
OpenFormats Documentation
Release 0.1

Transifex

May 10, 2016

Contents

1 How to get help, contribute, or provide feedback 3

2 Source code 5

3 The testbed 7

4 Contents 9
4.1 Why all this fuss? . 9
4.2 Getting Started Guide . 12
4.3 Testing . 17
4.4 The Testbed . 18
4.5 Utils . 19
4.6 Contributing to OpenFormats . 19
4.7 Changelog . 21

5 Indices and tables 23

Python Module Index 25

i

ii

OpenFormats Documentation, Release 0.1

OpenFormats is a localization file format library, written in Python.

• Read and write to various file formats such as .po, .xliff or even ones which are not localization formats, such as
.srt and .txt.

• Plural support for the formats which do support it.

• Built-in web-based test app, to help you develop your own format handlers.

OpenFormats’ primary use is to work as a file format backend to Transifex.

Check out OpenFormats documentation for more information.

Contents 1

http://www.python.org/
http://www.transifex.com/
http://openformats.readthedocs.org/

OpenFormats Documentation, Release 0.1

2 Contents

CHAPTER 1

How to get help, contribute, or provide feedback

See our contribution submission and feedback guidelines.

You can run tests for the formats by doing the following:

python setup.py test

3

http://openformats.readthedocs.org/en/latest/contributing.html

OpenFormats Documentation, Release 0.1

4 Chapter 1. How to get help, contribute, or provide feedback

CHAPTER 2

Source code

The source code for OpenFormats is hosted on GitHub.

5

https://github.com/transifex/openformats

OpenFormats Documentation, Release 0.1

6 Chapter 2. Source code

CHAPTER 3

The testbed

To run the testbed:

./manage.py syncdb --noinput # optional

./manage.py runserver

Then point your browser to http://localhost:8000/.

The syncdb step is optional and is used if you wish to save certain tests by their URL The tests are saved to an sqlite
database. This is most likely to be useful in the live version of the testbed.

Having fired up the testbed, you can select a format handler, paste some text and try to parse it. The testbed will show
you the stringset that was extracted from the source text and the template in kept from it. Then, you can try compiling
the template against the stringset, or you can modify it first.

7

http://localhost:8000/

OpenFormats Documentation, Release 0.1

8 Chapter 3. The testbed

CHAPTER 4

Contents

4.1 Why all this fuss?

This library performs one of the most important functions of Transifex: The use of language files to import and deliver
translations.

4.1.1 How software localization works (in a nutshell)

Your software stack comes with a tool (if it doesn’t it should) that finds all translatable text in your product and extracts
it to a language file. We’ll call this the source language file, which is placed in a special folder in your product’s code.

Once you get that in place, your job is to produce several target language files, once for each language you want your
product to appear in and place them in the same folder. These language files are very similar to the source language
file, all that changes is that in the same place your source strings would be, there are now translations.

Your software stack will be able to pull translations from the language files and put them in place of the original strings
in your product, if the user chooses a translated language. Tada!!!

Here is a sample source language file:

Translation file for Transifex.
Copyright (C) 2007-2010 Indifex Ltd.
This file is distributed under the same license as the Transifex package.
msgid ""
msgstr ""
"Project-Id-Version: Transifex\n"
"POT-Creation-Date: 2012-09-27 09:17+0000\n"
"PO-Revision-Date: 2012-09-27 10:07+0000\n"
"Last-Translator: Ilias-Dimitrios Vrachnis <vid@transifex.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Language: en\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: accounts/forms.py:22 accounts/forms.py:193
msgid "Username"
msgstr "Username"

#: accounts/forms.py:24 accounts/forms.py:195
msgid "Username must contain only letters, numbers, dots and underscores."
msgstr "Username must contain only letters, numbers, dots and underscores."

9

OpenFormats Documentation, Release 0.1

#: accounts/forms.py:27 accounts/forms.py:182 accounts/forms.py:198
msgid "Email"
msgstr "Email"

And here is a sample target language file:

Translation file for Transifex.
Copyright (C) 2007-2010 Indifex Ltd.
This file is distributed under the same license as the Transifex package.
msgid ""
msgstr ""
"Project-Id-Version: Transifex\n"
"POT-Creation-Date: 2012-09-27 09:17+0000\n"
"PO-Revision-Date: 2015-05-26 21:35+0000\n"
"Last-Translator: Kadministrator Bairaktaris <kb_admin@kbairak.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Language: el\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: accounts/forms.py:22 accounts/forms.py:193
msgid "Username"
msgstr "𝜈o𝜇𝛼 𝜒𝜌𝜎𝜏𝜂"

#: accounts/forms.py:24 accounts/forms.py:195
msgid "Username must contain only letters, numbers, dots and underscores."
msgstr "To 𝜈o𝜇𝛼 𝜒𝜌𝜎𝜏𝜂 𝜋𝜌𝜋𝜖𝜄 𝜈𝛼 𝜋𝜖𝜌𝜄𝜒𝜖𝜄 𝜇𝜈o 𝛾𝜌𝜇𝜇𝛼𝜏𝛼, 𝛼𝜌𝜄𝜃𝜇o, 𝜏𝜖𝜆𝜖𝜖 𝜅𝛼𝜄 𝜅𝜏𝜔 𝜋𝛼𝜆𝜖."

#: accounts/forms.py:27 accounts/forms.py:182 accounts/forms.py:198
msgid "Email"
msgstr "Δ𝜄𝜖𝜃𝜐𝜈𝜎𝜂 𝜂𝜆𝜖𝜅𝜏𝜌o𝜈𝜄𝜅o 𝜏𝛼𝜒𝜐𝛿𝜌o𝜇𝜖o𝜐"

4.1.2 File formats

As you can see, these language files have a peculiar format. These ones in particular follow the PO file format, and
are generated and parsed by an open-source software called gettext, which is popular in the open-source world. The
structure of these files allows compatible software to use their contents to display the product in a variety of languages.

We need to support a variety of such file formats, as well of some formats that weren’t necessarily made for localiza-
tion. For example, why shouldn’t you be able to use this process to localize subtitle files when the same process can
clearly work for those too?

Source:

1
00:01:45,105 --> 00:01:47,940
Pinky: Gee, Brain, what do you want to do tonight?

2
00:02:45,105 --> 00:02:47,940
Brain: The same thing we do every night, Pinky - try to take over the world!

Translated:

1
00:01:45,105 --> 00:01:47,940

10 Chapter 4. Contents

http://en.wikipedia.org/wiki/Gettext

OpenFormats Documentation, Release 0.1

Pinky: T𝜄 𝜃𝜖 𝜈𝛼 𝜅𝜈o𝜐𝜇𝜖 𝛼𝜋𝜓𝜖 Brain?

2
00:02:45,105 --> 00:02:47,940
Brain: ,𝜏𝜄 𝜅𝜈o𝜐𝜇𝜖 𝜅𝜃𝜖 𝛽𝜌𝛿𝜐, Pinky - 𝜃𝛼 𝜋𝜌o𝜎𝜋𝛼𝜃𝜎o𝜐𝜇𝜖 𝜈𝛼 𝜅𝛼𝜏𝛼𝜆𝛽o𝜐𝜇𝜖 𝜏o𝜈 𝜅𝜎𝜇o!

4.1.3 How Transifex and Openformats deal with this task

A handler, the basic unit of the Openformats library, will parse a source language file and find the source strings in it.
It will extract these into a stringset, a collection of said content associated with some metadata. This metadata’s use
is to:

1. Identify the strings and their translations inside the language files

2. Provide context for the translators

The source strings in the source file are replaced by hashes, constructed by the metadata we just mentioned. The result
of this process is what we call the template.

Both the stringset and the template are stored in Transifex’s database. The translation editor will present the stringset
to translators, abstracting the template away, allowing them to focus solely on translation. Translators in Transifex’s
web editor can work on a variety of files using the exact same interface, not having to bother with the nature or the
structure of the file format being used.

Having saved the trasnlations in the database, the format handler can combine those with the template to produce a
target language file to be used in your product. This process is called compiling. The handler searches for hashes in
the template, associates them with their relevant translation entries using the metadata we stored during parsing and
replaces the hashes with the translations. The result is a target language file, ready to be used in your product.

4.1.4 Step-by-step

Lets take the first subtitle from our previous example:

1
00:01:45,105 --> 00:01:47,940
Pinky: Gee, Brain, what do you want to do tonight?

Here, we need to find the source string and something that will allow us to identify its position later when we want
to compile a language file. The string is obviously “Pinky: Gee, Brain, what do you want to do tonight?”. For our
metadata, we will use the ascending number on top, the ‘1’, since we’re guaranteed that it is unique within the source
file; if it isn’t, our parser should raise an error.

Hashing the identifier (the ‘1’) will give us this: ‘3afcdbfeb6ecfbdd0ba628696e3cc163_tr’. This is what we will
replace our source string with:

1
00:01:45,105 --> 00:01:47,940
3afcdbfeb6ecfbdd0ba628696e3cc163_tr

This is the template!

In the web editor, the translators will produce a translated string based on our source string:

Language Text
English Pinky: Gee, Brain, what do you want to do tonight?
Greek Pinky: T𝜄 𝜃𝜖 𝜈𝛼 𝜅𝜈o𝜐𝜇𝜖 𝛼𝜋𝜓𝜖 Brain?

And, finally, the compiler will be able to find the hash in the template and replace it with the translation:

4.1. Why all this fuss? 11

OpenFormats Documentation, Release 0.1

1
00:01:45,105 --> 00:01:47,940
Pinky: T𝜄 𝜃𝜖 𝜈𝛼 𝜅𝜈o𝜐𝜇𝜖 𝛼𝜋𝜓𝜖 Brain?

4.2 Getting Started Guide

Here are some quick steps to get you started with OpenFormats.

4.2.1 Installation

To use OpenFormats as a Python library, simply install it with pip, prefixing with sudo if permissions warrant:

pip install openformats

If you plan to tweak the codebase or add your own format handler, grab a copy of the whole repository from GitHub:

git clone https://github.com/transifex/openformats.git
cd openformats

4.2.2 Creating your own handler

OpenFormats supports a variety of file formats, including plaintext (.txt), subtitles (.srt) and others. Here are the
steps to create your own handler.

4.2.3 1. Subclass the base Handler

class openformats.handlers.Handler
This class defines the interface you need to implement in order to create a handler. Both the parse and compile
methods must be implemented.

parse(content)
Parses the content, extracts translatable strings into a stringset, replaces them with hashes and returns a
tuple of the template with the stringset

Typically this is done in the following way:

•Use a library or your own code to segment (deserialize) the content into translatable entities.

•Choose a key to uniquely identify the entity.

•Create an OpenString object representing the entity.

•Create a hash to replace the original content with.

•Create a stringset with the content.

•Use library or own code to serialize stringset back into a template.

compile(template, stringset)
Parses the template, finds the hashes, replaces them with strings from the stringset and returns the compiled
file. If a hash in the template isn’t found in the stringset, it’s a good practice to remove the whole string
section surrounding it

Typically this is done in the following way:

12 Chapter 4. Contents

OpenFormats Documentation, Release 0.1

•Use a library or own code to segment (deserialize) the template into translatable entities, as if assuming
that the hashes are the translatable entities.

•Make sure the hash matches the first string in the stringset.

•Replace the hash with the string.

•Use library or own code to serialize stringset back into a compiled file.

You can safely assume that the stringset will have strings in the correct order for the above process and
thus you will probably be able to perform the whole compilation in a single pass.

The following are some classes that will help you with this process:

4.2.4 2. The OpenString class

class openformats.strings.OpenString(key, string_or_strings, **kwargs)
This class will abstract away the business of generating hashes out of your strings and will serve as a place to
get translations from when compiling. Several OpenStrings in our process define a Stringset, which is simply a
python list of OpenStrings. To create an OpenString, you need 2 arguments:

•The ‘key’

Something in your source file that uniquely identifies the section that the source string originated from.
It might be helpful for your compiler to use something that appears in the same form in language files as
well.

•The ‘string’ or ‘plural forms of the string’:

If the file format you’re working with does not support plural forms, or if the string in question is not
pluralized, you can just supply the string itself as the second argument. If you string is pluralized however,
you have to supply all plural forms in a dictionary with the rule numbers as keys. For example:

OpenString("UNREAD MESSAGES",
{1: "You have %s unread message",
5: "You have %s unread messages"})

•There are a number of optional keyword arguments to OpenString:

context, order, character_limit, occurrences, developer_comment, flags, fuzzy, obsolete

Their main purpose is to provide context to the translators so that they can achieve higher quality. Two of them
however, though optional, are highly recommended:

•Context

This is also taken into account when producing the hash, so if you can’t ensure that your keys aren’t unique
within the source file, you can still get away with ensuring that the (key, context) pair is.

•Order

If you provide an order (integer), Transifex will save it in the database and then, when you try to compile
a template against a stringset fetched from Transifex, it will already be ordered, even if it contains trans-
lations. This can allow you to optimize the compilation process as the order that the hashes appear in the
template will be the same as the order of strings in the stringset.

Another valuable outcome is that the order will be preserved when the strings are shown to translators
which can provide context and thus improve translation quality.

Once you have created an OpenString, you can get it’s hash using the template_replacement property

4.2. Getting Started Guide 13

OpenFormats Documentation, Release 0.1

4.2.5 3. The Transcriber

class openformats.transcribers.Transcriber(source)
This class helps with creating a template from an imported file or compile an output file from a template.

Main functionality

This class will help with both creating a template from an imported file and with compiling a file from a template.
It provides functions for copying text. It depends on 3 things, the source content (self.source), the target content
(self.destination) which initially will contain an empty string and a pointer (self.ptr) which will indicate which
parts of ‘source’ have already been copied to ‘destination’ (and will be initialized to 0).

Transcriber detects and remembers the newline type (DOS, ’\r\n’ or UNIX ’\n’) of ‘source’. It then
converts ‘source’ to UNIX-like newlines and works on this. When returning the destination, the initial newline
type will be used. Because ‘source’ is being potentially edited, it’s a good idea to save Transcriber’s source back
on top of the original one:

>>> def parse(self, source):
... self.transcriber = Transcriber(source)
... self.source = self.transcriber.source
... # ...

The main methods provided are demonstrated below:

>>> transcriber = Transcriber(source)

source: <string name="foo">hello world</string>
ptr: ^ (0)
destination: []

>>> transcriber.copy_until(source.index('>') + 1)

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">']

>>> transcriber.add("aee8cc2abd5abd5a87cd784be_tr")

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr']

>>> transcriber.skip(len("hello world"))

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr']

>>> transcriber.copy_until(source.index("</string>") +
... len("</string>"))

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr',
'</string>']

>>> print transcriber.get_destination()

<string name="foo">aee8cc2abd5abd5a87cd784be_tr</string>

14 Chapter 4. Contents

OpenFormats Documentation, Release 0.1

remove_section(place=0)
You can mark sections in the target file and optionally remove them. Insert the section-start and section-end
bookmarks wherever you want to mark a section. Then you can remove a section with remove_section().
For example:

>>> transcriber = Transcriber(source)

source: <keep><remove>
ptr: ^ (0)
destination: []

>>> start = 0

>>> transcriber.mark_section_start()
>>> transcriber.copy_until(start + 1) # copy until first '<'
>>> string = source[start + 1:source.index('>', start)]
>>> transcriber.add("asdf") # add the hash
>>> transcriber.skip(len(string))
>>> transcriber.copy_until(source.index('>', start) + 1)
>>> transcriber.mark_section_end()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd]

>>> if string == "remove":
... transcriber.remove_section()

(nothing happens)

>>> start = source.index('>') + 1

>>> # Same deal as before, mostly
>>> transcriber.mark_section_start()
>>> transcriber.copy_until(start + 1) # copy until second '<'
>>> string = source[start + 1:source.index('>', start)]
>>> transcriber.add("fdsa") # add the hash
>>> transcriber.skip(len(string))
>>> transcriber.copy_until(source.index('>', start) + 1)
>>> transcriber.mark_section_end()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd,

SectionStart, '<', 'fdsa', '>', SectionEnd]

>>> if string == "remove":
... transcriber.remove_section()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd,

None , None, None , None, None]

(The last section was replaced with Nones)

Now, when you try to get the result with `get_destination()`, the
Nones, SectionStarts and SectionEnds will be ommited:

4.2. Getting Started Guide 15

OpenFormats Documentation, Release 0.1

>>> transcriber.get_destination()

<asdf>

line_number
The transcriber remembers how many newlines it has went over on the source, both when copying and
skipping content. This allows you to pinpoint the line-number a parse-error has occured. For example:

source:
first line
second line
third line with error
fourth line

>>> transcriber = Transcriber(source)
>>> for line in source.split("\n"):
>>> if "error" not in line:
>>> # include the newline too
>>> transcriber.copy(len(line) + 1)
>>> else:
>>> raise ParseError(
>>> "Error on line {line_no}: '{line}'".format(
>>> line_no=transcriber.line_number,
>>> line=line
>>>)
>>>)

This will raise a::

>>> ParseError("Error on line 3: 'third line with error'")

edit_newlines(chunk, enforce_newline_type=None)
This is the part that renders the newlines to their correct type when returning the final result. You have the
option to enforce the newline type if you want to.

>>> source = "hello\r\nworld"
>>> t = Transcriber(source)
>>> t.source

>>> "hello\nworld"

>>> source = trascriber.source
>>> # Work as if source was UNIX-type
>>> t.copy_until(source.index('\n') + 1) # include the '\n'
>>> t.add("fellas")
>>> t.get_destination()

>>> "hello\r\nfellas" # <- it remembered newline type from source

>>> t.get_destination(enforce_newline_type="UNIX")

>>> "hello\nfellas"

Continue reading the other documentation sections for further details.

16 Chapter 4. Contents

OpenFormats Documentation, Release 0.1

4.3 Testing

4.3.1 1. Get yourself a sample file

Its a very good idea to start developing by getting a sample source file for two reasons:

1. It will get picked up by the The Testbed so you will be able to get instant feedback as you work on your handler.

2. You will get a lot of tests for free. These tests will parse the sample file into a template and stringset, compile
them back in your source file and check whether the template matches the expected one and that the resulted file
matches the source. It will also try to translate the strings based on some common ones found in a dictionary
and check that it can compile a language file that matches the expected one.

Put your sample file in openformats/tests/formats/<format_name>/files/1_en.<format_extension>.
For example, our sample SRT file goes to OpenFormats/tests/formats/srt/files/1_en.srt.

4.3.2 2. Generate expected template and language files

In order to generate the expected template and language files mentioned above, you can use the bin/create_files.py
script once you have a working handler:

./bin/create_files.py openformats/tests/formats/srt/files/1_en.srt

In order to get the tests we mentioned for free, make sure your test class inherits from the:

class openformats.tests.formats.common.CommonFormatTestMixin
Define a set of tests to be run by every file format.

The class that inherits from this must define the following:

•HANDLER_CLASS, eg: PlaintextHandler

•TESTFILE_BASE, eg: openformats/tests/formats/plaintext/files

You might have noticed that by using a working handler to make the expected sample files and then testing against
them seems pointless. Well, you’re right, they are, initially. The point of for them to serve as regression tests, as you
later make changes to your handler.

4.3.3 3. Add your own tests

Testing that a handler works correctly against a valid source file is good, but you will want to also test more things,
like:

• The hashes produced take the correct information into account

• The metadata of the extracted strings is what you want

• ParseErrors are raised when appropriate and they produce a helpful error message

• Sections of the compiled files are removed when the relevant strings are missing from the stringset given as
input

• Anything to get your coverage higher

4.3. Testing 17

OpenFormats Documentation, Release 0.1

4.3.4 4. Utilities

openformats.tests.utils.generate_random_string(length=20)

openformats.tests.utils.strip_leading_spaces(source)
This is to help you write multilingual strings as test inputs in your tests without screwing up your code’s syntax.
Eg:

'''
1
00:01:28.797 --> 00:01:30.297 X:240 Y:480
Hello world

'''

will be converted to:

'\n1\n00:01:28.797 --> 00:01:30.297 X:240 Y:480\nHello world\n'

CommonFormatTestMixin._test_parse_error(source, error_msg)
Test that trying to parse ‘source’ raises an error with a message exactly like ‘error_msg’

4.3.5 5. Run the test suite

python setup.py test

4.4 The Testbed

The testbed is a real-time django web application included with the openformats library to help you develop, test and
debug format handlers. To start it, simply run:

./manage.py runserver

and point your browser to http://localhost:8000

The interface consists of 3 columns, one for each state of the handler’s lifetime.

4.4.1 The source column

From here you choose which file format you want to play around with. The list is automatically populated by all
sublasses of Handler defined in all modules in openformats/formats.

Once you select one, you can type or paste some content in the textarea. If you have a sample file in
openformats/tests/formats/<format_name>/files/1_en.<extension>, it will be picked up by
the testbed and put in the textarea automatically once you select a format. You can of course edit or replace it if you
want.

Finally, press ‘parse’ to, well, parse the source content. The actual handler will be used to display the outcome in the
next column:

4.4.2 The stringset-template column

This column shows the outcome of the previous operation: the stringset and template extracted from the source. You
can inspect entries of the stringset, edit their content or even delete them. Once you’re ready, you can press on compile
to have the handler create a language file out of the template and the, potentially edited, stringset.

18 Chapter 4. Contents

https://www.djangoproject.com/

OpenFormats Documentation, Release 0.1

4.4.3 The compiled column

This shows the outcome of the previous operation. There is also a message that tells you if the compiled text matches
the source, in case you didn’t edit the stringset and this is what you had expected.

4.4.4 Errors

If there’s an error during the parsing or compiling operation, a full traceback will be printed on the relevant column.
This is helpful for both debugging and making sure that the error messages displayed to the user when there is a
mistake in the source file is accurate and helpful.

4.4.5 Saving tests

If you run the following command:

./manage.py syncdb --noinput

The testbed will be able to save your current test state (chosen format, soruce, stringset, template, compiled file) in an
sqlite database and allow you to play it back any time. This saved test can be accessed from the URL in your browser
right after you’ve pressed the save button.

You will probably not need to do that yourself; this is a feature intended for the public hosted version of the testbed,
so that users can provide Transifex support or openformats contributors with test cases that reproduce a bug.

4.5 Utils

4.5.1 Compilers

class openformats.utils.compilers.OrderedCompilerMixin
Bases: object

4.6 Contributing to OpenFormats

4.6.1 Filing issues

• Before you file an issue, try asking for help first.

• If determined to file an issue, first check for existing issues, including closed issues.

4.6.2 How to get help

Before you ask for help, please make sure you do the following:

1. Read the documentation thoroughly. If in a hurry, at least use the search field that is provided on the documen-
tation pages.

2. Use a search engine (e.g., DuckDuckGo, Google) to search for a solution to your problem. Someone may have
already found a solution.

3. Try reproducing the issue in a clean environment, ensuring you are using:

4.5. Utils 19

https://formats.transifex.com
https://docs.python.org/2.7/library/functions.html#object
https://github.com/transifex/openformats/issues
http://openformats.readthedocs.org/
http://openformats.readthedocs.org/
http://openformats.readthedocs.org/

OpenFormats Documentation, Release 0.1

• correct latest OpenFormats release (or an up-to-date git clone of master)

• latest releases of libraries used by Openformats

• no plugins or only those related to the issue

If despite the above efforts you still cannot resolve your problem, be sure to include in your inquiry the following
information, preferably in the form of links to content uploaded to a paste service, GitHub repository, or other publicly-
accessible location:

• Describe what version of Openformats you are running or the HEAD commit hash if you cloned the repo) and
how exactly you installed it (the full command you used, e.g. pip install openformats).

• If you are looking for a way to get some end result, prepare a detailed description of what the end result should
look like (preferably in the form of an image or a mock-up page) and explain in detail what you have done so
far to achieve it.

• If you are trying to solve some issue, prepare a detailed description of how to reproduce the problem. If the issue
cannot be easily reproduced, it cannot be debugged by developers or volunteers. Describe only the minimum
steps necessary to reproduce it (no extra plugins, etc.).

• Upload any settings file or any other custom code that would enable people to reproduce the problem or to see
what you have already tried to achieve the desired end result.

• Upload detailed and complete output logs and backtraces.

Once the above preparation is ready, you can contact people willing to help via a GitHub issue or send a message to
support at transifex dot com. Remember to include all the information you prepared.

4.6.3 Contributing code

Before you submit a contribution, please ask whether it is desired so that you don’t spend a lot of time working on
something that would be rejected for a known reason.

Using Git and GitHub

• Create a new git branch specific to your change (as opposed to making your commits in the master branch).

• Don’t put multiple unrelated fixes/features in the same branch / pull request. For example, if you’re hacking
on a new feature and find a bugfix that doesn’t require your new feature, make a new distinct branch and pull
request for the bugfix.

• Check for unnecessary whitespace via git diff --check before committing.

• First line of your commit message should start with present-tense verb, be 50 characters or less, and include the
relevant issue number(s) if applicable. Example: Ensure proper PLUGIN_PATH behavior. Refs
#428. If the commit completely fixes an existing bug report, please use Fixes #585 or Fix #585 syntax
(so the relevant issue is automatically closed upon PR merge).

• After the first line of the commit message, add a blank line and then a more detailed explanation (when relevant).

• Squash your commits to eliminate merge commits and ensure a clean and readable commit history.

• If you have previously filed a GitHub issue and want to contribute code that addresses that issue, please use
hub pull-request instead of using GitHub’s web UI to submit the pull request. This isn’t an absolute
requirement, but makes the maintainers’ lives much easier! Specifically: install hub and then run hub pull-
request to turn your GitHub issue into a pull request containing your code.

20 Chapter 4. Contents

https://dpaste.de/
https://github.com/transifex/openformats/wiki/Git-Tips#squashing-commits
https://github.com/github/hub/#installation
https://github.com/github/hub/#git-pull-request
https://github.com/github/hub/#git-pull-request

OpenFormats Documentation, Release 0.1

Contribution quality standards

• Adhere to PEP8 coding standards whenever possible. This can be eased via the pep8 or flake8 tools, the latter of
which in particular will give you some useful hints about ways in which the code/formatting can be improved.

• Add docs and tests for your changes. Undocumented and untested features will not be accepted.

• Run all the tests on all versions of Python supported by Openformats to ensure nothing was accidentally
broken.

Check out our Git Tips page or ask for help if you need assistance or have any questions about these guidelines.

4.7 Changelog

4.7.1 0.1 (2015-05-15)

Initial release.

4.7. Changelog 21

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8
http://pypi.python.org/pypi/flake8/
https://github.com/transifex/openformats/wiki/Git-Tips

OpenFormats Documentation, Release 0.1

22 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

OpenFormats Documentation, Release 0.1

24 Chapter 5. Indices and tables

Python Module Index

o
openformats.handlers, 12
openformats.strings, 13
openformats.tests.formats.common, 17
openformats.tests.utils, 18
openformats.transcribers, 14
openformats.utils.compilers, 19

25

OpenFormats Documentation, Release 0.1

26 Python Module Index

Index

Symbols
_test_parse_error() (openfor-

mats.tests.formats.common.CommonFormatTestMixin
method), 18

C
CommonFormatTestMixin (class in openfor-

mats.tests.formats.common), 17
compile() (openformats.handlers.Handler method), 12

E
edit_newlines() (openformats.transcribers.Transcriber

method), 16

G
generate_random_string() (in module openfor-

mats.tests.utils), 18

H
Handler (class in openformats.handlers), 12

L
line_number (openformats.transcribers.Transcriber

attribute), 16

O
openformats.handlers (module), 12
openformats.strings (module), 13
openformats.tests.formats.common (module), 17
openformats.tests.utils (module), 18
openformats.transcribers (module), 14
openformats.utils.compilers (module), 19
OpenString (class in openformats.strings), 13
OrderedCompilerMixin (class in openfor-

mats.utils.compilers), 19

P
parse() (openformats.handlers.Handler method), 12

R
remove_section() (openformats.transcribers.Transcriber

method), 14

S
strip_leading_spaces() (in module openfor-

mats.tests.utils), 18

T
Transcriber (class in openformats.transcribers), 14

27

	How to get help, contribute, or provide feedback
	Source code
	The testbed
	Contents
	Why all this fuss?
	Getting Started Guide
	Testing
	The Testbed
	Utils
	Contributing to OpenFormats
	Changelog

	Indices and tables
	Python Module Index

