

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	OpenFormats 0.1 documentation

OpenFormats

[image: Circle.ci: continuous integration status] [https://circleci.com/gh/transifex/openformats] [image: Coveralls: code coverage status] [https://coveralls.io/r/transifex/openformats] [image: Documentation Status] [https://readthedocs.org/projects/openformats/?badge=latest]

OpenFormats is a localization file format library, written in Python [http://www.python.org/].

	Read and write to various file formats such as .po, .xliff or even ones
which are not localization formats, such as .srt and .txt.

	Plural support for the formats which do support it.

	Built-in web-based test app, to help you develop your own format handlers.

OpenFormats’ primary use is to work as a file format backend to Transifex [http://www.transifex.com/].

Check out OpenFormats documentation [http://openformats.readthedocs.org/] for more information.

How to get help, contribute, or provide feedback

See our contribution submission and feedback guidelines [http://openformats.readthedocs.org/en/latest/contributing.html].

You can run tests for the formats by doing the following:

python setup.py test

Source code

The source code for OpenFormats is hosted on GitHub [https://github.com/transifex/openformats].

The testbed

To run the testbed:

./manage.py syncdb --noinput # optional
./manage.py runserver

Then point your browser to http://localhost:8000/.

The syncdb step is optional and is used if you wish to save certain tests by
their URL The tests are saved to an sqlite database. This is most likely to be
useful in the live version of the testbed.

Having fired up the testbed, you can select a format handler, paste some text
and try to parse it. The testbed will show you the stringset that was extracted
from the source text and the template in kept from it. Then, you can try
compiling the template against the stringset, or you can modify it first.

Contents

	Why all this fuss?
	How software localization works (in a nutshell)

	File formats

	How Transifex and Openformats deal with this task

	Step-by-step

	Getting Started Guide
	Installation

	Creating your own handler

	1. Subclass the base Handler

	2. The OpenString class

	3. The Transcriber

	Testing
	1. Get yourself a sample file

	2. Generate expected template and language files

	3. Add your own tests

	4. Utilities

	5. Run the test suite

	The Testbed
	The source column

	The stringset-template column

	The compiled column

	Errors

	Saving tests

	Utils
	Compilers

	Contributing to OpenFormats
	Filing issues

	How to get help

	Contributing code

	Changelog
	0.1 (2015-05-15)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

Why all this fuss?

This library performs one of the most important functions of Transifex: The use
of language files to import and deliver translations.

How software localization works (in a nutshell)

Your software stack comes with a tool (if it doesn’t it should) that finds all
translatable text in your product and extracts it to a language file. We’ll
call this the source language file, which is placed in a special folder in
your product’s code.

Once you get that in place, your job is to produce several target language
files, once for each language you want your product to appear in and place
them in the same folder. These language files are very similar to the source
language file, all that changes is that in the same place your source strings
would be, there are now translations.

Your software stack will be able to pull translations from the language files
and put them in place of the original strings in your product, if the user
chooses a translated language. Tada!!!

Here is a sample source language file:

Translation file for Transifex.
Copyright (C) 2007-2010 Indifex Ltd.
This file is distributed under the same license as the Transifex package.
msgid ""
msgstr ""
"Project-Id-Version: Transifex\n"
"POT-Creation-Date: 2012-09-27 09:17+0000\n"
"PO-Revision-Date: 2012-09-27 10:07+0000\n"
"Last-Translator: Ilias-Dimitrios Vrachnis <vid@transifex.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Language: en\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: accounts/forms.py:22 accounts/forms.py:193
msgid "Username"
msgstr "Username"

#: accounts/forms.py:24 accounts/forms.py:195
msgid "Username must contain only letters, numbers, dots and underscores."
msgstr "Username must contain only letters, numbers, dots and underscores."

#: accounts/forms.py:27 accounts/forms.py:182 accounts/forms.py:198
msgid "Email"
msgstr "Email"

And here is a sample target language file:

Translation file for Transifex.
Copyright (C) 2007-2010 Indifex Ltd.
This file is distributed under the same license as the Transifex package.
msgid ""
msgstr ""
"Project-Id-Version: Transifex\n"
"POT-Creation-Date: 2012-09-27 09:17+0000\n"
"PO-Revision-Date: 2015-05-26 21:35+0000\n"
"Last-Translator: Kadministrator Bairaktaris <kb_admin@kbairak.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Language: el\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: accounts/forms.py:22 accounts/forms.py:193
msgid "Username"
msgstr "Όνομα χρήστη"

#: accounts/forms.py:24 accounts/forms.py:195
msgid "Username must contain only letters, numbers, dots and underscores."
msgstr "Το όνομα χρήστη πρέπει να περιέχει μόνο γράμματα, αριθμούς, τελείες και κάτω παύλες."

#: accounts/forms.py:27 accounts/forms.py:182 accounts/forms.py:198
msgid "Email"
msgstr "Διεύθυνση ηλεκτρονικού ταχυδρομείου"

File formats

As you can see, these language files have a peculiar format. These ones in
particular follow the PO file format, and are generated and parsed by an
open-source software called gettext [http://en.wikipedia.org/wiki/Gettext], which is popular in the open-source world.
The structure of these files allows compatible software to use their contents
to display the product in a variety of languages.

We need to support a variety of such file formats, as well of some formats that
weren’t necessarily made for localization. For example, why shouldn’t you be
able to use this process to localize subtitle files when the same process can
clearly work for those too?

Source:

1
00:01:45,105 --> 00:01:47,940
Pinky: Gee, Brain, what do you want to do tonight?

2
00:02:45,105 --> 00:02:47,940
Brain: The same thing we do every night, Pinky - try to take over the world!

Translated:

1
00:01:45,105 --> 00:01:47,940
Pinky: Τι θες να κάνουμε απόψε Brain?

2
00:02:45,105 --> 00:02:47,940
Brain: Ό,τι κάνουμε κάθε βράδυ, Pinky - θα προσπαθήσουμε να καταλάβουμε τον κόσμο!

How Transifex and Openformats deal with this task

A handler, the basic unit of the Openformats library, will parse a
source language file and find the source strings in it. It will extract these
into a stringset, a collection of said content associated with some
metadata. This metadata’s use is to:

	Identify the strings and their translations inside the language files

	Provide context for the translators

The source strings in the source file are replaced by hashes, constructed
by the metadata we just mentioned. The result of this process is what we call
the template.

Both the stringset and the template are stored in Transifex’s database. The
translation editor will present the stringset to translators, abstracting the
template away, allowing them to focus solely on translation. Translators in
Transifex’s web editor can work on a variety of files using the exact same
interface, not having to bother with the nature or the structure of the file
format being used.

Having saved the trasnlations in the database, the format handler can combine
those with the template to produce a target language file to be used in your
product. This process is called compiling. The handler searches for hashes
in the template, associates them with their relevant translation entries using
the metadata we stored during parsing and replaces the hashes with the
translations. The result is a target language file, ready to be used in your
product.

Step-by-step

Lets take the first subtitle from our previous example:

1
00:01:45,105 --> 00:01:47,940
Pinky: Gee, Brain, what do you want to do tonight?

Here, we need to find the source string and something that will allow us to
identify its position later when we want to compile a language file. The string
is obviously “Pinky: Gee, Brain, what do you want to do tonight?”. For our
metadata, we will use the ascending number on top, the ‘1’, since we’re
guaranteed that it is unique within the source file; if it isn’t, our parser
should raise an error.

Hashing the identifier (the ‘1’) will give us this:
‘3afcdbfeb6ecfbdd0ba628696e3cc163_tr’. This is what we will replace our source
string with:

1
00:01:45,105 --> 00:01:47,940
3afcdbfeb6ecfbdd0ba628696e3cc163_tr

This is the template!

In the web editor, the translators will produce a translated string based on
our source string:

	Language
	Text

	English
	Pinky: Gee, Brain, what do you want to do tonight?

	Greek
	Pinky: Τι θες να κάνουμε απόψε Brain?

And, finally, the compiler will be able to find the hash in the template and
replace it with the translation:

1
00:01:45,105 --> 00:01:47,940
Pinky: Τι θες να κάνουμε απόψε Brain?

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

Getting Started Guide

Here are some quick steps to get you started with OpenFormats.

Installation

To use OpenFormats as a Python library, simply install it with pip,
prefixing with sudo if permissions warrant:

pip install openformats

If you plan to tweak the codebase or add your own format handler, grab a copy
of the whole repository from GitHub:

git clone https://github.com/transifex/openformats.git
cd openformats

Creating your own handler

OpenFormats supports a variety of file formats, including plaintext (.txt),
subtitles (.srt) and others. Here are the steps to create your own handler.

1. Subclass the base Handler

	
class openformats.handlers.Handler

	This class defines the interface you need to implement in order to create a
handler. Both the parse and compile methods must be implemented.

	
parse(content)

	Parses the content, extracts translatable strings into a stringset,
replaces them with hashes and returns a tuple of the template with the
stringset

Typically this is done in the following way:

	Use a library or your own code to segment (deserialize) the content
into translatable entities.

	Choose a key to uniquely identify the entity.

	Create an OpenString object representing the entity.

	Create a hash to replace the original content with.

	Create a stringset with the content.

	Use library or own code to serialize stringset back into a template.

	
compile(template, stringset)

	Parses the template, finds the hashes, replaces them with strings from
the stringset and returns the compiled file. If a hash in the template
isn’t found in the stringset, it’s a good practice to remove the whole
string section surrounding it

Typically this is done in the following way:

	Use a library or own code to segment (deserialize) the template into
translatable entities, as if assuming that the hashes are the
translatable entities.

	Make sure the hash matches the first string in the stringset.

	Replace the hash with the string.

	Use library or own code to serialize stringset back into a compiled
file.

You can safely assume that the stringset will have strings in the
correct order for the above process and thus you will probably be able
to perform the whole compilation in a single pass.

The following are some classes that will help you with this process:

2. The OpenString class

	
class openformats.strings.OpenString(key, string_or_strings, **kwargs)

	This class will abstract away the business of generating hashes out of your
strings and will serve as a place to get translations from when compiling.
Several OpenStrings in our process define a Stringset, which is simply a
python list of OpenStrings. To create an OpenString, you need 2 arguments:

	The ‘key’

Something in your source file that uniquely identifies the section that
the source string originated from. It might be helpful for your
compiler to use something that appears in the same form in language
files as well.

	The ‘string’ or ‘plural forms of the string’:

If the file format you’re working with does not support plural forms,
or if the string in question is not pluralized, you can just supply the
string itself as the second argument. If you string is pluralized
however, you have to supply all plural forms in a dictionary with the
rule numbers as keys. For example:

OpenString("UNREAD MESSAGES",
 {1: "You have %s unread message",
 5: "You have %s unread messages"})

	There are a number of optional keyword arguments to OpenString:

context, order, character_limit, occurrences, developer_comment, flags,
fuzzy, obsolete

Their main purpose is to provide context to the translators so that they
can achieve higher quality. Two of them however, though optional, are
highly recommended:

	Context

This is also taken into account when producing the hash, so if you
can’t ensure that your keys aren’t unique within the source file, you
can still get away with ensuring that the (key, context) pair is.

	Order

If you provide an order (integer), Transifex will save it in the
database and then, when you try to compile a template against a
stringset fetched from Transifex, it will already be ordered, even if
it contains translations. This can allow you to optimize the
compilation process as the order that the hashes appear in the template
will be the same as the order of strings in the stringset.

Another valuable outcome is that the order will be preserved when the
strings are shown to translators which can provide context and thus
improve translation quality.

Once you have created an OpenString, you can get it’s hash using the
template_replacement property

3. The Transcriber

	
class openformats.transcribers.Transcriber(source)

	This class helps with creating a template from an imported file or compile
an output file from a template.

Main functionality

This class will help with both creating a template from an imported file
and with compiling a file from a template. It provides functions for
copying text. It depends on 3 things, the source content (self.source), the
target content (self.destination) which initially will contain an empty
string and a pointer (self.ptr) which will indicate which parts of ‘source’
have already been copied to ‘destination’ (and will be initialized to 0).

Transcriber detects and remembers the newline type (DOS, '\r\n' or UNIX
'\n') of ‘source’. It then converts ‘source’ to UNIX-like newlines and
works on this. When returning the destination, the initial newline type
will be used. Because ‘source’ is being potentially edited, it’s a good
idea to save Transcriber’s source back on top of the original one:

>>> def parse(self, source):
... self.transcriber = Transcriber(source)
... self.source = self.transcriber.source
... # ...

The main methods provided are demonstrated below:

>>> transcriber = Transcriber(source)

source: <string name="foo">hello world</string>
ptr: ^ (0)
destination: []

>>> transcriber.copy_until(source.index('>') + 1)

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">']

>>> transcriber.add("aee8cc2abd5abd5a87cd784be_tr")

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr']

>>> transcriber.skip(len("hello world"))

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr']

>>> transcriber.copy_until(source.index("</string>") +
... len("</string>"))

source: <string name="foo">hello world</string>
ptr: ^
destination: ['<string name="foo">', 'aee8cc2abd5abd5a87cd784be_tr',
'</string>']

>>> print transcriber.get_destination()

<string name="foo">aee8cc2abd5abd5a87cd784be_tr</string>

	
remove_section(place=0)

	You can mark sections in the target file and optionally remove them.
Insert the section-start and section-end bookmarks wherever you want to
mark a section. Then you can remove a section with remove_section().
For example:

>>> transcriber = Transcriber(source)

source: <keep><remove>
ptr: ^ (0)
destination: []

>>> start = 0

>>> transcriber.mark_section_start()
>>> transcriber.copy_until(start + 1) # copy until first '<'
>>> string = source[start + 1:source.index('>', start)]
>>> transcriber.add("asdf") # add the hash
>>> transcriber.skip(len(string))
>>> transcriber.copy_until(source.index('>', start) + 1)
>>> transcriber.mark_section_end()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd]

>>> if string == "remove":
... transcriber.remove_section()

(nothing happens)

>>> start = source.index('>') + 1

>>> # Same deal as before, mostly
>>> transcriber.mark_section_start()
>>> transcriber.copy_until(start + 1) # copy until second '<'
>>> string = source[start + 1:source.index('>', start)]
>>> transcriber.add("fdsa") # add the hash
>>> transcriber.skip(len(string))
>>> transcriber.copy_until(source.index('>', start) + 1)
>>> transcriber.mark_section_end()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd,
 SectionStart, '<', 'fdsa', '>', SectionEnd]

>>> if string == "remove":
... transcriber.remove_section()

source: <keep><remove>
ptr: ^
destination: [SectionStart, '<', 'asdf', '>', SectionEnd,
 None , None, None , None, None]

(The last section was replaced with Nones)

Now, when you try to get the result with `get_destination()`, the
Nones, SectionStarts and SectionEnds will be ommited:

>>> transcriber.get_destination()

<asdf>

	
line_number

	The transcriber remembers how many newlines it has went over on the
source, both when copying and skipping content. This allows you to
pinpoint the line-number a parse-error has occured. For example:

source:
 first line
 second line
 third line with error
 fourth line

>>> transcriber = Transcriber(source)
>>> for line in source.split("\n"):
>>> if "error" not in line:
>>> # include the newline too
>>> transcriber.copy(len(line) + 1)
>>> else:
>>> raise ParseError(
>>> "Error on line {line_no}: '{line}'".format(
>>> line_no=transcriber.line_number,
>>> line=line
>>>)
>>>)

This will raise a::

>>> ParseError("Error on line 3: 'third line with error'")

	
edit_newlines(chunk, enforce_newline_type=None)

	This is the part that renders the newlines to their correct type when
returning the final result. You have the option to enforce the newline
type if you want to.

>>> source = "hello\r\nworld"
>>> t = Transcriber(source)
>>> t.source

>>> "hello\nworld"

>>> source = trascriber.source
>>> # Work as if source was UNIX-type
>>> t.copy_until(source.index('\n') + 1) # include the '\n'
>>> t.add("fellas")
>>> t.get_destination()

>>> "hello\r\nfellas" # <- it remembered newline type from source

>>> t.get_destination(enforce_newline_type="UNIX")

>>> "hello\nfellas"

Continue reading the other documentation sections for further details.

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

Testing

1. Get yourself a sample file

Its a very good idea to start developing by getting a sample source file for
two reasons:

	It will get picked up by the The Testbed so you will be able to get
instant feedback as you work on your handler.

	You will get a lot of tests for free. These tests will parse the sample file
into a template and stringset, compile them back in your source file and
check whether the template matches the expected one and that the resulted
file matches the source. It will also try to translate the strings based on
some common ones found in a dictionary and check that it can compile a
language file that matches the expected one.

Put your sample file in
openformats/tests/formats/<format_name>/files/1_en.<format_extension>. For
example, our sample SRT file goes to
OpenFormats/tests/formats/srt/files/1_en.srt.

2. Generate expected template and language files

In order to generate the expected template and language files mentioned above,
you can use the bin/create_files.py script once you have a working handler:

./bin/create_files.py openformats/tests/formats/srt/files/1_en.srt

In order to get the tests we mentioned for free, make sure your test class
inherits from the:

	
class openformats.tests.formats.common.CommonFormatTestMixin

	Define a set of tests to be run by every file format.

The class that inherits from this must define the following:

	HANDLER_CLASS, eg: PlaintextHandler

	TESTFILE_BASE, eg: openformats/tests/formats/plaintext/files

You might have noticed that by using a working handler to make the expected
sample files and then testing against them seems pointless. Well, you’re right,
they are, initially. The point of for them to serve as regression tests, as you
later make changes to your handler.

3. Add your own tests

Testing that a handler works correctly against a valid source file is good, but
you will want to also test more things, like:

	The hashes produced take the correct information into account

	The metadata of the extracted strings is what you want

	ParseErrors are raised when appropriate and they produce a helpful error
message

	Sections of the compiled files are removed when the relevant strings are
missing from the stringset given as input

	Anything to get your coverage higher

4. Utilities

	
openformats.tests.utils.generate_random_string(length=20)

	

	
openformats.tests.utils.strip_leading_spaces(source)

	This is to help you write multilingual strings as test inputs in your
tests without screwing up your code’s syntax. Eg:

'''
 1
 00:01:28.797 --> 00:01:30.297 X:240 Y:480
 Hello world
'''

will be converted to:

'\n1\n00:01:28.797 --> 00:01:30.297 X:240 Y:480\nHello world\n'

	
CommonFormatTestMixin._test_parse_error(source, error_msg)

	Test that trying to parse ‘source’ raises an error with a message
exactly like ‘error_msg’

5. Run the test suite

python setup.py test

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

The Testbed

The testbed is a real-time django [https://www.djangoproject.com/] web application included with the openformats
library to help you develop, test and debug format handlers. To start it,
simply run:

./manage.py runserver

and point your browser to http://localhost:8000

The interface consists of 3 columns, one for each state of the handler’s
lifetime.

[image: _images/openformats-testbed-screencast.gif]

The source column

From here you choose which file format you want to play around with. The list
is automatically populated by all sublasses of Handler defined in all modules
in openformats/formats.

Once you select one, you can type or paste some content in the textarea. If you
have a sample file in
openformats/tests/formats/<format_name>/files/1_en.<extension>, it will be
picked up by the testbed and put in the textarea automatically once you select
a format. You can of course edit or replace it if you want.

Finally, press ‘parse’ to, well, parse the source content. The actual handler
will be used to display the outcome in the next column:

The stringset-template column

This column shows the outcome of the previous operation: the stringset and
template extracted from the source. You can inspect entries of the stringset,
edit their content or even delete them. Once you’re ready, you can press on
compile to have the handler create a language file out of the template and the,
potentially edited, stringset.

The compiled column

This shows the outcome of the previous operation. There is also a message that
tells you if the compiled text matches the source, in case you didn’t edit the
stringset and this is what you had expected.

Errors

If there’s an error during the parsing or compiling operation, a full traceback
will be printed on the relevant column. This is helpful for both debugging and
making sure that the error messages displayed to the user when there is a
mistake in the source file is accurate and helpful.

[image: _images/openformats-testbed-error.gif]

Saving tests

If you run the following command:

./manage.py syncdb --noinput

The testbed will be able to save your current test state (chosen format,
soruce, stringset, template, compiled file) in an sqlite database and allow you
to play it back any time. This saved test can be accessed from the URL in your
browser right after you’ve pressed the save button.

You will probably not need to do that yourself; this is a feature intended for
the public hosted version [https://formats.transifex.com] of the testbed, so that users can provide
Transifex support or openformats contributors with test cases that reproduce a
bug.

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

Utils

Compilers

	
class openformats.utils.compilers.OrderedCompilerMixin

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenFormats 0.1 documentation

Contributing to OpenFormats

Filing issues

	Before you file an issue, try asking for help first.

	If determined to file an issue, first check for existing issues [https://github.com/transifex/openformats/issues], including
closed issues.

How to get help

Before you ask for help, please make sure you do the following:

	Read the documentation [http://openformats.readthedocs.org/] thoroughly. If in a hurry, at least use the search
field that is provided on the documentation [http://openformats.readthedocs.org/] pages.

	Use a search engine (e.g., DuckDuckGo, Google) to search for a solution to
your problem. Someone may have already found a solution.

	Try reproducing the issue in a clean environment, ensuring you are using:

	correct latest OpenFormats release (or an up-to-date git clone of master)

	latest releases of libraries used by Openformats

	no plugins or only those related to the issue

If despite the above efforts you still cannot resolve your problem, be sure to
include in your inquiry the following information, preferably in the form of
links to content uploaded to a paste service [https://dpaste.de/], GitHub repository, or other
publicly-accessible location:

	Describe what version of Openformats you are running
or the HEAD commit hash if you cloned the repo) and how exactly you installed
it (the full command you used, e.g. pip install openformats).

	If you are looking for a way to get some end result, prepare a detailed
description of what the end result should look like (preferably in the form of
an image or a mock-up page) and explain in detail what you have done so far to
achieve it.

	If you are trying to solve some issue, prepare a detailed description of how
to reproduce the problem. If the issue cannot be easily reproduced, it cannot
be debugged by developers or volunteers. Describe only the minimum steps
necessary to reproduce it (no extra plugins, etc.).

	Upload any settings file or any other custom code that would enable people to
reproduce the problem or to see what you have already tried to achieve the
desired end result.

	Upload detailed and complete output logs and backtraces.

Once the above preparation is ready, you can contact people willing to help via
a GitHub issue or send a message to support at transifex dot com.
Remember to include all the information you prepared.

Contributing code

Before you submit a contribution, please ask whether it is desired so that you
don’t spend a lot of time working on something that would be rejected for a
known reason.

Using Git and GitHub

	Create a new git branch specific to your change (as opposed to making
your commits in the master branch).

	Don’t put multiple unrelated fixes/features in the same branch / pull request.
For example, if you’re hacking on a new feature and find a bugfix that
doesn’t require your new feature, make a new distinct branch and pull
request for the bugfix.

	Check for unnecessary whitespace via git diff --check before committing.

	First line of your commit message should start with present-tense verb, be 50
characters or less, and include the relevant issue number(s) if applicable.
Example: Ensure proper PLUGIN_PATH behavior. Refs #428. If the commit
completely fixes an existing bug report, please use Fixes #585 or Fix
#585 syntax (so the relevant issue is automatically closed upon PR merge).

	After the first line of the commit message, add a blank line and then a more
detailed explanation (when relevant).

	Squash your commits [https://github.com/transifex/openformats/wiki/Git-Tips#squashing-commits] to eliminate merge commits and ensure a clean and
readable commit history.

	If you have previously filed a GitHub issue and want to contribute code that
addresses that issue, please use hub pull-request instead of using
GitHub’s web UI to submit the pull request. This isn’t an absolute
requirement, but makes the maintainers’ lives much easier! Specifically:
install hub [https://github.com/github/hub/#installation] and then run
hub pull-request [https://github.com/github/hub/#git-pull-request] to
turn your GitHub issue into a pull request containing your code.

Contribution quality standards

	Adhere to PEP8 coding standards [http://www.python.org/dev/peps/pep-0008/] whenever possible. This can be eased via
the pep8 [http://pypi.python.org/pypi/pep8] or flake8 [http://pypi.python.org/pypi/flake8/] tools, the latter of which in
particular will give you some useful hints about ways in which the
code/formatting can be improved.

	Add docs and tests for your changes. Undocumented and untested features will
not be accepted.

	Run all the tests on all versions of Python supported by Openformats to
ensure nothing was accidentally broken.

Check out our Git Tips [https://github.com/transifex/openformats/wiki/Git-Tips] page or ask for help if you
need assistance or have any questions about these guidelines.

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	OpenFormats 0.1 documentation

Changelog

0.1 (2015-05-15)

Initial release.

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OpenFormats 0.1 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 openformats	

 	
 	
 openformats.handlers	

 	
 	
 openformats.strings	

 	
 	
 openformats.tests.formats.common	

 	
 	
 openformats.tests.utils	

 	
 	
 openformats.transcribers	

 	
 	
 openformats.utils.compilers	

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OpenFormats 0.1 documentation

Index

 _
 | C
 | E
 | G
 | H
 | L
 | O
 | P
 | R
 | S
 | T

_

 	

 	_test_parse_error() (openformats.tests.formats.common.CommonFormatTestMixin method)

C

 	

 	CommonFormatTestMixin (class in openformats.tests.formats.common)

 	

 	compile() (openformats.handlers.Handler method)

E

 	

 	edit_newlines() (openformats.transcribers.Transcriber method)

G

 	

 	generate_random_string() (in module openformats.tests.utils)

H

 	

 	Handler (class in openformats.handlers)

L

 	

 	line_number (openformats.transcribers.Transcriber attribute)

O

 	

 	openformats.handlers (module)

 	openformats.strings (module)

 	openformats.tests.formats.common (module)

 	openformats.tests.utils (module)

 	

 	openformats.transcribers (module)

 	openformats.utils.compilers (module)

 	OpenString (class in openformats.strings)

 	OrderedCompilerMixin (class in openformats.utils.compilers)

P

 	

 	parse() (openformats.handlers.Handler method)

R

 	

 	remove_section() (openformats.transcribers.Transcriber method)

S

 	

 	strip_leading_spaces() (in module openformats.tests.utils)

T

 	

 	Transcriber (class in openformats.transcribers)

 Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		OpenFormats 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Transifex.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/openformats-testbed-error.gif
Transifex ~ formatstestbed Keyboard shortcuts

Compiled Fork me on GitHub

Source

Handler:
Please select

‘Source content:

_images/openformats-testbed-screencast.gif
X Transifex formats testbed

 Konstantinos

€ C) wwwixioc:8000

Q[4=

Transifex formats testbed Keyboard shortcuts

Source

Handler:

Fork me on GitHub.

Please select

‘Source content:

