanding the expression results in the following:


\[\begin{split}\begin{Bmatrix} \begin{array}{c}
                                b_{x}^{\perp} \\
                                b_{y}^{\perp} \\
                                b_{z}^{\perp}
                \end{array}
\end{Bmatrix} = \begin{Bmatrix} \begin{array}{c}
                                                b_{xy} \cdot cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                                -b_{xy} \cdot sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                                b_{z}^{\perp}
                                \end{array}
                \end{Bmatrix}\end{split}\]

From this, the heading is computed:


\[tan{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } = { {b_{xy} \cdot \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} \over {b_{xy} \cdot \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} }
                                                        = { {-b_{y}^{\perp}} \over {b_{x}^{\perp}} }
                                                        = { {-m_{corr,y}^{\perp}} \over {m_{corr,x}^{\perp}} }\]


Note

The values for \(b_{x}^{\perp}\) and \(b_{y}^{\perp}\) are the corrected and ‘leveled’ values
of the measured magnetic-field in the body-frame; roll and pitch estimates are used to level
the signal via \({^{\perp}{R}_{pred}^{B}}\).




\[{\vec{m}_{corr}^{\perp}} = {^{\perp}{R}_{pred}^{B}} \cdot {\vec{m}_{corr}^{B}}\]


Note

As this calculation only corrects the magnetic-field in the xy body-frame, the heading solution
is best when the system is nearly level. he solution begins to degrade as the roll and pitch
increase.  This can be accounted for by adjusting the measurement covariance matrix, \(R\),
accordingly.  Additionally, the solution also begins to degrade as the iron in the system
increases.






GPS Heading


Heading is also provided directly from the GPS messages.  The four messages currently decoded by the
IMU381/OpenIMU firmware provide true heading via messages listed in Table.


GPS Messaging and Heading Measurement







	System

	Message

	Description

	Units





	NovAtel

	BESTVEL

	
Actual direction of motion over

ground (track over ground) with

respect to True North




	[deg]



	NMEA

	VTG

	True track made good

	[deg]



	SiRF

	
Geodetic Navigation

Data – Message ID 41




	
Course Over Ground

(COG, True)




	[deg x 100]



	ublox

	NAV-VELNED

	Heading of motion 2-D

	[deg]










Choosing the Heading Measurement Source

Deciding upon the source of the heading information is ultimately up to the user.  In the
Aceinna algorithm, the source switches from GPS to magnetometer based on the operating condition.
Specifically, during periods of motion, GPS measurements are used as the are considered more
accurate as they are not influenced by the magnetic environment.  However, when at rest the GPS
heading provides no heading information.  In this case, the magnetometer provides heading
information.

This implementation requires the algorithm to switch not only the source of the data but also the
related measurement covariance values.


GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to
NED-position using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message.  However, the NMEA message does not
provide vertical velocity, derived from or accounted for in other ways.  In all cases the N and
E-velocity is calculated from heading and ground speed.  The relationship is:


\[ \begin{align}\begin{aligned}v_{N} = v_{XY} * \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\\v_{E} = v_{XY} * \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\end{aligned}\end{align} \]
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Measurement Vector





Model Overview

It is possible to choose among various measurement models for a given EKF implementation.  The
particular model is selected based on many factors, one being the limitations of the available
measurements.  This formulation was selected due to the incomplete knowledge of the magnetic
environment of the system  and uses the available sensor information as follows:



	Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN


	Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north
(\({^{N}}{\psi}{^{\perp}}\))


	GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))







Based upon these steps, the measurement vector, \(\vec{z}_{k}\), is formed:


\[\vec{z}_{k} = {
                \begin{Bmatrix} {
                                  \begin{array}{c}
                                                   {\vec{r}_{GPS}^{N}}
                                                   \cr
                                                   {\vec{v}_{GPS}^{N}}
                                                   \cr
                                                   {^{N}}{\vec{\Theta}}{_{meas}^{B}}
                                  \end{array}
                } \end{Bmatrix}
              }\]

with the corresponding measurement model, \(\vec{h}_{k}\):


\[\vec{h}_{k} = {
                \begin{Bmatrix} {
                                  \begin{array}{c}
                                                   {\vec{r}_{pred}^{N}}
                                                   \cr
                                                   {\vec{v}_{pred}^{N}}
                                                   \cr
                                                   {^{N}}{\vec{\Theta}}{_{pred}^{B}}
                                  \end{array}
                } \end{Bmatrix}
              }\]

Both \({^{N}}{\vec{\Theta}}{_{meas}^{B}}\) and \({^{N}}{\vec{\Theta}}{_{pred}^{B}}\) are
3x1 column vectors containing the roll, pitch, and heading values. FN



Measurement Vector (\(\vec{z}_{k}\))

The measurement vector, \(\vec{z}_{k}\) is comprised of position, velocity, and attitude
information as defined above.  It is formed from sensor measurements:.  However, only the GPS
velocity is available directly from measurements; other information must be derived from sensor
readings using the relationship described below.


Roll and Pitch Measurements

Roll and pitch values are computed from the accelerometer signal.  Under static conditions,
measurements made by the accelerometer consists solely of gravity and sensor noise.  Along the axis
pointed in the direction of gravity, the sensor measures -1 [g].  This is due to the proof-mass
being pulled in the direction of gravity, which is equivalent to a deceleration of 1 [g] in the
absence of gravity.


\[\vec{a}_{meas} = \vec{a}_{grav} = -\vec{g}\]

Static roll and pitch values are determined by noting that gravity is constant in the N-Frame
(perp-Frame):


\[\begin{split}\vec{g}^{N} = \vec{g}^{\perp} = \begin{Bmatrix} { 0 \\
                                              0 \\
                                              1
                             } \end{Bmatrix}\end{split}\]

and can be transformed into the body frame through \({^{B}{R}^{\perp}}\):


\[\begin{split}\vec{g}^{B} = {^{B}{R}^{\perp}} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \vec{g}^{\perp}
            = { \begin{pmatrix} { {^{\perp}{R}^{B}} } \end{pmatrix} }^{T} \cdot \begin{Bmatrix} { 0 \\
                                                                                              0 \\
                                                                                              1
                                                                            } \end{Bmatrix}\end{split}\]

Using the definition of \({^{\perp}{R}^{B}}\) (discussed in
Attitude Parameters)
and expanding the equation, the accelerometer measurements can be related to roll and pitch angles:


\[\vec{g}^{B} = -\vec{a}_{meas}^{B}\]


\[\begin{split}\begin{Bmatrix} {
                  \begin{array}{c}
                                   {-sin \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix}}
                                   \cr
                                   {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot sin \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                                   \cr
                                   {cos \begin{pmatrix} { {^{\perp}{\theta}^{B}} } \end{pmatrix} \cdot cos \begin{pmatrix} { {^{\perp}{\phi}^{B}} } \end{pmatrix}}
                  \end{array}
} \end{Bmatrix} = {
                    \begin{Bmatrix} {
                                      \begin{array}{c}
                                                       {-a}_{mx}^{B} \\
                                                       {-a}_{my}^{B} \\
                                                       {-a}_{mz}^B
                                      \end{array}
                    } \end{Bmatrix}
                  }\end{split}\]

From this result, the angles corresponding to the accelerometer signal are found:


\[{^{\perp}}{\phi}{_{meas}^{B}} =atan2(-a_{my}^{B},-a_{mz}^{B} )\]


\[{^{\perp}}{\theta}{_{meas}^{B}}  =-asin(-\hat{a}_{mx}^{B} )\]

where, \(\hat{a}_{mx}^{B}\) is the x-axis acceleration value normalized by the total
acceleration magnitude:


\[\hat{a}_{mx}^{B} = { {a_{mx}^B} \over \| {\vec{a}_{meas}^{B}} \|}\]

Normalization of the y and z-axis accelerometer values can be performed.  However this is not
required as the \(atan\) function uses the ratio of the two (the normalization factor cancels
out).



Heading Measurements

Heading measurements are determined from the following:



	Magnetometers


	GPS Velocity








Magnetometer-Based Heading

Magnetometers measure the local magnetic field at a high DRs but the readings can be affected by
hard and soft-iron disturbances in the system or by changes in the external magnetic field.  Hard
and soft-iron effects are local to the system and can be accounted for; external field disturbances
cannot be corrected.

Adjustment of the magnetic field measurement for hard/soft-iron disturbances can be performed
according to the following equation:


\[\vec{m}_{corr}^{B} = R_{SI} \cdot S_{SI} \cdot {R_{SI}}^{T} \cdot (\vec{m}_{meas}^{B} - \vec{m}_{bias}^{B} - \vec{m}_{HI}^{B} )\]

where \(\vec{m}_{meas}^{B}\) is the measured magnetic field vector in the body-frame,
\(\vec{m}_{HI}^{B}\) is the hard-iron disturbance, and \(R_{SI}\) and \(S_{SI}\) are the
soft-iron disturbances.  Note: for this analysis the magnetometer bias is neglected; assumed to be
negligible or lumped in with the hard-iron.

Hard and soft-iron parameters are estimated by performing a magnetic-alignment maneuver.  Note that
the application of these corrections do not adjust individual magnetometer channels to match the
actual field strength.  Only the relative magnetic field is corrected, resulting in a unit-circle
for the xy magnetic-field.  However, as shown later, this enables the heading to be calculated from
the corrected signal.


Heading calculation

The heading is computed using the fact that, in the magnetic NED-frame, the y-axis component of the
magnetic field is zero.  In the true-north NED-frame this is not the case; a magnetic declination
angle corrects for this.  The magnetic field at a given point can be found using the World Magnetic
Model (WMM) or from NOAA’s website (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm).  In San Jose,
CA, the magnetic field estimates are provided in Table 4:


[image: MagFieldStrength]

Table 4: Magnetic Field Components based on WMM



Figure 4 illustrates the relationship between the Lines of constant Lat/Lon, the NED-frame, and
the perp-frame.  Declination is specified with \(\delta\) and heading is specified with
\(\psi\).


[image: MagFieldNandBFrames]

Figure 4: Relationship of Magnetic-Field to N and B-Frames



The magnetic field vector, \(\vec{b}\), can be broken down into two components:



	the xy-plane component and


	the vertical component







The relationship between heading and magnetic field is based on the components of
\(\vec{b}^{N}\) as measured in the NED-frame:


\[\begin{split}\vec{b}^{\perp} = {^{\perp}{R}^{N}} \cdot \vec{b}^{N} = {^{\perp}{R}^{N}} \cdot \begin{pmatrix} { b_{xy} \\
                                                                                       0 \\
                                                                                       b_{z}
                                                                     } \end{pmatrix}\end{split}\]

Expanding the expression results in the following:


\[\begin{split}\begin{Bmatrix} { b_{x}^{\perp} \\
                  b_{y}^{\perp} \\
                  b_{z}^{\perp}
} \end{Bmatrix} = \begin{Bmatrix} {  b_{xy} \cdot cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                    -b_{xy} \cdot sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } \\
                                     b_{z}^{\perp}
                  } \end{Bmatrix}\end{split}\]

From this, the heading is computed:


\[tan{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} } = { {b_{xy} \cdot \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} \over {b_{xy} \cdot \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }} }
                                                          = { {-b_{y}^{\perp}} \over {b_{x}^{\perp}} }
                                                          = { {-m_{corr,y}^{\perp}} \over {m_{corr,x}^{\perp}} }\]

Note: the values for \(b_{x}^{\perp}\) and \(b_{y}^{\perp}\) are the corrected and ‘leveled’ values
of the measured magnetic-field in the body-frame; roll and pitch estimates are used to level the
signal via \({^{\perp}{R}_{pred}^{B}}\).


\[{\vec{m}_{corr}^{\perp}} = {^{\perp}{R}_{pred}^{B}} \cdot {\vec{m}_{corr}^{B}}\]

Note: as this calculation only corrects the magnetic-field in the xy body-frame, the heading
solution is best when the system is nearly level. he solution begins to degrade as the roll and
pitch increase.  This can be accounted for by adjusting the measurement covariance matrix,
\(R\), accordingly.  Additionally, the solution also begins to degrade as the iron in the system
increases.




GPS Heading

Heading is also provided directly from the GPS messages.  The four messages currently decoded by the
IMU381/OpenIMU firmware provide true heading via messages listed in Table 6.


Table 6: GPS Messaging and Heading Measurement







	System

	Message

	Description

	Units





	NovAtel

	BESTVEL

	
Actual direction of motion over

ground (track over ground) with

respect to True North




	[deg]



	NMEA

	VTG

	True track made good

	[deg]



	SiRF

	
Geodetic Navigation

Data – Message ID 41




	
Course Over Ground

(COG, True)




	[deg x 100]



	ublox

	NAV-VELNED

	Heading of motion 2-D

	[deg]






of the PS  readings  and angles derived from accelerometer readings (equations provided in
Measurement Covariance section):




GPS Position and Velocity

GPS-based position is derived from the GPS lat/lon/alt message (BestPos, GGA, etc) and converted to
NED-position using the WGS84 model.

GPS-based velocity is obtained from the BestVel, etc message.  However, the NMEA message does not
provide vertical velocity, derived from or accounted for in other ways.  In all cases the N and
E-velocity is calculated from heading and ground speed.  The relationship is:


\[ \begin{align}\begin{aligned}v_{N} = v_{XY} * \cos{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\\v_{E} = v_{XY} * \sin{ \begin{pmatrix} { {^{N}{\psi}^{\perp}} } \end{pmatrix} }\end{aligned}\end{align} \]
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Innovation / Measurement Error





Innovation Overview

The innovation (measurement error) is formed from the sensor measurements and the predicted states.
As the measurements and the system states are often not the same, one or the other needs to be
transformed into the measurement.  In the case of this algorithm, the state consists of an attitude
quaternion, NED-velocity, and NED-position.  The measurement come from accelerometer readings, GPS
latitude/longitude/altitude measurements, and horizontal/vertical velocities along with
ground-track.  In this case either the states need to be converted to match the measurements or vice-versa.

Once the measurements vectors are formed, the innovation (measurement error), \(\vec{\nu}_{k}\),
is computed:


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]

This result is used in the update stage of the EKF to generate the state error,
\({\Delta\vec{x}}_{k}\), given the Kalman gain matrix.

The available sensor information is used as follows:



	Accelerometers “level” the system (used to compute \({^{\perp}}{\phi}{_{meas}^{B}}\) and
\({^{\perp}}{\theta}{_{meas}^{B}}\)) FN


	Magnetometers and/or GPS heading information align the perp-frame with true or magnetic north
(\({^{N}}{\psi}{^{\perp}}\))


	GPS position and velocity measurements update the position and velocity estimates
(\(\vec{r}^{N}\) and \(\vec{v}^{N}\))







Measurement Details To Be Provided
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Magnetic-Alignment

Overview


A so-called “magnetic-alignment” procedure enables estimation of the hard and soft-iron disturbances
in the system.  As these disturbances are fixed in the body, the corrections must be applied in the
body-frame.  The procedure works as follows:



	The magnetic-field is measured and recorded as the system undergoes a 360+ degree rotation about the z-axis.  Ideally this is done when the system is level.


	Upon completion, an algorithm determines the ellipse that best fits the distorted circle.


	Ellipse parameters (related to the hard and soft-iron disturbances) are saved in the firmware and used to correct the magnetic-field measurements.







In most cases an ellipse describes magnetic-field distortions quite well.  The ellipse parameters
relate to the magnetic disturbances as follows:



	The center of the ellipse is equal to the hard-iron values


	The angle the major-axis of the ellipse makes with a nominal x-axis is equal to the soft-iron
angle (which forms the matrix \(R_{SI}\))


	The major and minor-axis lengths forms the scaling matrix \(S_{SI}\)







The formula for the corrected magnetic measurements works by:



	Centering the ellipse by removing the hard-iron bias from the measurements


	Rotating the ellipse to align with the nominal x and y-axes


	Stretching the ellipse along its major and minor-axes to form a unit-circle


	Rotating the unit-circle back into its nominal orientation







Note: as mentioned earlier, this correction is only done in the XY-plane and cannot correct the raw
magnetometer signal.  It is only done to determine the system heading.




Example


Magnetic-field information was collected as the system underwent a 360 degree rotation about the z-
axis (Figure).  This was performed twice, once in a disturbance-free environment (no iron added
to the system) and once with additional iron added to the system. The data in each case was
processed and a best-fit ellipse FN computed (dashed lines).  In the disturbance-free case, the data
and the fit were close to circular.  In the case with additional iron, however, the circle was
clearly distorted and shifted away from the origin.




Magnetic-Field Measurement in an Environment with and without Iron-Based Disturbances


For the measurements taken in the presence of additional iron, the estimation procedure produced the
following best-fit ellipse parameters:




Best-Fit Ellipse Parameters









	Ellipse Parameter

	Value

	Unit





	Center

	-0.128, 0.126

	[G]



	Major/Minor axes

	0.225, 0.198

	[G]



	Soft-Iron Scale Factor

	0.882

	[N/A]



	Angle to Major-Axis

	-48.497

	[deg]






In the correction equation (above), \(R_{SI}\) is the rotation matrix and corrects for a
rotation of the magnetic-field due to soft-iron effects:


\[R_{SI} = \begin{bmatrix} { { \begin{split} cos{ \begin{pmatrix} { \eta } \end{pmatrix} }
                            sin{ \begin{pmatrix} { \eta } \end{pmatrix} }
                            1
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} -sin{ \begin{pmatrix} { \eta } \end{pmatrix} }
                            cos{ \begin{pmatrix} { \eta } \end{pmatrix} }
                            1
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            0
                            1
                            \end{split}
                          }
        } \end{bmatrix}\]

Where \(\eta\) is the angle from the nominal x-axis to the semi-major axis.  \(S_{SI}\) (the
scale-factor matrix) corrects for the stretching caused by the soft-iron:


\[S_{SI} = \begin{bmatrix} { { \begin{split} {1/a}
                            0
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            {1/b}
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            0
                            1
                            \end{split}
                          }
        } \end{bmatrix}\]

\(a\) and \(b\) are the lengths of the semi-major and semi-minor axes.

For the data-set described above, the values for \(R_{SI}\) and \(S_{SI}\), resulting from
the best-fit ellipse parameters, are:


\[R_{SI} = \begin{bmatrix} { { \begin{split} {0.66266}
                            {-0.74892}
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} {0.74892}
                            {0.66266}
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            0
                            1
                            \end{split}
                          }
        } \end{bmatrix}\]

and


\[S_{SI} = \begin{bmatrix} { { \begin{split} {4.45226}
                            0
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            {5.04689}
                            0
                            \end{split}
                          } \hspace{5mm}
                          { \begin{split} 0
                            0
                            1
                            \end{split}
                          }
        } \end{bmatrix}\]

Applying these correction factors to the raw magnetic-field measurements results in the unit-circle
shown in Figure.




Corrected Magnetic Field Readings


Note: the nodes located at 45 degree increments around the circle are points where additional data
was collected to test the heading calculation (described in the next section).




Results


Table lists the heading computed from test data using the above equations relating heading to
corrected magnetic-field.

Heading Results from Magnetically Clean and Distorted Readings










	
True Heading

[deg]




	Disturbance-Free Data

	Data with Added Iron Source



	Heading [deg]

	Error [deg]

	Heading [deg]

	Error [deg]





	0

	359.69

	-0.31

	0.013

	0.013



	45

	45.19

	0.19

	44.82

	-0.18



	90

	89.96

	-0.04

	90.15

	0.15



	135

	135.05

	0.05

	135.08

	0.08



	180

	180.57

	0.57

	180.68

	0.68



	225

	225.64

	0.64

	225.62

	0.62



	270

	270.63

	0.63

	270.48

	0.48



	315

	315.30

	0.30

	315.09

	0.09



	360

	359.79

	-0.21

	0.10

	0.10






Note: the raw results reported a systematic error of approximately 2.0 degrees on all heading
values.  This was due to a misalignment of the test-fixture relative to true-north.  The values
presented in Table reflect this 2.0 degree correction.  The systematic error is visible in
Figures with data-clusters that do not fall on the x and y-axes.
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Magnetic Sensor Algorithms

OpenIMU ships with a number of ready to use, downloadable applications [https://developers.aceinna.com/code/apps]
to help you get started.

This section discusses algorithms that can make use of the OpenIMU’s on-board magnetic sensor.  Currently, this
is primarily for Magnetic Alignment also referred to as Compass Calibration, or Hard/Soft Iron Calibration.

In the future, this section may include other algorithms that make use of the magnetometer including event detection and
pedestrian dead reckoning.
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C-Code Serial Driver

C-code Serial Driver - Details To Be Provided
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OpenIMU Modules

The four OpenIMU modules that are currently available are the:



	OpenIMU300ZI - EZ Embed Industrial Module

	OpenIMU300RI - Rugged Industrial CAN Module

	OpenIMU330BI - Triple Redundant, 1.5 °/Hr, SMT Module

	OpenIMU335RI - Triple-Redundant Rugged Industrial CAN Module
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Formation of \(\vec{h}_{k}\) from EKF states:

In the measurement model \({\vec{h}_{k}}\), all terms are functions of the system states,
\({\vec{x}_k}\).  The position and velocity elements of this vector come directly from the
position and velocity states, while \({^{N}}{\Theta}{_{pred}^{B}}\) is computed from
\({^N}\vec{q}_{pred}^{B}\), as follows:


\[{^{⊥}{\phi}_{pred}^{B}} = atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{2} \cdot q_{3}+q_{0} \cdot q_{1}} \end{pmatrix},{q_{0}}^{2}-{q_{1}}^{2}-{q_{2}}^{2}+{q_{3}}^{2} } \end{bmatrix}\]


\[{^{⊥}{\theta}_{pred}^{B}} = -asin \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{3}-q_{0} \cdot q_{2}} \end{pmatrix} } \end{bmatrix}\]


\[{^{N}{\psi}_{pred}^{⊥}} = atan2 \begin{bmatrix} {2 \cdot \begin{pmatrix} {q_{1} \cdot q_{2}+q_{0} \cdot q_{3}} \end{pmatrix},{q_{0}}^{2}+{q_{1}}^{2}-{q_{2}}^{2}-{q_{3}}^{2} } \end{bmatrix}\]

Observation Jacobian:

The Observation Jacobian, \(H\), is formulated from the measurement model, \(\vec{h}_{k}\).
The Observation Jacobian is a linearized version of the measurement model and is used to map the
measurements of \({^{⊥}{\phi}_{pred}^{B}}\), \({^{⊥}{\theta}_{pred}^{B}}\), and
\({^{N}{\psi}_{pred}^{⊥}}\) back to quaternion state, \({^N}{\vec{q}}_{pred}^{B}\), ensuring
the EKF applies the state updates properly.  The Observation Jacobian is computed as follows:


\[H_{k} = \left.{ {\partial{\vec{h}}} \over {\partial{\vec{x}}} }\right|_{\vec{x}_{k},\vec{u}_{k}}\]

and results in a matrix of the form:


\[\begin{split}H_{k} = \begin{bmatrix} { { I_3 \\
                            0_3 \\
                            0_3
                          } \hspace{5mm}
                           { 0_3 \\
                             I_3 \\
                             0_3
                           } \hspace{5mm}
                           { 0_{3 \times 4} \\
                             0_{3 \times 4} \\
                             {\partial{h}\partial{q}}
                           } \hspace{5mm}
                           { 0_3 \\
                             0_3 \\
                             0_3
                           } \hspace{5mm}
                           { 0_3 \\
                             0_3 \\
                             0_3
                           }
         } \end{bmatrix}\end{split}\]

where


\[\begin{split}{\partial{h}\partial{q}} = \begin{bmatrix} { H_{\phi} \\
                                             H_{\theta} \\
                                             H_{\psi}
                           } \end{bmatrix}\end{split}\]

The three terms that make up \({\partial{h}\partial{q}}\) are found using the chain-rule for differentiation.  For roll, the equation becomes:


\[H_{\phi} = {{\partial{^{⊥}{\phi}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
         = {{\partial{atan2 \begin{pmatrix} {y_{\phi}, x_{\phi}} \end{pmatrix}}} \over \partial{x_{\phi}}} \cdot {{\partial{x_{\phi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}} +
           {{\partial{atan2 \begin{pmatrix} {y_{\phi}, x_{\phi}} \end{pmatrix}}} \over \partial{y_{\phi}}} \cdot {{\partial{y_{\phi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

and results in:


\[H_{\phi} = \begin{pmatrix} {
                             {2} \over {x_{\phi}^{2} + y_{\phi}^{2}}
           } \end{pmatrix} \cdot \begin{bmatrix} {
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{1} - y_{\phi} \cdot q_{0} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{0} + y_{\phi} \cdot q_{1} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{3} + y_{\phi} \cdot q_{2} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\phi} \cdot q_{2} - y_{\phi} \cdot q_{3} } \end{pmatrix} \hspace{5mm}
                                  } \end{bmatrix}\]


\[x_{\phi} = {q_{0}}^{2} - {q_{1}}^{2} - {q_{2}}^{2} + {q_{3}}^{2}\]


\[y_{\phi} = 2 \cdot \begin{pmatrix} { q_{2} \cdot q_{3}+q_{0} \cdot q_{1} } \end{pmatrix}\]

\(H_{\psi}\) follows the same formulation as \(H_{\phi}\):


\[H_{\psi} = {{\partial{^{⊥}{\psi}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
         = {{\partial{atan2 \begin{pmatrix} {y_{\psi}, x_{\psi}} \end{pmatrix}}} \over \partial{x_{\psi}}} \cdot {{\partial{x_{\psi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}} +
           {{\partial{atan2 \begin{pmatrix} {y_{\psi}, x_{\psi}} \end{pmatrix}}} \over \partial{y_{\psi}}} \cdot {{\partial{y_{\psi}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

resulting in:


\[H_{\psi} = \begin{pmatrix} {
                             {2} \over {x_{\psi}^{2} + y_{\psi}^{2}}
           } \end{pmatrix} \cdot \begin{bmatrix} {
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{3} - y_{\psi} \cdot q_{0} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{2} - y_{\psi} \cdot q_{1} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{1} + y_{\psi} \cdot q_{2} } \end{pmatrix} \hspace{5mm}
                                                   \begin{pmatrix} { x_{\psi} \cdot q_{0} + y_{\psi} \cdot q_{3} } \end{pmatrix} \hspace{5mm}
                                  } \end{bmatrix}\]


\[x_{\psi} = {q_{0}}^{2} + {q_{1}}^{2} - {q_{2}}^{2} - {q_{3}}^{2}\]


\[y_{\psi} = 2 \cdot \begin{pmatrix} { q_{1} \cdot q_{2} + q_{0} \cdot q_{3} } \end{pmatrix}\]

Finally, for pitch the equation becomes:


\[H_{\theta} = {{\partial{^{⊥}{\theta}_{pred}^{B}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}
           = -{{\partial{asin \begin{pmatrix} {u_{\theta}} \end{pmatrix}}} \over \partial{u_{\theta}}} \cdot {{\partial{u_{\theta}}} \over \partial{^{N}{\vec{q}}_{pred}^{B}}}\]

resulting in:


\[H_{\theta} = { { {2} \over \sqrt{ 1 - {u_{\theta}}^{2} } } \cdot { \begin{bmatrix} { {  q_{2} } \hspace{5mm}
                                                                                      { -q_{3} } \hspace{5mm}
                                                                                      {  q_{0} } \hspace{5mm}
                                                                                      { -q_{1} }
                                                                   } \end{bmatrix}
                                                                 }
             }\]


\[u_{\theta} = 2 \cdot \begin{pmatrix} {
                                       q_{1} \cdot q_{3} - q_{0} \cdot q_{2}
                     } \end{pmatrix}\]

eeeeee


{^{N}{R}_{k-1}^{B}}
:math:``
begin{pmatrix} {} end{pmatrix}

sin{ begin{pmatrix} { {^{N}{psi}^{⊥}} } end{pmatrix} }
cos{ begin{pmatrix} { {^{N}{psi}^{⊥}} } end{pmatrix} }




Innovation (Measurement Error):

Once the measurements vectors are formed, the innovation (measurement error), \(\vec{\nu}_{k}\),
is computed:


\[\vec{\nu}_{k} = \vec{z}_{k} - \vec{h}_{k}\]

This result is used in the update stage of the EKF to generate the state error,
\({\Delta\vec{x}}_{k}\), given the Kalman gain matrix.

Magnetometer vs GPS-Heading:

These are just notes right now and may go elsewhere in the doc (probably in implementation section)

How to combine \({^N}{\psi}_{meas,gps}^{⊥}\) and \({^N}{\psi}_{meas,mag}^{⊥}\)



	Don’t use \({^N}{\psi}_{meas,mag}^{⊥}\) if \({^N}{\psi}_{meas,gps}^{⊥}\)  is available


	Set \({\nu}_{\psi} = 0\) when GPS is valid and it is not time for a GPS update


	
	Create \(\Delta{^N}{\psi}_{meas,mag}^{⊥}\) and use it for updates between GPS updates

	What if we are turning?  The latency may make the GPS heading less than ideal and affect \(\Delta{^N}{\psi}_{meas,mag}^{⊥}\).







	
	For vel < thresh, use mag, else use gps

	For vel < thresh, lock the heading update












Measurement Covariance Values, R:

The measurement covariance is obtained in one of two ways:



	Value provided by the sensor (as for GPS messages)


	Calculated based on the underlying sensor noise







Setting this value properly is a key step toward a well-behaved EKF solution.  If the value of R is
too small the Kalman gain will be large, resulting in large EKF updates.  This may work well for a
static systems but will lead to errors in dynamic situations.  For example, when the Kalman gain is
large, a linear acceleration in the x-axis (even for a system that has not changed attitude) can be
misinterpreted as a change in the pitch.

Roll/Pitch Measurement Model and Covariance:

Static Case:

One way to determine the nominal (static) value for \(R\) is to simulate the sensor noise as it is
passed through the measurement model.  For the roll and pitch angle, the models that convert the
accelerometer signal to angles are simply the atan2 and asin functions.

Creating an accelerometer signal and passing it through the asin and atan2 functions reveal the
noise on the measurements (during static periods), see Appendix R.  Figure 5 and Figure 6 show
that the standard-deviation of the roll measurement is highly dependent on the pitch angle
\({^{⊥}{\theta}^{B}}\) while the pitch standard-deviation is constant for all roll and
pitch angles ().

Figure 5: Roll and Pitch Standard-Deviation due to Accelerometer Noise

Figure 6: Roll and Pitch Standard-Deviation as a function of \({^{⊥}{\theta}^{B}}\)

In addition to finding the nominal values for \({R}_{\phi}\) and \({R}_{\theta}\) under
level conditions (\({^{⊥}{\phi}^{B}} = {^{⊥}{\theta}^{B}}=0\)), the change in \({R}_{\phi}\)
for different \({^{⊥}{\theta}^{B}}\) should be accounted for as well.  The solution was found
to become unstable (solution walked off at large pitch angles) if the change in \({R}_{\phi}\)
vs \({^{⊥}{\theta}^{B}}\) was not implemented.

One final note: the values in Figure 5 and Figure 6 are standard-deviation values.  To form the
\(R\) matrix, the values must be squared as \(R\) is based on the signal’s variance.

Heading Covariance:

The values for \({R}_{\psi}\) can also be based on magnetometer noise levels but, if set too
low, external magnetic disturbances can quickly pull the heading away from the correct value.  An
empirical approach can also be used: selecting a value so sudden magnetic disturbances (such as a
large truck pulling up besides the test vehicle) do not result in sudden changes in heading.
However, this can also have the negative effect that errors in the magnetic heading take some time
to recover.  The second approach was taken to determine an acceptable value for
\({R}_{\psi,mag}\) when operating as an AHRS.

When heading is available from the GPS, this is not an issue and \({R}_{\psi,gps}\) can be
selected in a different manner.  As described in the BestVel GPS message description, direction
accuracy is inversely proportional to vehicle speed.  The faster the system is traveling, the better
‘the heading measurement.  This relationship can be used to set \({R}_{\psi,gps}\).

At slow speeds (or a stop), \({R}_{\psi,gps}\) will get very large.  Two approaches to deal with
these cases are to



	Implement a yaw-lock.  Prevent a yaw update during these periods.


	Use the magnetometer solution at speeds below a certain threshold







Dynamic Case:

To find the appropriate \(R\)-values, a Monte-Carlo approach was used.  For the …

Aided VG-Solution

Implementation

One of the challenges in implementing the Extended Kalman Filter comes from determining the quality
of the measurement and setting the measurement covariance, \(R\), appropriately.  As mentioned
previously, roll and pitch measurements are nominally computed from static accelerometer noise
levels.  However, when the system is moving, the accelerometer signal may also contains linear and
centripetal acceleration components (as well as system vibrations).  These components distort the
gravity measurement and affect the roll and pitch estimates as the system does not know if the
measured angles are changing due to a change in attitude (gravity) or a linear acceleration.

In practice, discerning between the gravity and motion (and adjusting \(R\) accordingly) has the
potential to improve the attitude results.  In this case, adjusting the value of \(R\) during
acceleration periods (increasing the value) reduces the effect of the acceleration on the state
update.  When the system returns to a static (non-accelerating) state, the value of \(R\) can be
reduced to the nominal value, which results in a higher Kalman gain  and more aggressive updates.

A simple approach to implementing this is to compare the magnitude of the accelerometer signal
against the expected magnitude of gravity.  When an appreciable difference is detected (more than
typical sensor/system noise would cause), the value of \(R\) is increased.  When the difference
is removed, the value of \(R\) is restored.  While simple in theory, this is more difficult in
practice.  Why?  To avoid single point errors (mitigated by using the signal only after a certain
amount of time elapses).  To ensure the gain drops before the measurement is used (filter properly).

Other things to improve performance:


1) Limit the innovation error, \(\vec{\nu}_{k}\).  This reduces the error going into the EKF
Update resulting in smaller state updates.  Setting the error limit this way is justified as the
errors are typically only large during periods of acceleration, which are erroneous anyway.

2) Change R based on the quality of the measurement.  Some measurements (particularly GPS
measurements) are provided along with a measure of their variance.  When available, these values
can be used to adjust \(R\).  Other measurements do not provide this information and the
user is left to set \(R\) based on intuition or simulation.  For instance, as mentioned
above, \(\phi\) and \(\theta\) are affected by acceleration; \({R}_{\phi}\) and
\({R}_{\theta}\) should be increased during these periods.  \({R}_{\psi}\) is affected
by turns about the z-axis and \({R}_{\psi}\) should be increased accordingly to account for
lag and other effects.


	Combining heading from two sources.      Need to think of how to combine these two measurements


	Don’t use mag heading when GPS valid?




5) Latency in GPS message: Any latency in obtaining, parsing, and providing GPS messages should
be accounted for by either 1) adjusting R or 2) accounting for the latency.  For instance, if
the GPS messages is consistently late by DT seconds, then the heading can be adjusted by a
formula such as:





\[ \begin{align}\begin{aligned}\psi_{GPS} = \psi_{GPS} - \dot{\psi} \cdot \Delta{T}\\6) Much of the math on which the EKF is based consists of sparse matrices.  Using algorithms
that take advantage of sparse matrices make the algorithms run much faster and permit higher
execution rates.  For the most part, only the *P*-matrix needs to have all its elements
considered.\\7) The INS algorithm makes use of a sequential approach to solving for the states.  From an
execution point-of-view this makes the runtime of the algorithm significantly less as only 3x3
matrix inverses are required to solve for the state updates\end{aligned}\end{align} \]

Test Results

Appendix:
Cross-Product Matrix:
The cross-product between two 3x1 vectors is calculated as:
vec{a} timesb ⃑=|■(i ̂&j ̂&k ̂@a_x&a_y&a_z@b_x&b_y&b_{z} )|=■(i ̂ cdot (a_y cdot b_{z}-a_z cdot b_y )@-j ̂ cdot (a_x cdot b_{z}-a_z cdot b_x )@+k ̂ cdot (a_x cdot b_y-a_y cdot b_x ) )
=[■(0&-a_z&a_y@a_z&0&-a_x@-a_y&a_x&0)] cdot {■(b_x@b_y@b_{z} )}
The resulting cross-product matrix is:
[vec{a} times]=[■(0&-a_z&a_y@a_z&0&-a_x@-a_y&a_x&0)]
Resulting in the final expression:
vec{a} timesb ⃑=[vec{a} times] cdot vec{b}
This terminology can be used to simplify expressions for larger matrices.  For example, Ω can be rewritten as
Ω=[■(0&-ω ⃑^T@ω ⃑&[ω ⃑ times]^T )]=[■(0&-ω ⃑^T@ω ⃑&-[ω ⃑ times] )]
where [ω ⃑ times] is the cross-product matrix based on the angular velocity vector, ω ⃑^B:
[ω ⃑ times]≝[■(0&-ω_z&ω_y@ω_z&0&-ω_x@-ω_y&ω_x&0)]

Process Jacobians:
Only the less obvious derivatives are included here.
Derivation of ∂v∂q:
∂v∂q≝2 cdot ∆t cdot (■([■(■(■(q_{0}@q_{3}@-q_{2} )&■(q_{1}@q_{2}@q_{3} ))&■(■(-q_{2}@q_{1}@-q_{0} )&■(-q_{3}@q_{0}@q_{1} )))] cdot a ̂_(motion x)^B+⋯@[■(■(■(-q_{3}@q_{0}@q_{1} )&■(q_{2}@-q_{1}@q_{0} ))&■(■(q_{1}@q_{2}@q_{3} )&■(-q_{0}@-q_{3}@q_{2} )))] cdot a ̂_(motion y)^B+⋯@[-■(■(■(q_{2}@q_{1}@q_{0} )&■(q_{3}@-q_{0}@-q_{1} ))&■(■(q_{0}@q_{3}@-q_{2} )&■(q_{1}@q_{2}@q_{3} )))] cdot a ̂_(motion z)^B ))
Form the matrix Q ̅
Q ̅=[■(■(■(q_{1}@q_{2}@q_{3} )&■(q_{0}@q_{3}@-q_{2} ))&■(■(-q_{3}@q_{0}@q_{1} )&-■(q_{2}@q_{1}@q_{0} )))]=[■(vec{q}_{v}&q_{0}⋅I_3+[vec{q}_{v} times] )]
∂v∂q≝2 cdot ∆t cdot (■(Q ̅ cdot [■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+⋯@Q ̅ cdot [■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+⋯@Q ̅ cdot [■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B ))
∂v∂q≝2 cdot ∆t cdot Q ̅ cdot (■([■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+⋯@[■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+⋯@[■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B ))
The terms inside the parenthesis can be written as:
[■(■(0&1@1&0)&■(0&0@0&0)@■(0&0@0&0)&■(0&1@-1&0))] cdot a ̂_(motion x)^B+[■(■(0&0@0&0)&■(1&0@0&-1)@■(1&0@0&1)&■(0&0@0&0))] cdot a ̂_(motion y)^B+[■(■(0&0@0&0)&■(0&1@1&0)@■(0&-1@1&0)&■(0&0@0&0))] cdot a ̂_(motion z)^B
Expanding the equation and writing the resultant matrix using vector and cross-product terms results in the final form for ∂v∂q:
∂v∂q≝2 cdot ∆t cdot Q ̅⋅[■(0&(a ̂_motion^B )^T@a ̂_motion^B&-[a ̂_motion^B times] )]

Compute ∂q∂ω_bias
Expand
-∆t/2 cdot Ω_(noise,k-1) cdot q ⃑_(k-1)
And differentiate wrt the bias terms leads to:
Q^*≝2 cdot ∆t cdot [■(■(q_{1}@-q_{0} )&■(q_{2}@q_{3} )&■(q_{3}@-q_{2} )@■(-q_{3}@q_{2} )&■(-q_{0}@-q_{1} )&■(q_{1}@-q_{0} ))]=-Ξ_(k-1)

The second term, Q^*, is:
Q^*≝[■(■(q_{1}@-q_{0} )&■(q_{2}@q_{3} )&■(q_{3}@-q_{2} )@■(-q_{3}@q_{2} )&■(-q_{0}@-q_{1} )&■(q_{1}@-q_{0} ))]=[■((vec{q}_{v} )^T@-(q_{0}⋅I_3+[vec{q}_{v} times]) )]=-Ξ_(k-1)

Software Implementation

Initialization:

a_sum=∑_(k=1)^N▒a ⃑_k^B
m_sum=∑_(k=1)^N▒m ⃑_k^B

After N data-points are collected, average data and from the ICs:
a ̅^B=a_sum/N
m ̅^B=m_sum/N

Compute the gravity and magnetic-field unit-vectors:
g ̂^B=-a ̅^B/|a ̅^B |
m ̂^B=-m ̅^B/|m ̅^B |

Find the components of the magnetic-field that are parallel and perpendicular to the gravity vector:
m ⃑_(∥g)^B=(m ̂^B⋅g ̂^B ) cdot g ̂^B
m ⃑_(⊥g)^B=m ̂^B-m ⃑_(∥g)^B

Form the axes of the NED-frame from the magnetic and gravity field vectors.  The D-axis is parallel to the gravity vector while the N-axis is parallel to the magnetic field vector that is perpendicular to the gravity vector:
z ̂_N^B=g ̂^B
x ̂_N^B=(m ⃑_(⊥g)^B)/|m ⃑_(⊥g)^B |
〖y ̂_N^B=z ̂_N^B timesx ̂〗_N^B

The transformation matrix, (_^N)R_^B , is formed from these unit-vectors:
(_^N)R_^B =[■((x ̂_N^B )^T@(y ̂_N^B )^T@(z ̂_N^B )^T )]=[■(x ̂_B^N&y ̂_B^N&z ̂_B^N )]

The attitude quaternion, (_^N)q_^B , can be calculated from (_^N)R_^B :
(_^N)q_^B =f((_^N)R_^B )

The initial state-vector is formed from these values:
vec{x}_0={■(■(r@v@(_^N)q_^B  )@ω ⃑_bias@a ⃑_bias )}

Appendix Q:

Quaternion process covariance:
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot (Ξ cdot Σ_ω cdot Ξ^T )

The rate-sensor noise is treated as a stationary process, so the time subscript, k, can be dropped from the noise terms.  However, the attitude does change with time and k should remain on the quaternion terms (removed here for ease of reading).  Additionally, the sensor noise is assumed to be the same for all sensor channels.
Ξ≡[■(-〖vec{q}_{v}〗^T@q_{0} cdot I_3+[vec{q}_{v} times] )]
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot [■(■(-q_{1}&-q_{2}@q_{0}&-q_{3} )&■(-q_{3}@q_{2} )@■(q_{3}&q_{0}@-q_{2}&q_{1} )&■(-q_{1}@q_{0} ))] cdot [■(〖σ_ω〗^{2}&0&0@0&〖σ_ω〗^{2}&0@0&0&〖σ_ω〗^{2} )] cdot [■(■(-q_{1}&q_{0} )&■(q_{3}&-q_{2} )@■(-q_{2}&-q_{3} )&■(q_{0}&q_{1} )@■(-q_{3}&q_{2} )&■(-q_{1}&q_{0} ))]
〖w_q cdot {vec{w}_{q}}^T=(Δt/2)〗^{2} cdot 〖σ_ω〗^{2} cdot [■(■(-q_{1}&-q_{2}@q_{0}&-q_{3} )&■(-q_{3}@q_{2} )@■(q_{3}&q_{0}@-q_{2}&q_{1} )&■(-q_{1}@q_{0} ))] cdot [■(■(-q_{1}&q_{0} )&■(q_{3}&-q_{2} )@■(-q_{2}&-q_{3} )&■(q_{0}&q_{1} )@■(-q_{3}&q_{2} )&■(-q_{1}&q_{0} ))]
Performing the multiplication (and crossing out terms that cancel) results in:
Sigma_{q} = ((σ_ω cdot ∆t)/2)^{2} cdot [■(■(1-{q_{0}}^{2}&-q_{0} cdot q_{1}@-q_{0} cdot q_{1}&1-{q_{1}}^{2} )&■(-q_{0} cdot q_{2}&-q_{0} cdot q_{3}@-q_{1} cdot q_{2}&-q_{1} cdot q_{3} )@■(-q_{0} cdot q_{2}&-q_{1} cdot q_{2}@-q_{0} cdot q_{3}&-q_{1} cdot q_{3} )&■(1-{q_{2}}^{2}&-q_{2} cdot q_{3}@-q_{2} cdot q_{3}&1-{q_{3}}^{2} ))]


	Rate-bias Process-Covariance:

	
	w ⃑_(q,k-1)     =-∆t/2 cdot {■(■(-ω_(noise x,k-1)^B cdot q_(1,k-1)-ω_(noise y,k-1)^B cdot q_(2,k-1)-ω_(noise z,k-1)^B cdot q_(3,k-1)@ω_(noise x,k-1)^B cdot q_(0,k-1)+ω_(noise z,k-1)^B cdot q_(2,k-1)-ω_(noise y,k-1)^B cdot q_(3,k-1) )@■(ω_(noise y,k-1)^B cdot q_(0,k-1)-ω_(noise z,k-1)^B cdot q_(1,k-1)+ω_(noise x,k-1)^B cdot q_(3,k-1)@ω_(noise z,k-1)^B cdot q_(0,k-1)+ω_(noise y,k-1)^B cdot q_(1,k-1)-ω_(noise x,k-1)^B cdot q_(2,k-1) ))}

	=-∆t/2 cdot [■(■(-q_(1,k-1)&-q_(2,k-1)@q_(0,k-1)&-q_(3,k-1) )&■(-q_(3,k-1)@q_(2,k-1) )@■(q_(3,k-1)&q_(0,k-1)@-q_(2,k-1)&q_(1,k-1) )&■(-q_(1,k-1)@q_(0,k-1) ))] cdot {■(ω_(noise x,k-1)^B@ω_(noise y,k-1)^B@ω_(noise z,k-1)^B )}
=-∆t/2 cdot [■(-〖vec{q}_{v}〗^T@q_{0} cdot I_3+[vec{q}_{v} times] )] cdot ω ⃑_(noise,k-1)^B

=-∆t/2 cdot Ξ cdot ω ⃑_(noise,k-1)^B









Velocity Process-Covariance:
Q_v=vec{w}_{v,k-1}^{N} cdot {vec{w}_{v,k-1}^{N}}^T
vec{w}_{v,k-1}^{N}=-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t
Q_v=(-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t) cdot (-{{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot ∆t)^T
Q_v=(-∆t)^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot a ⃑_(noise,k-1)^B cdot 〖a ⃑_(noise,k-1)^B〗^T cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t)^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot [■({sigma_{a}}^{2}&0&0@0&{sigma_{a}}^{2}&0@0&0&{sigma_{a}}^{2} )] cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t cdot sigma_{a} )^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot [■(1&0&0@0&1&0@0&0&1)] cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Q_v=(-∆t cdot sigma_{a} )^{2} cdot {{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T
Since {{^{N}{R_{k-1}}^{B}}}  is orthonormal
{{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^T={{^{N}{R_{k-1}}^{B}}} cdot 〖{{^{N}{R_{k-1}}^{B}}} 〗^(-1)=I_3
Q_v=(-∆t cdot sigma_{a} )^{2} cdot I_3

Appendix Trigonometric function Derivatives:
For θ=atan2(y,x), the derivative ∂θ/∂q, where x and y are functions of q, is:



	∂θ/∂q   =(∂atan2(y,x))/∂x cdot ∂x/∂q+(∂atan2(y,x))/∂y cdot ∂y/∂q

	=(-y)/(x^{2}+y^{2} ) cdot ∂x/∂q+(-y)/(x^{2}+y^{2} ) cdot ∂y/∂q









	For θ=-asin(u), the derivative ∂θ/∂q, where x and y are functions of q, is:

	
	∂θ/∂q   =-(∂ asin⁡(u))/∂u cdot ∂u/∂q

	=(-1)/sqrt{1 - u^{2}} cdot ∂u/∂q









Least-Square Hard/Soft-Iron Parameter Estimation:
The hard and soft-iron parameters corresponding to a given system are estimated (for a two-dimensional problem) using the Magnetic-Alignment process described earlier.  After the maneuver is performed, the x and y-magnetic field measurement data is processed to determine parameters that best describe the resulting ellipse.
Two methods can be used to find these parameters.  An elegant and interesting approach to the least-squares solution was developed by Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher.  Entitled Direct least-squares fitting of ellipses, and published in IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476–480, May 1999.  Matlab code and an extension to improve numerical accuracy are found at http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/ELLIPSE/.
However this method requires solving for eigenvalues, which is numerically intensive.  Instead a least-squares approach was selected based on general quadratic form of the ellipse equation.
A cdot x^{2}+B cdot x cdot y+C cdot y^{2}+D cdot x+E cdot y+F=0
The least-squares solution was found by first forming an equation representing the error for a given data-point
ε_i=A cdot 〖x_i〗^{2}+B cdot x_i cdot y_i+C cdot 〖y_i〗^{2}+D cdot x_i+E cdot y_i+F
then computing the summation of the errors squared
ε_T=∑_(i=1)^n▒〖ε_i〗^{2}
and, finally, minimizing the summation with respect to each coefficient
〖dε〗_T/dA=0
etc.
This resulting system of equations can be written in matrix form as A_LS cdot x=b_LS, where the constituent matrices are:
A_LS=[■(■(∑▒〖〖x_i〗^{2} cdot 〖y_i〗^{2} 〗@∑▒〖x_i cdot 〖y_i〗^3 〗@■(∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖x_i cdot y_i 〗))&■(∑▒〖x_i cdot 〖y_i〗^3 〗@∑▒〖y_i〗^4 @■(∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖y_i〗^3 @∑▒〖y_i〗^{2} ))&■(■(∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i cdot 〖y_i〗^{2} 〗@■(∑▒〖x_i〗^{2} @∑▒〖x_i cdot y_i 〗@∑▒x_i ))&■(∑▒〖x_i cdot 〖y_i〗^{2} 〗@∑▒〖y_i〗^3 @■(∑▒〖x_i cdot y_i 〗@∑▒〖y_i〗^{2} @∑▒y_i ))&■(∑▒〖x_i cdot y_i 〗@∑▒〖y_i〗^{2} @■(∑▒x_i @∑▒y_i @n))))]
b_LS=[■(∑▒〖〖x_i〗^3 cdot y_i 〗@∑▒〖〖x_i〗^{2} cdot 〖y_i〗^{2} 〗@■(∑▒〖x_i〗^3 @∑▒〖〖x_i〗^{2} cdot y_i 〗@∑▒〖x_i〗^{2} ))]
and the coefficient matrix
x=[■(■(A@B)@■(C@D)@■(E@F))]
The coefficients can be found via Gaussian elimination.
Based on test data, both solutions provide consistent results.  This is possible as data from a complete 360 degree rotation is used for the data set.  If the system had transited only a small arc then the method described by Fitzgibbon et al. is preferred.

Appendix
Example sensor values for a single unit captured over a half-hour in a noisy environment (at my desk)
Sensor


Min     Max     Mean    Std Dev Allan Var





	GPS Position    X

	Y
Z



	GPS Velocity    X

	Y
Z



	Angular Rate Sensor [deg/sec]   X       -0.288  0.365   2. 4948e-2      8.42685e-2

	Y       -0.442  0.481   -4.8527e-3      9.04376e-2
Z       -0.558  0.250   -0.13971        9.80244e-2



	Accelerometer [g]       X       5.8e-3  9.5e-3  7.7358e-3       4.41395e-4

	Y       -4.0e-3 1.5e-3  -1.457e-3       5.80786e-4
Z       -1.0052 -0.9964 -1.000723       6.52203e-4



	Magnetometer    X       0.21271 0.21912 0.21632 7.4808e-4

	Y       -0.1651 -0.15442        -0.16002        1.1478e-3
Z       0.28656 0.29297 0.28945 7.6077e-4
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	Header A1

	Header B1
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	A
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	A or B
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