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CHAPTER 1

Overview

OpenFAST is an open-source wind turbine simulation tool that was established in 2017 with the FAST v8 code as
its starting point (see FAST v8 and the transition to OpenFAST). OpenFAST is a multi-physics, multi-fidelity tool
for simulating the coupled dynamic response of wind turbines. Practically speaking, OpenFAST is the framework
(or glue code) that couples computational modules for aerodynamics, hydrodynamics for offshore structures, control
and electrical system (servo) dynamics, and structural dynamics to enable coupled nonlinear aero-hydro-servo-elastic
simulation in the time domain. OpenFAST enables the analysis of a range of wind turbine configurations, including
two- or three-blade horizontal-axis rotor, pitch or stall regulation, rigid or teetering hub, upwind or downwind rotor, and
lattice or tubular tower. The wind turbine can be modeled on land or offshore on fixed-bottom or floating substructures.

OpenFAST and its underlying modules are mostly written in Fortran (adhering to the 2003 standard), but modules
can be written in C/C++. OpenFAST was created with the goal of being a community model, with developers and
users from research laboratories, academia, and industry. Our goal is also to ensure that OpenFAST is sustainable
software that is well tested and well documented. To that end, we are continually improving the documentation and
test coverage for existing code, and we expect that new capabilities will include adequate testing and documentation.

OpenFAST is under development; our team at NREL is now enhancing this documentation and automated
unit/regression testing. During this transition period, users can find FAST v8 documentation at https://nwtc.nrel.gov/.
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CHAPTER 2

This documentation

OpenFAST documentation is built using Sphinx, which uses reStructuredText as its markup language. Online doc-
umentation is hosted on readthedocs, where one can choose between documentation generated from the OpenFAST
master or dev github branches (if viewing this on http://openfast.readthedocs.io click on Read the Docs “box” on
the lower left corner of the browser screen for options).

This documentation is divided into two parts:

User Documentation

Directed towards end-users, this part provides detailed documentation regarding installation and usage
of the OpenFAST and its underlying modules, as well as theory and verification documentation. Also
included are instructions for using the automated test suite, which serves as a suite of examples.

Developer Documentation

The developer guide is targeted towards users wishing to extend the functionality provided within Open-
FAST. Here you will find details regarding the code structure, API supported by various classes, and links
to source code documentation extracted using Doxygen.

Note: If viewing this on http://openfast.readthedocs.io, one can get this documentation in PDF form via Read the
Docs “box” on the lower left corner of the browser screen.
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CHAPTER 3

Getting Started

Get the code:

OpenFAST can be cloned (i.e., downloaded) from its Github Repository, e.g., from the command line:

git clone https://github.com/OpenFAST/OpenFAST.git

It can also be downloaded directly from https://github.com/OpenFAST/OpenFAST.git.

Compile the code:

See Installing OpenFAST , for installation instructions (including dependency requirements) for CMake, Spack, and
Visual Studio and for multiple platforms (Linux, Mac, Windows). As an example, from the command line in a Mac or
Linux environment:

cd OpenFAST
mkdir build && cd build
cmake ../
make

Note that one can see all of the make targets via

make help

Use the code:

See User Documentation, which is under construction. In the interim, users may refer to the FAST v8 documentation
at https://nwtc.nrel.gov/.

Develop the code:

See Developer Documentation, which is under construction. In the interim, developers may consult the FAST v8
Programmer’s Handbook.
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CHAPTER 4

Installing OpenFAST

The following pages provide instructions for building OpenFAST and/or its modules from source code. The developer
team is moving towards a CMake-only approach that well supports Window Visual Studio users, but at this time we
provide a separate build path for those users.

4.1 Obtaining the OpenFAST source code

OpenFAST can be cloned (i.e., downloaded) from its Github Repository. For example, from a command line:

git clone https://github.com/OpenFAST/OpenFAST.git

It can also be downloaded directly from https://github.com/OpenFAST/OpenFAST.git.

4.2 Building OpenFAST with CMake on Linux and Mac

We describe here how to install OpenFAST (or any of its modules) using the CMake build system on Linux or Mac
OS systems. Separate CMake documentation is provided for Windows Cygwin users: see Section 4.4. Also, some
template build scripts are available in openfast/share.

4.2.1 Required software for building OpenFAST

In order to build OpenFAST using CMake, one needs the following minimum set of packages installed:

• Fortran compiler (GNU compiler version above 4.6.0 or Intel compiler version above 11)

• C/C++ compiler

• GNU Make (version 3.81 or later)

• CMake (version 2.8.12 or later)
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4.2.2 OpenFAST third-party-library (TPL) dependencies

OpenFAST has the following dependencies:

• LAPACK libraries. Users should set BLAS_LIBRARIES and LAPACK_LIBRARIES appropriately for CMake
if the library is not found in standard paths. Use BLASLIB as an example when using Intel MKL.

• Optional: For the C++ API, HDF5 (provided by HDF5_ROOT) and yaml-cpp (provided by YAML_ROOT)

• Optional: For the testing framework, Python 3+

4.2.3 CMake build instructions

If one has the appropriate TPLs, CMake, and git installed, obtaining and building OpenFAST can be accomplished as
follows:

# obtain the source code; e.g., from the command line using git:
git clone https://github.com/OpenFAST/OpenFAST.git

# go to the OpenFAST directory
cd OpenFAST

# create a directory called `build`
mkdir build

# go to the build directory
cd build

# execute CMake with the default options, which will create a Makefile
cmake ../

# execute a make command (with no target provided, equivalent to `make all`
make

This will build the OpenFAST suite in the build directory, which can be deleted for a clean build.

There are many Makefile targets (besides all), which can be listed via help:

# list available make targets
make help

# make a specific target, e.g.
make beamdyn_driver

Current CMake options

Below is a list of current CMake options including their default settings (which will effect, e.g., the targets in a resulting
Makefile.

• BUILD_DOCUMENTATION - Build documentation (Default: OFF)

• BUILD_FAST_CPP_API - Enable building OpenFAST - C++ API (Default: OFF)

• BUILD_SHARED_LIBS - Enable building shared libraries (Default: OFF)

• CMAKE_BUILD_TYPE - Choose the build type: Debug Release (Default: Release)

• CMAKE_INSTALL_PREFIX - Install path prefix, prepended onto install directories.

8 Chapter 4. Installing OpenFAST
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• DOUBLE_PRECISION - Treat REAL as double precision (Default: ON)

• FPE_TRAP_ENABLED - Enable Floating Point Exception (FPE) trap in compiler options (Default: OFF)

• ORCA_DLL_LOAD - Enable OrcaFlex library load (Default: OFF)

• USE_DLL_INTERFACE - Enable runtime loading of dynamic libraries (Default: ON)

CMake options can be executed from the command line as, e.g., the CMake command above could be exectuted as

# e.g., to enable Makefile for local building of sphinx-based documentation
cmake -DBUILD_DOCUMENTATION:BOOL=ON ..

# e.g., to compile OpenFAST in single precision
cmake -D:DOUBLE_PRECISION:BOOL=OFF ..

Parallel build

GNU Make has a parellel build option with the -jobs or -j flag, and the OpenFAST CMake configuration handles
setting up the dependencies for Make so the build can be parallelized. However, it is important to note that the only
parallel portion of the build process is in compiling the modules. Due to some interdependency between modules, the
max parallel level is around 12. The remaining portion of the build, mainly compiling the OpenFAST library itself,
takes a considerable amount of time and cannot be parallelized.

An example parallel build command is make -j 8.

4.3 Building OpenFAST with Spack

The process to build and install OpenFAST with Spack on Linux or macOS is described here.

4.3.1 Dependencies

OpenFAST has the following dependencies:

• LAPACK libraries. Users should set BLAS_LIBRARIES and LAPACK_LIBRARIES appropriately for cmake
if the library isn’t found in standard paths. Use BLASLIB as an example when using Intel MKL.

• For the optional C++ API, HDF5 (provided by HDF5_ROOT) and yaml-cpp (provided by YAML_ROOT)

• For the optional testing framework, Python 3+ and Numpy

4.3.2 Building OpenFAST Semi-Automatically Using Spack on macOS or Linux

The following describes how to build OpenFAST and its dependencies mostly automatically on your Mac using Spack.
This can also be used as a template to build OpenFAST on any Linux system with Spack.

These instructions were developed on macOS 10.11 with the following tools installed via Homebrew:

• GCC 6.3.0

• CMake 3.6.1

• pkg-config 0.29.2

4.3. Building OpenFAST with Spack 9
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Step 1

Checkout the official Spack repo from github (we will checkout into ${HOME}):

cd ${HOME} && git clone https://github.com/LLNL/spack.git

Step 2

Add Spack shell support to your .profile by adding the lines:

export SPACK_ROOT=${HOME}/spack
. $SPACK_ROOT/share/spack/setup-env.sh

Step 3

Copy the https://raw.githubusercontent.com/OpenFAST/openfast/dev/share/spack/package.py file to your installation
of Spack:

mkdir ${SPACK_ROOT}/var/spack/repos/builtin/packages/openfast
cd ${SPACK_ROOT}/var/spack/repos/builtin/packages/openfast
wget --no-check-certificate https://raw.githubusercontent.com/OpenFAST/openfast/dev/
→˓share/spack/package.py

Step 4

Try spack info openfast to see if Spack works. If it does, check the compilers you have available by:

machine:~ user$ spack compilers
==> Available compilers
-- gcc ----------------------------------------------------------
gcc@6.3.0 gcc@4.2.1

-- clang --------------------------------------------------------
clang@8.0.0-apple clang@7.3.0-apple

Step 5

Install OpenFAST with your chosen version of GCC:

spack install openfast %gcc@6.3.0

To install OpenFAST with the C++ API, do:

spack install openfast+cxx %gcc@6.3.0

That should be it! Spack will automatically use the most up-to-date dependencies unless otherwise specified. For
example to constrain OpenFAST to use some specific versions of dependencies you could issue the Spack install
command:

spack install openfast %gcc@6.3.0 ^hdf5@1.8.16

The executables and libraries will be located at

10 Chapter 4. Installing OpenFAST
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spack location -i openfast

Add the appropriate paths to your PATH and LD_LIBRARY_PATH to run OpenFAST.

4.4 Building OpenFAST on Windows with CMake and Cygwin 64-bit

4.4.1 Installing prerequisites

1. Download and install Cygwin 64-bit. You will need to Run as Administrator to complete the installation
process.

• Choose Install from internet

• Choose the default install location

• Choose the default package download location

• Choose Direct connection

• Choose http://www.gtlib.gatech.edu as the download site

• See next step for select packages. Alternately, you can skip this step and run setup-x86_64.
exe anytime later to select and install required software.

2. Select packages necessary for compiling OpenFAST. Choose binary packages and not the source option.

• Choose Category view, we will be installing packages from Devel and Math

• From Devel mark the following packages for installation

– cmake

– cmake-doc

– cmake-gui

– cygwin-devel

– gcc-core

– gcc-fortran

– gcc-g++

– git

– make

– makedepend

• From Math mark the following packages for installation

– liblapack-devel

– libopenblas

• Click Next and accept all additional packages that the setup process requests to install to satisfy depen-
dencies

3. It is recommended that you reboot the machine after installing Cygwin and all the necessary packages.

4.4. Building OpenFAST on Windows with CMake and Cygwin 64-bit 11
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4.4.2 Compiling OpenFAST

1. Open Cygwin64 Terminal from the Start menu

2. Create a directory where you will clone OpenFAST repository (change code to your preferred name)

mkdir code
cd code

3. Clone the OpenFAST repository

git clone https://github.com/OpenFAST/OpenFAST.git

This will create a directory called OpenFAST within the code directory.

4. Create a build directory

cd OpenFAST
mkdir build
cd build

5. Run cmake. Note that this step is necessary only if you change compiler settings, or add new files to any of
the CMakeLists.txt. Modification of .f90 files do not require you to run cmake again, just re-run make
command (see next item) to recompile with latest source code modifications.

FC=gfortran cmake ../

Sample output is shown below:

$ FC=gfortran cmake ../
-- The Fortran compiler identification is GNU 5.4.0
-- The C compiler identification is GNU 5.4.0
-- Check for working Fortran compiler: /usr/bin/gfortran.exe
-- Check for working Fortran compiler: /usr/bin/gfortran.exe -- works
-- Detecting Fortran compiler ABI info
-- Detecting Fortran compiler ABI info - done
-- Checking whether /usr/bin/gfortran.exe supports Fortran 90
-- Checking whether /usr/bin/gfortran.exe supports Fortran 90 -- yes
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Looking for Fortran sgemm
-- Looking for Fortran sgemm - found
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - found
-- Found Threads: TRUE
-- A library with BLAS API found.
-- A library with BLAS API found.
-- Looking for Fortran cheev
-- Looking for Fortran cheev - found
-- A library with LAPACK API found.
-- Setting system file as: src/SysGnuLinux.f90
-- Configuring done
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-- Generating done
-- Build files have been written to: /home/sanantha/code/OpenFAST/build

6. Compile OpenFAST

make

Grab a cup of coffee as this takes a while on Cygwin. Once the compilation is completed, the OpenFAST executable
is present in OpenFAST/build/glue-codes/fast/openfast.exe

7. Test the executable

$ glue-codes/fast/openfast.exe -h

**************************************************************************************************
FAST (v8.17.00a-bjj, 27-Aug-2016)

Copyright (C) 2016 National Renewable Energy Laboratory

This program comes with ABSOLUTELY NO WARRANTY. See the "license.txt" file
→˓distributed with this
software for details.

**************************************************************************************************

Running FAST (v8.17.00a-bjj, 27-Aug-2016), compiled as a 64-bit application using
→˓double
precision
linked with NWTC Subroutine Library (v2.11.00, 12-Nov-2016)

Syntax is:

FAST_x64.exe [-h] <InputFile>

where:

-h generates this help message.
<InputFile> is the name of the required primary input file.

Note: values enclosed in square brackets [] are optional. Do not enter the brackets.

FAST_InitializeAll:The required input file was not specified on the command line.

FAST encountered an error during module initialization.
Simulation error level: FATAL ERROR

Aborting FAST.

‘‘‘

4.4.3 Other tips

• You can specify an installation location during your cmake process so that the executable, libraries, and head-
ers (e.g., MAP and OpenFOAM headers) are installed in a common location that you can use to update your
environment variables.

4.4. Building OpenFAST on Windows with CMake and Cygwin 64-bit 13
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# 1. Create an installation location mkdir -p ~/software

# 2. Instruct CMake to use the custom install location FC=gfortran cmake
-DCMAKE\_INSTALL\_PREFIX:PATH=$HOME/software ../

# 3. Compile OpenFAST executable make

# 4. Install OpenFAST to custom install location make install \`\`\`

With this step, you can execute make install after make (see step 6 above). Now the openfast.exe and other
executables (e.g., aerodyn.exe) are available in ~/software/bin/ directory.

• If you desire to be able to run openfast.exe from the cmd window, then you must add
the C:\cygwin64\lib\lapack and C:\cygwin64\home\<USERNAME>\software\bin to your
%PATH% variable in environment setting. Replace <USERNAME> with your account name on windows system.

• In addition to openfast.exe, the current CMake setup also allows the user to compile other executables or
libraries without compiling the entire codebase. Use make help to see what targets are available and then
do make <TARGET> to choose your desired target. For example, make aerodyn will compile only the
aerodyn.exe executable and its dependencies without compiling the remaining targets.

4.5 Building OpenFAST on Windows with Visual Studio

4.5.1 Prerequisites

1. A version of Visual Studio (VS).

• Currently VS 2013 Professional and VS 2015 Community Edition have been tested with OpenFAST.

• A list of Intel Fortran compatible VS versions and specific installation notes are found here.

• The included C/C++ project files for MAP++ and the Registry are compatible with VS 2013, but will
upgrade seemlessly to a newer version of VS.

• If you download and install Visual Studio 2015 Community Edition, you will need to be sure and select
the C/C++ component using the Customize option.

2. Intel Fortran Compiler

• Currently only version 2017.1 has been tested with OpenFAST, but any newer version should be compati-
ble.

• You can download an Intel Fortran compiler here.

• Only install Intel Fortran after you have completed your Visual Studio installation.

3. Git for Windows

• Download and install git for Windows.

4. Python 3.x for Windows (for regression/unit testing)

• The testing framework of OpenFAST requires the use of Python.

• Please see Section 5 on testing OpenFAST for further information on this topic.

• We have been working with Continuum’s Anaconda installation of Python 3.6 for Windows.
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4.5.2 Compiling OpenFAST

1. Open A command prompt, or git bash shell from the Start menu

2. Create a directory where you will clone OpenFAST repository (change code to your preferred name)

mkdir code
cd code

3. Clone the OpenFAST repository

git clone https://github.com/openfast/openfast.git

This will create a directory called openfast within the code directory.

4. Using Windows Explorer, navigate to the directory openfast\vs-build\FAST and double-click on the
FAST.sln Visual Studio solution file. This will open Visual Studio with the FAST solution and its associated
projects.

NOTE: If you are using Visual Studio 2015 or newer, you will be asked to upgrade both the Fast_Registry.
vcxproj and the MAP_dll.vcxproj files to a newer format. Go ahead and accept the upgrade on those files.

5. Select the desired Solution Configuration, such as Release, and the desired Solution Platform, such as x64
by using the drop down boxes located below the menubar.

6. Build the solution using the Build->Build Solution menu option.

NOTE: If this is the first time building OpenFAST, you will encounter many error messages. This is due
to a known issue with Visual Studio’s ability to understand the OpenFAST dependency structure, which in-
cludes Registry-generated Fortran files. You can resolve this issue by simply closing Visual Studio and then
reopening the FAST.sln solution file. After you have reopened Visual Studio, build the solution again via the
Build->Build Solution menu option.

7. If the solution built without errors, the executable will be located under the openfast\build\bin folder.

4.5. Building OpenFAST on Windows with Visual Studio 15
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CHAPTER 5

Testing OpenFAST

The OpenFAST test suite consists of system and module level regression tests and unit tests. The regression test
compares locally generated solutions to a set of baseline solutions. The unit tests ensure that individual subroutines
are functioning as intended.

All of the necessary files corresponding to the regression test are contained in the reg_tests directory. The unit
test framework is housed in unit_tests while the actual tests are contained in the directory corresponding to the
tested module.

5.1 Configuring the test suite

Portions of the test suite are linked to the OpenFAST repository through git submodule. Specifically,

• r-test

• pFUnit

Be sure to clone the repo with the --recursive flag or execute git submodule update --init
--recursive after cloning.

The test suite can be built with CMake similar to OpenFAST. The default CMake configuration is useful, but may need
customization for particular build environments. See the installation documentation at Section 4 for more details on
configuring the CMake targets.

While the unit tests must be built with CMake due to its external dependencies, the regression test may be executed
without building with CMake. Section 5.2.2 and Section 5.2.1 have more information on regression testing and unit
testing, respectively.

17
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5.2 Test specific documentation

5.2.1 Unit test

In a software package as dynamic and collaborative as OpenFAST, confidence in multiple layers of code is best
accomplished with a strong system of unit tests. Through robust testing practices, the entire OpenFAST community
can understand the intention behind code blocks and debug or expand functionality quicker and with more confidence
and stability.

Unit testing in OpenFAST modules is accomplished through pFUnit. This framework provides a Fortran abstraction
to the popular xUnit structure. pFUnit is compiled along with OpenFAST through CMake when the CMake variable
BUILD_TESTING is turned on.

The BeamDyn module has been unit tested and should serve as a reference for future development and testing.

Dependencies

• Python 3+

• CMake and CTest

• Numpy and matplotlib (Optional)

• pFUnit (Included in unit test suite)

Compiling the unit tests

Compiling the unit tests is handled with CMake similar to compiling OpenFAST in general. After configuring CMake
with BUILD_TESTING on, new make targets are created for each module included in the unit test framework named
[module]_utest. Then, simply make the target to test

cmake .. -DBUILD_TESTING=ON
make beamdyn_utest

This creates a binary unit test executable at openfast/build/unit_tests/[module]_utest.

Executing the unit tests

To execute a module’s unit test, simply run the unit test binary. For example,

>>>$ ./openfast/build/unit_tests/beamdyn_utest
.............
Time: 0.018 seconds

OK
(13 tests)

pFUnit will display a . for each unit test successfully completed and a F for each failing test. If any tests do fail, the
failure criteria will be displayed listing which particular value caused the failure. Failure cases display the following
output

>>>$ ./unit_tests/beamdyn_utest
.....F.......
Time: 0.008 seconds
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Failure
in:

test_BD_CrvMatrixH_suite.test_BD_CrvMatrixH
Location:

[test_BD_CrvMatrixH.F90:48]
simple rotation with known parameters: Pi on xaxis expected +0.5000000 but found: +0.
→˓4554637; difference: |+0.4453627E-01| > tolerance:+0.1000000E-13; first
→˓difference at element [1, 1].

FAILURES!!!
Tests run: 13, Failures: 1, Errors: 0
Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG IEEE_
→˓DIVIDE_BY_ZERO
ERROR STOP *** Encountered 1 or more failures/errors during testing. ***

Error termination. Backtrace:
#0 0x1073b958c
#1 0x1073ba295
#2 0x1073bb1b6
#3 0x106ecdd4f
#4 0x1063fabee
#5 0x10706691e

Adding unit tests

Unit tests should be included for each new, testable code block (subroutine or function). What is testable is the
discretion of the developer, but a portion of the pull request review process will be evaluating test coverage.

New unit tests can be added to a tests directory alongside the src directory included in each module. For example,
the BeamDyn module directory is structured as

openfast/
|-- modules-local/

|-- beamdyn/
|-- src/

|-- BeamDyn.f90
`-- BeamDyn_Subs.f90

`-- tests/
|-- test_BD_Subroutine1.F90
|-- test_BD_Subroutine2.F90
`-- test_BD_Subroutine3.F90

Each unit test must be contained in a unique file called test_[SUBROUTINE].F90 where [SUBROUTINE] is the
code block being tested. Finally, update the CMake configuration for building a module’s unit test executable with the
appropriate list of test subroutines in openfast/unit_tests/CMakeLists.txt using the following format

set(testlist
test_SUBROUTINE1
test_SUBROUTINE2
test_SUBROUTINE3

)
# it is important to keep the quotes around "${testlist}" in the call below
build_utest("module_name" "${testlist}")

For reference, a template unit test file is included at openfast/unit_tests/test_SUBROUTINE.F90.
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Each unit test should fully test the target code block. If full test coverage is not easily achievable, it may be an
indication that refactoring would be beneficial.

Some useful topics to consider when developing and testing for OpenFAST are:

• Test driven development

• Separation of concerns

• pFUnit usage

5.2.2 Regression test

The regression test executes a series of test cases which intend to fully describe OpenFAST and its module’s capabili-
ties. Each locally computed result is compared to a static set of baseline results. To account for system, hardware, and
compiler differences, the regression test attempts to match the current machine and compiler type to the appropriate
solution set from these combinations

• macOS with GNU compiler (default)

• Red Hat Enterprise Linux with Intel compiler

• Windows with Intel compiler

The compiler versions, specific math libraries, and hardware used to generate these baseline solutions are documented
in the r-test repository documentation. Currently, the regression test supports only double precision solutions, so it
is required to build OpenFAST in double precision for testing. All baseline solutions are generated with a double
precision build.

The regression test system can be executed with CMake and CTest or manually with an included Python driver. Both
systems provide similar functionality with respect to testing, but CTest integration provides access to multithreading,
automation, and test reporting via CDash. Both modes of execution require some configuration as outlined below.

In both modes of execution a subdirectory is created in the build directory called reg_tests where all of the input
files for the test cases are copied and all of the locally generated outputs are stored.

Ultimately, both CTest and the manual execution program call a series of Python scripts and libraries in reg_tests
and reg_tests/lib. One such script is lib/pass_fail.py which reads the output files and computes a norm
on each channel reported. If the maximum norm is greater than a preset tolerance, that particular test is reported as
failed. The failure criteria is outlined in pseudocode below.

difference = abs(testData-baselineData)
for i in nChannels

if channelRange < 1 {
norm[i] = MaxNorm( difference[:,i] )

} else {
norm[i] = MaxNorm( difference[:,i] ) / channelRange

}

if max(norm) < tolerance:
success

Dependencies

• Python 3+

• Numpy

• CMake and CTest (Optional)
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• matplotlib (Optional)

Manual driver configuration

The regression test can be executed manually with the included driver openfast/reg_tests/
manualRegressionTest.py. This program reads a case list file at openfast/reg_tests/r-test/
glue-codes/fast/CaseList.md. Cases can be removed or ignored with a #. This driver program includes
multiple optional flags which can be obtained by executing with the help option: openfast/reg_tests/
manualRegressionTest.py -h

For the NREL 5MW turbine test cases, an external ServoDyn controller must be compiled and included in the appro-
priate directory or all NREL 5MW cases will fail without starting. More information is available in the documentation
for the r-test repository.

CTest configuration

CTest is included with CMake and is mostly a set of preconfigured targets and commands. To use the CTest driver for
the regression test, CMake must be run with one of two CMakeLists.txt‘s:

• openfast/CMakeList.txt

• openfast/reg_tests/CMakeLists.txt

CMake variables can be configured in the CMake GUI or through the command line interface with ccmake.

The regression test specific CMake variables are

• BUILD_TESTING

• CTEST_OPENFAST_EXECUTABLE

• CTEST_[MODULE]_EXECUTABLE

• CTEST_PLOT_ERRORS

• CTEST_REGRESSION_TOL

IT IS IMPORTANT to verify that NREL 5MW turbine external controllers are compiled and placed in the correct
location. More information is available in the documentation for the r-test repository, but be aware that these three
DISCON controllers must exist

openfast/build/reg_tests/glue-codes/fast/5MW_Baseline/ServoDyn/DISCON.dll
openfast/build/reg_tests/glue-codes/fast/5MW_Baseline/ServoDyn/DISCON_ITIBarge.dll
openfast/build/reg_tests/glue-codes/fast/5MW_Baseline/ServoDyn/DISCON_OC3Hywind.dll

This can be accomplished manually with the CMake projects included with the DISCON source codes at openfast/
reg_tests/r-test/glue-codes/fast/5MW_Baseline/ServoDyn/ or during CMake configuration by
setting the CMAKE_INSTALL_PREFIX CMake variable. If using this method, the install prefix variable should
point to an existing and appropriate location for CMake to place the compiled binaries. This is important because
the NREL 5MW turbine external controller CMake projects are preconfigured to install themselves in the appropri-
ate location in the build directory. Then, it is important to execute make install rather than simply make. If
CMAKE_INSTALL_PREFIX is not appropriately configured, the install step may fail or openfast binaries may be
placed in some inappropriate default location.

After CMake configuration, the automated regression test can be executed by running either of the commands make
test or ctest from the build directory. If the entire OpenFAST package is to be built, CMake will configure
CTest to find the new binary at openfast/build/glue-codes/fast/openfast. However, if the inten-
tion is to build only the test suite, the OpenFAST binary should be specified in the CMake configuration under the
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CTEST_OPENFAST_EXECUTABLE flag. There is also a corresponding CTEST_[MODULE]_NAME flag for each
module included in the regression test.

Running the regression test with CTest

When driven by CTest, the regression test can be executed by running various forms of the command ctest from the
build directory. The basic commands are

• ctest - Run the entire regression test

• ctest -V - Run the entire regression test with verbose output

• ctest -R [TestName] - Run a test by name

• ctest -j [N] - Run all tests with N tests executing in parallel

• ctest -N - List all of the tests available

Each regression test case contains a series of labels associating all of the modules used. The labeling can be seen in
the test instantiation in reg_tests/CTestList.cmake and called directly with

• ctest -L [Label]

These flags can be compounded making useful variations of ctest such as

• ctest -V -L aerodyn14 - Runs all cases that use AeroDyn14 with verbose output

• ctest -j 16 -L aerodyn14 - Runs all cases that use AeroDyn14 in 16 concurrent processes

• ctest -V -R 5MW_DLL_Potential_WTurb - Runs the case with name
“5MW_DLL_Potential_WTurb”

• ctest -N -L beamdyn - Lists all tests with the “beamdyn” label

The automated regression test writes new files only into the build directory. Specifically, all locally generated solu-
tions are located in the corresponding glue-code or module within openfast/build/reg_tests. The baseline
solutions contained in openfast/reg_tests/r-test are strictly read not modified by the automated process.

Regression test from scratch

• Build OpenFAST and the test suite

git clone --recursive https://github.com/openfast/openfast.git
# The default git branch is 'master'. If necessary, switch to your target branch:
# git checkout dev
mkdir build && cd build
# Configure CMake with openfast/CMakeLists.txt
# - BUILD_TESTING
# - CTEST_OPENFAST_EXECUTABLE
# - CTEST_[MODULE]_EXECUTABLE
cmake ..
make install
ctest

• Build only the test suite

git clone --recursive https://github.com/openfast/openfast.git
# The default git branch is 'master'. If necessary, switch to your target branch:
# git checkout dev
mkdir build && cd build
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# Configure CMake with openfast/reg_tests/CMakeLists.txt
# - BUILD_TESTING
# - CTEST_OPENFAST_EXECUTABLE
# - CTEST_[MODULE]_EXECUTABLE
cmake ../reg_tests
make install
ctest

• Windows With Visual Studio Regression Test

Follow the link above for a detailed procedure. It is summarized below though excluding the procedure to build
OpenFAST itself.

git clone --recursive https://github.com/openfast/openfast.git
cd openfast

## Build the ServoDyn external controller libraries
# Open the Visual Studio Solution (DISCON.sln) located in 'openfast\vs-build\DISCON'
# Choose Release and x64 for the Solutions Configuration and Solutions Platform
# Build Solution

## Execute the OpenFAST regression Tests
# Open a command prompt which is configured for Python (like Anaconda)
cd openfast\reg_tests
python manualRegressionTest.py ..\build\bin\openfast_x64.exe Windows Intel 1e-5

5.2.3 Windows With Visual Studio Regression Test

1. Clone the openfast repo and initialize the testing database

(a) Open a git command shell window (like git bash)

(b) Change your working directory to the location above where you want your local repo to be
located (the repo will be placed into a folder called openfast at this location)

c. Type: git clone https://github.com/openfast/openfast.git (this creates a
local version of the openfast repo on your computer). You should see something like this:

Cloning into 'openfast'...
remote: Counting objects: 23801, done.
remote: Compressing objects: 100% (80/80), done.
remote: Total 23801 (delta 73), reused 102 (delta 50), pack-reused 23670
Receiving objects: 100% (23801/23801), 92.10 MiB 18.99 MiB/s, done.
Resolving deltas: 100% (13328/13328), done.
Checking connectivity... done.

(a) Type: cd openfast (change your working directory to the openfast folder)

(b) Type: git checkout dev (this places your local repo on the correct branch of the openfast
repo)

(c) Type: git submodule update --init --recursive (this downloads the testing
database to your computer) You should see something like this:

Submodule 'reg_tests/r-test' (https://github.com/openfast/r-test.git)
→˓registered for path 'reg_tests/r-test'
Cloning into 'reg_tests/r-test'...
remote: Counting objects: 3608, done.
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remote: Compressing objects: 100% (121/121), done.
remote: Total 3608 (delta 22), reused 161 (delta 21), pack-reused 3442
Receiving objects: 100% (3608/3608), 154.52 MiB 26.29 MiB/s, done.
Resolving deltas: 100% (2578/2578), done.
Checking connectivity... done.
Submodule path 'reg_tests/r-test': checked out
→˓'b808f1f3c1331fe5d03c5aaa4167532c2492d378'

4. Build The Regression Testing DISCON DLLs

(a) Open the Visual Studio Solution (Discon.sln) located in openfast\vs-build\Discon folder

(b) Choose Release and x64 for the Solutions Configuration and Solutions Platform, respectively

(c) From the menu bar select Build->Build Solution

(d) You should now see the files Discon.dll, Discon_ITIBarge.dll, and Discon_OC3Hywind.
dll in your openfast\reg_tests\r-test\glue-codes\fast\5MW_Baseline\ServoData
folder.

5. Build OpenFAST using Visual Studio

(a) Open the Visual Studio Solution (FAST.sln) located in openfast\vs-build\FAST folder

(b) Choose Release_Double and x64 for the Solutions Configuration and Solutions Platform, respectively

(c) From the menu bar select Build->Build Solution

i. If this is the first time you have tried to build openfast, you will get build errors!!! [continue to steps
(ii) and (iii), otherwise if FAST builds successfully, continue to step (3d) ]

ii. Cancel build using the menubar Build->Cancel [ VS is confused about the build-
order/dependency of the project files in FASTlib., but canceling and restarting VS, it somehow as
enough info from the partial build to get this right, now]

iii. Close your Visual Studio and then Repeat Steps (a) through (c)

(d) You should now see the file openfast_x64.exe in your openfast\build\bin folder

6. Execute the OpenFAST regression Tests

(a) Open a command prompt which is configured for Python [ like Anaconda3 ]

(b) Change your working directory to openfast\reg_tests

(c) Type: python manualRegressionTest.py ..\build\bin\openfast_x64.exe Windows Intel 1e-5
You should see this: executing AWT_YFix_WSt

(d) The tests will continue to execute one-by-one until you finally see something like this:

executing AWT_YFix_WSt PASS
executing AWT_WSt_StartUp_HighSpShutDown PASS
executing AWT_YFree_WSt PASS
executing AWT_YFree_WTurb PASS
executing AWT_WSt_StartUpShutDown PASS
executing AOC_WSt PASS
executing AOC_YFree_WTurb PASS
executing AOC_YFix_WSt PASS
executing UAE_Dnwind_YRamp_WSt PASS
executing UAE_Upwind_Rigid_WRamp_PwrCurve PASS
executing WP_VSP_WTurb_PitchFail PASS
executing WP_VSP_ECD PASS
executing WP_VSP_WTurb PASS
executing WP_Stationary_Linear PASS
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executing SWRT_YFree_VS_EDG01 PASS
executing SWRT_YFree_VS_EDC01 PASS
executing SWRT_YFree_VS_WTurb PASS
executing 5MW_Land_DLL_WTurb PASS
executing 5MW_OC3Mnpl_DLL_WTurb_WavesIrr PASS
executing 5MW_OC3Trpd_DLL_WSt_WavesReg PASS
executing 5MW_OC4Jckt_DLL_WTurb_WavesIrr_MGrowth PASS
executing 5MW_ITIBarge_DLL_WTurb_WavesIrr PASS
executing 5MW_TLP_DLL_WTurb_WavesIrr_WavesMulti PASS
executing 5MW_OC3Spar_DLL_WTurb_WavesIrr PASS
executing 5MW_OC4Semi_WSt_WavesWN PASS
executing 5MW_Land_BD_DLL_WTurb PASS

(a) If an individual test succeeds you will see PASS otherwise you will see FAIL after that test’s
name
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CHAPTER 6

User Documentation

This section contains documentation for the OpenFAST module-coupling environment and its underylying modules.
Documentation covers usage of models, underlying theory, and in some cases module verification.

We are in the process of transitioning legacy FAST v8 documentation, which can be found at https://nwtc.nrel.gov/.
Details on the transition from FAST v8 to OpenFAST may be found in Section 6.4

6.1 AeroDyn Users Guide and Theory Manual

6.1.1 Introduction

AeroDyn is a time-domain wind turbine aerodynamics module that is coupled in the OpenFAST multi-physics engi-
neering tool to enable aero-elastic simulation of horizontal-axis turbines. AeroDyn can also be driven as a standalone
code to compute wind turbine aerodynamic response uncoupled from OpenFAST. When coupled to OpenFAST, Aero-
Dyn can also be linearized as part of the linearization of the full coupled solution (linearization is not available in
standalone mode). AeroDyn was originally developed for modeling wind turbine aerodynamics. However, the module
equally applies to the hydrodynamics of marine hydrokinetic (MHK) turbines (the terms “wind turbine”, “tower”,
“aerodynamics” etc. in this document imply “MHK turbine”, “MHK support structure”, “hydrodynamics” etc. for
MHK turbines). Additional physics important for MHK turbines, not applicable to wind turbines, computed by Aero-
Dyn include a cavitation check. This documentation pertains version of AeroDyn in the OpenFAST github repository.
The AeroDyn version released of OpenFAST 1.0.0 is most closely related to AeroDyn version 15 in the legacy version
numbering. AeroDyn version 15 was a complete overhaul from earlier version of AeroDyn. AeroDyn version 15 and
newer follows the requirements of the FAST modularization framework.

AeroDyn calculates aerodynamic loads on both the blades and tower. Aerodynamic calculations within AeroDyn are
based on the principles of actuator lines, where the three-dimensional (3D) flow around a body is approximated by
local two-dimensional (2D) flow at cross sections, and the distributed pressure and shear stresses are approximated by
lift forces, drag forces, and pitching moments lumped at a node in a 2D cross section. Analysis nodes are distributed
along the length of each blade and tower, the 2D forces and moment at each node are computed as distributed loads
per unit length, and the total 3D aerodynamic loads are found by integrating the 2D distributed loads along the length.
When AeroDyn is coupled to OpenFAST, the blade and tower analysis node discretization may be independent from
the discretization of the nodes in the structural modules. The actuator line approximations restrict the validity of the
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model to slender structures and 3D behavior is either neglected, captured through corrections inherent in the model
(e.g., tip-loss, hub-loss, or skewed-wake corrections), or captured in the input data (e.g., rotational augmentation
corrections applied to airfoil data).

AeroDyn assumes the turbine geometry consists of a one-, two-, or three-bladed rotor atop a single tower. While the
undeflected tower is assumed to be straight and vertical, an undeflected blade may consider out-of-plane curvature
and in-plane sweep. For blades, the 2D cross sections where the aerodynamic analysis take place may follow the
out-of-plane curvature, but in-plane sweep is assumed to be accomplished by shearing, rather than rotation of the 2D
cross section. Aerodynamic imbalances are possible through the use of geometrical differences between each blade.

When AeroDyn is coupled to OpenFAST, AeroDyn receives the instantaneous (possibly displaced/deflected) structural
position, orientation, and velocities of analysis nodes in the tower, hub, and blades. As with curvature and sweep, the
2D cross sections where the blade aerodynamic analysis takes place will follow the out-of-plane deflection, but in-
plane deflection is assumed to be accomplished by shearing, rather than rotation of the 2D cross section. AeroDyn
also receives the local freestream (undisturbed) fluid velocities at the tower and blade nodes. (Fluid and structural
calculations take place outside of the AeroDyn module and are passed as inputs to AeroDyn by the driver code.) The
fluid and structural motions are provided at each coupling time step and then AeroDyn computes the aerodynamic
loads on the blade and tower nodes and returns them back to OpenFAST as part of the aero-elastic calculation. In
standalone mode, the inputs to AeroDyn are prescribed by a simple driver code, without aero-elastic coupling.

AeroDyn consists of four submodels: (1) rotor wake/induction, (2) blade airfoil aerodynamics, (3) tower influence
on the fluid local to the blade nodes, and (4) tower drag. Nacelle, hub, and tail-vane fluid influence and loading,
aeroacoustics, and wake and array effects between multiple turbines in a wind plant, are not yet available in AeroDyn
v15 and newer.

For operating wind and MHK turbine rotors, AeroDyn calculates the influence of the wake via induction factors based
on the quasi-steady Blade-Element/Momentum (BEM) theory, which requires an iterative nonlinear solve (imple-
mented via Brent’s method). By quasi-steady, it is meant that the induction reacts instantaneously to loading changes.
The induction calculation, and resulting inflow velocities and angles, are based on flow local to each analysis node of
each blade, based on the relative velocity between the fluid and structure (including the effects of local inflow skew,
shear, turbulence, tower flow disturbances, and structural motion, depending on features enabled). The Glauert’s em-
pirical correction (with Buhl’s modification) replaces the linear momentum balance at high axial induction factors. In
the BEM solution, Prandtl tip-loss, Prandtl hub-loss, and Pitt and Peters skewed-wake are all 3D corrections that can
optionally be applied. When the skewed-wake correction is enabled, it is applied after the BEM iteration. Additionally,
the calculation of tangential induction (from the angular momentum balance), the use of drag in the axial-induction
calculation, and the use of drag in the tangential-induction calculation are all terms that can optionally be included in
the BEM iteration (even when drag is not used in the BEM iteration, drag is still used to calculate the nodal loads once
the induction has been found). The wake/induction calculation can be bypassed altogether for the purposes of model-
ing rotors that are parked or idling, in which case the inflow velocity and angle are determined purely geometrically.
During linearization analyses with AeroDyn coupled to OpenFAST and BEM enabled, the wake can be assumed to
be frozen (i.e., the axial and tangential induces velocities, −𝑉𝑥𝑎 and 𝑉𝑦𝑎

′, are fixed at their operating-point values
during linearization) or the induction can be recalculated during linearization using BEM theory. Dynamic wake that
accounts for induction dynamics as a result of transient conditions are not yet available in AeroDyn v15 and newer.

The blade airfoil aerodynamics can be steady or unsteady, except in the case that a cavitation check is requested
for MHK, in which case only steady aerodynamics are supported. In the steady model, the supplied static airfoil
data — including the lift force, drag force, and optional pitching moment and minimum pressure coefficients versus
angle of attack (AoA) — are used directly to calculate nodal loads. The AirfoilPrep preprocessor can be used to
generate the needed static airfoil data based on uncorrected 2D data (based, e.g., on airfoil tests in a wind tunnel or
XFoil), including features to blend data between different airfoils, apply 3D rotational augmentation, and extrapolate
to high AoA. The unsteady airfoil aerodynamic (UA) models account for flow hysteresis, including unsteady attached
flow, trailing-edge flow separation, dynamic stall, and flow reattachment. The UA models can be considered as 2D
dynamic corrections to the static airfoil response as a result of time-varying inflow velocities and angles. Three semi-
empirical UA models are available: the original theoretical developments of Beddoes-Leishman (B-L), extensions to
the B-L developed by González, and extensions to the B-L model developed by Minnema/Pierce. While all of the
UA models are documented in this manual, the original B-L model is not yet functional. Testing has shown
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that the González and Minnema/Pierce models produce reasonable hysteresis of the normal force, tangential
force, and pitching-moment coefficients if the UA model parameters are set appropriately for a given airfoil,
Reynolds number, and/or Mach number. However, the results will differ a bit from earlier versions of AeroDyn,
(which was based on the Minnema/Pierce extensions to B-L) even if the default UA model parameters are
used, due to differences in the UA model logic between the versions. We recommend that users run test cases
with uniform wind inflow and fixed yaw error (e.g., through the standalone AeroDyn driver) to examine the
accuracy of the normal force, tangential force, and pitching-moment coefficient hysteresis and to adjust the
UA model parameters appropriately. The airfoil-, Reynolds-, and Mach-dependent parameters of the UA models
may be derived from the static airfoil data. These UA models are valid for small to moderate AoA under normal rotor
operation; the steady model is more appropriate under parked or idling conditions. The static airfoil data is always used
in the BEM iteration; when UA is enabled, it is applied after the BEM iteration and after the skewed-wake correction.
The UA models are not set up to support linearization, so, UA must be disabled during linearization analyses with
AeroDyn coupled to OpenFAST. The interpolation of airfoil data based on Reynolds number or aerodynamic-control
setting (e.g., flaps) is not yet available in AeroDyn v15 and newer.

The influence of the tower on the fluid flow local to the blade is based on a potential-flow and/or a tower-shadow model.
The potential-flow model uses the analytical potential-flow solution for flow around a cylinder to model the tower dam
effect on upwind rotors. In this model, the freestream (undisturbed) flow at each blade node is disturbed based on
the location of the blade node relative to the tower and the tower diameter, including lower velocities upstream and
downstream of the tower, higher velocities to the left and right of the tower, and cross-stream flow. The Bak correction
can optionally be included in the potential-flow model, which augments the tower upstream disturbance and improves
the tower wake for downwind rotors based on the tower drag coefficient. The tower shadow model can also be enabled
to account for the tower wake deficit on downwind rotors. This model includes an axial flow deficit on the freestream
fluid at each blade node dependent on the location of the blade node relative to the tower and the tower diameter
and drag coefficient, based on the work of Powles. Both tower-influence models are quasi-steady models, in that the
disturbance is applied directly to the freestream fluid at the blade nodes without dynamics, and are applied within the
BEM iteration.

The aerodynamic load on the tower is based directly on the tower diameter and drag coefficient and the local relative
fluid velocity between the freestream (undisturbed) flow and structure at each tower analysis node (including the effects
of local shear, turbulence, and structural motion, depending on features enabled). The tower drag load calculation is
quasi-steady and independent from the tower influence on flow models.

The primary AeroDyn input file defines modeling options, environmental conditions (except freestream flow), airfoils,
tower nodal discretization and properties, as well as output file specifications. Airfoil data properties are read from
dedicated inputs files (one for each airfoil) and include coefficients of lift force, drag force, and optional pitching
moment and minimum pressure versus AoA, as well as UA model parameters. (Minimum pressure coefficients versus
AoA are also included in the airfoil input files in case that a cavitation check is requested.) Blade nodal discretization,
geometry, twist, chord, and airfoil identifier are likewise read from separate input files (one for each blade).

Section 6.1.2 describes the AeroDyn input files. Section 6.1.3 discusses the output files generated by AeroDyn; these
include an echo file, summary file, and the results file. Section 6.1.4 provides modeling guidance when using AeroDyn.
Example input files are included in Section 6.1.5. A summary of available output channels are found Section 6.1.5.

6.1.2 Input Files

The user configures the aerodynamic model parameters via a primary AeroDyn input file, as well as separate input
files for airfoil and blade data. When used in standalone mode, an additional driver input file is required. This driver
file specifies initialization inputs normally provided to AeroDyn by OpenFAST, as well as the per-time-step inputs to
AeroDyn.

As an example, the driver.dvr file is the main driver, the input.dat is the primary input file, the blade.
dat file contains the blade geometry data, and the airfoil.dat file contains the airfoil angle of attack, lift, drag,
moment coefficients, and pressure coefficients. Example input files are included in Section 6.1.5.
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No lines should be added or removed from the input files, except in tables where the number of rows is specified and
comment lines in the AeroDyn airfoil data files.

Units

AeroDyn uses the SI system (kg, m, s, N). Angles are assumed to be in radians unless otherwise specified.

AeroDyn Driver Input File

The driver input file is only needed for the standalone version of AeroDyn and contains inputs normally generated by
OpenFAST, and necessary to control the aerodynamic simulation for uncoupled models. A sample AeroDyn driver
input file is given in Section 6.1.5.

Set the Echo flag in this file to TRUE if you wish to have the AeroDyn_Driver executeable echo the contents
of the driver input file (useful for debugging errors in the driver file). The echo file has the naming convention of
OutFileRoot**.ech, where OutFileRoot is specified in the I/O SETTINGS section of the driver input file
below. AD_InputFile is the filename of the primary AeroDyn input file. This name should be in quotations and
can contain an absolute path or a relative path.

The TURBINE DATA section defines the AeroDyn-required turbine geometry for a rigid turbine, see Figure 1.
NumBlades specifies the number of blades; only one-, two-, or three-bladed rotors are permitted. HubRad specifies
the radius to the blade root from the center-of-rotation along the (possibly preconed) blade-pitch axis; HubRad must
be greater than zero. HubHt specifies the elevation of the hub center above the ground (or above the mean sea level
(MSL) for offshore wind turbines or above the seabed for MHK turbines). Overhang specifies the distance along
the (possibly tilted) rotor shaft between the tower centerline and hub center; Overhang is positive downwind, so use
a negative number for upwind rotors. ShftTilt is the angle (in degrees) between the rotor shaft and the horizontal
plane. Positive ShftTilt means that the downwind end of the shaft is the highest; upwind turbines have negative
ShftTilt for improved tower clearance. Precone is the angle (in degrees) between a flat rotor disk and the cone
swept by the blades, positive downwind; upwind turbines have negative Precone for improved tower clearance.

The I/O SETTINGS section controls the creation of the results file. If OutFileRoot is specified, the results file will
have the filename OutFileRoot**.#.out*, where the ‘#’ character is an integer number corresponding to a test
case line found in the COMBINED-CASE ANALYSIS section described below. If an empty string is provided for
OutFileRoot, then the driver file’s root name will be used instead. If TabDel is TRUE, a TAB character is used
between columns in the output file; if FALSE, fixed-width is used otherwise. OutFmt is any valid Fortran numeric
format string, which is used for text output, excluding the time channel. The resulting field should be 10 characters,
but AeroDyn does not check OutFmt for validity. If you want a sound generated on program exit, set Beep to true.

The COMBINED-CASE ANALYSIS section allows you to execute NumCases number of simulations for the given
TURBINE DATA with a single driver input file. There will be one row in the subsequent table for each of the
NumCases specified (plus two table header lines). The information within each row of the table fully specifies each
simulation. Each row contains the following columns: WndSpeed, ShearExp, RotSpd, Pitch, Yaw, dT, and
Tmax. The local undisturbed wind speed for any given blade or tower node is determined using,

𝑈(𝑍) = WndSpeed ×
(︂

𝑍

HubHt

)︂ShearExp

(6.1)

where WndSpeed is the steady wind speed (fluid flow speed in the case of an MHK turbine) located at elevation
HubHt, 𝑍 is the instantaneous elevation of the blade or tower node above the ground (or above the MSL for offshore
wind turbines or above the seabed for MHK turbines), and ShearExp is the power-law shear exponent. The fixed rotor
speed (in rpm) is given by RotSpd (positive clockwise looking downwind), the fixed blade-pitch angle (in degrees)
is given by Pitch (positive to feather, leading edge upwind), and the fixed nacelle-yaw angle (in degrees) is given by
Yaw (positive rotation of the nacelle about the vertical tower axis, counterclockwise when looking downward). While
the flow speed and direction in the AeroDyn driver is uniform and fixed (depending only on elevation above ground),
Yaw and ShftTilt (from the TURBINE DATA section above) can introduce skewed flow. dT is the simulation time
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Fig. 6.1: AeroDyn Driver Turbine Geometry
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step, which must match the time step for the aerodynamic calculations (DTAero) as specified in the primary AeroDyn
input file, and Tmax is the total simulation time.

AeroDyn Primary Input File

The primary AeroDyn input file defines modeling options, environmental conditions (except freestream flow), airfoils,
tower nodal discretization and properties, as well as output file specifications.

The file is organized into several functional sections. Each section corresponds to an aspect of the aerodynamics
model. A sample AeroDyn primary input file is given in Section 6.1.5.

The input file begins with two lines of header information which is for your use, but is not used by the software.

General Options

Set the Echo flag to TRUE if you wish to have AeroDyn echo the contents of the AeroDyn primary, airfoil,
and blade input files (useful for debugging errors in the input files). The echo file has the naming convention of
OutRootFile**.AD.ech*. ``OutRootFile is either specified in the I/O SETTINGS section of the driver
input file when running AeroDyn standalone, or by the OpenFAST program when running a coupled simulation.

DTAero sets the time step for the aerodynamic calculations. For accuracy and numerical stability, we recommend that
DTAero be set such that there are at least 200 azimuth steps per rotor revolution. However, when AeroDyn is coupled
to OpenFAST, OpenFAST may require time steps much smaller than this rule of thumb. If UA is enabled while using
very small time steps, you may need to recompile AeroDyn in double precision to avoid numerical problems in the
UA routines. The keyword DEFAULT for DTAero may be used to indicate that AeroDyn should employ the time step
prescribed by the driver code (FAST or the standalone driver program).

Set WakeMod to 0 if you want to disable rotor wake/induction effects or 1 to include these effects using the BEM
theory model. Set AFAeroMod to 1 to include steady blade airfoil aerodynamics or 2 to enable UA; AFAeroMod
must be 1 during linearization analyses with AeroDyn coupled to OpenFAST. Set TwrPotent to 0 to disable the
potential-flow influence of the tower on the fluid flow local to the blade, 1 to enable the standard potential-flow model,
or 2 to include the Bak correction in the potential-flow model. Set the TwrShadow flag to TRUE to include the
influence of the tower on the flow local to the blade based on the downstream tower shadow model or FALSE to
disable these effects. If the tower influence from potential flow and tower shadow are both enabled, the two influences
will be superimposed. Set the TwrAero flag to TRUE to calculate fluid drag loads on the tower or FALSE to disable
these effects. During linearization analyses with AeroDyn coupled OpenFAST and BEM enabled (WakeMod = 1),
set the FrozenWake flag to TRUE to employ frozen-wake assumptions during linearization (i.e. to fix the axial and
tangential induces velocities, and , at their operating-point values during linearization) or FALSE to recalculate the
induction during linearization using BEM theory. Set the CavitCheck flag to TRUE to perform a cavitation check
for MHK turbines or FALSE to disable this calculation. If CavitCheck is TRUE, AFAeroMod must be set to 1
because the cavitation check does not function with unsteady airfoil aerodynamics.

Environmental Conditions

AirDens specifies the fluid density and must be a value greater than zero; a typical value is around 1.225 kg/m3 for
air (wind turbines) and 1025 kg/m3 for seawater (MHK turbines). KinVisc specifies the kinematic viscosity of the
air (used in the Reynolds number calculation); a typical value is around 1.460E-5 m2/s for air (wind turbines) and
1.004E-6 m2/s for seawater (MHK turbines). SpdSound is the speed of sound in air (used to calculate the Mach
number within the unsteady airfoil aerodynamics calculations); a typical value is around 340.3 m/s. The last three
parameters in this section are only used when CavitCheck = TRUE for MHK turbines. Patm is the atmospheric
pressure above the free surface; typically around 101,325 Pa. Pvap is the vapor pressure of the fluid; for seawater this
is typically around 2,000 Pa. FluidDepth is the distance from the hub center to the free surface.
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Blade-Element/Momentum Theory

The input parameters in this section are only used when WakeMod = 1.

SkewMod determines the skewed-wake correction model. Set SkewMod to 1 to use the uncoupled BEM solution
technique without an additional skewed-wake correction. Set SkewMod to 2 to include the Pitt/Peters correction
model. The coupled model ‘‘SkewMod= 3‘‘ is not available in this version of AeroDyn.

Set TipLoss to TRUE to include the Prandtl tip-loss model or FALSE to disable it. Likewise, set HubLoss to TRUE
to include the Prandtl hub-loss model or FALSE to disable it.

Set TanInd to TRUE to include tangential induction (from the angular momentum balance) in the BEM solution or
FALSE to neglect it. Set AIDrag to TRUE to include drag in the axial-induction calculation or FALSE to neglect
it. If TanInd = TRUE, set TIDrag to TRUE to include drag in the tangential-induction calculation or FALSE to
neglect it. Even when drag is not used in the BEM iteration, drag is still used to calculate the nodal loads once the
induction has been found,

IndToler sets the convergence threshold for the iterative nonlinear solve of the BEM solution. The nonlinear solve
is in terms of the inflow angle, but IndToler represents the tolerance of the nondimensional residual equation, with
no physical association possible. When the keyword DEFAULT is used in place of a numerical value, IndToler
will be set to 5E-5 when AeroDyn is compiled in single precision and to 5E-10 when AeroDyn is compiled in double
precision; we recommend using these defaults. MaxIter determines the maximum number of iterations steps in the
BEM solve. If the residual value of the BEM solve is not less than or equal to IndToler in MaxIter, AeroDyn
will exit the BEM solver and return an error message.

Unsteady Airfoil Aerodynamics Options

The input parameters in this section are only used when AFAeroMod = 2.

UAMod determines the UA model. Setting UAMod to 1 enables original theoretical developments of B-L, 2 enables
the extensions to B-L developed by González, and 3 enables the extensions to B-L developed by Minnema/Pierce.
While all of the UA models are documented in this manual, the original B-L model is not yet functional. Testing
has shown that the González and Minnema/Pierce models produce reasonable hysteresis of the normal force,
tangential force, and pitching-moment coefficients if the UA model parameters are set appropriately for a given
airfoil, Reynolds number, and/or Mach number. However, the results will differ a bit from earlier versions of
AeroDyn, (which was based on the Minnema/Pierce extensions to B-L) even if the default UA model parameters
are used, due to differences in the UA model logic between the versions. We recommend that users run test cases
with uniform inflow and fixed yaw error (e.g., through the standalone AeroDyn driver) to examine the accuracy
of the normal force, tangential force, and pitching-moment coefficient hysteresis and to adjust the UA model
parameters appropriately.

FLookup determines how the nondimensional separation distance value, f ’, will be calculated. When FLookup is
set to TRUE, f ’ is determined via a lookup into the static lift-force coefficient and drag-force coefficient data. Using
best-fit exponential equations (‘‘FLookup = FALSE‘‘) is not yet available, so ‘‘FLookup‘‘ must be ‘‘TRUE‘‘ in
this version of AeroDyn.

Airfoil Information

This section defines the airfoil data input file information. The airfoil data input files themselves (one for each airfoil)
include tables containing coefficients of lift force, drag force, and optionally pitching moment, and minimum pressure
versus AoA, as well as UA model parameters, and are described in Section 6.1.2.

The first 5 lines in the AIRFOIL INFORMATION section relate to the format of the tables of static airfoil coefficients
within each of the airfoil input files. InCol_Alfa, InCol_Cl, InCol_Cd, InCol_Cm, and InCol_Cpmin
are column numbers in the tables containing the AoA, lift-force coefficient, drag-force coefficient, pitching-moment
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coefficient, and minimum pressure coefficient, respectively (normally these are 1, 2, 3, 4, and 5, respectively). If
pitching-moment terms are neglected with UseBlCm = FALSE, InCol_Cm may be set to zero, and if the cavitation
check is disabled with CavitCheck = FALSE, InCol_Cpmin may be set to zero.

Specify the number of airfoil data input files to be used using NumAFfiles, followed by NumAFfiles lines
of filenames. The file names should be in quotations and can contain an absolute path or a relative path e.g.,
“C:\airfoils\S809_CLN_298.dat” or “airfoils\S809_CLN_298.dat”. If you use relative paths, it is relative to the lo-
cation of the current working directory. The blade data input files will reference these airfoil data using their line
identifier, where the first airfoil file is numbered 1 and the last airfoil file is numbered NumAFfiles.

Rotor/Blade Properties

Set UseBlCm to TRUE to include pitching-moment terms in the blade airfoil aerodynamics or FALSE to neglect them;
if UseBlCm = TRUE, pitching-moment coefficient data must be included in the airfoil data tables with InCol_Cm
not equal to zero.

The blade nodal discretization, geometry, twist, chord, and airfoil identifier are set in separate input files for each
blade, described in Section 6.1.2. ADBlFile(1) is the filename for blade 1, ADBlFile(2) is the filename for
blade 2, and ADBlFile(3) is the filename for blade 3, respectively; the latter is not used for two-bladed rotors and
the latter two are not used for one-bladed rotors. The file names should be in quotations and can contain an absolute
path or a relative path. The data in each file need not be identical, which permits modeling of aerodynamic imbalances.

Tower Influence and Aerodynamics

The input parameters in this section pertain to the tower influence and/or tower drag calculations and are only used
when TwrPotent > 0, TwrShadow = TRUE, or TwrAero = TRUE.

NumTwrNds is the user-specified number of tower analysis nodes and determines the number of rows in the subse-
quent table (after two table header lines). NumTwrNds must be greater than or equal to two; the higher the number,
the finer the resolution and longer the computational time; we recommend that NumTwrNds be between 10 and 20 to
balance accuracy with computational expense. For each node, TwrElev specifies the local elevation of the tower node
above ground (or above MSL for offshore wind turbines or above the seabed for MHK turbines), TwrDiam specifies
the local tower diameter, and TwrCd specifies the local tower drag-force coefficient. TwrElev must be entered in
monotonically increasing order—from the lowest (tower-base) to the highest (tower-top) elevation. See Figure 2.

Outputs

Specifying SumPrint to TRUE causes AeroDyn to generate a summary file with name OutFileRoot**.AD.
sum*. ``OutFileRoot is either specified in the I/O SETTINGS section of the driver input file when running
AeroDyn standalone, or by the OpenFAST program when running a coupled simulation. See section 5.2 for summary
file details.

AeroDyn can output aerodynamic and kinematic quantities at up to nine nodes along the tower and up to nine nodes
along each blade. NBlOuts specifies the number of blade nodes that output is requested for (0 to 9) and BlOutNd
on the next line is a list NBlOuts long of node numbers between 1 and NumBlNds (corresponding to a row number
in the blade analysis node table in the blade data input files), separated by any combination of commas, semicolons,
spaces, and/or tabs. All blades have the same output node numbers. NTwOuts specifies the number of tower nodes that
output is requested for (0 to 9) and TwOutNd on the next line is a list NTwOuts long of node numbers between 1 and
NumTwrNds (corresponding to a row number in the tower analysis node table above), separated by any combination
of commas, semicolons, spaces, and/or tabs. The outputs specified in the OutList section determine which quantities
are actually output at these nodes.

The OutList section controls output quantities generated by AeroDyn. Enter one or more lines containing quoted
strings that in turn contain one or more output parameter names. Separate output parameter names by any combination
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Fig. 6.2: AeroDyn Tower Geometry
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of commas, semicolons, spaces, and/or tabs. If you prefix a parameter name with a minus sign, “-”, underscore, “_”,
or the characters “m” or “M”, AeroDyn will multiply the value for that channel by –1 before writing the data. The
parameters are written in the order they are listed in the input file. AeroDyn allows you to use multiple lines so that you
can break your list into meaningful groups and so the lines can be shorter. You may enter comments after the closing
quote on any of the lines. Entering a line with the string “END” at the beginning of the line or at the beginning of a
quoted string found at the beginning of the line will cause AeroDyn to quit scanning for more lines of channel names.
Blade and tower node-related quantities are generated for the requested nodes identified through the BlOutNd and
TwOutNd lists above. If AeroDyn encounters an unknown/invalid channel name, it warns the users but will remove
the suspect channel from the output file. Please refer to Appendix E for a complete list of possible output parameters.

Airfoil Data Input File

The airfoil data input files themselves (one for each airfoil) include tables containing coefficients of lift force, drag
force, and pitching moment versus AoA, as well as UA model parameters. In these files, any line whose first non-blank
character is an exclamation point (!) is ignored (for inserting comment lines). The non-comment lines should appear
within the file in order, but comment lines may be intermixed as desired for reading clarity. A sample airfoil data input
file is given Section 6.1.5.

InterpOrd is the order the static airfoil data is interpolated when AeroDyn uses table look-up to find the lift-, drag-,
and optional pitching-moment, and minimum pressure coefficients as a function of AoA. When InterpOrd is 1,
linear interpolation is used; when InterpOrd is 3, the data will be interpolated with cubic splines; if the keyword
DEFAULT is entered in place of a numerical value, InterpOrd is set to 3.

NonDimArea is the nondimensional airfoil area (normalized by the local BlChord squared), but is currently unused
by AeroDyn. NumCoords is the number of points to define the exterior shape of the airfoil, plus one point to define
the aerodynamic center, and determines the number of rows in the subsequent table; NumCoords must be exactly
zero or greater than or equal to three. For each point, the nondimensional X and Y coordinates are specified in the table,
X_Coord and Y_Coord (normalized by the local BlChord). The first point must always locate the aerodynamic
center (reference point for the airfoil lift and drag forces, likely not on the surface of the airfoil); the remaining points
should define the exterior shape of the airfoil. The airfoil shape is currently unused by AeroDyn, but when AeroDyn
is coupled to OpenFAST, the airfoil shape will be used by OpenFAST for blade surface visualization when enabled.

Specify the number of Reynolds number- or aerodynamic-control setting-dependent tables of data for the given airfoil
via the NumTabs setting. Currently, AeroDyn can only use the first table in any given airfoil file, so you should
set ‘‘NumTabs = 1‘‘ and you will need to make separate airfoil data input files and run separate simulations
if you need to analyze data for different Reynolds numbers or aerodynamic-control settings. The remaining
parameters in the airfoil data input files are entered separately for each table.

Re and Ctrl are the Reynolds number (in millions) and aerodynamic-control setting for the included table, but are
both currently unused by AeroDyn.

Set InclUAdata to TRUE if you are including the 32 UA model parameters (required when AFAeroMod = 2 in
the AeroDyn primary input file):

• alpha0 specifies the zero-lift AoA (in degrees);

• alpha1 specifies the AoA (in degrees) larger than alpha0 for which f equals 0.7; approximately the positive
stall angle;

• alpha2 specifies the AoA (in degrees) less than alpha0 for which f equals 0.7; approximately the negative
stall angle;

• eta_e is the recovery factor and typically has a value in the range [0.85 to 0.95] for UAMod = 1; if the
keyword DEFAULT is entered in place of a numerical value, eta_e is set to 0.9 for UAMod = 1, but eta_e
is set to 1.0 for other UAMod values and whenever FLookup = TRUE;

• C_nalpha is the slope of the 2D normal force coefficient curve in the linear region;
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• T_f0 is the initial value of the time constant associated with Df in the expressions of Df and f ’; if the keyword
DEFAULT is entered in place of a numerical value, T_f0 is set to 3.0;

• T_V0 is the initial value of the time constant associated with the vortex lift decay process, used in the expression
of Cvn; it depends on Reynolds number, Mach number, and airfoil; if the keyword DEFAULT is entered in place
of a numerical value, T_V0 is set to 6.0;

• T_p is the boundary-layer leading edge pressure gradient time constant in the expression for Dp and should be
tuned based on airfoil experimental data; if the keyword DEFAULT is entered in place of a numerical value, T_p
is set to 1.7;

• T_VL is the time constant associated with the vortex advection process, representing the nondimensional time
in semi-chords needed for a vortex to travel from the leading to trailing edges, and used in the expression of
Cvn; it depends on Reynolds number, Mach number (weakly), and airfoil; valued values are in the range [6 to
13]; if the keyword DEFAULT is entered in place of a numerical value, T_VL is set to 11.0;

• b1 is a constant in the expression of 𝜑𝑐
𝛼 and 𝜑𝑐

𝑞; this value is relatively insensitive for thin airfoils, but may be
different for turbine airfoils; if the keyword DEFAULT is entered in place of a numerical value, b1 is set to 0.14,
based on experimental results;

• b2 is a constant in the expression of 𝜑𝑐
𝛼 and 𝜑𝑐

𝑞; this value is relatively insensitive for thin airfoils, but may be
different for turbine airfoils; if the keyword DEFAULT is entered in place of a numerical value, b2 is set to 0.53,
based on experimental results;

• b5 is a constant in the expression of 𝐾
′′′

𝑞 , 𝐶𝑚𝑛𝑐
𝑞 , and 𝐾𝑚𝑞

; if the keyword DEFAULT is entered in place of a
numerical value, b5 is set to 5, based on experimental results;

• A1 is a constant in the expression 𝜑𝑐
𝛼 and 𝜑𝑐

𝑞; this value is relatively insensitive for thin airfoils, but may be
different for turbine airfoils; if the keyword DEFAULT is entered in place of a numerical value, A1 is set to 0.3,
based on experimental results;

• A2 is a constant in the expression 𝜑𝑐
𝛼 and 𝜑𝑐

𝑞; this value is relatively insensitive for thin airfoils, but may be
different for turbine airfoils; if the keyword DEFAULT is entered in place of a numerical value, A2 is set to 0.7,
based on experimental results;

• A5 is a constant in the expression 𝐾
′′′

𝑞 , 𝐶𝑚𝑛𝑐
𝑞 , and 𝐾𝑚𝑞

; if the keyword DEFAULT is entered in place of a
numerical value, A5 is set to 1, based on experimental results;

• S1 is the constant in the best fit curve of f for alpha0 ≤ AoA ≤ alpha1 for UAMod = 1 (and is unused
otherwise); by definition, it depends on the airfoil;

• S2 is the constant in the best fit curve of f for AoA > alpha1 for UAMod = 1 (and is unused otherwise); by
definition, it depends on the airfoil;

• S3 is the constant in the best fit curve of f for alpha2 ≤ AoA ≤ alpha0 for UAMod = 1 (and is unused
otherwise); by definition, it depends on the airfoil;

• S4 is the constant in the best fit curve of f for AoA < alpha2 for UAMod = 1 (and is unused otherwise); by
definition, it depends on the airfoil;

• Cn1 is the critical value of 𝐶 ′
𝑛 at leading-edge separation for positive AoA and should be extracted from airfoil

data at a given Reynolds number and Mach number; Cn1 can be calculated from the static value of Cn at either
the break in the pitching moment or the loss of chord force at the onset of stall; Cn1 is close to the condition of
maximum lift of the airfoil at low Mach numbers;

• Cn2 is the critical value of 𝐶 ′
𝑛 at leading-edge separation for negative AoA and should be extracted from airfoil

data at a given Reynolds number and Mach number; Cn2 can be calculated from the static value of Cn at either
the break in the pitching moment or the loss of chord force at the onset of stall; Cn2 is close to the condition of
maximum lift of the airfoil at low Mach numbers;

• St_sh is the Strouhal’s shedding frequency; if the keyword DEFAULT is entered in place of a numerical value,
St_sh is set to 0.19;
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• Cd0 is the drag-force coefficient at zero-lift AoA;

• Cm0 is the pitching-moment coefficient about the quarter-chord location at zero-lift AoA, positive for nose up;

• k0 is a constant in the best fit curve of �̂�𝑐𝑝 and equals for �̂�𝐴𝐶 − 0.25 UAMod = 1 (and is unused otherwise);

• k1 is a constant in the best fit curve of �̂�𝑐𝑝 for UAMod = 1 (and is unused otherwise);

• k2 is a constant in the best fit curve of �̂�𝑐𝑝 for UAMod = 1 (and is unused otherwise);

• k3 is a constant in the best fit curve of �̂�𝑐𝑝 for UAMod = 1 (and is unused otherwise);

• k1_hat is a constant in the expression of Cc due to leading-edge vortex effects for UAMod = 1 (and is unused
otherwise);

• x_cp_bar is a constant in the expression of �̂�𝜈
𝑐𝑝 for UAMod = 1 (and is unused otherwise); if the keyword

DEFAULT is entered in place of a numerical value, x_cp_bar is set to 0.2; and

• UACutOut is the AoA (in degrees) in absolute value above which UA are disabled; if the keyword DEFAULT
is entered in place of a numerical value, UACutOut is set to 45.

• filtCutOff is the cut-off frequency (-3 dB corner frequency) (in Hz) of the low-pass filter applied to the AoA
input to UA, as well as to the pitch rate and pitch acceleration derived from AoA within UA; if the keyword
DEFAULT is entered in place of a numerical value, filtCutOff is set to 20.

NumAlf is the number of distinct AoA entries and determines the number of rows in the subsequent table of static
airfoil coefficients; NumAlfmust be greater than or equal to one (NumAlf = 1 implies constant coefficients, regard-
less of the AoA). AeroDyn will interpolate the data provided via linear interpolation or via cubic splines, depending
on the setting of input InterpOrd above. For each AoA, you must set the AoA (in degrees), alpha, the lift-force
coefficient, Coefs(:,1), the drag-force coefficient, Coefs(:,2), and optionally the pitching-moment coefficient,
Coefs(:,3), and minimum pressure coefficient, Coefs(:,4), but the column order depends on the settings of
InCol_Alfa, InCol_Cl, InCol_Cd, InCol_Cm, and InCol_Cpmin in the AIRFOIL INFORMATION sec-
tion of the AeroDyn primary input file. AoA must be entered in monotonically increasing order—from lowest to
highest AoA—and the first row should be for AoA = –180 and the last should be for AoA = +180 (unless NumAlf
= 1, in which case AoA is unused). If pitching-moment terms are neglected with UseBlCm = FALSE in the
ROTOR/BLADE PROPERTIES section of the AeroDyn primary input file, the column containing pitching-moment
coefficients may be absent from the file. Likewise, if the cavitation check is neglected with CavitCheck = FALSE
in the GENERAL OPTIONS section of the AeroDyn primary input file, the column containing the minimum pressure
coefficients may be absent from the file.

Blade Data Input File

The blade data input file contains the nodal discretization, geometry, twist, chord, and airfoil identifier for a blade.
Separate files are used for each blade, which permits modeling of aerodynamic imbalances. A sample blade data input
file is given in Section 6.1.5.

The input file begins with two lines of header information which is for your use, but is not used by the software.

NumBlNds is the user-specified number of blade analysis nodes and determines the number of rows in the subsequent
table (after two table header lines). NumBlNds must be greater than or equal to two; the higher the number, the finer
the resolution and longer the computational time; we recommend that NumBlNds be between 10 and 20 to balance
accuracy with computational expense. Even though NumBlNds is defined in each blade file, all blades must have the
same number of nodes. For each node:

• BlSpn specifies the local span of the blade node along the (possibly preconed) blade-pitch axis from the root;
BlSpn must be entered in monotonically increasing order—from the most inboard to the most outboard—and
the first node must be zero, and when AeroDyn is coupled to OpenFAST, the last node should be located at the
blade tip;
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• BlCrvAC specifies the local out-of-plane offset (when the blade-pitch angle is zero) of the aerodynamic center
(reference point for the airfoil lift and drag forces), normal to the blade-pitch axis, as a result of blade curvature;
BlCrvAC is positive downwind; upwind turbines have negative BlCrvAC for improved tower clearance;

• BlSwpAC specifies the local in-plane offset (when the blade-pitch angle is zero) of the aerodynamic center
(reference point for the airfoil lift and drag forces), normal to the blade-pitch axis, as a result of blade sweep;
positive BlSwpAC is opposite the direction of rotation;

• BlCrvAng specifies the local angle (in degrees) from the blade-pitch axis of a vector normal to the plane of the
airfoil, as a result of blade out-of-plane curvature (when the blade-pitch angle is zero); BlCrvAng is positive
downwind; upwind turbines have negative BlCrvAng for improved tower clearance;

• BlTwist specifies the local aerodynamic twist angle (in degrees) of the airfoil; it is the orientation of the local
chord about the vector normal to the plane of the airfoil, positive to feather, leading edge upwind; the blade-pitch
angle will be added to the local twist;

• BlChord specifies the local chord length; and

• BlAFID specifies which airfoil data the local blade node is associated with; valid values are numbers between
1 and NumAFfiles (corresponding to a row number in the airfoil file table in the AeroDyn primary input file);
multiple blade nodes can use the same airfoil data.

See Fig. 6.3. Twist is shown in Fig. 6.16 of Section 6.1.5.

Fig. 6.3: AeroDyn Blade Geometry – Left: Side View; Right: Front View (Looking Downwind)

6.1.3 Output Files

AeroDyn produces three types of output files: an echo file, a summary file, and a time-series results file. The following
sections detail the purpose and contents of these files.
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Echo Files

If you set the Echo flag to TRUE in the AeroDyn driver file or the AeroDyn primary input file, the contents of
those files will be echoed to a file with the naming conventions, OutFileRoot**.ech for the driver input file
and OutFileRoot**.AD.ech for the AeroDyn primary input file. OutFileRoot is either specified in the I/O
SETTINGS section of the driver input file when running AeroDyn standalone, or by the FAST program when running
a coupled simulation. The echo files are helpful for debugging your input files. The contents of an echo file will be
truncated if AeroDyn encounters an error while parsing an input file. The error usually corresponds to the line after
the last successfully echoed line.

Summary File

AeroDyn generates a summary file with the naming convention, OutFileRoot**.AD.sum if the SumPrint
parameter is set to TRUE. OutFileRoot is either specified in the I/O SETTINGS section of the driver input file
when running AeroDyn standalone, or by the FAST program when running a coupled simulation. This file summarizes
key information about your aerodynamics model, including which features have been enabled and what outputs have
been selected.

Results Files

In standalone mode, the AeroDyn time-series results (a separate file for each case) are written to text-based files
with the naming convention OutFileRoot**.#.out, where OutFileRoot is specified in the I/O SETTINGS
section of the driver input file and the ‘#’ character is an integer number corresponding to a test case line found in the
COMBINED-CASE ANALYSIS section. If AeroDyn is coupled to FAST, then FAST will generate a master results
file that includes the AeroDyn results and AeroDyn will not write out its own results. The results are in table format,
where each column is a data channel (the first column always being the simulation time), and each row corresponds to
a simulation output time step. The data channels are specified in the OUTPUTS section of the AeroDyn primary input
file. The column format of the AeroDyn-generated files is specified using the OutFmt parameter of the driver input
file.

6.1.4 Modeling Considerations

AeroDyn was designed as an extremely flexible tool for modeling a wide-range of aerodynamic conditions and turbine
configurations. This section provides some general guidance to help you construct models that are compatible with
AeroDyn.

Please refer to the theory of Section 7 for detailed information about the implementation approach we have followed
in AeroDyn.

Standalone AeroDyn Driver

The standalone AeroDyn driver code is very useful for computing turbine aerodynamics independent of aero-elastic
coupling. The standalone AeroDyn driver code essentially replaces the functionality previously available in the sep-
arate wind turbine rotor-performance tool WT_Perf. For example, the standalone AeroDyn driver code can be used
to compute the surfaces of power coefficient (CP), thrust coefficient (CT), and/or torque coefficient (CQ) as a function
of tip-speed ratio (TSR) and blade-pitch angle for a given rotor. Moreover, the standalone AeroDyn driver code is
more powerful than WT_Perf in that the standalone AeroDyn driver can capture time-varying dynamics as a result of
nacelle-yaw error, shaft tilt, and/or wind shear.

40 Chapter 6. User Documentation



OpenFAST Documentation, Release 1.0

Environmental Conditions

For air, typical values for AirDens, KinVisc, SpdSound, and Patm are around 1.225 kg/m3, 1.460E-5 m2/s,
340.3 m/s, and 101,325 Pa, respectively. For seawater, typical values for AirDens, KinVisc, and Pvap are around
1025 kg/m3, 1.004E-6 m2/s, and 2000 Pa, respectively.

Temporal and Spatial Discretization

For accuracy and numerical stability, we recommend that DTAero be set such that there are at least 200 azimuth steps
per rotor revolution. However, when AeroDyn is coupled to FAST, FAST may require time steps much smaller than
this rule of thumb. If UA is enabled while using very small time steps, you may need to recompile AeroDyn in double
precision to avoid numerical problems in the UA routines.

For the blade and tower spatial discretization, using higher number of analysis nodes will result in a more accurate
solution at the expense of longer computational time. When AeroDyn is coupled to FAST, the blade and tower analysis
node discretization may be independent from the discretization of the nodes in the structural modules.

We recommend that NumBlNds be between 10 and 20 to balance accuracy with computational expense for the rotor
aerodynamic load calculation. It may be beneficial to use a finer resolution of nodes where large gradients are expected
in the aerodynamic loads e.g. near the blade tip. Aerodynamic imbalances are possible through the use of geometrical
differences between each blade.

When the tower potential-flow (TwrPotent > 0), tower shadow (TwrShadow = TRUE), and/or the tower aerody-
namic load (TwrAero = TRUE) models are enabled, we also recommend that NumTwrNds be between 10 and 20 to
balance accuracy with computational expense. Normally the local elevation of the tower node above ground (or above
MSL for offshore wind turbines or above the seabed for MHK turbines) (TwrElev), must be entered in monotoni-
cally increasing order from the lowest (tower-base) to the highest (tower-top) elevation. However, when AeroDyn is
coupled to FAST, the tower-base node in AeroDyn cannot be set lower than the lowest point where wind is specified in
the InflowWind module. To avoid truncating the lower section of the tower in AeroDyn, we recommend that the wind
be specified in InflowWind as low to the ground (or MSL for offshore wind turbines or above the seabed for MHK
turbines) as possible (this is a particular issue for full-field wind file formats).

Model Options Under Operational and Parked/Idling Conditions

To model an operational rotor, we recommend to include induction (WakeMod = 1) and UA (AFAeroMod = 2).
Normally, the Pitt and Peters skewed-wake (SkewMod = 2), Prandtl tip-loss (TipLoss = TRUE), Prandtl hub-loss
(HubLoss = TRUE), and tangential induction (TanInd = TRUE) models should all be enabled, but SkewMod =
2 is invalid for very large yaw errors (much greater than 45 degrees). The nonlinear solve in the BEM solution is in
terms of the inflow angle, but IndToler represents the tolerance of the nondimensional residual equation, with no
physical association possible; we recommend setting IndToler to DEFAULT.

While all of the UA models are documented in this manual, the original B-L model is not yet functional. Testing has
shown that the González and Minnema/Pierce models produce reasonable hysteresis of the normal force, tangential
force, and pitching-moment coefficients if the UA model parameters are set appropriately for a given airfoil, Reynold’s
number, and/or Mach number. However, the results will differ a bit from earlier versions of AeroDyn, (which was
based on the Minnema/Pierce extensions to B-L) even if the default UA model parameters are used, due to differences
in the UA model logic between the versions. We recommend that users run test cases with uniform inflow and fixed
yaw error (e.g., through the standalone AeroDyn driver) to examine the accuracy of the normal force, tangential force,
and pitching-moment coefficient hysteresis and to adjust the UA model parameters appropriately.

To model a parked or idling rotor, we recommend to disable induction (WakeMod = 0) and UA (AFAeroMod =
1), in which case the inflow velocity and angle are determined purely geometrically and the airfoil data is determined
statically.
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The direct aerodynamic load on the tower often dominates the aerodynamic load on the rotor for parked or idling con-
ditions above the cut-out wind speed, in which case we recommend that TwrAero = TRUE. Otherwise, TwrAero
= FALSE may be satisfactory.

We recommend to include the influence of the tower on the fluid local to the blade for both operational and
parked/idling rotors. We recommend that TwrPotent > 0 for upwind rotors and that TwrPotent = 2 or
TwrShadow = TRUE for downwind rotors.

Linearization

When coupled to FAST, AeroDyn can be linearized as part of the linearization of the full coupled solution. When
induction is enabled (WakeMod = 1), we recommend to base the linearized solution on the frozen-wake assumption,
by setting FrozenWake = TRUE. The UA models are not set up to support linearization, so, UA must be disabled
during linearization by setting AFAeroMod = 1.

6.1.5 Appendix

AeroDyn Input Files

In this appendix we describe the AeroDyn input-file structure and provide examples.

1) AeroDyn Driver Input File (driver input file example):

The driver input file is only needed for the standalone version of AeroDyn and contains inputs normally generated by
OpenFAST, and necessary to control the aerodynamic simulation for uncoupled models.

2) AeroDyn Primary Input File (primary input file example):

The primary AeroDyn input file defines modeling options, environmental conditions (except freestream flow), airfoils,
tower nodal discretization and properties, as well as output file specifications.

The file is organized into several functional sections. Each section corresponds to an aspect of the aerodynamics
model.

The input file begins with two lines of header information which is for your use, but is not used by the software.

3) Airfoil Data Input File (airfoil data input file example):

The airfoil data input files themselves (one for each airfoil) include tables containing coefficients of lift force, drag
force, and pitching moment versus AoA, as well as UA model parameters. In these files, any line whose first non-blank
character is an exclamation point (!) is ignored (for inserting comment lines). The non-comment lines should appear
within the file in order, but comment lines may be intermixed as desired for reading clarity.

4) Balde Data Input File (blade data input file example):

The blade data input file contains the nodal discretization, geometry, twist, chord, and airfoil identifier for a blade.
Separate files are used for each blade, which permits modeling of aerodynamic imbalances.

AeroDyn List of Output Channels

This is a list of all possible output parameters for the AeroDyn module. The names are grouped by meaning, but can
be ordered in the OUTPUTS section of the AeroDyn input file as you see fit. B𝛼N𝛽, refers to output node 𝛽 of blade 𝛼,
where 𝛼 is a number in the range [1,3] and 𝛽 is a number in the range [1,9], corresponding to entry 𝛽 in the BlOutNd
list. TwN𝛽 refers to output node 𝛽 of the tower and is in the range [1,9], corresponding to entry 𝛽 in the TwOutNd
list.

The local tower coordinate system is shown in Fig. 6.2 and the local blade coordinate system is shown in Fig. 6.16
below. Figure Fig. 6.16 also shows the direction of the local angles and force components.
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Fig. 6.4: AeroDyn Local Blade Coordinate System (Looking Toward the Tip, from the Root) – l: Lift, d: Drag, m:
Pitching, x: Normal (to Plane), y: Tangential (to Plane), n: Normal (to Chord), and t: Tangential (to Chord)

6.2 BeamDyn User Guide and Theory Manual

6.2.1 Introduction

BeamDyn is a time-domain structural-dynamics module for slender structures created by the National Renewable En-
ergy Laboratory (NREL) through support from the U.S. Department of Energy Wind and Water Power Program and the
NREL Laboratory Directed Research and Development (LDRD) program through the grant “High-Fidelity Compu-
tational Modeling of Wind-Turbine Structural Dynamics”, see References [WS13][WYS13][WSJJ14][WJSJ15]. The
module has been coupled into the FAST aero-hydro-servo-elastic wind turbine multi-physics engineering tool where it
used to model blade structural dynamics. The BeamDyn module follows the requirements of the FAST modularization
framework, see References [Jon13]; [GSJ13][SJJ14][JJ13], couples to FAST version 8, and provides new capabili-
ties for modeling initially curved and twisted composite wind turbine blades undergoing large deformation. BeamDyn
can also be driven as a stand-alone code to compute the static and dynamic responses of slender structures (blades or
otherwise) under prescribed boundary and applied loading conditions uncoupled from FAST.

The model underlying BeamDyn is the geometrically exact beam theory (GEBT) [Hod06]. GEBT supports full
geometric nonlinearity and large deflection, with bending, torsion, shear, and extensional degree-of-freedom (DOFs);
anisotropic composite material couplings (using full 6×6 mass and stiffness matrices, including bend-twist coupling);
and a reference axis that permits blades that are not straight (supporting built-in curve, sweep, and sectional offsets).
The GEBT beam equations are discretized in space with Legendre spectral finite elements (LSFEs). LFSEs are p-
type elements that combine the accuracy of global spectral methods with the geometric modeling flexibility of the
h-type finite elements (FEs) [Pat84]. For smooth solutions, LSFEs have exponential convergence rates compared
to low-order elements that have algebraic convergence [SG03][WS13] . Two spatial numerical integration schemes
are implemented for the finite element inner products: reduced Gauss quadrature and trapezoidal-rule integration.
Trapezoidal-rule integration is appropriate when a large number of sectional properties are specified along the beam
axis, for example, in a long wind turbine blade with material properties that vary dramatically over the length. Time
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Channel Name(s) Units Description 

Tower 
TwNβVUndx, TwNβVUndy, 
TwNβVUndz 

(m/s), (m/s), (m/s) Undisturbed wind velocity at TwNβ 
in the local tower coordinate system 

TwNβSTVx, TwNβSTVy, 
TwNβSTVz 

(m/s), (m/s), (m/s) Structural translational velocity at 
TwNβ in the local tower coordinate 
system 

TwNβVrel (m/s) Relative wind speed at TwNβ 
TwNβDynP (Pa) Dynamic pressure at TwNβ 
TwNβRe (-) Reynolds number (in millions) at 

TwNβ 
TwNβM (-) Mach number at TwNβ 
TwNβFdx, TwNβFdy (N/m), (N/m) Drag force per unit length at TwNβ 

in the local tower coordinate system 
Blade 
BαAzimuth (deg) Azimuth angle of Bα 
BαPitch (deg) Pitch angle of Bα 
BαNβClrnc1 (m) Tower clearance at BαNβ1 
BαNβVUndx, BαNβVUndy, 
BαNβVUndz 

(m/s), (m/s), (m/s) Undisturbed wind velocity at BαNβ 
in the local blade coordinate system 

BαNβVDisx, BαNβVDisy, 
BαNβVDisz 

(m/s), (m/s), (m/s) Disturbed wind velocity at BαNβ in 
the local blade coordinate system 

BαNβSTVx, BαNβSTVy, 
BαNβSTVz 

(m/s), (m/s), (m/s) Structural translational velocity at 
BαNβ in the local blade coordinate 
system 

BαNβVrel (m/s) Relative wind speed at BαNβ 
BαNβDynP (Pa) Dynamic pressure at BαNβ 
BαNβRe (-) Reynolds number (in millions) at 

BαNβ 
BαNβM (-) Mach number at BαNβ 
BαNβVIndx, BαNβVIndy (m/s), (m/s) Axial and tangential induced wind 

velocity at BαNβ 
BαNβAxInd, BαNβTnInd (-), (-) Axial and tangential induction 

factors at BαNβ 
BαNβAlpha, BαNβTheta, 
BαNβPhi, BαNβCurve 

(deg), (deg), (deg), 
(deg) 

AoA, pitch+twist angle, inflow 
angle, and curvature angle at BαNβ 

BαNβCl, BαNβCd, BαNβCm, 
BαNβCpmin 
BαNβCx, BαNβCy2, BαNβCn, 
BαNβCt 

(-), (-), (-), (-) 
(-), (-), (-), (-) 

Lift force, drag force, pitching 
moment, minimum pressure, 
normal force (to plane), tangential 
force (to plane)2, normal force (to 

                                                
1 BαNβClrnc is based on the absolute distance to the nearest point in the tower from BαNβ minus the local tower 
radius, in the deflected configuration.  Please note that this clearance is only approximate because the calculation 
assumes that the blade is a line with no volume (however, the calculation does use the local tower radius).  When 
BαNβ is above the tower top (or below the tower base), the absolute distance to the tower top (or base) minus the 
local tower radius, in the deflected configuration, is output. 

Fig. 6.5: AeroDyn Output Channel List

44 Chapter 6. User Documentation



OpenFAST Documentation, Release 1.0

integration of the BeamDyn equations of motion is achieved through the implicit generalized- 𝛼 solver, with user-
specified numerical damping. The combined GEBT-LSFE approach permits users to model a long, flexible, composite
wind turbine blade with a single high-order element. Given the theoretical foundation and powerful numerical tools
introduced above, BeamDyn can solve the complicated nonlinear composite beam problem in an efficient manner. For
example, it was recently shown that a grid-independent dynamic solution of a 50-m composite wind turbine blade and
with dozens of cross-section stations could be achieved with a single 7𝑡ℎ-order LSFE [WSJJ16].

When coupled with FAST, loads and responses are transferred between BeamDyn, ElastoDyn, ServoDyn, and Aero-
Dyn via the FAST driver program (glue code) to enable aero-elasto-servo interaction at each coupling time step. There
is a separate instance of BeamDyn for each blade. At the root node, the inputs to BeamDyn are the six displacements
(three translations and three rotations), six velocities, and six accelerations; the root node outputs from BeamDyn are
the six reaction loads (three translational forces and three moments). BeamDyn also outputs the blade displacements,
velocities, and accelerations along the beam length, which are used by AeroDyn to calculate the local aerodynamic
loads (distributed along the length) that are used as inputs for BeamDyn. In addition, BeamDyn can calculate member
internal reaction loads, as requested by the user. Please refers to Figure [fig:FlowChart] for the coupled interactions
between BeamDyn and other modules in FAST. When coupled to FAST, BeamDyn replaces the more simplified blade
structural model of ElastoDyn that is still available as an option, but is only applicable to straight isotropic blades
dominated by bending. When uncoupled from FAST, the root motion (boundary condition) and applied loads are
specified via a stand-alone BeamDyn driver code.

Fig. 6.6: Coupled interaction between BeamDyn and FAST

The BeamDyn input file defines the blade geometry; cross-sectional material mass, stiffness, and damping properties;
FE resolution; and other simulation- and output-control parameters. The blade geometry is defined through a curvilin-
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ear blade reference axis by a series of key points in three-dimensional (3D) space along with the initial twist angles at
these points. Each member contains at least three key points for the cubic spline fit implemented in BeamDyn; each
member is discretized with a single LSFE with a parameter defining the order of the element. Note that the number
of key points defining the member and the order (𝑁 ) of the LSFE are independent. LSFE nodes, which are located
at the 𝑁 + 1 Gauss-Legendre-Lobatto points, are not evenly spaced along the element; node locations are generated
by the module based on the mesh information. Blade properties are specified in a non-dimensional coordinate ranging
from 0.0 to 1.0 along the blade reference axis and are linearly interpolated between two stations if needed by the
spatial integration method. The BeamDyn applied loads can be either distributed loads specified at quadrature points,
concentrated loads specified at FE nodes, or a combination of the two. When BeamDyn is coupled to FAST, the blade
analysis node discretization may be independent between BeamDyn and AeroDyn.

This document is organized as follows. Section Running BeamDyn details how to obtain the BeamDyn and FAST
software archives and run either the stand-alone version of BeamDyn or BeamDyn coupled to FAST. Section Input
Files describes the BeamDyn input files. Section Output Files discusses the output files generated by BeamDyn. Sec-
tion BeamDyn Theory summarizes the BeamDyn theory. Section Future Work outlines potential future work. Example
input files are shown in Appendix Section 6.2.7. A summary of available output channels is found in Appendix Beam-
Dyn List of Output Channels.

6.2.2 Running BeamDyn

This section discusses how to obtain and execute BeamDyn from a personal computer. Both the stand-alone version
and the FAST-coupled version of the software are considered.

Downloading the BeamDyn Software

There are two forms of the BeamDyn software to choose from: stand-alone and coupled to the FAST simulator.
Although the user may not necessarily need both forms, he/she would likely need to be familiar with and run the
stand-alone model if building a model of the blade from scratch. The stand-alone version is also helpful for model
troubleshooting, even if the goal is to conduct aero-hydro-servo-elastic simulations of onshore/offshore wind turbines
within FAST.

Stand-Alone BeamDyn Archive

Users can download the stand-alone BeamDyn archive from our Web server at https://nwtc.nrel.gov/BeamDyn. The
file has a name similar to BD_v1.00.00a.exe, but may have a different version number. The user can then
download the self-extracting archive (.exe) to expand the archive into a folder he/she specifies.

The archive contains the bin, CertTest, Compiling, Docs, and Source folders. The bin folder includes
the main executable file, BeamDyn_Driver.exe, which is used to execute the stand-alone BeamDyn program.
The CertTest folder contains a collection of sample BeamDyn input files and driver input files that can be used
as templates for the user’s own models. This document may be found in the Docs folder. The Compling folder
contains files for compiling the stand-alone BeamDyn_v1.00.00.exe file with either Visual Studio or gFortran.
The Fortran source code is located in the Source folder.

FAST Archive

Download the FAST archive, which includes BeamDyn, from our Web server at https://nwtc.nrel.gov/FAST8. The
file has a name similar to FAST_v8.12.00.exe, but may have a different version number. Run the downloaded
self-extracting archive (.exe) to expand the archive into a user-specified folder. The FAST executable file is located
in the archive’s bin folder. An example model using the NREL 5-MW reference turbine is located in the CertTest
folder.
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Running BeamDyn

Running the Stand-Alone BeamDyn Program

The stand-alone BeamDyn program, BeamDyn_Driver.exe, simulates static and dynamic responses of the user’s
input model, without coupling to FAST. Unlike the coupled version, the stand-alone software requires the use of a
driver file in addition to the primary and blade BeamDyn input files. This driver file specifies inputs normally provided
to BeamDyn by FAST, including motions of the blade root and externally applied loads. Both the BeamDyn summary
file and the results output file are available when using the stand-alone BeamDyn (see Section Output Files for more
information regarding the BeamDyn output files).

Run the stand-alone BeamDyn software from a DOS command prompt by typing, for example:

>BeamDyn_Driver.exe Dvr_5MW_Dynamic.inp

where, Dvr_5MW_Dynamic.inp is the name of the BeamDyn driver input file, as described in Section BeamDyn
Driver Input File.

Running BeamDyn Coupled to FAST

Run the coupled FAST software from a DOS command prompt by typing, for example:

>FAST_Win32.exe Test26.fst

where Test26.fst is the name of the primary FAST input file. This input file has a feature switch to enable or
disable the BeamDyn capabilities within FAST, and a corresponding reference to the BeamDyn input file. See the
documentation supplied with FAST for further information.

6.2.3 Input Files

Users specify the blade model parameters; including its geometry, cross-sectional properties, and FE and output control
parameters; via a primary BeamDyn input file and a blade property input file. When used in stand-alone mode, an
additional driver input file is required. This driver file specifies inputs normally provided to BeamDyn by FAST,
including simulation range, root motions, and externally applied loads.

No lines should be added or removed from the input files, except in tables where the number of rows is specified.

Units

BeamDyn uses the SI system (kg, m, s, N). Angles are assumed to be in radians unless otherwise specified.

BeamDyn Driver Input File

The driver input file is only needed for the stand-alone version of BeamDyn and contains inputs that are normally set
by FAST, and that are necessary to control the simulation for uncoupled models.

The driver input file begins with two lines of header information, which is for the user but is not used by the software.
If BeamDyn is run in the stand-alone mode, the results output file will be prefixed with the same name of this driver
input file.

A sample BeamDyn driver input file is given in Section 6.2.7.
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Simulation Control Parameters

𝑡initial and 𝑡final specify the starting time of the simulation and ending time of the simulation, respectively. 𝑑𝑡 specifies
the time step size.

Gravity Parameters

Gx , Gy , and Gz specify the components of gravity vector along 𝑋 , 𝑌 , and 𝑍 directions in the global coordinate
system, respectively. In FAST, this is normally 0, 0, and -9.80665.

Inertial Frame Parameters

This section defines the relation between two inertial frames, the global coordinate system and initial blade reference
coordinate system. GlbPos(1), GlbPos(2), GlbPos(3) specifies three components of the initial global position
vector along 𝑋 , 𝑌 , and 𝑍 directions resolved in the global coordinate system, see Figure Fig. 6.7. And the following
3 × 3 direction cosine matrix (GlbDCM) relates the rotations from the global coordinate system to the initial blade
reference coordinate system.

source/user/beamdyn/figs/Frame.jpg

Fig. 6.7: Global and blade coordinate systems in BeamDyn.
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Blade Floating Reference Frame Parameters

This section specifies the parameters that defines the blade floating reference frame, which is a body-attached floating
frame; the blade root is cantilevered at the origin of this frame. Based on the driver input file, the floating blade
reference fame is assumed to be in a constant rigid-body rotation mode about the origin of the global coordinate
system, that is,

𝑣𝑟𝑡 = 𝜔𝑟 × 𝑟𝑡 (6.2)

where 𝑣𝑟𝑡 is the root (origin of the floating blade reference frame) translational velocity vector; 𝜔𝑟 is the constant root
(origin of the floating blade reference frame) angular velocity vector; and 𝑟𝑡 is the global position vector introduced in
the previous section at instant 𝑡, see Fig. 6.7. The floating blade reference frame coincides with the initial floating blade
reference frame at the beginning 𝑡 = 0. RootVel(4), RootVel(5), and RootVel(6) specify the three compo-
nents of the constant root angular velocity vector about 𝑋 , 𝑌 , and 𝑍 axises in global coordinate system, respectively.
RootVel(1), RootVel(2), and RootVel(3), which are the three components of the root translational velocity
vector along 𝑋 , 𝑌 , and 𝑍 directions in global coordinate system, respectively, are calculated based on Eq. (6.2).

BeamDyn can handle more complicated root motions by changing, for example, the BD_InputSolve subroutine in
the Driver_Beam.f90 (requiring a recompile of stand-alone BeamDyn):

u%RootMotion%RotationVel(:,:) = 0.0D0
u%RootMotion%RotationVel(1,1) = IniVelo(5)
u%RootMotion%RotationVel(2,1) = IniVelo(6)
u%RootMotion%RotationVel(3,1) = IniVelo(4)
u%RootMotion%TranslationVel(:,:) = 0.0D0
u%RootMotion%TranslationVel(:,1) = &
MATMUL(BD_Tilde(real(u%RootMotion%RotationVel(:,1),BDKi)),temp_rr)

where IniVelo(5), IniVelo(6), and IniVelo(4) are the three components of the root angular ve-
locity vector about 𝑋 , 𝑌 , and 𝑍 axising in the global coordinate system, respectively; temp_rr is the
global position vector at instant 𝑡. The first index in the u%RootMotion%RotationVel(:,:) and the
u%RootMotion%TranslationVel(:,:) arrays range from 1 to 3 for load vector components along three
directions and the second index of each array are set to 1, denoting the root FE node. Note that the internal BeamDyn
variables (here IniVelo) are based on the internal BD coordinate system described in section FIXME.

The blade is initialized in the rigid-body motion mode, i.e., based on the root velocity information defined in this
section and the position information defined in the previous section, the motion of other points along the blade are
initialized as

𝑎0 = 𝜔𝑟 × (𝜔𝑟 × (𝑟0 + 𝑃 ))

𝑣0 = 𝑣𝑟0 + 𝜔𝑟 × 𝑃

𝜔0 = 𝜔𝑟

(6.3)

where 𝑎0 is the initial translational acceleration vector along the blade; 𝑣0 and 𝜔0 the initial translational and angular
velocity vectors along the blade, respectively; and 𝑃 is the position vector along the blade relative to the root.

Applied Load

This section defines the applied loads, including distributed and tip-concentrated loads, for the stand-alone analysis.
The first six entries DistrLoad(i), 𝑖 ∈ [1, 6], specify three components of uniformly distributed force vector
and three components of uniformly distributed moment vector in the global coordinate systems, respectively. The
following six entries TipLoad(i), 𝑖 ∈ [1, 6], specify three components of concentrated tip force vector and three
components of concentrated tip moment vector in the global coordinate system, respectively. The distributed load
defined in this section is assumed to be uniform along the blade and constant throughout the simulation; the tip load is

6.2. BeamDyn User Guide and Theory Manual 49



OpenFAST Documentation, Release 1.0

a constant concentrated load applied at the tip of a blade. It is noted that all the loads defined in this section are dead
loads, i.e., they are not rotating with the blade following the rigid-body rotation defined in the previous section.

BeamDyn is capable of handling more complex loading cases, e.g., time-dependent loads, through customization of the
source code (requiring a recompile of stand-alone BeamDyn). The user can define such loads in the BD_InputSolve
subroutine in the Driver_Beam.f90 file, which is called every time step. The following section can be modified
to define the concentrated load at each FE node:

! Define concentrated force vector
u%PointLoad%Force(:,:) = 0.0D0
! Define concentrated moment vector
u%PointLoad%Moment(:,:) = 0.0D0

where the first index in each array ranges from 1 to 3 for load vector components along three global directions and
the second index of each array ranges from 1 to node_total, where the latter is the total number of FE nodes. For
example, a time-dependent sinusoidal force acting along the 𝑋 direction applied at the 2𝑛𝑑 FE node can be defined as

! Define concentrated force vector
u%PointLoad%Force(:,:) = 0.0D0
u%PointLoad%Force(1,2) = 1.0D+03*SIN((2.0*pi)*t/6.0 )
! Define concentrated moment vector
u%PointLoad%Moment(:,:) = 0.0D0

with 1.0D+03 being the amplitude and 6.0 being the period.

Similar to the concentrated load, the distributed loads can be defined in the same subroutine

IF(p%quadrature .EQ. 1) THEN
DO i=1,p%ngp*p%elem_total+2

u%DistrLoad%Force(1:3,i) = InitInput%DistrLoad(1:3)
u%DistrLoad%Moment(1:3,i)= InitInput%DistrLoad(4:6)

ENDDO
ELSEIF(p%quadrature .EQ. 2) THEN

DO i=1,p%ngp
u%DistrLoad%Force(1:3,i) = InitInput%DistrLoad(1:3)
u%DistrLoad%Moment(1:3,i)= InitInput%DistrLoad(4:6)

ENDDO
ENDIF

where p%ngp is the number of quadrature points, InitInput%DistrLoad(:) is the constant uniformly dis-
tributed load BeamDyn reads from the driver input file, and p%elem_total is the total number of elements. The
user can modify InitInput%DistrLoad(:) to define the loads based on need.

We note that the distributed loads are defined at the quadrature points for numerical integrations. For example, if
Gauss quadrature is chosen (i.e., p%quadrature .EQ. 1), then the distributed loads are defined at Gauss points
plus the two end points of the beam (root and tip). For trapezoidal quadrature, p%ngp stores the number of trapezoidal
quadrature points.

Primary Input File

InputFile is the file name of the primary BeamDyn input file. This name should be in quotations and can contain
an absolute path or a relative path.
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BeamDyn Primary Input File

The BeamDyn primary input file defines the blade geometry, LSFE-discretization and simulation options, output
channels, and name of the blade input file. The geometry of the blade is defined by key-point coordinates and initial
twist angles (in units of degree) in the blade local coordinate system (IEC standard blade system where 𝑍𝑟 is along
blade axis from root to tip, 𝑋𝑟 directs normally toward the suction side, and 𝑌𝑟 directs normally toward the trailing
edge).

The file is organized into several functional sections. Each section corresponds to an aspect of the BeamDyn model.

A sample BeamDyn primary input file is given in Section 6.2.7.

The primary input file begins with two lines of header information, which are for the user but are not used by the
software.

Simulation Controls

The user can set the Echo flag to TRUE to have BeamDyn echo the contents of the BeamDyn input file (useful for
debugging errors in the input file).

Analysis_Type specifies the type of an analysis. In the current version, there are two options: 1) static analysis,
and 2) dynamic analysis. If BeamDyn is run in coupled FAST mode, this entry can be only set to 2, i.e., for dynamic
analysis.

rhoinf specifies the numerical damping parameter (spectral radius of the amplification matrix) in the range of
[0.0, 1.0] used in the generalized-𝛼 time integrator implemented in BeamDyn for dynamic analysis. For rhoinf
= 1.0, no numerical damping is introduced and the generalized-𝛼 scheme is identical to the Newmark scheme; for
rhoinf = 0.0, maximum numerical damping is introduced. Numerical damping may help produce numerically
stable solutions.

Quadrature specifies the spatial numerical integration scheme. There are two options: 1) Gauss quadrature; and
2) Trapezoidal quadrature. We note that in the current version, Gauss quadrature is implemented in reduced form
to improve efficiency and avoid shear locking. In the trapezoidal quadrature, only one member (FE element) can be
defined in the following GEOMETRY section of the primary input file. Trapezoidal quadrature is appropriate when
the number of “blade input stations” (described below) is significantly greater than the order of the LSFE.

Refine specifies a refinement parameter used in trapezoidal quadrature. An integer value greater than unity will split
the space between two input stations into “Refine factor” of segments. The keyword “DEFAULT” may be used to set
it to 1, i.e., no refinement is needed. This entry is not used in Gauss quadrature.

N_Fact specifies a parameter used in the modified Newton-Raphson scheme. If N_Fact = 1 a full Newton itera-
tion scheme is used, i.e., the global tangent stiffness matrix is computed and factorized at each iteration; if N_Fact
> 1 a modified Newton iteration scheme is used, i.e., the global stiffness matrix is computed and factorized every
N_Fact iterations within each time step. The keyword “DEFAULT” sets N_Fact = 5.

DTBeam specifies the constant time increment of the time-integration in seconds. The keyword “DEFAULT” may be
used to indicate that the module should employ the time increment prescribed by the driver code (FAST/stand-alone
driver program).

NRMax specifies the maximum number of iterations per time step in the Newton-Raphson scheme. If convergence is
not reached within this number of iterations, BeamDyn returns an error message and terminates the simulation. The
keyword “DEFAULT” sets NRMax = 10.

Stop_Tol specifies a tolerance parameter used in convergence criteria of a nonlinear solution that is used for the
termination of the iteration. The keyword “DEFAULT” sets Stop_Tol = 1.0E-05. Please refer to Section 6.2.5
for more details.
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Geometry Parameter

The blade geometry is defined by a curvilinear local blade reference axis. The blade reference axis locates the origin
and orientation of each a local coordinate system where the cross-sectional 6x6 stiffness and mass matrices are defined
in the BeamDyn blade input file. It should not really matter where in the cross section the 6x6 stiffness and mass
matrices are defined relative to, as long as the reference axis is consistently defined and closely follows the natural
geometry of the blade.

The blade beam model is composed of several members in contiguous series and each member is defined by at least
three key points in BeamDyn. A cubic-spline-fit pre-processor implemented in BeamDyn automatically generates the
member based on the key points and then interconnects the members into a blade. There is always a shared key point
at adjacent members; therefore the total number of key points is related to number of members and key points in each
member.

member_total specifies the total number of beam members used in the structure. With the LSFE discretization, a
single member and a sufficiently high element order, order_elem below, may well be sufficient.

kp_total specifies the total number of key points used to define the beam members.

The following section contains member_total lines. Each line has two integers providing the member number
(must be 1, 2, 3, etc., sequentially) and the number of key points in this member, respectively. It is noted that the
number of key points in each member is not independent of the total number of key points and they should satisfy the
following equality:

𝑘𝑝_𝑡𝑜𝑡𝑎𝑙 =

𝑚𝑒𝑚𝑏𝑒𝑟_𝑡𝑜𝑡𝑎𝑙∑︁
𝑖=1

𝑛𝑖 −𝑚𝑒𝑚𝑏𝑒𝑟_𝑡𝑜𝑡𝑎𝑙 + 1 (6.4)

where 𝑛𝑖 is the number of key points in the 𝑖𝑡ℎ member. Because cubic splines are implemented in BeamDyn, 𝑛𝑖 must
be greater than or equal to three. Figures Fig. 6.8 and Fig. 6.9 show two cases for member and key-point definition.

source/user/beamdyn/figs/Geometry_Member1.png

Fig. 6.8: Member and key point definition: one member defined by four key points;
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source/user/beamdyn/figs/Geometry_Member2.png

Fig. 6.9: Member and key point definition: two members defined by six key points.

The next section defines the key-point information, preceded by two header lines. Each key point is defined by three
physical coordinates (kp_xr, kp_yr, kp_zr) in the IEC standard blade coordinate system (the blade reference
coordinate system) along with a structural twist angle (initial_twist) in the unit of degrees. The structural twist
angle is also following the IEC standard which is defined as the twist about the negative 𝑍𝑙 axis. The key points are
entered sequentially (from the root to tip) and there should be a total of kp_total lines for BeamDyn to read in the
information, after two header lines. Please refer to Figure Fig. 6.10 for more details on the blade geometry definition.

Mesh Parameter

Order_Elem specifies the order of shape functions for each finite element. Each LSFE will have Order_Elem+1
nodes located at the GLL quadrature points. All LSFEs will have the same order. With the LSFE discretization, an
increase in accuracy will, in general, be better achieved by increasing Order_Elem (i.e., 𝑝-refinement) rather than
increasing the number of members (i.e., ℎ-refinement). For Gauss quadrature, Order_Elem should be greater than
one.

Material Parameter

BldFile is the file name of the blade input file. This name should be in quotations and can contain an absolute path
or a relative path.

Pitch Actuator Parameter

In this release, the pitch actuator implemented in BeamDyn is not available. The UsePitchAct should be set to
“FALSE” in this version, whereby the input blade-pitch angle prescribed by the driver code is used to orient the blade
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Fig. 6.10: BeamDyn Blade Geometry - Top: Side View; Middle: Front View (Looking Downwind); Bottom: Cross
Section View (Looking Toward the Tip, from the Root)

directly. PitchJ, PitchK, and PitchC specify the pitch actuator inertial, stiffness, and damping coefficient, re-
spectively. In future releases, specifying UsePitchAct = TRUE will enable a second-order pitch actuator, whereby
the pitch angular orientation, velocity, and acceleration are determined by the actuator based on the input blade-pitch
angle prescribed by the driver code.

Outputs

In this section of the primary input file, the user sets flags and switches for the desired output behavior.

Specifying SumPrint = TRUE causes BeamDyn to generate a summary file with name InputFile.sum. See
Section 6.2.4 for summary file details.

OutFmt parameter controls the formatting of the results within the stand-alone BeamDyn output file. It needs to be a
valid Fortran format string, but BeamDyn currently does not check the validity. This input is unused when BeamDyn
is used coupled to FAST.

NNodeOuts specifies the number of nodes where output can be written to a file. Currently, BeamDyn can output
quantities at a maximum of nine nodes.

OutNd is a list NNodeOuts long of node numbers between 1 and node_total (total number of FE nodes), sepa-
rated by any combination of commas, semicolons, spaces, and/or tabs. The nodal positions are given in the summary
file, if output.

The OutList block contains a list of output parameters. Enter one or more lines containing quoted strings that in
turn contain one or more output parameter names. Separate output parameter names by any combination of commas,
semicolons, spaces, and/or tabs. If you prefix a parameter name with a minus sign, “-”, underscore, “_”, or the
characters “m” or “M”, BeamDyn will multiply the value for that channel by -1 before writing the data. The parameters
are written in the order they are listed in the input file. BeamDyn allows you to use multiple lines so that you can break
your list into meaningful groups and so the lines can be shorter. You may enter comments after the closing quote on
any of the lines. Entering a line with the string “END” at the beginning of the line or at the beginning of a quoted string
found at the beginning of the line will cause BeamDyn to quit scanning for more lines of channel names. Node-related
quantities are generated for the requested nodes identified through the OutNd list above. If BeamDyn encounters an
unknown/invalid channel name, it warns the users but will remove the suspect channel from the output file. Please
refer to Appendix Section 6.2.7 for a complete list of possible output parameters and their names.
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Blade Input File

The blade input file defines the cross-sectional properties at various stations along a blade and six damping coefficient
for the whole blade. A sample BeamDyn blade input file is given in Section 6.2.7. The blade input file begins with
two lines of header information, which is for the user but is not used by the software.

Blade Parameters

Station_Total specifies the number cross-sectional stations along the blade axis used in the analysis.

Damp_Type specifies if structural damping is considered in the analysis. If Damp_Type = 0, then no damping is
considered in the analysis and the six damping coefficient in the next section will be ignored. If Damp_Type = 1,
structural damping will be included in the analysis.

Damping Coefficient

This section specifies six damping coefficients, 𝜇𝑖𝑖 with 𝑖 ∈ [1, 6], for six DOFs (three translations and three rotations).
Viscous damping is implemented in BeamDyn where the damping forces are proportional to the strain rate. These are
stiffness-proportional damping coefficients, whereby the 6×6 damping matrix at each cross section is scaled from the
6 × 6 stiffness matrix by these diagonal entries of a 6 × 6 scaling matrix:

ℱ𝐷𝑎𝑚𝑝 = 𝜇 𝑆 �̇� (6.5)

where ℱ𝐷𝑎𝑚𝑝 is the damping force, 𝑆 is the 6 × 6 cross-sectional stiffness matrix, �̇� is the strain rate, and 𝜇 is the
damping coefficient matrix defined as

𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜇11 0 0 0 0 0
0 𝜇22 0 0 0 0
0 0 𝜇33 0 0 0
0 0 0 𝜇44 0 0
0 0 0 0 𝜇55 0
0 0 0 0 0 𝜇66

⎤⎥⎥⎥⎥⎥⎥⎦ (6.6)

Distributed Properties

This section specifies the cross-sectional properties at each of the Station_Total stations. For each station, a
non-dimensional parameter 𝜂 specifies the station location along the local blade reference axis ranging from [0.0, 1.0].
The first and last station parameters must be set to 0.0 (for the blade root) and 1.0 (for the blade tip), respectively.

Following the station location parameter 𝜂, there are two 6×6 matrices providing the structural and inertial properties
for this cross-section. First is the stiffness matrix and then the mass matrix. We note that these matrices are defined in
a local coordinate system along the blade axis with 𝑍𝑙 directing toward the unit tangent vector of the blade reference
axis. For a cross-section without coupling effects, for example, the stiffness matrix is given as follows:⎡⎢⎢⎢⎢⎢⎢⎣

𝐾𝑆ℎ𝑟𝐹𝑙𝑝 0 0 0 0 0
0 𝐾𝑆ℎ𝑟𝐸𝑑𝑔 0 0 0 0
0 0 𝐸𝐴 0 0 0
0 0 0 𝐸𝐼𝐸𝑑𝑔 0 0
0 0 0 0 𝐸𝐼𝐹𝑙𝑝 0
0 0 0 0 0 𝐺𝐽

⎤⎥⎥⎥⎥⎥⎥⎦ (6.7)

where 𝐾𝑆ℎ𝑟𝐸𝑑𝑔 and 𝐾𝑆ℎ𝑟𝐹𝑙𝑝 are the edge and flap shear stiffnesses, respectively; 𝐸𝐴 is the extension stiffness;
𝐸𝐼𝐸𝑑𝑔 and 𝐸𝐼𝐹𝑙𝑝 are the edge and flap stiffnesses, respectively; and 𝐺𝐽 is the torsional stiffness. It is pointed out that
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for a generic cross-section, the sectional property matrices can be derived from a sectional analysis tool, e.g. VABS,
BECAS, or NuMAD/BPE.

A generalized sectional mass matrix is given by:⎡⎢⎢⎢⎢⎢⎢⎣
𝑚 0 0 0 0 −𝑚𝑌𝑐𝑚

0 𝑚 0 0 0 𝑚𝑋𝑐𝑚

0 0 𝑚 𝑚𝑌𝑐𝑚 −𝑚𝑋𝑐𝑚 0
0 0 𝑚𝑌𝑐𝑚 𝑖𝐸𝑑𝑔 −𝑖𝑐𝑝 0
0 0 −𝑚𝑋𝑐𝑚 −𝑖𝑐𝑝 𝑖𝐹𝑙𝑝 0

−𝑚𝑌𝑐𝑚 𝑚𝑋𝑐𝑚 0 0 0 𝑖𝑝𝑙𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ (6.8)

where 𝑚 is the mass density per unit span; 𝑋𝑐𝑚 and 𝑌𝑐𝑚 are the local coordinates of the sectional center of mass,
respectively; 𝑖𝐸𝑑𝑔 and 𝑖𝐹𝑙𝑝 are the edge and flap mass moments of inertia per unit span, respectively; 𝑖𝑝𝑙𝑟 is the polar
moment of inertia per unit span; and 𝑖𝑐𝑝 is the sectional cross-product of inertia per unit span. We note that for beam
structure, the 𝑖𝑝𝑙𝑟 is given as (although this relationship is not checked by BeamDyn)

𝑖𝑝𝑙𝑟 = 𝑖𝐸𝑑𝑔 + 𝑖𝐹𝑙𝑝 (6.9)

6.2.4 Output Files

BeamDyn produces three types of output files, depending on the options selected: an echo file, a summary file, and a
time-series results file. The following sections detail the purpose and contents of these files.

Echo File

If the user sets the Echo flag to TRUE in the BeamDyn primary input file, the contents of this file will be echoed
to a file with the naming convention InputFile.ech. The echo file is helpful for debugging the input files. The
contents of an echo file will be truncated if BeamDyn encounters an error while parsing an input file. The error usually
corresponds to the line after the last successfully echoed line.

Summary File

In stand-alone mode, BeamDyn generates a summary file with the naming convention, InputFile.sum if the
SumPrint parameter is set to TRUE. When coupled to FAST, the summary file is named InputFile.BD.sum.
This file summarizes key information about the simulation, including:

• Blade mass.

• Blade length.

• Blade center of mass.

• Initial global position vector in BD coordinate system.

• Initial global rotation tensor in BD coordinate system.

• Analysis type.

• Numerical damping coefficients.

• Time step size.

• Maximum number of iterations in the Newton-Raphson solution.

• Convergence parameter in the stopping criterion.

• Factorization frequency in the Newton-Raphson solution.
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• Numerical integration (quadrature) method.

• FE mesh refinement factor used in trapezoidal quadrature.

• Number of elements.

• Number of FE nodes.

• Initial position vectors of FE nodes in BD coordinate system.

• Initial rotation vectors of FE nodes in BD coordinate system.

• Quadrature point position vectors in BD coordinate system. For Gauss quadrature, the physical coordinates of
Gauss points are listed. For trapezoidal quadrature, the physical coordinates of the quadrature points are listed.

• Sectional stiffness and mass matrices at quadrature points in local blade reference coordinate system. These are
the data being used in calculations at quadrature points and they can be different from the section in Blade Input
File since BeamDyn linearly interpolates the sectional properties into quadrature points based on need.

• Initial displacement vectors of FE nodes in BD coordinate system.

• Initial rotational displacement vectors of FE nodes in BD coordinate system.

• Initial translational velocity vectors of FE nodes in BD coordinate system.

• Initial angular velocity vectors of FE nodes in BD coordinate system.

• Requested output information.

All of these quantities are output in this file in the BD coordinate system, the one being used internally in BeamDyn
calculations. The initial blade reference coordinate system, denoted by a subscript 𝑟0 that follows the IEC standard, is
related to the internal BD coordinate system by Table 6.1 in Section 6.2.5.

Results File

The BeamDyn time-series results are written to a text-based file with the naming convention DriverInputFile.
out where DriverInputFile is the name of the driver input file when BeamDyn is run in the stand-alone mode.
If BeamDyn is coupled to FAST, then FAST will generate a master results file that includes the BeamDyn results.
The results in DriverInputFile.out are in table format, where each column is a data channel (the first column
always being the simulation time), and each row corresponds to a simulation time step. The data channel are specified
in the OUTPUT section of the primary input file. The column format of the BeamDyn-generated file is specified using
the OutFmt parameters of the primary input file.

6.2.5 BeamDyn Theory

This section focuses on the theory behind the BeamDyn module. The theoretical foundation, numerical tools, and
some special handling in the implementation will be introduced. References will be provided in each section detailing
the theories and numerical tools.

In this chapter, matrix notation is used to denote vectorial or vectorial-like quantities. For example, an underline
denotes a vector 𝑢, an over bar denotes unit vector �̄�, and a double underline denotes a tensor ∆. Note that sometimes
the underlines only denote the dimension of the corresponding matrix.

Coordinate Systems

Fig. 6.10 (in Section 6.2.3) and Fig. 6.11 show the coordinate system used in BeamDyn.
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Fig. 6.11: Global, blade reference, and internal coordinate systems in BeamDyn. Illustration by Al Hicks, NREL.
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Global Coordinate System

The global coordinate system is denoted as X, Y, and Z in Fig. 6.11. This is an inertial frame and in FAST its origin is
usually placed at the bottom of the tower as shown.

BD Coordinate System

The BD coordinate system is denoted as 𝑥1, 𝑥2, and 𝑥3 respectively in Fig. 6.11. This is an inertial frame used
internally in BeamDyn (i.e., doesn’t rotate with the rotor) and its origin is placed at the initial position of the blade
root point.

Blade Reference Coordinate System

The blade reference coordinate system is denoted as 𝑋𝑟𝑡, 𝑌𝑟𝑡, and 𝑍𝑟𝑡 in Fig. 6.11 at initialization (𝑡 = 0). The blade
reference coordinate system is a floating frame that attaches at the blade root and is rotating with the blade. Its origin
is at the blade root and the directions of axes following the IEC standard, i.e., 𝑍𝑟 is pointing along the blade axis from
root to tip; 𝑌𝑟 pointing nominally towards the trailing edge of the blade and parallel with the chord line at the zero-twist
blade station; and 𝑋𝑟 is orthogonal with the 𝑌𝑟 and 𝑍𝑟 axes, such that they form a right-handed coordinate system
(pointing nominally downwind). We note that the initial blade reference coordinate system, denoted by subscript 𝑟0,
coincides with the BD coordinate system, which is used internally in BeamDyn and introduced in the previous section.
The axis convention relations between the initial blade reference coordinate system and the BD coordinate system can
be found in Table 6.1.

Table 6.1: Transformation between
blade coordinate system and BD co-
ordinate system.

Blade Frame 𝑋𝑟0 𝑌𝑟0 𝑍𝑟0

BD Frame 𝑥2 𝑥3 𝑥1

Local blade coordinate system

The local blade coordinate system is used for some input and output quantities, for example, the cross-sectional mass
and stiffness matrices and the the sectional force and moment resultants. This coordinate system is different from the
blade reference coordinate system in that its 𝑍𝑙 axis is always tangent to the blade axis as the blade deflects. Note that
a subscript 𝑙 denotes the local blade coordinate system.

Geometrically Exact Beam Theory

The theoretical foundation of BeamDyn is the geometrically exact beam theory. This theory features the capability of
beams that are initially curved and twisted and subjected to large displacement and rotations. Along with a proper two-
dimensional (2D) cross-sectional analysis, the coupling effects between all six DOFs, including extension, bending,
shear, and torsion, can be captured by GEBT as well . The term, “geometrically exact” refer to the fact that there is no
approximation made on the geometries, including both initial and deformed geometries, in formulating the equations
[Hod06].

The governing equations of motion for geometrically exact beam theory can be written as [Bau10]

ℎ̇− 𝐹 ′ = 𝑓

�̇� + ˙̃𝑢ℎ−𝑀 ′ + (�̃�′
0 + �̃�′)𝑇𝐹 = 𝑚

(6.10)
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where ℎ and 𝑔 are the linear and angular momenta resolved in the inertial coordinate system, respectively; 𝐹 and 𝑀
are the beam’s sectional force and moment resultants, respectively; 𝑢 is the one-dimensional (1D) displacement of
a point on the reference line; 𝑥0 is the position vector of a point along the beam’s reference line; and 𝑓 and 𝑚 are
the distributed force and moment applied to the beam structure. The notation (∙)′ indicates a derivative with respect
to beam axis 𝑥1 and ˙(∙) indicates a derivative with respect to time. The tilde operator (̃︀∙) defines a skew-symmetric
tensor corresponding to the given vector. In the literature, it is also termed as “cross-product matrix”. For example,

̃︀𝑛 =

⎡⎣ 0 −𝑛3 𝑛2

𝑛3 0 −𝑛1

−𝑛2 𝑛1 0

⎤⎦
The constitutive equations relate the velocities to the momenta and the 1D strain measures to the sectional resultants
as {︂

ℎ
𝑔

}︂
= ℳ

{︂
�̇�
𝜔

}︂
{︂
𝐹
𝑀

}︂
= 𝒞

{︂
𝜖
𝜅

}︂ (6.11)

where ℳ and 𝒞 are the 6×6 sectional mass and stiffness matrices, respectively (note that they are not really tensors); 𝜖
and 𝜅 are the 1D strains and curvatures, respectively; and, 𝜔 is the angular velocity vector that is defined by the rotation
tensor 𝑅 as 𝜔 = 𝑎𝑥𝑖𝑎𝑙(�̇� 𝑅𝑇 ). The axial vector 𝑎 associated with a second-order tensor 𝐴 is denoted 𝑎 = 𝑎𝑥𝑖𝑎𝑙(𝐴)
and its components are defined as

𝑎 = 𝑎𝑥𝑖𝑎𝑙(𝐴) =

⎧⎨⎩𝑎1
𝑎2
𝑎3

⎫⎬⎭ =
1

2

⎧⎨⎩𝐴32 −𝐴23

𝐴13 −𝐴31

𝐴21 −𝐴12

⎫⎬⎭ (6.12)

The 1D strain measures are defined as {︂
𝜖
𝜅

}︂
=

{︂
𝑥′
0 + 𝑢′ − (𝑅 𝑅

0
)̄𝚤1

𝑘

}︂
(6.13)

where 𝑘 = 𝑎𝑥𝑖𝑎𝑙[(𝑅𝑅0)′(𝑅𝑅0)𝑇 ] is the sectional curvature vector resolved in the inertial basis; 𝑅
0

is the initial
rotation tensor; and �̄�1 is the unit vector along 𝑥1 direction in the inertial basis. These three sets of equations, including
equations of motion Eq. (6.10), constitutive equations Eq. (6.11), and kinematical equations Eq. (6.13), provide a full
mathematical description of the beam elasticity problems.

Numerical Implementation with Legendre Spectral Finite Elements

For a displacement-based finite element implementation, there are six degree-of-freedoms at each node: three dis-
placement components and three rotation components. Here we use 𝑞 to denote the elemental displacement array as
𝑞 =

[︀
𝑢𝑇 𝑐𝑇

]︀
where 𝑢 is the displacement and 𝑐 is the rotation-parameter vector. The acceleration array can thus be de-

fined as 𝑎 =
[︀
�̈�𝑇 �̇�𝑇

]︀
. For nonlinear finite-element analysis, the discretized and incremental forms of displacement,

velocity, and acceleration are written as

𝑞(𝑥1) = 𝑁 �̂� ∆𝑞𝑇 =
[︀
∆𝑢𝑇 ∆𝑐𝑇

]︀
𝑣(𝑥1) = 𝑁 𝑣 ∆𝑣𝑇 =

[︀
∆�̇�𝑇 ∆𝜔𝑇

]︀
𝑎(𝑥1) = 𝑁 �̂� ∆𝑎𝑇 =

[︀
∆�̈�𝑇 ∆�̇�𝑇

]︀ (6.14)

where 𝑁 is the shape function matrix and (̂·) denotes a column matrix of nodal values.

The displacement fields in an element are approximated as

𝑢(𝜉) = ℎ𝑘(𝜉)�̂�𝑘

𝑢′(𝜉) = ℎ𝑘′(𝜉)�̂�𝑘
(6.15)
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where ℎ𝑘(𝜉), the component of shape function matrix 𝑁 , is the 𝑝𝑡ℎ-order polynomial Lagrangian-interpolant shape
function of node 𝑘, 𝑘 = {1, 2, ..., 𝑝 + 1}, �̂�𝑘 is the 𝑘𝑡ℎ nodal value, and 𝜉 ∈ [−1, 1] is the element natural coordinate.
However, as discussed in [BEH08], the 3D rotation field cannot simply be interpolated as the displacement field in the
form of

𝑐(𝜉) = ℎ𝑘(𝜉)𝑐𝑘

𝑐′(𝜉) = ℎ𝑘′(𝜉)𝑐𝑘
(6.16)

where 𝑐 is the rotation field in an element and 𝑐𝑘 is the nodal value at the 𝑘𝑡ℎ node, for three reasons:

1. rotations do not form a linear space so that they must be “composed” rather than added;

2. a rescaling operation is needed to eliminate the singularity existing in the vectorial rotation parameters;

3. the rotation field lacks objectivity, which, as defined by [JelenicC99], refers to the invariance of strain measures
computed through interpolation to the addition of a rigid-bodymotion.

Therefore, we adopt the more robust interpolation approach proposed by [JelenicC99] to deal with the finite rotations.
Our approach is described as follows

Step 1: Compute the nodal relative rotations, 𝑟𝑘, by removing the reference rotation, 𝑐1, from the finite rotation
at each node, 𝑟𝑘 = (𝑐1−) ⊕ 𝑐𝑘. It is noted that the minus sign on 𝑐1 denotes that the relative rotation is
calculated by removing the reference rotation from each node. The composition in that equation is an equivalent
of 𝑅(𝑟𝑘) = 𝑅𝑇 (𝑐1) 𝑅(𝑐𝑘).

Step 2: Interpolate the relative-rotation field: 𝑟(𝜉) = ℎ𝑘(𝜉)𝑟𝑘 and 𝑟′(𝜉) = ℎ𝑘′(𝜉)𝑟𝑘. Find the curvature field 𝜅(𝜉) =
𝑅(𝑐1)𝐻(𝑟)𝑟′, where 𝐻 is the tangent tensor that relates the curvature vector 𝑘 and rotation vector 𝑐 as

𝑘 = 𝐻 𝑐′ (6.17)

Step 3: Restore the rigid-body rotation removed in Step 1: 𝑐(𝜉) = 𝑐1 ⊕ 𝑟(𝜉).

Note that the relative-rotation field can be computed with respect to any of the nodes of the element; we choose node 1
as the reference node for convenience. In the LSFE approach, shape functions (i.e., those composing 𝑁 ) are 𝑝𝑡ℎ-order
Lagrangian interpolants, where nodes are located at the 𝑝 + 1 Gauss-Lobatto-Legendre (GLL) points in the [−1, 1]
element natural-coordinate domain. Fig. 6.12 shows representative LSFE basis functions for fourth- and eighth-order
elements. Note that nodes are clustered near element endpoints. More details on the LSFE and its applications can be
found in References [Pat84][RP87][SG03][SG04].

-1 0 1

x

0

1

Fig. 6.12: Representative 𝑝+1 Lagrangian-interpolant shape functions in the element natural coordinates for a fourth-
order LSFEs, where nodes are located at the Gauss-Lobatto-Legendre points.
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Fig. 6.13: Representative 𝑝 + 1 Lagrangian-interpolant shape functions in the element natural coordinates for a eigth-
order LSFEs, where nodes are located at the Gauss-Lobatto-Legendre points.

Wiener-Milenković Rotation Parameter

In BeamDyn, the 3D rotations are represented as Wiener-Milenković parameters defined in the following equation:

𝑐 = 4 tan

(︂
𝜑

4

)︂
�̄� (6.18)

where 𝜑 is the rotation angle and �̄� is the unit vector of the rotation axis. It can be observed that the valid range for this
parameter is |𝜑| < 2𝜋. The singularities existing at integer multiples of ±2𝜋 can be removed by a rescaling operation
at 𝜋 as:

𝑟 =

{︃
4(𝑞0𝑝 + 𝑝0𝑞 + 𝑝𝑞)/(∆1 + ∆2), if ∆2 ≥ 0

−4(𝑞0𝑝 + 𝑝0𝑞 + 𝑝𝑞)/(∆1 − ∆2), if ∆2 < 0
(6.19)

where 𝑝, 𝑞, and 𝑟 are the vectorial parameterization of three finite rotations such that 𝑅(𝑟) = 𝑅(𝑝)𝑅(𝑞), 𝑝0 =

2 − 𝑝𝑇 𝑝/8, 𝑞0 = 2 − 𝑞𝑇 𝑞/8, ∆1 = (4 − 𝑝0)(4 − 𝑞0), and ∆2 = 𝑝0𝑞0 − 𝑝𝑇 𝑞. It is noted that the rescaling operation
could cause a discontinuity of the interpolated rotation field; therefore a more robust interpolation algorithm has
been introduced in Section Numerical Implementation with Legendre Spectral Finite Elements where the rescaling-
independent relative-rotation field is interpolated.

The rotation tensor expressed in terms of Wiener-Milenković parameters is

𝑅(𝑐) =
1

(4 − 𝑐0)2

⎡⎣𝑐20 + 𝑐21 − 𝑐22 − 𝑐23 2(𝑐1𝑐2 − 𝑐0𝑐3) 2(𝑐1𝑐3 + 𝑐0𝑐2)
2(𝑐1𝑐2 + 𝑐0𝑐3) 𝑐20 − 𝑐21 + 𝑐22 − 𝑐23 2(𝑐2𝑐3 − 𝑐0𝑐1)
2(𝑐1𝑐3 − 𝑐0𝑐2) 2(𝑐2𝑐3 + 𝑐0𝑐1) 𝑐20 − 𝑐21 − 𝑐22 + 𝑐23

⎤⎦ (6.20)

where 𝑐 = [𝑐1 𝑐2 𝑐3]
𝑇 is the Wiener-Milenković parameter and 𝑐0 = 2 − 1

8𝑐
𝑇 𝑐. The relation between rotation tensor

and direction cosine matrix (DCM) is

𝑅 = (𝐷𝐶𝑀)𝑇 (6.21)

Interested users are referred to [BEH08] and [WYS13] for more details on the rotation parameter and its implementa-
tion with GEBT.

Linearization Process

The nonlinear governing equations introduced in the previous section are solved by Newton-Raphson method, where a
linearization process is needed. The linearization of each term in the governing equations are presented in this section.
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According to [Bau10], the linearized governing equations in Eq. (6.10) are in the form of

�̂�∆�̂� + �̂�∆𝑣 + �̂�∆�̂� = �̂�
𝑒𝑥𝑡

− �̂� (6.22)

where the �̂� , �̂�, and �̂� are the elemental mass, gyroscopic, and stiffness matrices, respectively; �̂� and �̂�
𝑒𝑥𝑡

are the
elemental forces and externally applied loads, respectively. They are defined for an element of length 𝑙 along 𝑥1 as
follows

�̂� =

∫︁ 𝑙

0

𝑁𝑇ℳ 𝑁𝑑𝑥1

�̂� =

∫︁ 𝑙

0

𝑁𝑇𝒢𝐼 𝑁𝑑𝑥1

�̂� =

∫︁ 𝑙

0

[︁
𝑁𝑇 (𝒦𝐼 + 𝒬) 𝑁 + 𝑁𝑇𝒫 𝑁 ′ + 𝑁 ′𝑇𝒞 𝑁 ′ + 𝑁 ′𝑇𝒪 𝑁

]︁
𝑑𝑥1

�̂� =

∫︁ 𝑙

0

(𝑁𝑇ℱ𝐼 + 𝑁𝑇ℱ𝐷 + 𝑁 ′𝑇ℱ𝐶)𝑑𝑥1

�̂�
𝑒𝑥𝑡

=

∫︁ 𝑙

0

𝑁𝑇ℱ𝑒𝑥𝑡𝑑𝑥1

(6.23)

where ℱ𝑒𝑥𝑡 is the applied load vector. The new matrix notations in Eqs. (6.23) to are briefly introduced here. ℱ𝐶 and
ℱ𝐷 are elastic forces obtained from Eq. (6.10) as

ℱ𝐶 =

{︂
𝐹
𝑀

}︂
= 𝒞

{︂
𝜖
𝜅

}︂
ℱ𝐷 =

[︂
0 0

(�̃�′
0 + �̃�′)𝑇 0

]︂
ℱ𝐶 ≡ Υ ℱ𝐶

(6.24)

where 0 denotes a 3 × 3 null matrix. The 𝒢𝐼 , 𝒦𝐼 , 𝒪, 𝒫 , 𝒬, and ℱ𝐼 in Eqs. (6.23) are defined as

𝒢𝐼 =

[︃
0 (˜̃𝜔𝑚𝜂)𝑇 + �̃�𝑚𝜂𝑇

0 �̃�𝜚− ̃︁𝜚𝜔
]︃

𝒦𝐼 =

[︃
0 ˙̃𝜔𝑚𝜂𝑇 + �̃��̃�𝑚𝜂𝑇

0 ¨̃𝑢𝑚𝜂 + 𝜚 ˙̃𝜔 − ̃︁𝜚�̇� + �̃�𝜚�̃� − �̃�̃︁𝜚𝜔
]︃

𝒪 =

[︃
0 𝐶

11
𝐸1 − 𝐹

0 𝐶
21
𝐸1 − �̃�

]︃

𝒫 =

[︂
0 0

𝐹 + (𝐶
11
𝐸1)𝑇 (𝐶

21
𝐸1)𝑇

]︂
𝒬 = Υ 𝒪

ℱ𝐼 =

{︃
𝑚�̈� + ( ˙̃𝜔 + �̃��̃�)𝑚𝜂
𝑚𝜂�̈� + 𝜚�̇� + �̃�𝜚𝜔

}︃

(6.25)

where 𝑚 is the mass density per unit length, 𝜂 is the location of the sectional center of mass, 𝜚 is the moment of inertia
tensor, and the following notations were introduced to simplify the above expressions

𝐸1 = 𝑥′
0 + 𝑢′

𝒞 =

[︂
𝐶

11
𝐶

12
𝐶

21
𝐶

22

]︂
(6.26)
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Damping Forces and Linearization

A viscous damping model has been implemented into BeamDyn to account for the structural damping effect. The
damping force is defined as

𝑓
𝑑

= 𝜇 𝒞
{︂
�̇�
�̇�

}︂
(6.27)

where 𝜇 is a user-defined damping-coefficient diagonal matrix. The damping force can be recast in two separate parts,

like ℱ𝐶 and ℱ𝐷 in the elastic force, as

ℱ𝐶
𝑑 =

{︂
𝐹 𝑑

𝑀𝑑

}︂
ℱ𝐷

𝑑 =

{︂
0

(�̃�′
0 + �̃�′)𝑇𝐹 𝑑

}︂ (6.28)

The linearization of the structural damping forces are as follows:

∆ℱ𝐶
𝑑 = 𝒮

𝑑

{︂
∆𝑢′

∆𝑐′

}︂
+ 𝒪

𝑑

{︂
∆𝑢
∆𝑐

}︂
+ 𝒢

𝑑

{︂
∆�̇�
∆𝜔

}︂
+ 𝜇 𝐶

{︂
∆�̇�′

∆𝜔′

}︂
∆ℱ𝐷

𝑑 = 𝒫
𝑑

{︂
∆𝑢′

∆𝑐′

}︂
+ 𝒬

𝑑

{︂
∆𝑢
∆𝑐

}︂
+ 𝒳

𝑑

{︂
∆�̇�
∆𝜔

}︂
+ 𝒴

𝑑

{︂
∆�̇�′

∆𝜔′

}︂ (6.29)

where the newly introduced matrices are defined as

𝒮
𝑑

= 𝜇𝒞
[︂
�̃�𝑇 0
0 �̃�𝑇

]︂
𝒪

𝑑
=

[︃
0 𝜇𝐶

11
( ˙̃𝑢′ − �̃��̃�1) − 𝐹𝑑

0 𝜇𝐶
21

( ˙̃𝑢′ − �̃��̃�1) − �̃�𝑑

]︃

𝒢
𝑑

=

[︃
0 𝐶𝑇

11
𝜇𝑇 �̃�1

0 𝐶𝑇

12
𝜇𝑇 �̃�1

]︃

𝒫
𝑑

=

[︃
0 0

𝐹𝑑 + �̃�𝑇
1 𝜇𝐶11

�̃�𝑇 �̃�𝑇
1 𝜇𝐶12

�̃�𝑇

]︃

𝒬
𝑑

=

[︂
0 0

0 �̃�𝑇
1 𝑂12

]︂
𝒳

𝑑
=

[︂
0 0

0 �̃�𝑇
1 𝐺12

]︂
𝒴

𝑑
=

[︃
0 0

�̃�𝑇
1 𝜇𝐶11

�̃�𝑇
1 𝜇𝐶12

]︃

(6.30)

where 𝑂
12

and 𝐺
12

are the 3 × 3 sub matrices of 𝒪 and 𝒢 as 𝐶
12

in Eq. (6.26).

Convergence Criterion and Generalized-𝛼 Time Integrator

The system of nonlinear equations in Eqs. (6.10) are solved using the Newton-Raphson method with the linearized
form in Eq. (6.22). In the present implementation, an energy-like stopping criterion has been chosen, which is calcu-
lated as

‖∆U(𝑖)𝑇
(︁
𝑡+Δ𝑡R− 𝑡+Δ𝑡F(𝑖−1)

)︁
‖ ≤ ‖𝜖𝐸

(︁
∆U(1)𝑇

(︀
𝑡+Δ𝑡R− 𝑡F

)︀)︁
‖ (6.31)
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where ‖ · ‖ denotes the Euclidean norm, ∆U is the incremental displacement vector, R is the vector of externally
applied nodal point loads, F is the vector of nodal point forces corresponding to the internal element stresses, and 𝜖𝐸
is the user-defined energy tolerance. The superscript on the left side of a variable denotes the time-step number (in a
dynamic analysis), while the one on the right side denotes the Newton-Raphson iteration number. As pointed out by
[BC80], this criterion provides a measure of when both the displacements and the forces are near their equilibrium
values.

Time integration is performed using the generalized-𝛼 scheme in BeamDyn, which is an unconditionally stable (for
linear systems), second-order accurate algorithm. The scheme allows for users to choose integration parameters that
introduce high-frequency numerical dissipation. More details regarding the generalized-𝛼 method can be found in
[CH93][Bau10].

Calculation of Reaction Loads

Since the root motion of the wind turbine blade, including displacements and rotations, translational and angular
velocities, and translational and angular accelerates, are prescribed as inputs to BeamDyn either by the driver (in
stand-alone mode) or by FAST glue code (in FAST-coupled mode), the reaction loads at the root are needed to satisfy
equality of the governing equations. The reaction loads at the root are also the loads passing from blade to hub in a
full turbine analysis.

The governing equations in Eq. (6.10) can be recast in a compact form

ℱ𝐼 −ℱ𝐶′ + ℱ𝐷 = ℱ𝑒𝑥𝑡 (6.32)

with all the vectors defined in Section [sec:LinearProcess]. At the blade root, the governing equation is revised as

ℱ𝐼 −ℱ𝐶′ + ℱ𝐷 = ℱ𝑒𝑥𝑡 + ℱ𝑅 (6.33)

where ℱ𝑅 =
[︀
𝐹𝑅 𝑀𝑅

]︀𝑇
is the reaction force vector and it can be solved from Eq. (6.33) given that the motion fields

are known at this point.

Calculation of Blade Loads

BeamDyn can also calculate the blade loads at each finite element node along the blade axis. The governing equation
in Eq. (6.32) are recast as

ℱ𝐴 + ℱ𝑉 −ℱ𝐶′ + ℱ𝐷 = ℱ𝑒𝑥𝑡 (6.34)

where the inertial force vector ℱ𝐼 is split into ℱ𝐴 and ℱ𝑉 :

ℱ𝐴 =

{︃
𝑚�̈� + ˙̃𝜔𝑚𝜂
𝑚𝜂�̈� + 𝜌�̇�

}︃

ℱ𝑉 =

{︃
�̃��̃�𝑚𝜂
�̃�𝜌𝜔

}︃ (6.35)

The blade loads are thus defined as

ℱ𝐵𝐹 ≡ ℱ𝑉 −ℱ𝐶′ + ℱ𝐷 (6.36)

We note that if structural damping is considered in the analysis, the ℱ𝐶
𝑑 and ℱ𝐷

𝑑 are incorporated into the internal
elastic forces, ℱ𝐶 and ℱ𝐷, for calculation.
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6.2.6 Future Work

The following list contains future work on BeamDyn software:

• Eliminating numerical problems in single precision.

• Implementing eigenvalue analysis.

• Improving input options for stand-alone version to make it more user-friendly.

• Implementing GEBT based on modal method for computational efficiency.

• Adding more options for blade cross-sectional properties inputs. For example, for general isotropic beams,
engineering parameters including sectional offsets, material properties, etc will be used to generate the 6 × 6
matrices needed by BeamDyn.

• Writing a general guidance on modeling composite beam structures using BeamDyn, , for example, how to
select a time step, how to select the model discretization, how to define the blade reference axis, where to get
6x6 mass/stiffness matrices, etc.

• Extending applications in FAST to other slender structures in the wind turbine system, for example, tower,
mooring lines, and shaft.

• Developing a simplified form of GEBT with only rotational DOFs (bending, torsion) for computational effi-
ciency.

6.2.7 Appendix

BeamDyn Input Files

In this appendix we describe the BeamDyn input-file structure and provide examples for the NREL 5MW Reference
Wind Turbine.

OpenFAST+BeamDyn and stand-alone BeamDyn (static and dynamic) simulations all require two files:

1) BeamDyn primary input file (NREL 5MW dynamic example), (NREL 5MW static example): This
file includes information on the analysis type (static vs. dynamic), numerical-solution parameters (e.g., numerical
damping, quadrature rules), and the geometric definition of the beam reference line via “members” and “key points”.
This file also specifies the “blade input file.”

2. BeamDyn blade input file (NREL 5MW example):

Stand-alone BeamDyn simulation also require a driver input file; we list here examples for static and dynamic simula-
tions:

3a) BeamDyn driver for dynamic simulations (NREL 5MW example): This file specifies the inputs for a single
blade (e.g., forces, orientations, root velocity) and specifies the BeamDyn primary input file.

3b) BeamDyn driver for static simulations (NREL 5MW example): Same as above but calls the appropriate inputs
and primary input file (i.e., here one for static analysis).

BeamDyn List of Output Channels

This is a list of all possible output parameters for the BeamDyn module. The names are grouped by meaning, but
can be ordered in the OUTPUTS section of the BeamDyn primary input file as the user sees fit. N𝛽, refers to output
node 𝛽, where 𝛽 is a number in the range [1,9], corresponding to entry 𝛽 in the OutNd list. When coupled to FAST,
“𝐵𝛼” is prefixed to each output name, where 𝛼 is a number in the range [1,3], corresponding to the blade number. The
outputs are expressed in one of the following three coordinate systems:
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• r: a floating reference coordinate system fixed to the root of the moving beam; when coupled to FAST for
blades, this is equivalent to the IEC blade (b) coordinate system.

• l: a floating coordinate system local to the deflected beam.

• g: the global inertial frame coordinate system; when coupled to FAST, this is equivalent to FAST’s global inertial
frame (i) coordinate system.

6.3 HydroDyn Users Guide and Theory Manual

6.3.1 Introduction

HydroDyn is a time-domain hydrodynamics module that has been coupled into the OpenFAST wind turbine multi-
physics engineering tool to enable aero-hydro-servo-elastic simulation of offshore wind turbines. HydroDyn is appli-
cable to both fixed-bottom and floating offshore substructures. This latest release of HydroDyn follows the require-
ments of the OpenFAST modularization framework and couples to OpenFAST. HydroDyn can also be driven as a
standalone code to compute hydrodynamic loading uncoupled from OpenFAST.

HydroDyn allows for multiple approaches for calculating the hydrodynamic loads on a structure: a potential-flow the-
ory solution, a strip-theory solution, or a hybrid combination of the two. Waves generated internally within HydroDyn
can be regular (periodic) or irregular (stochastic) and long-crested (unidirectional) or short-crested (with wave energy
spread across a range of directions). Wave elevations or full wave kinematics can also be generated externally and used
within HydroDyn. Internally, HydroDyn generates waves analytically for finite depth using first-order (linear Airy)
or first- plus second-order wave theory [Sharma and Dean, 1981] with the option to include directional spreading.
Wave kinematics are computed in the domain between the flat seabed and still-water level (SWL). Optionally, wave
stretching allows for the wave kinematics and hydrodynamic loads to be computed at all nodes within the fluid domain
up to the instantaneous free surface (above SWL in a wave crest and below SWL in a wave trough), unlike models
without wave stretching, which compute wave kinematics and loads at nodes between the seabed and SWL regardless
of the instantaneous free surface. The second-order hydrodynamic implementations include time-domain calculations
of difference- (mean- and slow-drift-) and sum-frequency terms. To minimize computational expense, Fast Fourier
Transforms (FFTs) are applied in the summation of all wave frequency components.

The potential-flow solution is applicable to substructures or members of substructures that are large relative to a
typical wavelength. The potential-flow solution involves either frequency-to-time-domain transforms or fluid-impulse
theory (FIT). In the former, potential-flow hydrodynamic loads include linear hydrostatic restoring, the added mass
and damping contributions from linear wave radiation (including free-surface memory effects), and the incident-wave
excitation from first- and second-order diffraction (Froude-Kriloff and scattering). The hydrodynamic coefficients
(first and second order) required for the potential-flow solution are frequency dependent and must be supplied by a
separate frequency-domain panel code (e.g., WAMIT) from a pre-computation step. The radiation memory effect
can be calculated either through direct time-domain convolution or through a linear state-space approach, with a
state-space model derived through the SS_Fitting preprocessor. The second-order terms can be derived from the full
difference- and sum-frequency quadratic transfer functions (QTFs) or the difference-frequency terms can be estimated
via Standing et al.’s extension to Newman’s approximation, based only on first-order coefficients. The use of FIT is
not yet documented in this manual.

The strip-theory solution may be preferable for substructures or members of substructures that are small in diame-
ter relative to a typical wavelength. Strip-theory hydrodynamic loads can be applied across multiple interconnected
members, each with possible incline and taper, and are derived directly from the undisturbed wave and current kine-
matics at the undisplaced position of the substructure. The strip-theory loads include the relative form of Morison’s
equation for the distributed fluid-inertia, added-mass, and viscous-drag components. Additional distributed load com-
ponents include axial loads from tapered members and static buoyancy loads. Hydrodynamic loads are also applied as
lumped loads on member endpoints (called joints). It is also possible to include flooding or ballasting of members, and
the effects of marine growth. The hydrodynamic coefficients required for this solution come through user-specified
dynamic-pressure, added-mass, and viscous-drag coefficients.
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Channel Name(s) Units Description 

RootFxr, RootFyr, RootFzr (N), (N), (N) Root reaction forces 
expressed in r 

RootMxr, RootMyr, RootMzr (N m), (N m), (N m) Root reaction moments 
expressed in r 

TipTDxr, TipTDyr, TipTDzr (m), (m), (m) Tip translational deflection 
(relative to the undeflected 
position) expressed in r 

TipRDxr, TipRDyr, TipRDzr (-), (-), (-) Tip angular/rotational 
deflection Wiener-Milenković 
parameter (relative to the 
undeflected orientation) 
expressed in r 

TipTVXg, TipTVYg, TipTVZg (m/s), (m/s), (m/s) Tip translational velocities 
(absolute) expressed in g 

TipRVXg, TipRVYg, TipRVZg (deg/s), (deg/s), 
(deg/s) 

Tip angular/rotational 
velocities (absolute) 
expressed in g 

TipTAXg, TipTAYg, TipTAZg (m/s2), (m/s2), (m/s2) Tip translational 
accelerations (absolute) 
expressed in g 

TipRAXg, TipRAYg, TipRAZg (deg/s2), (deg/s2), 
(deg/s2) 

Tip angular/rotational 
accelerations (absolute) 
expressed in g 

NβFxl, NβFyl, NβFzl (N), (N), (N) Sectional force resultants 
at Nβ expressed in l 

NβMxl, NβMyl, NβMzl (N m), (N m), (N m) Sectional moment resultants 
at Nβ expressed in l 

NβTDxr, NβTDyr, NβTDzr (m), (m), (m) Sectional translational 
deflection (relative to the 
undeflected position) at Nβ 
expressed in r 

NβRDxr, NβRDyr, NβRDzr (-), (-), (-) Sectional angular/rotational 
deflection Wiener-Milenković 
parameter (relative to the 
undeflected orientation) at 
Nβ expressed in r 

NβTVXg, NβTVYg, NβTVZg (m/s), (m/s), (m/s) Sectional translational 
velocities (absolute) at Nβ 
expressed in g 

NβRVXg, NβRVYg, NβRVZg (deg/s), (deg/s), 
(deg/s) 

Sectional angular/rotational 
velocities (absolute) at Nβ 
expressed in g 

NβTAXg, NβTAYg, NβTAZg (m/s2), (m/s2), (m/s2) Sectional translational 
accelerations (absolute) at 
Nβ expressed in g 

NβRAXg, NβRAYg, NβRAZg (deg/s2), (deg/s2), 
(deg/s2) 

Sectional angular/rotational 
accelerations (absolute) at 
Nβ expressed in g 

NβPFxl, NβPFyl, NβPFzl (N), (N), (N) Applied point forces at Nβ 
expressed in l 

NβPMxl, NβPMyl, NβPMzl (N m), (N m), (N m) Applied point moments at Nβ 
expressed in l 

NβDFxl, NβDFyl, NβDFzl (N/m), (N/m), (N/m) Applied distributed forces 
at Nβ expressed in l 

NβDMxl, NβDMyl, NβDMzl (N m/m), (N m/m), (N 
m/m) 

Applied distributed moments 
at Nβ expressed in l 

 

 

Fig. 6.14: BeamDyn Output Channel List
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For some substructures and sea conditions, the hydrodynamic loads from a potential-flow theory should be augmented
with the loads brought about by flow separation. For this, the viscous-drag component of the strip-theory solution may
be included with the potential-flow theory solution. Another option available is to supply a global damping matrix
(linear or quadratic) to the system to represent this effect. When HydroDyn is coupled to OpenFAST, HydroDyn
receives the position, orientation, velocities, and accelerations of the (rigid or flexible) substructure at each coupling
time step and then computes the hydrodynamic loads and returns them back to OpenFAST. At this time, OpenFAST’s
ElastoDyn structural-dynamics module assumes for a floating platform that the substructure (floating platform) is a six
degree-of-freedom (DOF) rigid body. For fixed-bottom offshore wind turbines, OpenFAST’s SubDyn module allows
for structural flexibility of multi-member substructures and the coupling to HydroDyn includes hydro-elastic effects.

The primary HydroDyn input file defines the substructure geometry, hydrodynamic coefficients, incident wave kine-
matics and current, potential-flow solution options, flooding/ballasting and marine growth, and auxiliary parameters.
The geometry of strip-theory members is defined by joint coordinates of the undisplaced substructure in the global
reference system, with the origin at the intersection of the undeflected tower centerline with mean sea level (MSL). A
member connects two joints; multiple members can use a common joint. The hydrodynamic loads are computed at
nodes, which are the resultant of member refinement into multiple (MDivSize input) elements (nodes are located at the
ends of each element), and they are calculated by the module. Member properties include outer diameter, thickness,
and dynamic-pressure, added-mass and viscous-drag coefficients. Member properties are specified at the joints; if
properties change from one joint to the other, they will be linearly interpolated for the inner nodes.

Section 6.3.2 describes the HydroDyn input files. Section 6.3.3 discusses the output files generated by HydroDyn;
these include echo files, wave-elevation outputs, a summary file, and the results file. Section 6.3.4 provides modeling
guidance when using HydroDyn. The HydroDyn theory is covered in Section 6.3.5. and Section 6.3.6 contains a list
of references. Example input files are included in Section 6.3.7. A summary of available output channels are found
Section 6.3.7.

6.3.2 Input Files

The user configures the hydrodynamic model parameters via a primary HydroDyn input file, as well as separate input
files for the potential flow model and state-space radiation model. When used in standalone mode, an additional driver
input file is required. This driver file specifies initialization inputs normally provided to HydroDyn by OpenFAST, as
well as the per-time-step inputs to HydroDyn.

As an example, the driver.dvr file is the main driver, the input.dat is the primary input file. If a potential flow
model is being used, WAMIT output files with a common root name, for example‘‘platform‘‘, are required. These
files contain the linear, nondimensionalized, hydrostatic restoring matrix (.hst extension), the frequency-dependent
hydrodynamic added mass matrix and damping matrix (.1 extension), and the frequency- and direction-dependent
wave excitation force vector per unit wave amplitude (.3 extension). If the state-space radiation model is being used,
a platform.ss file contains the state-space radiation model for the platform. Example input files are included in
Section 6.3.7.

No lines should be added or removed from the input files, except in tables where the number of rows is specified.

Units

HydroDyn uses the SI system (𝑘𝑔, 𝑚, 𝑠, 𝑁 ). Angles are assumed to be in radians unless otherwise specified.

HydroDyn Driver Input File

The driver input file is only needed for the standalone version of HydroDyn and contains inputs normally generated by
OpenFAST, and necessary to control the hydrodynamic simulation for uncoupled models. A sample HydroDyn driver
input file is given in Section 6.3.7.
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Set the Echo flag in this file to TRUE if you wish to have the HydroDyn_Driver executeable echo the contents
of the driver input file (useful for debugging errors in the driver file). The echo file has the naming convention of
OutRootName.dvr.ech, where OutRootName is specified in the HYDRODYN section of the driver input file.
Set the gravity constant using the Gravity parameter. HydroDyn expects a magnitude, so in SI units this would be
set to 9.80665 𝑚

𝑠2 .? HDInputFile is the filename of the primary HydroDyn input file. This name should be in quo-
tations and can contain an absolute path or a relative path. All HydroDyn-generated output files will be prefixed with
OutRootName. If this parameter includes a file path, the output will be generated in that folder. NSteps specifies the
number of simulation time steps, and TimeInterval specifies the time between steps. Setting WAMITInputsMod
= 0 forces all WAMIT reference point (WRP) input motions to zero for all time. If you set WAMITInputsMod =
1, then you must set the steady-state inputs in the WAMIT STEADY STATE INPUTS section of the file. Setting
WAMITInputsMod = 2, requires the time-series input file whose name is specified via the WAMITInputsFile
parameter. The WAMIT inputs file is a text-formatted file. This file has no header lines. Each data row corresponds to
a given time step, and the whitespace separated columns of floating point values represent the necessary motion inputs
as follows:

• Column 1 : Time step value (𝑠)

• Columns 2-4 : Translational displacements along X, Y, and Z (𝑚)

• Columns 5-7 : Rotational displacements about X, Y, and Z [small angle] (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)

• Columns 8-10: Translational velocities along X, Y, and Z (𝑚𝑠 )

• Columns 11-13: Rotational velocities about X, Y, and Z ( 𝑟𝑎𝑑𝑖𝑎𝑛𝑠𝑠 )

• Columns 14-16: Translational accelerations along X, Y, and Z (𝑚𝑠2 )

• Columns 17-19: Rotational accelerations about X, Y, and Z ( 𝑟𝑎𝑑𝑖𝑎𝑛𝑠𝑠2 )

All motions are specified in the global inertial-frame coordinate system.

In a similar fashion, the input motions for the Morison members (strip-theory model) are set to zero if
MorisonInputsMod = 0. If you select MorsionInputsMod = 1 then the motions at each substructure joint
are set to the steady-state values given in the MORISON STEADY STATE INPUTS section. Currently, option 2 is
unavailable for the Morison inputs.

The standalone HydroDyn does not check for physical consistency between motions specified for the WRP and Mori-
son members in the driver file.

Setting WaveElevSeriesFlag to TRUE enables the outputting of a grid of wave elevations to a text-based file with
the name OutRootName.WaveElev.out. The grid consists of WaveElevNX by WaveElevNY wave elevations
(centered at 𝑋 = 0, 𝑌 = 0 i.e., (0, 0)) with a dX and dY spacing in the global inertial-frame coordinate system.
These wave elevations are distinct and output separately from the wave elevations determined by NWaveElev in the
HydroDyn primary input file, such that the total number of wave elevation outputs is NWaveElev + ( WaveElevNX
× WaveElevNY ). The wave-elevation output file OutRootName.WaveElev.out contains the total wave ele-
vation, which is the sum of the first- and second-order terms (when the second-order wave kinematics are optionally
enabled).

HydroDyn Primary Input File

The HydroDyn input file defines the substructure geometry, hydrodynamic coefficients, incident wave kinematics and
current, potential-flow solution options, flooding/ballasting and marine growth, and auxiliary parameters. The geom-
etry of strip-theory members is defined by joint coordinates of the undisplaced substructure in the global reference
system, with the origin at the intersection of the undeflected tower centerline with MSL. A member connects two
joints; multiple members can use a common joint. The hydrodynamic loads are computed at nodes, which are the
resultant of member refinement into multiple (MDivSize input) elements (nodes are located at the ends of each
element), and they are calculated by the module. Member properties include outer diameter, thickness, and dynamic-
pressure, added-mass and viscous-drag coefficients. Member properties are specified at the joints; if properties change
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from one joint to the other, they will be linearly interpolated for the inner nodes. The file is organized into several
functional sections. Each section corresponds to an aspect of the hydrodynamics model or the submerged substructure.
A sample HydroDyn primary input file is given in Section 6.3.7.

If this manual refers to an ID in a table entry, this is an integer identifier for the table entry, and these IDs do not need
to be consecutive or increasing, but they must be unique for a given table entry. The input file begins with two lines of
header information which is for your use, but is not used by the software. On the next line, set the Echo flag to TRUE
if you wish to have HydroDyn echo the contents of the HydroDyn input file (useful for debugging errors in the input
file). The echo file has the naming convention of OutRootName.HD.ech. OutRootName is either specified in
the HYDRODYN section of the driver input file when running HydroDyn standalone, or by OpenFAST when running
a coupled simulation.

Environmental Conditions

WtrDens specifies the water density and must be a value greater than or equal to zero; a typical value of seawater
is around 1025 kg/m3. WtrDpth specifies the water depth (depth of the flat seabed), based on the reference MSL,
and must be a value greater than zero. MSL2SWL is the offset between the MSL and SWL, positive upward. This
parameter is useful when simulating the effect of tides or storm-surge sea-level variations without having to alter the
substructure geometry information. This parameter is unused with WaveMod = 6 and must be set to zero if you are
using a potential-flow model (PotMod = 1 or 2).

Waves

The WAVES section of the input file controls the internal generation of first-order waves or the use of externally
generated waves, used by both the strip-theory and potential-flow solutions. The wave spectrum settings in this section
only pertain to the first-order wave frequency components. When second-order terms are optionally enabled—see
the 2ND-ORDER WAVES and 2ND-ORDER FLOATING PLATFORM FORCES sections below—the second-order
terms are calculated using the first-order wave-component amplitudes and extra energy is added to the wave spectrum
(at the difference and sum frequencies).

WaveMod specifies the incident wave kinematics model. The options are: * 0: none = still water * 1: regular (periodic)
waves * 1P#: regular (periodic) waves with user-specified phase, for example 1P20.0 for regular waves with a 20 phase
(without P#, the phase will be random, based on WaveSeed); 0 phase represents a cosine function, starting at the peak
and decreasing in time * 2: Irregular (stochastic) waves based on the JONSWAP or Pierson-Moskowitz frequency
spectrum * 3: Irregular (stochastic) waves based on a white-noise frequency spectrum * 4: Irregular (stochastic)
waves based on a user-defined frequency spectrum from routine UserWaveSpctrm(); see Appendix D for compiling
instructions * 5: Externally generated wave-elevation time series * 6: Externally generated full wave-kinematics time
series

Option 4 requires that the UserWaveSpctrm() subroutine of the Waves.f90 source file be implemented by the
user, and will require recompiling either the standalone HydroDyn program or OpenFAST. Option 5 allows the use of
externally generated wave-elevation time series, from which the hydrodynamic loads in the potential-flow solution or
the wave kinematics used in the strip-theory solution are derived internally. Option 6 allows the use of full externally
generated wave kinematics for use with the strip-theory solution (but not the potential-flow solution). With options 5
and 6, the externally generated wave data is provided through input files, all of which have the root name given by the
WvKinFile parameter below.

This version does not include the ability to model stretching of internally generated incident wave kinematics to the
instantaneous free surface; you must set WaveStMod = 0.

WaveTMax sets the length of the incident wave kinematics time series, but it also determines the frequency step used
in the inverse FFT, from which the internal wave time series are derived (∆𝜔 = 2𝜋/WaveTMax). If WaveTMax is less
than the total simulation time, HydroDyn implements repeating wave kinematics that have a period of WaveTMax;
WaveTMax must not be less than the total simulation time when WaveMod = 5. WaveDT determines the time step
for the wave kinematics time series, but it also determines the maximum frequency in the inverse FFT (𝜔max =

6.3. HydroDyn Users Guide and Theory Manual 71



OpenFAST Documentation, Release 1.0

𝜋/WaveDT). When modeling irregular sea states, we recommend that WaveTMax be set to at least 1 hour (3600 s)
and that WaveDT be a value in the range between 0.1 and 1.0 s to ensure sufficient resolution of the wave spectrum
and wave kinematics. When HydroDyn is coupled to OpenFAST, WaveDT may be specified arbitrarily independently
from the glue code time step of OpenFAST (the wave kinematics will be interpolated in time as necessary); WaveDT
must equal the glue code time step of OpenFAST when WaveMod = 6.

For internally generated waves, the wave height (crest-to-trough, twice the amplitude) for regular waves and the
significant wave height for irregular waves is set using WaveHs (only used when WaveMod = 1, 2, or 3). The
wave period for regular waves and the peak-spectral wave period for irregular waves is controlled with the WaveTp
parameter (only used when WaveMod = 1 or 2). WavePkShp is the peak-shape parameter of JONSWAP irregular
wave spectrum (only used when WaveMod = 2). Set WavePkShp to DEFAULT to obtain the value recommended
in the IEC 61400-3 Annex B, derived based on the peak-spectral period and significant wave height [IEC, 2009]. Set
WavePkShp to 1.0 for the Pierson-Moskowitz spectrum.

WvLowCOff and WvHiCOff control the lower and upper cut-off frequencies (in rad/s) of the first-order wave spec-
trum; the first-order wave-component amplitudes are zeroed below and above these cut-off frequencies, respectively.
WvLowCOff may be set lower than the low-energy limit of the first-order wave spectrum to minimize computational
expense. Setting a proper upper cut-off frequency (WvHiCOff) also minimizes computational expense and is impor-
tant to prevent nonphysical effects when approaching of the breaking-wave limit and to avoid nonphysical wave forces
at high frequencies (i.e., at short wavelengths) when using a strip-theory solution. WvLowCOff and WvHiCOff are
unused when WaveMod = 0, 1, or 6.

WaveDir (unused when WaveMod = 0 or 6) is the mean wave propagation heading direction (in degrees), and must
be in the range (-180,180]. A heading of 0 corresponds to wave propagation in the positive X-axis direction. And
a heading of 90 corresponds to wave propagation in the positive Y-axis direction. WaveDirMod specifies the wave
directional spreading model (only used when WaveMod = 2, 3, or 4). Setting WaveDirMod to 0 disables directional
spreading, resulting in long-crested (plane-progressive) sea states propagating in the WaveDir direction. Setting
WaveDirMod to 1 enables the modeling of short-crested sea states, with a mean propagation direction of WaveDir,
through the commonly used cosine spreading function (COS2S) to define the directional spreading spectrum, based on
the spreading coefficient (S) defined via WaveDirSpread. The wave directional spreading spectrum is discretized
with an equal-energy method using WaveNDir number of equal-energy bins. WaveNDir is an odd-valued integer
greater or equal to 1 (1 or 3 or 5. . . ), but HydroDyn may slightly increase the specified value of WaveNDir to ensure
that there is the same number of wave components within each direction bin; setting WaveNDir = 1 is equivalent
to setting WaveDirMod = 0. The range of the directional spread (in degrees) is defined via WaveDirSpread.
The equal-energy method assumes that the directional spreading spectrum is the product of a frequency spectrum
and a spreading function i.e. S(𝜔,𝛽) = S(𝜔)D(𝛽). Directional spreading is not permitted when using Newman’s
approximation of the second-order difference-frequency potential-flow loads.

WaveSeed(1) and WavedSeed(2) (unused when WaveMod = 0, 5, or 6) combined determine the initial seed
(starting point) for the internal pseudorandom number generator needed to derive the internal wave kinematics from
the wave frequency and direction spectra. If you want to run different time-domain realizations for given boundary
conditions (of significant wave height, and peak-spectral period, etc.), you should change one or both seeds between
simulations. While the phase of each wave frequency and direction component of the wave spectrum is always based
on a uniform distribution (except when using the 1P# WaveMod option), the amplitude of the wave frequency spectrum
can also be randomized (following a normal distribution) by setting WaveNDAmp to TRUE. Setting WaveNDAmp to
FALSE means that the amplitude of the wave frequency spectrum always matches the target spectrum. WaveNDAmp
is only used with WaveMod = 2, 3, or 4.

When using externally generated wave data (WaveMod = 5 or 6), input parameter WvKinFile should be set to the
root name of the input file(s) (without extension) containing the data.

Using externally generated wave-elevation time series (WaveMod = 5) requires a text-formatted input data file with
the extension .Elev containing two columns of data—the first is time (starting at zero) (in s) and the second is the wave
elevation at (0,0) (in m), separated by whitespace. Header lines (identified as those not beginning with a number) are
ignored. The time series must be at least WaveTMax in length and not less than the total simulation time and the time
step must match WaveDT. The wave-elevation time series specified is assumed to be of first order and long-crested,
but is not checked for physical correctness. When second-order terms are optionally enabled—see the 2ND-ORDER
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WAVES and 2ND-ORDER FLOATING PLATFORM FORCES sections below—the second-order terms are calculated
using the wave-component amplitudes derived from the provided wave-elevation time series and extra energy is added
to the wave spectrum (at the difference and sum frequencies).

Using full externally generated wave kinematics (WaveMod = 6) requires eight text-formatted input data files, all
without headers. Seven files with extensions .Vxi, .Vyi, .Vzi, .Axi, .Ayi, .Azi, and .DynP correspond to the X, Y,
and Z velocities (in m/s) and accelerations (in m/s2) in the global inertial-frame coordinate system and the dynamic
pressure (in Pa) time series. Each of these files must have exactly WaveTMax/DT rows and N whitepace-separated
columns, where N

is the total number of internal HydroDyn analysis nodes (corresponding exactly to those written to the HydroDyn
summary file). Time is absent from the files, but is assumed to go from zero to WaveTMax – WaveDT in steps of
WaveDT. To use this feature, it is the burden of the user to generate wave kinematics data at each of HydroDyn’s time
steps and analysis nodes. HydroDyn will not interpolate the data; as such, when HydroDyn is coupled to OpenFAST,
WaveDT must equal the glue code time step of OpenFAST. A numerical value (including 0) in a file is assumed to be
valid data (with 0 corresponding to 0 m/s, 0 m/s2, or 0 Pa); a nonnumeric string will designate that the node is outside
of the water at that time step (above the instantaneous water elevation or below the seabed)—externally generated wave
kinematics used with WaveMod = 6 are not limited to the domain between a flat seabed and SWL and may consider
wave stretching, higher-order wave theories, or an uneven seabed. All seven files must have nonnumeric strings in the
same locations within the file. The eighth file, with extension .Elev, must contain the wave elevation (in m) at each of
the NWaveElev points on the SWL where wave elevations can be output—see below; this data is required for output
purposes only and is not used by HydroDyn for other means. This file must have exactly WaveTMax/DT rows and
NWaveElev whitepace-separated columns and only valid numeric data is allowed (the file will have NWaveElev +
( WaveElevNX × WaveElevNY ) columns when HydroDyn is operated in standalone mode). The data in these files
is not processed (filtered, etc.) or checked for physical correctness (other than for consistency in the location of the
nonnumeric strings). Full externally generated wave kinematics (WaveMod = 6) cannot be used in conjunction with
the potential-flow solution.

You can generate up to 9 wave elevation outputs. NWaveElev determines the number (between 0 and 9), and the
whitespace-separated lists of WaveElevxi and WaveElevyi determine the locations of these NWaveElev number
of points on the SWL plane in the global inertial-frame coordinate system.

2nd-Order Waves

The 2ND-ORDER WAVES section (unused when WaveMod = 0 or 6) of the input file allows the option of adding
second-order contributions to the wave kinematics used by the strip-theory solution. When second-order terms are
optionally enabled, the second-order terms are calculated using the first-order wave-component amplitudes and extra
energy is added to the wave spectrum (at the difference and sum frequencies). The second-order terms cannot be
computed without also including the first-order terms from the WAVES section above. Enabling the second-order
terms allows one to capture some of the nonlinearities of real surface waves, permitting more accurate modeling of sea
states and the associated wave loads at the expense of greater computational effort (mostly at HydroDyn initialization).

While the cut-off frequencies in this section apply to both the second-order wave kinematics used by strip theory and
the second-order diffraction loads in potential-flow theory, the second-order terms themselves are enabled separately.
The second-order wave kinematics used by strip theory are enabled in this section while the second-order diffraction
loads in potential-flow theory are enabled in the 2ND-ORDER FLOATING PLATFORM FORCES section below.
While the second-order effects are included when enabled, the wave elevations output from HydroDyn will only
include the second-order terms when the second-order wave kinematics are enabled in this section.

To use second-order wave kinematics in the strip-theory solution, set WvDiffQTF and/or WvSumQTF to TRUE. When
WvDiffQTF is set to TRUE, second-order difference-frequency terms, calculated using the full difference-frequency
QTF, are incorporated in the wave kinematics. When WvSumQTF is set to TRUE, second-order sum-frequency terms,
calculated using the full sum-frequency QTF, are incorporated in the wave kinematics. The full difference- and sum-
frequency wave kinematics QTFs are implemented analytically following [Sharma and Dean, 1981], which extends
Stokes second-order theory to irregular multidirectional waves. A setting of FALSE disregards the second-order
contributions to the wave kinematics in the strip-theory solution.
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WvLowCOffD and WvHiCOffD control the lower and upper cut-off frequencies (in rad/s) of the second-order
difference-frequency terms; the second-order difference-frequency terms are zeroed below and above these cut-off
frequencies, respectively. The cut-offs apply directly to the physical difference frequencies, not the two individual
first-order frequency components of the difference frequencies. When enabling second-order potential-flow theory, a
setting of WvLowCOffD = 0 is advised to avoid eliminating the mean-drift term (second-order wave kinematics do not
have a nonzero mean). WvHiCOffD need not be set higher than the peak-spectral frequency of the first-order wave
spectrum (𝜔p = 2𝜋/WaveTp) to minimize computational expense.

Likewise, WvLowCOffS and WvHiCOffS control the lower and upper cut-off frequencies (in rad/s) of the second-
order sum-frequency terms; the second-order sum-frequency terms are zeroed below and above these cut-off fre-
quencies, respectively. The cut-offs apply directly to the physical sum frequencies, not the two individual first-order
frequency components of the sum frequencies. WvLowCOffS need not be set lower than the peak-spectral frequency
of the first-order wave spectrum (𝜔p = 2𝜋/WaveTp) to minimize computational expense. Setting a proper upper
cut-off frequency (WvHiCOffS) also minimizes computational expense and is important to (1) ensure convergence
of the second-order summations, (2) avoid unphysical “bumps” in the wave troughs, (3) prevent nonphysical effects
when approaching of the breaking-wave limit, and (4) avoid nonphysical wave forces at high frequencies (i.e., at short
wavelengths) when using a strip-theory solution.

Because the second-order terms are calculated using the first-order wave-component amplitudes, the second-order cut-
off frequencies (WvLowCOffD, WvHiCOffD, WvLowCOffS, and WvHiCOffS) are used in conjunction with the
first-order cut-off frequencies (WvLowCOff and WvHiCOff) from the WAVES section. However, the second-order
cut-off frequencies are not used by Newman’s approximation of the second-order difference-frequency potential-flow
loads, which are derived solely from first-order effects.

Current

You can include water velocity due to a current model by setting CurrMod = 1. If CurrMod is set to zero, then the
simulation will not include current. CurrMod = 2 requires that the UserCurrent() subroutine of the Current.
f90 source file be implemented by the user, and will require recompiling either the standalone HydroDyn program or
OpenFAST. Current induces steady hydrodynamic loads through the viscous-drag terms (both distributed and lumped)
of strip-theory members. Current is not used in the potential-flow solution or when WaveMod = 6.

HydroDyn’s standard current model includes three sub-models: near-surface, sub-surface, and depth-independent, as
illustrated in Figure 1. All three currents are vector summed, along with the wave particle kinematics velocity.

The sub-surface current model follows a power law, .. math:

:label: ssCurrent

U(Z) = \mathrm{WndSpeed} \times \left( \frac{Z+d}{\mathrm{HubHt}} \right)^\mathrm
→˓{ShearExp}

where Z is the local depth below the SWL (negative downward), d is the water depth (equal to WtrDpth + MSL2SWL),
and U0SS is the current velocity at SWL, corresponding to CurrSSV0. The heading of the sub-surface current is
defined using CurrSSDir, following the same convention as WaveDir.

The near-surface current model follows a linear relationship down to a reference depth such that, .. math:

:label: nsCurrent

U(Z) = \mathrm{WndSpeed} \times \left( \frac{Z+d}{\mathrm{HubHt}} \right)^\mathrm
→˓{ShearExp}

where href is the reference depth corresponding to CurrNSRef, and must be positive valued. U0NS is the current
velocity at SWL, corresponding to CurrNSV0. The heading of the near-surface current is defined using CurrNSDir,
following the same convention as WaveDir.
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The depth-independent current velocity everywhere equals CurrDIV. This current has a heading direction
CurrDIDir, following the same convention as WaveDir.

Floating Platform

This and the next few sections of the input file have “Floating Platform” in the title, but the input parameters control
the potential-flow model, regardless of whether the substructure is floating or not. The potential-flow solution cannot
be used in conjunction with nonzero MSL2SWL or WaveMod = 6.

If the load contributions from potential-flow theory are to be used, set PotMod to 1 for the use of frequency-to-time-
domain transforms based on WAMIT output or 2 for the use of FIT (FIT is not yet documented in this manual). With
PotMod = 1, include the root name (without extensions) for the WAMIT-related output files in PotFile. These files
consist of the .1, .3,.hst and second-order files. These are written by the WAMIT program and should not include any
file headers. When the linear state-space model is used in placed of convolution, the .ss file generated by SS_Fitting
must have the same root name as the other WAMIT-related files (see RdtnMod below). The remaining parameters in
this section are only used when PotMod = 1.

The output files from WAMIT are in a standard nondimensional form that HydroDyn will dimensionalize internally
upon input. WAMITULEN is the characteristic body length scale used to redimensionalize the WAMIT output. The
body motions and forces in these files are in relation to the WAMIT reference point (WRP) in HydroDyn, which
for the undisplaced substructure is the same as the origin of the global inertial-frame coordinate system (0,0,0). The
.hst file contains the 6x6 linear hydrostatic restoring (stiffness) matrix of the platform. The .1 file contains the 6x6
frequency-dependent hydrodynamic added-mass and damping matrix of the platform from the radiation problem. The
.3 file contains the 6x1 frequency- and direction-dependent first-order wave-excitation force vector of the platform
from the linear diffraction problem. While HydroDyn expects hydrodynamic coefficients derived from WAMIT, if
you are not using WAMIT, it is recommended that you reformat your data according to the WAMIT format (including
nondimensionalization) before inputting them to HydroDyn. Information on the WAMIT format is available from
Chapter 4 of the WAMIT User’s Guide [Lee, 2006].

PtfmVol0 is the displaced volume of water when the platform is in its undisplaced position. This value should be
set equal to the value computed by WAMIT as output in the WAMIT .out file. PtfmCOBxt and PtfmCOByt are the
X and Y offsets of the center of buoyancy from the WRP.

HydroDyn has two methods for calculating the radiation memory effect. Set RdtnMod to 1 for the convolution
method, 2 for the linear state-space model, or 0 to disable the memory effect calculation. For the convolution method,
RdtnTMax determines how long to track the memory effect (truncating the convolutions at t – RdtnTMax, where
t is the current simulation time), but it also determines the frequency step used in the cosine transform, from which
the time-domain radiation kernel (radiation impulse-response function) is derived. A RdtnTMax of 60 s is usually
more than sufficient because the radiation kernel decays to zero after a short amount of time; setting RdtnTMax much
greater than this will cause HydroDyn to run significantly slower. (RdtnTMax does not need to match or exceed the
total simulation length.) Setting RdtnTMax to 0 s disables the memory effect, akin to setting RdtnMod to 0. For
the convolution method, RdtnDT is the time step for the radiation calculations (numerical convolutions), but also
determines the maximum frequency in the cosine transform. For the state-space model, RdtnDT is the time step to
use for time integration of the linear state-space model. In this version of HydroDyn, RdtnDT must match the glue
code (OpenFAST/driver program) simulation time step; the DEFAULT keyword can be used for this.

2nd-Order Floating Platform Forces

The 2ND-ORDER FLOATING PLATFORM FORCES section of the input file allows the option of adding second-
order contributions to the potential-flow solution. When second-order terms are optionally enabled, the second-order
terms are calculated using the first-order wave-component amplitudes and extra energy is added to the wave spectrum
(at the difference and sum frequencies). The second-order terms cannot be computed without also including the first-
order terms from the FLOATING PLATFORM section above (PotMod = 1). Enabling the second-order terms allows
one to capture some of the nonlinearities of real surface waves, permitting more accurate modeling of sea states and
the associated wave loads at the expense of greater computational effort (mostly at HydroDyn initialization).
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While the cut-off frequencies in the 2ND-ORDER WAVES section above apply to both the second-order wave kine-
matics used by strip theory and the second-order diffraction loads in potential-flow theory, the second-order terms
themselves are enabled separately. The second-order wave kinematics used by strip theory are enabled in the 2ND-
ORDER WAVES section above while the second-order diffraction loads in potential-flow theory are enabled in this
section. While the second-order effects are included when enabled, the wave elevations output from HydroDyn will
only include the second-order terms when the second-order wave kinematics are enabled in the 2ND-ORDER WAVES
section above.

The second-order difference-frequency potential-flow terms can be enabled in one of three ways. To compute only
the mean-drift term, set MnDrift to a nonzero value; to estimate the mean- and slow-drift terms using Standing et
al.’s extension to Newman’s approximation, based only on first-order effects, set NewmanApp to a nonzero value; or
to compute the mean- and slow-drift terms using the full difference-frequency QTF set DiffQTF to a nonzero value.
Valid values of MnDrift are 0, 7, 8, 9, 10, 11, or 12 corresponding to which WAMIT output file the mean-drift terms
will be calculated from. Valid values of NewmanApp are 0, 7, 8, 9, 10, 11, or 12 corresponding to which WAMIT
output file the Newman’s approximation will be calculated from. Newman’s approximation cannot be used in conjunc-
tion with directional spreading (WaveDirMod must be 0) and the second-order cut-off frequencies do not apply to
Newman’s approximation. Valid values of DiffQTF are 0, 10, 11, or 12 corresponding to which WAMIT output file
the full difference-frequency potential-flow solution will be calculated from. Only one of MnDrift, NewmanApp,
and DiffQTF can be nonzero; a setting of 0 disregards the second-order difference-frequency contributions to the
potential-flow solution.

The .7 WAMIT file refers to the mean-drift loads (diagonal of the difference-frequency QTF) in all 6 DOFs derived
from the control-surface integration method based on the first-order solution. The .8 WAMIT file refers to the mean-
drift loads (diagonal of the difference-frequency QTF) only in surge, sway, and roll derived from the momentum
conservation principle based on the first-order solution. The .9 WAMIT file refers to the mean-drift loads (diagonal
of the difference-frequency QTF) in all six DOFs derived from the pressure integration method based on the first-
order solution. For the difference-frequency terms, 10, 11, and 12 refer to the WAMIT .10d, .11d, and .12d files,
corresponding to the full QTF of (.10d) loads in all 6 DOFs associated with the quadratic interaction of first-order
quantities, (.11d) total (quadratic plus second-order potential) loads in all 6 DOFs derived by the indirect method, and
(.12d) total (quadratic plus second-order potential) loads in all 6 DOFs derived by the direct method, respectively.

The second-order sum-frequency potential-flow terms can only be enabled using the full sum-frequency QTF, by
setting SumQTF to a nonzero value. Valid values of SumQTF are 0, 10, 11, or 12 corresponding to which WAMIT
output file the full sum-frequency potential-flow solution will be calculated from; a setting of 0 disregards the second-
order sum-frequency contributions to the potential-flow solution. For the sum-frequency terms, 10, 11, and 12 refer to
the WAMIT .10s, .11s, and .12s files, corresponding to the full QTF of (.10s) loads in all 6 DOFs associated with the
quadratic interaction of first-order quantities, (.11s) total (quadratic plus second-order potential) loads in all 6 DOFs
derived by the indirect method, and (.12s) total (quadratic plus second-order potential) loads in all 6 DOFs derived by
the direct method, respectively.

Floating Platform Force Flags

This release requires that all platform force flags be set to TRUE. Future releases will allow you to turn on/off one or
more of the six platform force components.

Platform Additional Stiffness and Damping

The vectors and matrices of this section are used to generate additional loads on the platform (in addition to other
hydrodynamic terms calculated by HydroDyn), per the following equation.

[][]()0AddquadFFCqBqBABSqq=CC CCCC CCCC CCCC CCCC ,

where 0F corresponds to the AddF0 6x1 static load (preload) vector, [] corresponds to the AddCLin 6x6 linear restor-
ing (stiffness) matrix, [] corresponds to the AddBLin 6x6 linear damping matrix, [] corresponds to the AddBQuad
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6x6 quadratic drag matrix, and q corresponds to the WRP 6x1 (six-DOF) displacement vector (three translations and
three rotations), where the overdot refers to the first time-derivative.

These terms can be used, e.g., to model a linearized mooring system, to augment strip-theory members with a linear
hydrostatic restoring matrix (see Section 6.8.3), or to “tune” HydroDyn to match damping to experimental results, such
as free-decay tests. While likely most useful for floating systems, these matrices can also be used for fixed-bottom
systems; in both cases, the resulting load is applied at the WRP, which when HydroDyn is coupled to OpenFAST,
get applied to the platform in ElastoDyn (bypassing SubDyn for fixed-bottom systems). See Section 6 for addition
modeling considerations where these terms are necessary.

Axial Coefficients

This and the next several sections of the input file control the strip-theory model for both fixed-bottom and floating
substructures.

HydroDyn computes lumped viscous-drag, added-mass, fluid-inertia, and static pressure loads at member ends (joints).
The hydrodynamic coefficients for the lumped the lumped loads at joints are referred to as “axial coefficients” and
include viscous-drag coefficients, AxCd, added-mass coefficients, AxCa, and dynamic-pressure coefficients, AxCp.
AxCa influences both the added-mass loads and the scattering component of the fluid-inertia loads. Any number of
separate axial coefficient sets, distinguished by AxCoefID, may be specified by setting NAxCoef > 1.

Axial viscous-drag loads will be calculated for all specified member joints. Axial added-mass, fluid-inertia, and static-
pressure loads will only be calculated for member joints of members not modeled with potential flow (PropPot =
FALSE). Axial loads are only calculated at user-specified joints. Axial loads are not calculated at joints HydroDyn may
automatically create as part its solution process. For example, if you want axial effects at a marine-growth boundary
(where HydroDyn automatically adds a joint), you must explicitly set a joint at that location.

Member Joints

The strip-theory model is based on a substructure composed of joints interconnected by members. NJoints is
the user-specified number of joints and determines the number of rows in the subsequent table. Because a member
connects two nodes, NJoints must be exactly zero or greater than or equal to two. Each joint listed in the table is
identified by a unique integer, JointID. The (X,Y,Z) coordinate of each joint is specified in the global inertial-frame
coordinate system via Jointxi, Jointyi, and Jointzi, respectively. JointAxID corresponds to an entry in the
AXIAL COEFFICIENTS table and sets the axial coefficients for a joint. This version of HydroDyn cannot calculate
joint overlap when multiple members meet at a common joint; therefore JointOvrlp must be set to 0. Future
releases will enable joint overlap calculations.

Modeling a fixed-bottom substructure embedded into the seabed (e.g., through piles or suction buckets) requires that
the lowest member joint(s) lie below the water depth. Placing a joint at or above the water depth results in static
pressure loads being applied.

Member Cross-Sections

Members in HydroDyn are assumed to be straight circular (and possibly tapered) cylinders. Apart from the hydro-
dynamic coefficients, the circular cross-section properties needed for the hydrodynamic load calculations are member
outer diameter, PropD, and member thickness, PropThck. You will need to create an entry in this table, dis-
tinguished by PropSetID, for each unique combination of these two properties. The member property-set table
contains NPropSets rows. The member property sets are referred to by their PropSetID in the MEMBERS table,
as described in Section 4.3.13 below. PropD determines the static buoyancy loads exterior to a member, as well as
the area used in the viscous-drag calculation and the volume used in the added-mass and fluid-inertia calculations.
PropThck determines the interior volume for fluid-filled (flooded/ballasted) members.
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Hydrodynamic Coefficients

HydroDyn computes distributed viscous-drag, added-mass, fluid-inertia, and static buoyancy loads along members.

The hydrodynamic coefficients for the distributed strip-theory loads are specified using any of three models, which
we refer to as the simple model, a depth-based model, and a member-based model. All of these models require
the specification of both transverse and axial hydrodynamic coefficients for viscous drag, added mass, and dynamic
pressure (axial viscous drag is not yet available). The added-mass coefficient influences both the added-mass loads
and the scattering component of the fluid-inertia loads. There are separate set of hydrodynamic coefficients both with
and without marine growth. A given element will either use the marine growth or the standard version of a coefficient,
but never both. Note that input members are split into elements per Section 7.5.2, one of the splitting rules guarantees
the previous statement is true. Which members have marine growth is defined by the MARINE GROWTH table of
Section 4.3.15.

You can specify only one model type, MCoefMod, for any given member in the MEMBERS table. However, different
members can specify different coefficient models.

In the hydrodynamic coefficient input parameters, Cd, Ca, and Cp refer to the viscous-drag, added-mass, and dynamic-
pressure coefficients, respectively, MG identifies the coefficients to be applied for members with marine growth (the
standard values are identified without MG), and Ax identifies the axial coefficients to be applied for tapered members
(the transverse coefficients are identified without Ax). It is noted that for the transverse coefficients, CP + CA = CM,
the inertia coefficient.

While the strip-theory solution assumes circular cross sections, the hydrodynamic coefficients can include shape cor-
rections; however, there is no distinction made in HydroDyn between different transverse directions.

Simple Model

This table consists of a single complete set of hydrodynamic coefficients as follows: SimplCd,
SimplCdMG, SimplCa, SimplCaMG, SimplCp, SimplCpMG, SimplAxCa, SimplAxCaMG, SimplAxCp,
and SimplAxCpMG. These hydrodynamic coefficients are referenced in the members table of Section 4.3.13 by
selecting MCoefMod = 1.

Depth-Based Model

The depth-based coefficient model allows you to specify a series of depth-dependent coefficients. NCoefDpth is
the user-specified number of depths and determines the number of rows in the subsequent table. Currently, this table
requires that the rows are ordered by increasing depth, Dpth; this is equivalent to a decreasing global Z-coordinate.
The hydrodynamic coefficients at each depth are as follows: DpthCd, DpthCdMG, DpthCa, DpthCaMG, DpthCp,
DpthCpMG, DpthAxCa, DpthAxCaMG, DpthAxCp, and DpthAxCpMG. Members use these hydrodynamic coeffi-
cients by setting MCoefMod = 2. The HydroDyn module will interpolate coefficients for a node whose Z-coordinate
lies between table Z-coordinates.

Member-Based Model

The member-based coefficient model allows you to specify a hydrodynamic coefficients for each particular mem-
ber. NCoefMembers is the user-specified number of members with member-based coefficients and determines the
number of rows in the subsequent table. The hydrodynamic coefficients for a member distinguished by MemberID
are as follows: MemberCd1, MemberCd2, MemberCdMG1, MemberCdMG2, MemberCa1, MemberCa2,
MemberCaMG1, MemberCaMG2, MemberCp1, MemberCp2, MemberCpMG1, MemberCpMG2, MemberAxCa1,
MemberAxCa2, MemberAxCaMG1, MemberAxCaMG2, MemberAxCp1, MemberAxCp2, MemberAxCpMG1,
and MemberAxCpMG2, where 1 and 2 identify the starting and ending joint of the member, respectively. Members
use these hydrodynamic coefficients by setting MCoefMod = 3.
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Members

NMembers is the user-specified number of members and determines the number of rows in the subsequent table. For
each member distinguished by MemberID, MJointID1 specifies the starting joint and MJointID2 specifies the
ending joint, corresponding to an identifier (JointID) from the MEMBER JOINTS table. Likewise, MPropSetID1
corresponds to the starting cross-section properties and MProSetID2 specify the ending cross-section properties,
allowing for tapered members. MDivSize determines the maximum spacing (in meters) between simulation nodes
where the distributed loads are actually computed; the smaller the number, the finer the resolution and longer the
computational time. Section 7.5.2 discusses the difference between the user-supplied discretization and the simulation
discretization. Each member in your model will have hydrodynamic coefficients, which are specified using one of
the three models (MCoefMod). Model 1 uses a single set of coefficients found in the SIMPLE HYDRODYNAMIC
COEFFICIENTS section. Model 2 is depth-based, and is determined via the table found in the DEPTH-BASED
HYDRODYNAMIC COEFFICIENTS section. Model 3 specifies coefficients for a particular member, by referring
to the MEMBER-BASED HYDRODYNAMIC COEFFICIENTS section. The PropPot flag indicates whether the
corresponding member coincides with the body represented by the potential-flow solution. When PropPot = TRUE,
only viscous-drag loads, and ballasting loads will be computed for that member.

Filled Members

Members—whether they are also modeled with potential-flow or not—may be fluid-filled, meaning that they are
flooded and/or ballasted. Fluid-filled members introduce interior buoyancy that subtracts from the exterior buoyancy
and a mass. Both distributed loads along a member and lumped loads at joints are applied. The volume of fluid in the
member is derived from the outer diameter and thickness of the member and a fluid-filled free-surface level. The fluid
in the member is assumed to be compartmentalized such that it does not slosh. Rotational inertia of the fluid in the
member is ignored. A member’s filled configuration is defined by the filled-fluid density and the free-surface level.
Filled members that have the same configuration are collected into fill groups.

NFillGroups specifies the number of fluid-filled member groups and determines the number of rows in the sub-
sequent table. FillNumM specifies the number of members in the fill group. FillMList is a list of FillNumM
whitespace-separated MemberIDs. FillFSLoc specifies the Z-height of the free-surface (0 for MSL). FillDens
is the density of the fluid. If FillDens = DEFAULT, then FillDens = WtrDens.

Marine Growth

Members not also modeled with potential-flow theory may be modeled with marine growth. Marine growth causes
three effects. First, marine growth introduces a static weight and mass to a member, applied as distributed loads along
the member. Second, marine growth increases the outer diameter of a member, which impacts the diameter used in the
viscous-drag, added-mass, fluid-inertia, and static buoyancy load calculations. Third, the hydrodynamic coefficients
for viscous drag, added mass, and dynamic pressure are specified distinctly for marine growth. Rotational inertia of
the marine growth is ignored and marine growth is not added to member ends.

Marine growth is specified using a depth-based table with NMGDepths rows. This table must have exactly zero or
at least 2 rows. The columns in the table include the local depth, MGDpth, the marine growth thickness, MGThck,
and marine growth density, MGDens. Marine growth for a particular location in the substructure geometry is added
by linearly interpolating between the marine-growth table entries. The smallest and largest values of MGDpth define
the marine growth region. Outside this region the marine growth thickness is set to zero. If you want sub-regions of
zero marine growth thickness within these bounds, you must generate depth entries which explicitly set MGThck to
zero. The hydrodynamic coefficient tables contain coefficients with and without marine growth. If MGThck = 0 for a
particular node, the coefficients not associated with marine growth are used.
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Member Output List

HydroDyn can output distributed load and wave kinematic quantities at up to 9 locations on up to 9 different members,
for a total of 81 possible local member output locations. NMOutputs specifies the number of members. You must
create a table entry for each requested member. Within a table entry, MemberID is the ID specified in the MEMBERS
table, and NOutLoc specifies how many output locations are generated for this member. NodeLocs specifies those
locations as a normalized distance from the starting joint (0.0) to the ending joint (1.0) of the member. If the chosen
location does not align with a calculation node, the results at the two surrounding nodes will be linearly interpolated.
The outputs specified in the OUTPUT CHANNELS section determines which quantities are actually output at these
locations.

Joint Output List

HydroDyn can output lumped load and wave kinematic quantities at up to 9 different joints. JOutLst contains a
list of NJOutputs number of JointIDs. The outputs specified in the OUTPUT CHANNELS section determines
which quantities are actually output at these joints.

Output

Specifying HDSum = TRUE causes HydroDyn to generate a summary file with name OutRootname.HD.sum.
OutRootName is either specified in the HYDRODYN section of the driver input file when running HydroDyn stan-
dalone, or by the OpenFAST program when running a coupled simulation. See section 5.3 for summary file details.

For this version, OutAll must be set to FALSE. In future versions, setting OutAll = TRUE will cause HydroDyn
to auto-generate outputs for every joint and member in the input file.

If OutSwtch is set to 1, outputs are sent to a file with the name OutRootname.HD.out. If OutSwtch is set to
2, outputs are sent to the calling program (OpenFAST) for writing. If OutSwtch is set to 3, both file outputs occur.
In standalone mode, setting OutSwitch to 2 results in no output file being produced.

The OutFmt and OutSFmt parameters control the formatting for the output data and the channel headers, respec-
tively. HydroDyn currently does not check the validity of these format strings. They need to be valid Fortran format
strings. Since the OutSFmt is used for the column header and OutFmt is for the channel data, in order for the
headers and channel data to align properly, the width specification should match. For example,

"ES11.4" OutFmt "A11" OutSFmt

Output Channels

This section controls output quantities generated by HydroDyn. Enter one or more lines containing quoted strings
that in turn contain one or more output parameter names. Separate output parameter names by any combination of
commas, semicolons, spaces, and/or tabs. If you prefix a parameter name with a minus sign, ?-?, underscore, ?_?,
or the characters ?m? or ?M?, HydroDyn will multiply the value for that channel by ?1 before writing the data. The
parameters are not necessarily written in the order they are listed in the input file. HydroDyn allows you to use multiple
lines so that you can break your list into meaningful groups and so the lines can be shorter. You may enter comments
after the closing quote on any of the lines. Entering a line with the string ?END? at the beginning of the line or at the
beginning of a quoted string found at the beginning of the line will cause HydroDyn to quit scanning for more lines of
channel names. Member- and joint-related quantities are generated for the requested MEMBER OUTPUT LIST and
JOINT OUTPUT LIST. If HydroDyn encounters an unknown/invalid channel name, it warns the users but will remove
the suspect channel from the output file. Please refer to Appendix C for a complete list of possible output parameters.
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6.3.3 Output Files

HydroDyn produces four types of output files: an echo file, a wave-elevations file, a summary file, and a time-series
results file. The following sections detail the purpose and contents of these files.

Echo Files

If you set the Echo flag to TRUE in the HydroDyn driver file or the HydroDyn primary input file, the contents
of those files will be echoed to a file with the naming conventions, OutRootName.dvr.ech for the driver input
file and OutRootName.HD.ech for the HydroDyn primary input file. OutRootName is either specified in the
HYDRODYN section of the driver input file, or by the OpenFAST program. The echo files are helpful for debugging
your input files. The contents of an echo file will be truncated if HydroDyn encounters an error while parsing an input
file. The error usually corresponds to the line after the last successfully echoed line.

Wave-Elevations File

Setting WaveElevSeriesFlag in the driver file to TRUE enables the outputting of a grid of wave elevations
to a text-based file with the name OutRootName.WaveElev.out. The grid consists of WaveElevNX by
WaveElevNY wave elevations (centered at X = 0, Y = 0) with a dX and dY spacing in the global inertial-frame
coordinate system. These wave elevations are distinct and output separately from the wave elevations determined by
NWaveElev in the HydroDyn primary input file, such that the total number of wave elevation outputs is NWaveElev
+ ( WaveElevNX × WaveElevNY ). The wave-elevation output file OutRootName.WaveElev.out contains the
total wave elevation, which is the sum of the first- and second-order terms (when the second-order wave kinematics
are optionally enabled).

Summary File

HydroDyn generates a summary file with the naming convention, OutRootName.HD.sum if the HDSum parameter
is set to TRUE. This file summarizes key information about your hydrodynamics model, including buoyancy, substruc-
ture volumes, marine growth weight, the simulation mesh and its properties, first-order wave frequency components,
and the radiation kernel.

When the text refers to an index, it is referring to a given row in a table. The indexing starts at 1 and increases
consecutively down the rows.

WAMIT-model volume and buoyancy information

This section summarizes the buoyancy of the potential-flow-model platform in its undisplaced configuration. For a
hybrid potential-flow/strip-theory model, these buoyancy values must be added to any strip-theory member buoyancy
reported in the subsequent sections to obtain the total buoyancy of the platform.

Substructure Volume Calculations

This section contains a summary of the total substructure volume, the submerged volume, volume of any marine
growth, and fluid-filled (flooded/ballasted) volume for the substructure in its undisplaced configuration. Except for the
fluid-filled volume value, the reported volumes are only for members that have the PropPot flag set to FALSE. The
flooded/ballasted volume applies to any fluid-filled member, regardless of its PropPot flag.
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Integrated Buoyancy Loads

This section details the buoyancy loads of the undisplaced substructure when summed about the WRP (0,0,0). The
external buoyancy includes the effects of marine growth, and only applies to members whose PropPot flag is set to
FALSE. The internal buoyancy is the negative effect on buoyancy due to flooding or ballasting and is independent of
the PropPot flag.

Integrated Marine Growth Weights

This section details the marine growth weight loads of the undisplaced substructure when summed about the WRP
(0,0,0).

Simulation Node Table

This table details the undisplaced nodal information and properties for all internal analysis nodes used by the Hydro-
Dyn model. The node index is provided in the first column. The second column maps the node to the input joint
index (not to be confused with the JointID). If a value of -1 is found in this column, the node is an interior node
and results from an input member being split somewhere along its length due to the requirements of the MDivSize
parameter in the primary input file members table. See Section 7.5.2 for the member splitting rules used by HydroDyn.
The third column indicates if this node is part of a Super Member (JointOvrlp = 1). The next column tells you
the corresponding input member index (not to be confused with the MemberID). Nxi, Nyi, and Nzi, provide the
(X,Y,Z) coordinates in the global inertial-frame coordinate system. InpMbrDist provides the normalized distance
to the node from the start of the input member. R is the outer radius of the member at the node (excluding marine
growth), and t is the member wall thickness at the node. dRdZ is the taper of the member at the node, tMG is the ma-
rine growth thickness, and MGDens is the marine growth density. PropPot indicates whether the element attached
to this node is modeled using potential-flow theory. If FilledFlag is TRUE, then FillDens gives the filled
fluid density and FillFSLoc indicates the free-surface height (Z-coordinate). Cd, Ca, Cp, AxCa, AxCp, JAxCd,
JAxCa, and JAxCp are the viscous-drag, added-mass, dynamic-pressure, axial added-mass, axial dynamic-pressure,
end-effect axial viscous-drag, end-effect axial added-mass, and end-effect axial dynamic-pressure coefficients, respec-
tively. NConn gives the number of elements connected to node, and Connection List is the list of element indexes
attached to the node.

Simulation Element Table

This section details the undisplaced simulation elements and their associated properties. A suffix of 1 or 2 in a column
heading refers to the element’s starting or ending node, respectively. The first column is the element index. node1 and
node2 refer to the node index found in the node table of the previous section. Next are the element Length and exterior
Volume. This exterior volume calculation includes any effects of marine growth. MGVolume provides the volume
contribution due to marine growth. The cross-sectional properties of outer radius (excluding marine growth), marine
growth thickness, and wall thickness for each node are given by R1, tMG1, t1, R2, tMG2, and t2, respectively.
MGDens1 and MGDens2 are the marine growth density at node 1 and 2. PropPot indicates if the element is modeled
using potential-flow theory. If the element is fluid-filled (has flooding or ballasting), FilledFlag is set to T for
TRUE. FillDensity and FillFSLoc are the filled fluid density and the free-surface location’s Z-coordinate in
the global inertial-frame coordinate system. FillMass is calculated by multiplying the FillDensity value by the
element’s interior volume. Finally, the element hydrodynamic coefficients are listed. These are the same coefficients
listed in the node table (above).

Member Outputs

The summary file includes information about all requested member output channels.
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The first column lists the data channel’s string label, as entered in the OUTPUT CHANNELS section of the HydroDyn
input file. Xi, Yi, Zi, provide the output’s undisplaced spatial location in the global inertial-frame coordinate sys-
tem. The next column, InpMbrIndx, tells you the corresponding input member index (not to be confused with the
MemberID). Next are the coordinates of the starting (StartXi, StartYi, StartZi) and ending (EndXi, EndYi,
EndZi) nodes of the element containing this output location. Loc is the normalized distance from the starting node
of this element.

Joint Outputs

The summary file includes information about all requested joint output channels.

The first column lists the data channel’s string label, as entered in the OUTPUT CHANNELS section of the HydroDyn
input file. Xi, Yi, Zi, provide the output’s undisplaced spatial location in the global inertial-frame coordinate system.
InpJointID specifies the JointID for the output as given in the MEMBER JOINTS table of the HydroDyn input
file.

The Wave Number and Complex Values of the Wave Elevations as a Function of Frequency

This section provides the frequency-domain description (in terms of a Discrete Fourier Transform or DFT) of the
first-order wave elevation at (0,0) on the free surface, but is not written when WaveMod = 0 or 6. The first column,
m, identifies the index of each wave frequency component. The finite-depth wave number, frequency, and direction of
the wave component are given by k, Omega, and Direction, respectively. The last two columns provide the real
(REAL(DFT{WaveElev})) and imaginary (IMAG(DFT{WaveElev})) components of the DFT of the first-order
wave elevation. The DFT produces includes both the negative- and positive-frequency components. The negative-
frequency components are complex conjugates of the positive frequency components because the time-domain wave
elevation is real-valued. The relationships between the negative- and positive-frequency components of the DFT are
given by ()=() and ()=(), where H is the DFT of the wave elevation and * denotes the complex conjugate.

Radiation Memory Effect Convolution Kernel

In the potential-flow solution based on frequency-to-time-domain transforms, HydroDyn computes the radiation kernel
used by the convolution method for calculating the radiation memory effect through the cosine transform of the 6x6
frequency-dependent hydrodynamic damping matrix from the radiation problem. The resulting time-domain radiation
kernel (radiation impulse-response function)—which is a 6x6 time-dependent matrix—is provided in this section. n
and t give the time-step index and time, which are followed by the elements (K11, K12, etc.) of the radiation kernel
associated with that time. Because the frequency-dependent hydrodynamic damping matrix is symmetric, so is the
radiation kernel; thus, only the diagonal and upper-triangular portion of the matrix are provided. The radiation kernel
should decay to zero after a short amount of time, which should aid in selecting an appropriate value of RdtnTMax.

Results File

The HydroDyn time-series results are written to a text-based file with the naming convention OutRootName.HD.
out when OutSwtch is set to either 1 or 3. If HydroDyn is coupled to OpenFAST and OutSwtch is set to 2 or 3,
then OpenFAST will generate a master results file that includes the HydroDyn results. The results are in table format,
where each column is a data channel (the first column always being the simulation time), and each row corresponds to
a simulation output time step. The data channels are specified in the OUTPUT CHANNELS section of the HydroDyn
primary input file. The column format of the HydroDyn-generated file is specified using the OutFmt and OutSFmt
parameter of the primary input file.
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6.3.4 Modeling Considerations

HydroDyn was designed as an extremely flexible tool for modeling a wide-range of hydrodynamic conditions and
substructures. This section provides some general guidance to help you construct models that are compatible with
HydroDyn.

Please refer to the theory of Section 7 for detailed information about HydroDyn’s coordinate systems, and the imple-
mentation approach we have followed in HydroDyn.

Waves

Waves generated internally within HydroDyn can be regular (periodic) or irregular (stochastic) and long-crested (uni-
directional) or short-crested (with wave energy spread across a range of directions). Internally, HydroDyn generates
waves analytically for finite depth using first-order (linear Airy) or first- plus second-order wave theory [Sharma and
Dean, 1981] with the option to include directional spreading, but wave kinematics are only computed in the domain
between the flat seabed and SWL and no wave stretching or higher order wave theories are included. Modeling unidi-
rectional sea states is often overly conservative in engineering design. Enabling the second-order terms allows one to
capture some of the nonlinearities of real surface waves, permitting more accurate modeling of sea states and the asso-
ciated wave loads at the expense of greater computational effort (mostly at HydroDyn initialization). The magnitude
and frequency content of second-order hydrodynamic loads can excite structural natural frequencies, leading to greater
ultimate and fatigue loads than can be predicted solely using first-order theory. Sum-frequency effects are important to
the loading of stiff fixed-bottom structures and for the springing and ringing analysis of TLPs. Difference-frequency
(mean-drift and slow-drift) effects are important to the analysis of compliant structures, including the motion analysis
and mooring loads of catenary-moored floating platforms (spar buoys and semi-submersibles).

When modeling irregular sea states, we recommend that WaveTMax be set to at least 1 hour (3600 s) and that WaveDT
be a value in the range between 0.1 and 1.0 s to ensure sufficient resolution of the wave spectrum and wave kinematics.
When HydroDyn is coupled to OpenFAST, WaveDT may be specified arbitrarily independently from the glue code
time step of OpenFAST. (The wave kinematics and hydrodynamic loads will be interpolated in time as necessary.)

Wave directional spreading is implemented in HydroDyn via the equal-energy method, which assumes that the direc-
tional spreading spectrum is the product of a frequency spectrum and a spreading function i.e. S(𝜔,𝛽) = S(𝜔)D(𝛽).
Directional spreading is not permitted when using Newman’s approximation of the second-order difference-frequency
potential-flow loads.

When second-order terms are optionally enabled, the second-order terms are calculated using the first-order wave-
component amplitudes and extra energy is added to the wave spectrum (at the difference and sum frequencies). The
second-order terms cannot be computed without also including the first-order terms.

It is important to set proper wave cut-off frequencies to minimize computational expense and to ensure that the
wave kinematics and hydrodynamic loads are realistic. HydroDyn gives the user six user-defined cut-off fre-
quencies—WvLowCOff and WvHiCOff for the low- and high-frequency cut-offs of first-order wave components,
WvLowCOffD and WvHiCOffD for the low-and high-frequency cut-offs of second-order difference-frequency wave
components, and WvLowCOffS and WvHiCOffS for low- and high-frequency cut-offs of second-order sum-
frequency wave components—none of which have default settings. The second-order cut-offs apply directly to the
physical difference and sum frequencies, not the two individual first-order frequency components of the difference and
sum frequencies. Because the second-order terms are calculated using the first-order wave-component amplitudes,
the second-order cut-off frequencies are used in conjunction with the first-order cut-off frequencies. However, the
second-order cut-off frequencies are not used by Newman’s approximation of the second-order difference-frequency
potential-flow loads, which are derived solely from first-order effects.

For the first-order wave-component cut-off frequencies, WvLowCOffmay be set lower than the low-energy limit of the
first-order wave spectrum to minimize computational expense. Setting a proper upper cut-off frequency (WvHiCOff)
also minimizes computational expense and is important to prevent nonphysical effects when approaching of the
breaking-wave limit and to avoid nonphysical wave forces at high frequencies (i.e., at short wavelengths) when using
a strip-theory solution.
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When enabling second-order potential-flow theory, a setting of WvLowCOffD = 0 is advised to avoid eliminating the
mean-drift term (second-order wave kinematics do not have a nonzero mean). WvHiCOffD need not be set higher
than the peak-spectral frequency of the first-order wave spectrum (𝜔p = 2𝜋/WaveTp) to minimize computational
expense. WvLowCOffS need not be set lower than the peak-spectral frequency of the first-order wave spectrum (𝜔p
= 2𝜋/WaveTp) to minimize computational expense. Setting a proper upper cut-off frequency (WvHiCOffS) also
minimizes computational expense and is important to (1) ensure convergence of the second-order summations, (2)
avoid unphysical “bumps” in the wave troughs, (3) prevent nonphysical effects when approaching of the breaking-wave
limit, and (4) avoid nonphysical wave forces at high frequencies (i.e., at short wavelengths) when using a strip-theory
solution.

For all models with internally generated wave data, if you want to run different time-domain incident wave realizations
for given boundary conditions (of significant wave height, and peak-spectral period, etc.), you should change one or
both wave seeds (WaveSeed(1) and WavedSeed(2)) between simulations.

Wave elevations or full wave kinematics can also be generated externally and used within HydroDyn.

WaveMod = 5 allows the use of externally generated wave-elevation time series, which is useful if you want HydroDyn
to simulate specific wave transient events where the wave-elevation time series is known a priori e.g. to match wave-
elevation measurements taken from a wave tank or open-ocean test. Internally, HydroDyn will compute an FFT of the
provided wave-elevation time series to store the amplitudes and phases of each frequency component, and use those
in place of a wave energy spectrum and random seeds to internally derive the hydrodynamic loads in the potential-
flow solution or the wave kinematics used in the strip-theory solution. The wave-elevation time series specified is
assumed to be of first order and long-crested, but is not checked for physical correctness. The time series must be
at least WaveTMax in length and not less than the total simulation time and the time step must match WaveDT.
When second-order terms are optionally enabled, the second-order terms are calculated using the wave-component
amplitudes derived from the provided wave-elevation time series and extra energy is added to the wave energy spectrum
(at the difference and sum frequencies). Using higher order wave data may produce erroneous results; alternatively,
WvLowCOff and WvHiCOff can be used to filter out energy outside of the first-order wave energy range. The wave-
elevation time series output by HydroDyn will only match the specified time series identically if the second-order
terms are disabled and the cut-off frequencies are outside the range of wave energy.

WaveMod = 6 allows the use of full externally generated wave kinematics for use with the strip-theory solution (but
not the potential-flow solution), completely bypassing HydroDyn’s internal wave models. This feature is useful if
you want HydroDyn to make use of wave kinematics data derived outside of HydroDyn a priori e.g. from a separate
numerical tool, perhaps bypassing some of HydroDyn’s internal wave modeling limitations. To use this feature, it
is the burden of the user to generate wave kinematics data at each of HydroDyn’s time steps and analysis nodes.
HydroDyn will not interpolate the data; as such, when HydroDyn is coupled to OpenFAST, WaveDT must equal the
glue code time step of OpenFAST. Before generating the wave kinematics data externally, users should identify all
of the internal analysis nodes by running HydroDyn and generating the summary file—see Section 5.3. The fluid
domain at each time step are specified by the use of numeric values and nonnumeric strings in the wave data input
files. The wave kinematics data specified are not limited to the domain between a flat seabed and SWL and may
consider wave stretching, higher-order wave theories, or an uneven seabed. The specified wave kinematics data are
not processed (filtered, etc.) or checked for physical correctness. The wave kinematics output by HydroDyn should
match the specified data identically.

You can generate up to 9 wave elevation outputs (at different points on the SWL plane) when HydroDyn is coupled to
OpenFAST or a large grid of wave elevations when running HydroDyn standalone. While the second-order effects are
included when enabled, the wave elevations output from HydroDyn will only include the second-order terms when the
second-order wave kinematics are enabled.

Strip-Theory Model Discretization

A user will define the geometry of a structure modeled with strip theory in HydroDyn using joints and members.
Members in HydroDyn are assumed to be straight circular (and possibly tapered) cylinders. Members can be further
subdivided using MDivSize, which HydroDyn will internally use to subdivide members into multiple elements (and
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nodes). HydroDyn may further refine the geometry at the free surface, flat seabed, marine-growth region, and filled-
fluid free surface. The rules HydroDyn uses for refinement may be found in Section 7.5.2.

Due to the exponential decay of hydrodynamic loads with depth, a higher resolution near the water free surface is
required to capture hydrodynamic loading as waves oscillate about SWL. It is recommended, for instance, that the
HydroDyn discretization not exceed element lengths of 0.5 m in the region of the free surface (5 to 10 m above and
below SWL), 1.0 m between 25 and 50 m depth, and 2.0 m in deeper waters. When HydroDyn is coupled to SubDyn
through OpenFAST for the analysis of fixed-bottom systems, it is recommended that the length ratio between elements
of HydroDyn and SubDyn not exceed 10 to 1.

Domain for Strip-Theory Hydrodynamic Load Calculations

Part of the automated geometry refinement mentioned in the above section deals with splitting of input members into
sub-elements such that both of the resulting nodes at the element ends lie within the discrete domains described in the
following sections.

Lumped loads at member ends (axial effects) are only calculated at user-specified joints, and not at joints HydroDyn
may automatically create as part its solution process (see Section 7.5.2 for differences between the input-file discretiza-
tion and the simulation discretization). For example, if you want axial effects at a marine-growth boundary, you must
explicitly set a joint at that location.

Distributed Inertia, Added Mass, Buoyancy, Marine-Growth Weight, and Marine-Growth Mass Inertia
Loads

These loads are generated at a node as long as PropPot = FALSE, the Z-coordinate is in the range [–WtrDpth,
MSL2SWL], and the element the node is connected to is in the water. When WaveMod = 6, the domain is determined
by the use of numeric values and nonnumeric strings in the wave data input files.

Distributed Viscous Drag Loads

These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth, MSL2SWL] and the
element the node is connected to is in the water. When WaveMod = 6, the domain is determined by the use of numeric
values and nonnumeric strings in the wave data input files.

Distributed Filled Buoyancy, Filled Mass Inertia Loads

These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth, FillFSLoc] and the
element the node is connected to is in the filled fluid.

Lumped Added Mass, Inertia, and Buoyancy Loads

These loads are generated at a node as long as PropPot = FALSE and the Z-coordinate is in the range [–WtrDpth,
MSL2SWL]. When WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in
the wave data input files.

Lumped Axial Drag Loads

These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth, MSL2SWL]. When
WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in the wave data input
files.
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Lumped Filled Buoyancy Loads

These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth, FillFSLoc]

Strip-Theory Hydrodynamic Coefficients

The strip-theory solution of HydroDyn is dependent, among other factors, on user-specified hydrodynamic coeffi-
cients, including viscous-drag coefficients, Cd, added-mass coefficients, Ca, and dynamic-pressure coefficients, Cp,
for transverse and axial (Ax) loads distributed along members and for axial lumped loads at member ends (joints).
There are no default settings for these coefficients in HydroDyn. In general, these coefficients are dependent on many
factors, including Reynold’s number (Re), Keulegan-Carpenter number (KC), surface roughness, substructure geom-
etry, and location relative to the free surface, among others. In practice, the coefficients are (1) selected from tables
derived from measurements of flow past cylinders, (2) calculated through high-fidelity computational fluid dynamics
(CFD) solutions, or (3) tuned to match experimental results. A value of 1.0 is a plausible guess for all coefficients in
the absence of any other information.

While the strip-theory solution assumes circular cross sections, the hydrodynamic coefficients can include shape cor-
rections; however, there is no distinction made in HydroDyn between different transverse directions.

Please note that added-mass coefficients in HydroDyn influence both the added-mass loads and the scattering com-
ponent of the fluid-inertia loads. For the coefficients associated with transverse loads distributed along members,
note that Cp + CA = CM, the inertia coefficient. For the distributed loads along members, there are separate set of
hydrodynamic coefficients both with and without marine growth (MG).

Impact of Substructure Motions on Loads

In general, HydroDyn assumes that structural motions of the substructure are small, such that (1) small-angle assump-
tions apply to structural rotations, (2) the frequency-to-time-domain-based potential-flow solution can be split into
uncoupled hydrostatic, radiation, and diffraction solutions, and (3) the hydrodynamic loads dependent on wave kine-
matics (both from diffraction loads in the potential-flow solution and from the fluid-inertia and viscous-drag loads in
the strip-theory solution) can be computed using wave kinematics solved at the undisplaced position of the substruc-
ture (the wave kinematics are not recomputed at the displaced position). Nevertheless, HydroDyn uses the substructure
motions in the following calculations:

• The structural displacements of the WRP are used in the calculation of the hydrostatic loads (i.e., the change in
buoyancy with substructure displacement) in the potential-flow solution.

• The structural velocities and accelerations of the WRP are used in the calculation of the wave-radiation loads
(i.e., the radiation memory effect and added mass) in the potential-flow solution.

• The structural displacements and velocities of the WRP are used in the calculation of the additional platform
loads (via the Platform Additional Stiffness and Damping).

• The structural velocities of the substructure nodes are used in the calculation of the viscous-drag loads in the
strip-theory solution (e.g., the relative form of Morison’s equation is applied).

• The structural accelerations of the substructure nodes are used in the calculation of the added-mass, marine-
growth mass inertia, and filled-fluid mass inertia loads in the strip-theory solution.

• When coupled to OpenFAST, the hydrodynamic loads computed by HydroDyn are applied to the displaced posi-
tion of the substructure (i.e., the displaced platform in ElastoDyn and/or the displaced substructure in SubDyn),
but are based on wave kinematics at the undisplaced position.

6.3. HydroDyn Users Guide and Theory Manual 87



OpenFAST Documentation, Release 1.0

Platform Additional Stiffness and Damping

HydroDyn allows the user to apply additional loads to the platform (in addition to other hydrodynamic terms calculated
by HydroDyn), by including a 6x1 static load vector (preload) (AddF0), a 6x6 linear restoring matrix (AddCLin),
a 6x6 linear damping matrix (AddBLin), and a 6x6 quadratic drag matrix (AddBQuad). These terms can be used,
e.g., to model a linearized mooring system, to augment strip-theory members with a linear hydrostatic restoring matrix
(see Section 6.8.3), or to “tune” HydroDyn to match damping to experimental results, such as free-decay tests. While
likely most useful for floating systems, these matrices can also be used for fixed-bottom systems; in both cases, the
resulting load is applied at the WRP, which when HydroDyn is coupled to OpenFAST, get applied to the platform in
ElastoDyn (bypassing SubDyn for fixed-bottom systems).

Fixed-Bottom Substructures

When modeling a fixed-bottom system, the use of a strip-theory (Morison) only model is recommended. When
HydroDyn is coupled to OpenFAST, SubDyn is used for the substructure structural dynamics.

All members that are embedded into the seabed (e.g., through piles or suction buckets) must have a joint that is
located below the water depth. For example, if the water depth is set to 20 m, and you are modeling a fixed-bottom
monopile, then the bottom-most joint needs to have a Z-coordinate such that Z < 20 m. This configuration avoids
having HydroDyn apply static pressure loads on the bottom of the structure.

Gravity-based foundations should be modeled such that the lowest joint(s) are located exactly at the prescribed water
depth. In other words, the lowest Z-coordinate should be set to Z = 20 m if the water depth is set to 20 m. This
configuration allows for static pressure loads to be applied at the bottom of the gravity-base structure.

Floating Platforms

When modeling a floating system, you may use potential-flow theory only, strip-theory (Morison) only, or a hybrid
model containing both.

Potential-flow theory based on frequency-to-time-domain transforms is enabled when PotMod is set to 1. In this case,
you must run WAMIT (or equivalent) in a pre-processing step and HydroDyn will use the WAMIT output files—see
Section 6.8.4 for guidance. For a potential-flow-only model, do not create any strip-theory joints or members in the
input file. The WAMIT model should account for all of the members in the floating substructure, and Morison’s
equation is neglected in this case.

For a strip-theory-only model, set PotMod to FALSE and create one or more strip-theory members in the input file.
Marine growth and nonzero MSL2SWL (the offset between still-water and mean-sea level) may only be included in
strip-theory-only models.

A hybrid model is formed when both PotMod is TRUE and you have defined one or more strip-theory members.
The potential-flow model created can consider all of the Morison members in the floating substructure, or just some.
Specify whether certain members of the structure are considered in the potential-flow model by setting the PropPot
flag for each member. As detailed in Section 7.5.1, the state of the PropPot flag for a given member determines
which components of the strip-theory equations are applied.

When using either the strip-theory-only or hybrid approaches, filled fluid (flooding or ballasting) may be added to
the strip-theory members. Also, the hydrostatic restoring matrix must be entered manually for the strip-theory mem-
bers—see Section 6.8.3 for guidance.

Please note that current-induced water velocity only induces hydrodynamic loads in HydroDyn through the viscous-
drag terms (both distributed and lumped) of strip-theory members. Current is not used in the potential-flow solution.
Thus, modeling the effects of current requires the use of a strip-theory-only or hybrid approach.
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Undisplaced Position for Floating Systems

The HydroDyn model (geometry, etc.) is defined about the undisplaced position of the substructure. For floating
systems, it is important for solution accuracy for the undisplaced position to coincide with the static-equilibrium
position in the platform-heave (vertical) direction in the absence of loading from wind, waves, and current. As such,
the undisplaced position of the substructure should be defined such that the external buoyancy from displaced water
balances with the weight of the system (including the weight of the rotor-nacelle assembly, tower and substructure)
and mooring system pretension following the equation below. In this equation, 𝜌 is the water density, g is gravity, V0
is the undisplaced volume of the floating platform (found in the HydroDyn summary file), MTotal is the total mass
of the system (found in the ElastoDyn summary), and TMooring is the mooring system pretension (found in e.g. the
MAP summary file). The effects of marine growth, filled fluid (flooding and/or ballasting), and the additional static
force (AddFX0) should also be taken into consideration in this force balance, where appropriate.

pgV0 - mTotalg-TMooring = 0

Initial Conditions for Floating Systems

Because the initial conditions used for dynamic simulations typically have an effect on the response statistics during
the beginning of the simulation period, an appropriate amount of initial data should be eliminated from consideration
in any post-processing analysis. This initial condition solution is more important for floating offshore wind turbines
because floating systems typically have long natural periods of the floating substructure and low damping. The ap-
propriate time to eliminate should be chosen such that initial numeric transient effects have sufficiently decayed and
the floating substructure has reached a quasi-stationary position. To decrease this initial time in each simulation, it is
suggested that the initial conditions of the model (especially blade-pitch angle, rotor speed, substructure surge, and
substructure pitch in ElastoDyn) be initialized according to the specific prevalent wind, wave, current, and operational
conditions.

Hydrostatic Restoring for Strip-Theory Members of Floating Systems

One notable absence from the list calculations in HydroDyn that make use of substructure motions—see Section
6.3—is that the substructure buoyancy in the strip-theory solution is not recomputed based on the displaced position
of the substructure. While the change in buoyancy is likely negligible for fixed-bottom systems, for floating systems
modeled using a strip-theory solution, the change in buoyancy with displacement is likely important and should not be
neglected. In this latter case, the user should manually calculate the 6x6 linear hydrostatic restoring matrix associated
with the strip-theory members and enter this as the additional linear restoring (stiffness) matrix, AddCLin. (The static
buoyancy of the strip-theory members is automatically calculated and applied within HydroDyn.)

In its most general form, the 6x6 linear hydrostatic restoring matrix of a floating platform is given by the equation
below.

EQUATION HERE

where: 𝜌 water density, kg/m3 g gravity, m/s2 0A undisplaced waterplane area of platform, m2 0V undisplaced volume
of platform, m3 ()„bbbxyz coordinates of the center of buoyancy of the undisplaced platform, m mgm total mass of
marine growth, kg ()„mgmgmgxyz coordinates of the center of mass of the undisplaced marine growth mass, m fm
total mass of ballasting/flooding, kg ()„fffxyz coordinates of the center of mass of the undisplaced filled fluid (flooding
or ballasting) mass, m

The equation above can be simplified when the floating platform has one or more planes of symmetry. That is,
00AydA=, 00AxydA=, 0by=, 0mgy=, and 0fy= if the xz plane of the platform is a symmetry plane. Likewise,
00AxdA=, 00AxydA=, 0bx=, 0mgx=, and 0fx= if the yz plane of the platform is a symmetry plane.

The undisplaced coordinates of the center of buoyancy, ()„bbbxyz, center of marine-growth mass, ()„mgmgmgxyz,
and center of filled-fluid mass, ()„fffxyz, are in the global inertial-frame coordinate system. Most of these parameters
can be derived from data found in the HydroDyn summary file. While the equation above makes use of several area
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integrals, the integrals can often be easily estimated by hand for platforms composed of one or more circular members
piercing the waterplane (still-water free surface).

The waterplane area of the undisplaced platform, 0A, affects the hydrostatic load because the displaced volume of
the fluid changes with changes in the platform displacement. Similarly, the location of the center of buoyancy of
the platform affects the hydrostatic load because its vector position changes with platform displacement and because
the cross product of the buoyancy force with the vector position produces hydrostatic moments about the WRP. 0A,
0V, and ()„bbbxyz should be based on the external volume of the platform, including marine-growth thickness. The
marine-growth mass and filled-fluid mass also have a direct effect of the hydrostatic restoring because of the moments
produced about the WRP.

In classical marine hydrostatics, the effects of body weight are often lumped with the effects of hydrostatics when
defining the hydrostatic-restoring matrix; for example, when it is defined in terms of metacentric heights. However,
when HydroDyn is coupled to OpenFAST, the body-weight terms (other than the marine-growth and filled-fluid mass
within HydroDyn) are automatically accounted for by ElastoDyn, and so, are not included here.

Floating Systems Modeled with Potential Flow

Frequency-dependent hydrodynamic coefficients are needed before running the potential-flow solution in HydroDyn
using PotMod = 1. An external pre-processing tool should be used to generate the appropriate frequency-dependent
hydrodynamic coefficients. The naming in this manual has focused on WAMIT [Lee, 2006], but other frequency-
domain wave-body interaction panel codes can be used that produce similar data. However, in the end, the WAMIT
format is what is expected by HydroDyn.

For the first-order potential-flow solution, HydroDyn requires data from the WAMIT files with .1, .3, and .hst exten-
sions. When creating these files, one should keep in mind:

• The .1 file must contain the 6×6 added-mass matrix at infinite frequency (period = zero). Additionally, the .1
file must contain the 6×6 damping matrix over a large range from low frequency to high frequency (the damping
should approach zero at both ends of the range). A range of 0.0 to 5.0 rad/s with a discretization of 0.05 rad/s is
suggested.

• The .3 file must contain the first-order wave-excitation (diffraction) loads (3 forces and 3 moments) per unit
wave amplitude across frequencies and directions where there is wave energy. A range of 0.0 to 5.0 rad/s with
a discretization of 0.05 rad/s is suggested and the direction should be specified across the desired range—the
full direction range of (-180 to 180] degrees with a discretization of 10 degrees is suggested. While the .3 file
contains both the magnitude/phase and real/imaginary components of the first-order wave-excitation loads, only
the latter are used by HydroDyn.

• The .hst file should account for the restoring provided by buoyancy, but not the restoring provided by body mass
or moorings. (The hydrostatic file is not frequency dependent.) An important thing to keep in mind is that the
pitch and roll restoring of a floating body depends on the vertical distance between the center of buoyancy and
center of mass of the body. In WAMIT, the vertical center of gravity (VCG) is used to determine the pitch and
roll restoring associated with platform weight, and WAMIT will include these effects in the restoring matrix
that it outputs (the .hst file). However, the ElastoDyn module of FAST intrinsically accounts for the platform
weight’s influence on the pitch and roll restoring if the platform weight and center-of-mass location are defined
appropriately. To avoid double booking these terms, it is important to neglect these terms in WAMIT. This can
be achieved by setting VCG to zero when solving the first-order problem in WAMIT.

The second-order WAMIT files only need to pre-calculated if a second-order potential-flow option is enabled in Hy-
droDyn. For the second-order mean-drift solution, or for Standing et al.’s extension to Newman’s approximation to the
mean- and slow-drift solution, HydroDyn requires WAMIT files with .7, .8. .9, .10d, .11d, or .12d extensions. For the
second-order full difference-frequency solution of the mean- and slow-drift terms, HydroDyn requires WAMIT files
with .10d, .11d, or .12d extension. For the second-order full sum-frequency solution, HydroDyn requires WAMIT files
with .10s, .11s, or .12s extensions. When creating any of these files, one should keep in mind:
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• The second-order frequency-domain solution is dependent on first-order body motions, whose accuracy is im-
pacted by properly setting the 6×6 rigid-body mass matrix and center of gravity of the complete floating wind
system and the 6×6 mooring system restoring matrix. So, while the body center of gravity and mooring stiff-
ness should be zeroed when creating the first-order WAMIT files, they should not be zeroed when creating the
second-order WAMIT files. (Thus, obtaining the first-order and second-order WAMIT files requires distinct
WAMIT runs.)

• The .7, .8, and .9 files contain the diagonal of the difference-frequency QTF, based on the first-order potential-
flow solution. The files contain the second-order mean-drift loads (3 forces and 3 moments) per unit wave
amplitude squared at each first-order wave frequency and pair of wave directions, across a range of frequencies
and a range of direction pairs. While the .7, .8, and .9 files contains both the magnitude/phase and real/imaginary
components of the second-order wave-excitation loads, only the latter are used by HydroDyn.

• The 10d, .11d, and .12d, or .10s, .11s, and .12s files contain the full difference- and sum-frequency QTFs,
respectively, based on the first-order or first- plus second-order potential-flow solutions. The files contain the
second-order wave-excitation (diffraction) loads (3 forces and 3 moments) per unit wave amplitude squared at
each pair of first-order wave frequencies and directions, across a range of frequency and direction pairs. While
the 10d, .11d,.12d, .10s, .11s, and .12s files contains both the magnitude/phase and real/imaginary components
of the second-order wave-excitation loads, only the latter are used by HydroDyn.

• The frequencies and directions in the WAMIT files do not need to be evenly spaced.

• The discretization of the first set of directions does not need to be the same as the discretization of the second set
of directions; however, the matrix of direction pairs must be fully populated (not sparse). Both sets of directions
should span across the desired range—the full direction range of (-180 to 180] degrees with a discretization of
10 degrees is suggested.

• The frequencies should span the range where there is first-order wave energy and the frequency discretization
should be such that the differences and sums between pairs of frequencies span the range where there is second-
order wave energy. A range of 0.25 to 2.75 rad/s with a discretization of 0.05 rad/s is suggested.

• Second-order hydrodynamic theory dictates that difference-frequency QTFs are conjugate symmetric between
frequency pairs and sum-frequency QTFs are symmetric between frequency pairs. Due to this symmetry, the
QTFs (the 10d, .11d, or .12d, .10s, .11s, and .12s files) may be upper triangular, lower triangular, a mix of upper
and lower triangular terms, or full; however, after applying the symmetry, the matrix of frequency pairs must
be fully populated (not sparse). When an element of the QTF is supplied together with its symmetric pairing,
HydroDyn will warn the user if the QTF is not properly symmetric.

6.3.5 HydroDyn Theory

This is a preliminary draft of the HydroDyn theory and should be considered a work in progress.

Hydrodynamics are modeled using a suitable combination of incident-wave kinematics and hydrodynamic loading
models. Hydrodynamic loads result from the integration of the dynamic pressure of the water over the wetted surface of
a floating platform. These loads include contributions from inertia (added mass) and linear drag (radiation), buoyancy
(restoring), incident-wave scattering (diffraction), sea current, and nonlinear effects.

Coordinate Systems

Global coordinate system: (𝑋,𝑌, 𝑍)

Fig. 6.15 shows the coordinate system used in HydroDyn.

• The global axes are represented by the unit vectors 𝐼 , 𝐽 , and �̂�.

• The origin is set at the mean sea level (MSL), the center of the structure, with 𝑍 axis positive upward.
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Fig. 6.15: Global (internal) coordinate system in HydroDyn (and OpenFAST).
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• The positive 𝑋 axis is along the nominal (zero-degree) wave propagation direction.

• The 𝑌 axis can be found assuming a right-handed Cartesian coordinate system.

Structural member local coordinate system: (𝑥, 𝑦, 𝑧)

• Axes are represented by the unit vectors �̂�, �̂�, and 𝑘.

• The origin is set at the center of the structural member.

• The local 𝑧 axis is along the cylinder axis, directed from the start joint to the end joint. The start joint is defined
as the joint that has a lower 𝑍 coordinate value. If the two joints have the same 𝑍 coordinate value, then the
one that has the lower 𝑋 coordinate value is the start point. If the two joints have the same 𝑍 and 𝑋 coordinate
value, then the one that has the lower 𝑌 coordinate value is the start point.

• The local 𝑥 axis is parallel to the global 𝑋𝑍 plane, positive along the nominal wave propagation direction. If
the cylinder?s axis is along the global 𝑋 direction, then the local 𝑥 axis is parallel to the 𝑋𝑍 plane, and positive
along the negative global 𝑍 direction.

• The local 𝑦 axis can be found assuming a right-handed Cartesian coordinate system.

Local to Global transformation

For regular members, the cylinder expression in global coordinate system can be found as follows:⎧⎨⎩𝑋
𝑌
𝑍

⎫⎬⎭ =
[︀
𝐶
]︀⎧⎨⎩𝑟 cos(𝜃)

𝑟 sin(𝜃)
𝑧

⎫⎬⎭ +

⎧⎨⎩
𝑋𝑠+𝑋𝑒

2
𝑌𝑠+𝑌𝑒

2
𝑍𝑠+𝑍𝑒

2

⎫⎬⎭
where (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) and (𝑋𝑒, 𝑌𝑒, 𝑍𝑒) are the start and end joints of the member in global coordinate system of the
member, and

[︀
𝐶
]︀

is the direction cosine matrix of the member axis and can be obtained as follows:

[︀
𝐶
]︀

=

⎡⎢⎣ 𝑍𝑒−𝑍𝑠

𝐿𝑋𝑍

(𝑋𝑒−𝑋𝑠)(𝑌𝑒−𝑌𝑠)
𝐿𝑋𝑍𝐿

(𝑋𝑒−𝑋𝑠)
𝐿

0 𝐿𝑋𝑍

𝐿
𝑌𝑒−𝑌𝑠

𝐿
−𝑋𝑒+𝑋𝑠

𝐿𝑋𝑍
− (𝑍𝑒−𝑍𝑠)(𝑌𝑒−𝑌𝑠)

𝐿𝑋𝑍𝐿
(𝑍𝑒−𝑍𝑠)

𝐿

⎤⎥⎦
where 𝐿𝑋𝑍 =

√︀
(𝑋𝑒 −𝑋𝑠)2 + (𝑍𝑒 − 𝑍𝑠)2 and 𝐿 =

√︀
(𝑋𝑒 −𝑋𝑠)2 + (𝑌𝑒 − 𝑌𝑠)2 + (𝑍𝑒 − 𝑍𝑠)2.

When 𝑋𝑒 = 𝑋𝑠 and 𝑍𝑒 = 𝑍𝑠 then the
[︀
𝐶
]︀

matrix can be found as follows:

if 𝑌𝑒 < 𝑌𝑠 then

[︀
𝐶
]︀

=

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦
else

[︀
𝐶
]︀

=

⎡⎣1 0 0
0 0 1
0 −1 0

⎤⎦

Wave Kinematics

The wave kinematics are modeled using Airy wave theory, which can be used to describe either regular or irregular
waves. For regular waves, the wave elevation (𝜁) is represented as a sinusoid with a single amplitude (wave height)
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and frequency. Airy wave theory also describes how the undisturbed fluid-particle velocities and accelerations decay
exponentially with depth. Irregular or random waves can then be represented as a summation or superposition of
multiple wave components, as described by an appropriate wave spectrum:

𝜁(𝑡) = 1
2𝜋

∫︀∞
−∞ 𝑊 (𝜔)

√︁
2𝜋𝑆2−𝑠𝑖𝑑𝑒𝑑

𝜁 (𝜔)e𝑗𝜔𝑡 d𝜔

This equation represents the wave elevation as an inverse Fourier transform of the desired two-sided power spectral
density, 𝑆2−𝑠𝑖𝑑𝑒𝑑

𝜁 where, 𝑗 is an imaginary number and 𝜔 is an individual wave frequency. 𝑊 (𝜔) is the Fourier
transform of a realization of a white Gaussian noise (WGN) time-series process with zero mean and unit variance (i.e.,
the so-called ?standard normal distribution?). This realization is used to ensure that the individual wave components
have a random phase and that the instantaneous wave elevation is normally- (i.e., Gaussian-) distributed with zero
mean and with a variance, on average, equal to 𝜎2

𝜁 =
∫︀∞
−∞ 𝑆2−𝑠𝑖𝑑𝑒𝑑

𝜁 d𝜔.

Further details about the wave kinematics and how they are computed can be found in [Jonkman, 2007].

Current Model

The current model within HydroDyn is a superposition of three different types of sub-models. These sub-models
follow the forms defined in the IEC 61400-3 offshore wind standard [IEC, 2009].

The first is a sub-surface current model for currents that are generated by tides, storm surge, atmospheric pressure
variations, etc. This model is characterized by a simple 1/7 power law over the water depth, d.

𝑈𝑆𝑆(𝑍) = 𝑈0𝑆𝑆
(𝑍+𝑑

𝑑 )
1
7

The second is near-surface currents generated by wind. This model is characterized by a linear distribution of the
velocity with water depth, ending at zero at a prescribed depth, ℎ𝑟𝑒𝑓 (in [IEC, 2009], ℎ𝑟𝑒𝑓 is set at 20 m).

𝑈𝑁𝑆(𝑍) = 𝑈0𝑁𝑆
(
𝑍+ℎ𝑟𝑒𝑓

ℎ𝑟𝑒𝑓
), 𝑍 ∈ [−ℎ𝑟𝑒𝑓 , 0]

The third model is a depth-independent model, which sets the current velocity to a constant value across the water
depth.

You can specify a unique heading direction for each of the three current models.

Potential Flow Theory

Three main approaches exist for modeling the hydrodynamic loads within HydroDyn, potential-flow theory, strip
theory (via Morison?s equation), or a combination. This section reviews the forces modeled in HydroDyn when using
a linear potential flow theory approach.

Modeling Approach

In linear potential-flow theory, the forces and added mass are applied at the platform reference point. The components
are:
−→
𝐹 𝑊𝑅𝑃 =

−→
𝐹 𝑊 +

−→
𝐹 𝐻𝑆 +

−→
𝐹 𝑅𝐷𝑛

+
−→
𝐹 𝐴𝑀

where,
−→
𝐹 𝐴𝑀 = −𝐴𝑀𝑅𝑃

−→𝑎 𝑃

−→
𝐹 𝑊 = 1

𝑁

𝑁
2∑︁

𝑘=−𝑁
2 −1

𝑊 [𝑘]

√︂
2𝜋

∆𝑡
𝑆2−𝑠𝑖𝑑𝑒𝑑
𝜁 (𝜔)𝑋(𝜔, 𝛽)|𝜔=𝑘Δ𝜔e𝑗

2𝜋𝑘𝑛
𝑁

−→
𝐹 𝐻𝑆 = 𝜌𝑔𝑉0({𝜁}3 + 𝑦𝐶𝐵{𝜁}4 − 𝑥𝐶𝐵{𝜁}5) − 𝐶𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑥
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The general form of the convolution integral is:
−→
𝐹 𝑅𝐷 = −

∫︀ 𝑡

0
𝐾(𝑡− 𝜏) ∙ �̇�(𝜏)d𝜏

But we discretize this and only consider a specific amount of time history, 𝑁𝑅𝐷:

−→
𝐹 𝑅𝐷𝑛

= −∆𝑡𝑅𝐷

𝑛−1∑︁
𝑖=𝑛−𝑁𝑅𝐷

𝐾𝑛−𝑖−1𝑥𝑖

The state for time step 𝑛 is simply the structural velocities for the previous 𝑁𝑅𝐷 time steps. Or,

𝑥𝑑
𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙𝑥𝑛−1

˙𝑥𝑛−2

...
˙𝑥𝑛−𝑁𝑅𝐷

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Therefore, at time step 𝑛, we can compute the 𝑛 + 1 state, such that,

𝑥𝑑
𝑛+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑛

˙𝑥𝑛−1

...
˙𝑥𝑛−𝑁𝑅𝐷+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The radiation step size, ∆𝑡𝑅𝐷, and the radiation kernel, 𝐾, are simply module parameters.

Morison’s Equation

Morison’s equation is applicable for calculating the hydrodynamic loads on cylindrical structures when (1) the effects
of diffraction are negligible, (2), radiation damping is negligible, and (3) flow separation may occur. The relative form
of Morison’s equation accounts for wave loading from incident-wave-induced excitation, radiation-induced added
mass, and flow-separation-induced viscous drag. In this section we review the representation of Morison’s equation
both when considering distributed forces along the length of the members (at nodes) and point loads at the ends (at the
joints).

Modeling Approach

In HydroDyn, Morison forces are applied base on three possible wave stretching models.

1. No wave stretching: forces applied only along the portion of the member below the MSL.

2. Vertical wave stretching: wave kinematics at the MSL are applied up to the instantaneous free surface, and left
unchanged below the MSL.

3. Extrapolation stretching: a linear Taylor expansion of the wave kinematics (and their partial derivatives with
respect to z) at the MSL is applied to find the wave kinematics above the MSL and up to the instantaneous free
surface, and left unchanged below the MSL.

Forces are applied at the original position of the structure, and not at the instantaneous position.

Distributed Loads For a Morison-only model, the distributed hydrodynamic loads applied along the length of a member
are computed as:

6.3.6 References

This is a preliminary draft of the reference list and should be considered a work in progress.
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6.3.7 Appendix

HydroDyn Input Files

In this appendix we describe the HydroDyn input-file structure and provide examples.

1) HydroDyn Driver Input File (driver input file example):

The driver input file is only needed for the standalone version of HydroDyn and contains inputs normally generated
by OpenFAST, and necessary to control the aerodynamic simulation for uncoupled models.

2) HydroDyn Primary Input File (primary input file example):

The primary HydroDyn input file defines modeling options, environmental conditions (except freestream flow), air-
foils, tower nodal discretization and properties, as well as output file specifications.

The file is organized into several functional sections. Each section corresponds to an aspect of the aerodynamics
model.

The input file begins with two lines of header information which is for your use, but is not used by the software.

HydroDyn List of Output Channels

This is a list of all possible output parameters for the HydroDyn module. The names are grouped by meaning, but
can be ordered in the OUTPUTS section of the HydroDyn input file as you see fit. B𝛼N𝛽, refers to output node 𝛽 of
blade 𝛼, where 𝛼 is a number in the range [1,3] and 𝛽 is a number in the range [1,9], corresponding to entry 𝛽 in the
BlOutNd list. TwN𝛽 refers to output node 𝛽 of the tower and is in the range [1,9], corresponding to entry 𝛽 in the
TwOutNd list.

The local tower coordinate system is shown in Fig. 6.2 and the local blade coordinate system is shown in Fig. 6.16
below. Figure Fig. 6.16 also shows the direction of the local angles and force components.

6.4 FAST v8 and the transition to OpenFAST

This page describes the transition from FAST v8, a computer-aided engineering tool for simulating the coupled dy-
namic response of wind turbines, to OpenFAST. OpenFAST was established by researchers at the National Renewable
Energy Laboratory (NREL) in 2017, who were supported by the U.S. Department of Energy Wind Energy Technology
Office (DOE-WETO).

6.4.1 FAST v8

FAST v8 is a computer-aided engineering tool for simulating the coupled dynamic response of wind turbines. FAST
joins aerodynamics models, hydrodynamics models for offshore structures, control and electrical system (servo) dy-
namics models, and structural (elastic) dynamics models to enable coupled nonlinear aero-hydro-servo-elastic simula-
tion in the time domain. The FAST tool enables the analysis of a range of wind turbine configurations, including two-
or three-blade horizontal-axis rotor, pitch or stall regulation, rigid or teetering hub, upwind or downwind rotor, and
lattice or tubular tower. The wind turbine can be modeled on land or offshore on fixed-bottom or floating substructures.
FAST is based on advanced engineering models derived from fundamental laws, but with appropriate simplifications
and assumptions, and supplemented where applicable with computational solutions and test data.

The aerodynamic models use wind-inflow data and solve for the rotor-wake effects and blade-element aerodynamic
loads, including dynamic stall. The hydrodynamics models simulate the regular or irregular incident waves and cur-
rents and solve for the hydrostatic, radiation, diffraction, and viscous loads on the offshore substructure. The control
and electrical system models simulate the controller logic, sensors, and actuators of the blade-pitch, generator-torque,
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Fig. 6.16: HydroDyn Local Blade Coordinate System (Looking Toward the Tip, from the Root) – l: Lift, d: Drag, m:
Pitching, x: Normal (to Plane), y: Tangential (to Plane), n: Normal (to Chord), and t: Tangential (to Chord)

nacelle-yaw, and other control devices, as well as the generator and power-converter components of the electrical
drive. The structural-dynamics models apply the control and electrical system reactions, apply the aerodynamic and
hydrodynamic loads, adds gravitational loads, and simulate the elasticity of the rotor, drivetrain, and support structure.
Coupling between all models is achieved through a modular interface and coupler.

6.4.2 Transition to OpenFAST

The release of OpenFAST represents a transition to better support an open-source developer community across re-
search laboratories, industry, and academia around FAST-based aero-hydro-servo-elastic engineering models of wind-
turbines and wind-plants. OpenFAST aims to provide a solid software-engineering framework for FAST development
including well documented source code, extensive automated regression and unit testing, and a robust multi-platform
and compiler build system.

OpenFAST includes the following organizational changes relative to FAST v8.16:

• A new GitHub organization has been established at https://github.com/openfast

• The OpenFAST glue codes, modules, module drivers, and compiling tools are contained within a single reposi-
tory: https://github.com/openfast/openfast

• The FAST program has been renamed OpenFAST (starting from OpenFAST v1.0.0)

• Version numbering has been updated for OpenFAST (starting from OpenFAST v1.0.0), e.g., OpenFAST-v1.0.0-
123-gabcd1234-dirty, where:

• v1.0.0 is the major-minor-bugfix numbering system and corresponds to a tagged commit made by NREL on
GitHub

• 123-g is the number of additional commits after the most recent tag for a build [the ‘-g’ is for ‘git’]

6.4. FAST v8 and the transition to OpenFAST 97
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source/user/hydrodyn/figs/hd_output_channel.pdf

Fig. 6.17: HydroDyn Output Channel List
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• abcd1234 is the first 8 characters of the current commit hash

• dirty denotes that local changes have been made but not committed

• Because all modules are contained in the same repository, the version numbers of each module have been elimi-
nated and now use the OpenFAST version number (starting from OpenFAST v1.0.0) though old documentation
may still refer to old version numbers

• The OpenFAST regression test baseline solutions (formerly the Certification Tests or CertTest) reside in a stan-
dalone repository: https://github.com/openfast/r-test (starting from OpenFAST v1.0.0)

• Unit testing has been introduced at the subroutine level (starting with BeamDyn from OpenFAST v1.0.0).

• An online documentation system has been established to replace existing documentation of FAST v8: http:
//openfast.readthedocs.io/; during the transition to OpenFAST, most user-related documentation is still provided
through the NWTC Information Portal, https://nwtc.nrel.gov

• Cross platform compiling is accomplished with CMake on Mac, Linux, and Cygwin (Windows) systems

• Visual Studio Projects (VS-Build) are provided for compiling OpenFAST on Windows (starting from OpenFAST
v1.0.0), but the development team is working to automate the generation of Visual Studio build files via CMake
in a future release

• GitHub Issues has been made the primary platform for developers to report and track bugs, request feature
enhancements, and to ask questions related to the source code, compiling, and regression/unit testing; general
user-related questions on OpenFAST theory and usage should still be handled through the forum at https://wind.
nrel.gov/forum/wind

• A new API has been added that provides a high level interface to run OpenFAST through a C++ driver code
helping to interface OpenFAST with external programs like CFD solvers written in C++ (starting in OpenFAST
v1.0.0)

6.4.3 Release Notes for OpenFAST

This section outlines significant modifications to OpenFAST made with each tagged release.

v0.1.0 (April 2017)

Algorithmically, OpenFAST v0.1.0 is the release most closely related to FAST v8.16.

• Organizational changes:

– A new GitHub organization has been established at https://github.com/openfast

– The OpenFAST glue codes, modules, module drivers, and compiling tools are contained within a single
repository: https://github.com/openfast/openfast

– Cross platform compiling is accomplished with CMake on Mac, Linux, and Cygwin (Windows) systems

– An online documentation system has been established to replace existing documentation of FAST v8:
http://openfast.readthedocs.io/

– GitHub Issues has been made the primary platform for developers to report and track bugs, request feature
enhancements, and to ask questions related to the source code, compiling, and regression/unit testing;
general user-related questions on OpenFAST theory and usage should still be handled through the forum
at https://wind.nrel.gov/forum/wind

• The AeroDyn v15 aerodynamics module has been significantly updated. The blade-element/momentum theory
(BEMT) solution algorithm has been improved as follows:
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– BEMT now functions for the case where the undisturbed velocity along the x-direction of the local blade
coordinate system (Vx) is less than zero

– BEMT no longer aborts when a valid value of the inflow angle (𝜑) cannot be found; in this case, the inflow
angle is computed geometrically (without induction)

– The inflow angle (𝜑) is now initialized on the first call instead of defaulting to using 𝜑 = 0, giving better
results during simulation start up

– When hub- and/or tip-loss are enabled (HubLoss = True and/or TipLoss = True), tangential induction (a’)
is set to 0 instead of -1 at the root and/or tip, respectively (axial induction (a) is still set to 1 at the root
and/or tip)

– The BEMT solution has been made more efficient

– In addition, several bugs in AeroDyn v15 have been fixed, including:

– Fixed a bug whereby when hub- and/or tip-loss are enabled (HubLoss = True and/or TipLoss = True) along
with the Pitt/Peters skewed-wake correction (SkewMod = 2), BEMT no longer modifies the induction
factors at the hub and/or tip, respectively

– Fixed a bug whereby the time series was affected after the linearization analysis with AeroDyn coupled to
OpenFAST when frozen wake is enabled (FrozenWake = True)

• The BeamDyn finite-element blade structural-dynamics model has undergone an extensive cleanup of the source
code. A bug in an off-diagonal term in the structural damping-induced stiffness (i.e., representing a change in
the damping force with beam displacement) has been corrected.

• A new module for user-specified platform loading (ExtPtfm) has been introduced. ExtPtfm allows the user to
specify 6x6 added mass, damping, and stiffness matrices, as well as a 6x1 load vector to define loads to be ap-
plied to ElastoDyn’s tower base/platform, e.g., to support the modeling of substructures or foundations through
a super-element representation (with super-element derived from external software). ExtPtfm also provides the
user with a module to customize with more advanced platform applied loads. Module ExtPtfm can be enabled
by setting CompSub to 2 in the FAST primary input file (a new option) and setting SubFile to the name of the
file containing the platform matrices and load time history, but setting CompSub to 2 requires one to disable
hydrodynamics (by setting CompHydro to 0). Please note that the introduction of option 2 for CompSub repre-
sents a minor input file change (the only input file change in OpenFAST v0.1.0), but the MATLAB conversion
scripts have not yet been updated.

• In the ServoDyn control and electrical-system module, the units and sign of output parameter YawMom have
been corrected

• In the InflowWind wind-inflow module, the ability to use TurbSim-generated tower wind data files in Bladed-
style format was corrected

• Minor fixes were made to the error checking in ElastoDyn

v1.0.0 (September 2017)

• Organizational changes:

– The FAST program has been renamed OpenFAST

– Version numbering has been updated for OpenFAST (see Section 4.3.2 for details)

– The OpenFAST regression test baseline solutions (formerly the Certification Tests or CertTest) reside in a
standalone repository: https://github.com/openfast/r-test

– Unit testing has been introduced at the subroutine level (starting with BeamDyn)

100 Chapter 6. User Documentation

https://github.com/openfast/r-test


OpenFAST Documentation, Release 1.0

– The online documentation (http://openfast.readthedocs.io/en/latest/index.html) has been extensively up-
dated with additions for installation, testing, user (AeroDyn BeamDyn, transition from FAST v8, release
notes), and developer guides, etc

– The scripts for compiling OpenFAST using CMake on Mac, Linux, and Cygwin (Windows) systems have
been updated, including the ability to compile in single precision and building with Spack

– Visual Studio Projects (VS-Build) are provided for compiling OpenFAST on Windows

– TurbSim has been included in the OpenFAST repository

• The AeroDyn aerodynamics module has been updated:

• Added a cavitation check for marine hydrokinetic (MHK) turbines. This includes the additions of new input
parameters CavitCheck, Patm, Pvap, and FluidDepth in the AeroDyn primary input file, the addition of the
Cpmin to the airfoil data files (required when CavitCheck = True), and new output channels for the minimum
pressure coefficient, critical cavitation, and local cavitation numbers at the blade nodes. Please note that this
input file changes represent the only input file change in OpenFAST v1.0.0, but the MATLAB conversion scripts
have not yet been updated.

• Fixed a bug in the calculation of wind loads on the tower whereby the tower displacement was used in place of
the tower velocity

• Tower strikes detected by the models to calculate the influence of the tower on the wind local to the blade are
now treated as fatal errors instead of severe errors

• Fixed minor bugs in the unsteady airfoil aerodynamics model

• The BeamDyn finite-element blade structural-dynamics module has undergone additional changes:

• The source-code has further undergone clean up, including changing the internal coordinate system to match
IEC (with the local z axis along the pitch axis)

• Trapezoidal points are now correctly defined by blade stations instead of key points

• The tip rotation outputs were corrected as per GitHub issue #10 (https://github.com/OpenFAST/openfast/issues/
10)

• The BeamDyn driver has been fixed for cases involving spinning blades

• BeamDyn no longer produces numerical “spikes” in single precision, so, it is no longer necessary to compile
OpenFAST in double precision when using BeamDyn

• The ElastoDyn structural-dynamics model was slightly updated:

• The precision on some module-level outputs used as input to the BeamDyn module were increased from single
to double to avoid numerical “spikes” when running BeamDyn in single precision

• Minor fixes were made to the error checking

• The ServoDyn control and electrical system module was slightly updated:

• Fixed the values of the generator torque and electrical power sent from ServoDyn to Bladed-style DLL con-
trollers as per GitHub issue # 40 (https://github.com/OpenFAST/openfast/issues/40)

• Minor fixes were made to the error checking

• The OpenFAST driver/glue code has been updated:

• Correction steps have been added to the OpenFAST driver during the first few time steps to address initialization
problems with BeamDyn (even with NumCrctn = 0)

• Fixed a bug in the Line2-to-Point mapping of loads as per GitHub issue #8 (https://github.com/OpenFAST/
openfast/issues/8). Previously, the augmented mesh was being formed using an incorrect projection, thus caus-
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ing strange transfer of loads in certain cases. This could cause issues in the coupling between ElastoDyn and
AeroDyn and/or in the coupling between HydroDyn and SubDyn

• Added an otherwise undocumented feature for writing binary output without compression to support the new
regression testing. The new format is available by setting OutFileFmt to 0 in the FAST primary input file.

• A new API has been added that provides a high level interface to run OpenFAST through a C++ driver code.
The primary purpose of the C++ API is to help interface OpenFAST to external programs like CFD solvers that
are typically written in C++.

• The TurbSim wind-inflow turbulence preprocessor was updated:

• The API spectra was corrected

• Several minor bugs were fixed.

6.4.4 OpenFAST: Looking forward

Our goal is to continually improve OpenFAST documentation and to increase the coverage of automated unit and
regression testing. In order to increase testing coverage and to maintain robust software, we will require that

• new modules be equipped by the module developer(s) with sufficient module-specific unit and regression testing
along with appropriate OpenFAST regression tests;

• bug fixes include appropriate unit tests;

• new features/capabilities include appropriate unit and regression tests. We are in the process of better instru-
menting the BeamDyn module with extensive testing as a demonstration of requirements for new modules.

For unit testing, we will employ the pFUnit framework (https://sourceforge.net/projects/pfunit).

For the time being OpenFAST provides project and solution files to support users developing and compiling using
Visual Studio. However, the team is continually working to automate the generation of Visual Studio build files via
CMake in future releases.

Please contact Michael.A.Sprague@NREL.gov with questions regarding the OpenFAST development plan.

6.5 C++ API Users Guide

The C++ API provides a high level API to run OpenFAST through a C++ gluecode. The primary purpose of the
C++ API is to help interface OpenFAST to external programs like CFD solvers that are typically written in C++. The
installation of C++ API is enabled via CMake by turning on the BUILD_FAST_CPP_API flag.

A sample glue-code FAST_Prog.cpp is provided as a demonstration of the usage of the C++ API. The glue-code allows
for the simulation of multiple turbines using OpenFAST in parallel over multiple processors. The glue-code takes a
single input file named cDriver.i (download).

# -*- mode: yaml -*-
#
# C++ glue-code for OpenFAST - Example input file
#

#Total number of turbines in the simulation
nTurbinesGlob: 3
#Enable debug outputs if set to true
debug: False
#The simulation will not run if dryRun is set to true
dryRun: False
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#Flag indicating whether the simulation starts from scratch or restart
simStart: init # init/trueRestart/restartDriverInitFAST
#Start time of the simulation
tStart: 0.0
#End time of the simulation. tEnd <= tMax
tEnd: 1.0
#Max time of the simulation
tMax: 4.0
#Time step for FAST. All turbines should have the same time step.
dtFAST: 0.00625
#Restart files will be written every so many time steps
nEveryCheckPoint: 160

Turbine0:
#The position of the turbine base for actuator-line simulations
turbine_base_pos: [ 0.0, 0.0, 0.0 ]
#The number of actuator points along each blade for actuator-line simulations
num_force_pts_blade: 0
#The number of actuator points along the tower for actuator-line simulations.
num_force_pts_tower: 0
#The checkpoint file for this turbine when restarting a simulation
restart_filename: "banana"
#The FAST input file for this turbine
FAST_input_filename: "t1_Test05.fst"
#A unique turbine id for each turbine
turb_id: 1

Turbine1:
turbine_base_pos: [ 0.0, 0.0, 0.0 ]
num_force_pts_blade: 0
num_force_pts_tower: 0
restart_filename: "banana"
FAST_input_filename: "t2_Test05.fst"
turb_id: 2

Turbine2:
turbine_base_pos: [ 0.0, 0.0, 0.0 ]
num_force_pts_blade: 0
num_force_pts_tower: 0
restart_filename: "banana"
FAST_input_filename: "t3_Test05.fst"
turb_id: 3

6.5.1 Command line invovation

mpiexec -np <N> openfastcpp

6.5.2 Common input file options

nTurbinesGlob
Total number of turbines in the simulation. The input file must contain a number of turbine specific sections
(Turbine0, Turbine1, ..., Turbine(n-1)) that is consistent with nTurbinesGlob.

debug
Enable debug outputs if set to true
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dryRun
The simulation will not run if dryRun is set to true. However, the simulation will read the input files, allocate
turbines to processors and prepare to run the individual turbine instances. This flag is useful to test the setup of
the simulation before running it.

simStart
Flag indicating whether the simulation starts from scratch or restart. simStart takes on one of three values:

•init - Use this option when starting a simulation from t=0s.

•trueRestart - While OpenFAST allows for restart of a turbine simulation, external components like
the Bladed style controller may not. Use this option when all components of the simulation are known to
restart.

•restartDriverInitFAST - When the restartDriverInitFAST option is selected, the individ-
ual turbine models start from t=0s and run up to the specified restart time using the inflow data stored at
the actuator nodes from a hdf5 file. The C++ API stores the inflow data at the actuator nodes in a hdf5 file
at every OpenFAST time step and then reads it back when using this restart option. This restart option is
especially useful when the glue code is a CFD solver.

tStart
Start time of the simulation

tEnd
End time of the simulation. tEnd <= tMax

tMax
Max time of the simulation

dtFAST
Time step for FAST. All turbines should have the same time step.

nEveryCheckPoint
Restart files will be written every so many time steps

6.5.3 Turbine specific input options

turbine_base_pos
The position of the turbine base for actuator-line simulations

num_force_pts_blade
The number of actuator points along each blade for actuator-line simulations

num_force_pts_tower
The number of actuator points along the tower for actuator-line simulations.

restart_filename
The checkpoint file for this turbine when restarting a simulation

FAST_input_filename
The FAST input file for this turbine

turb_id
A unique turbine id for each turbine
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Developer Documentation

Under construction.

This section of OpenFAST documentation is directed at developers, e.g., those who will be adding new modules,
improving existing modules, fixing bugs, etc. The OpenFAST software repository is on github.com, and we ask that
developers make contributions through “pull requests” as described in Section 7.2. OpenFAST documentation is
posted on readthedocs.com; that documentation is generated automatically from both the master and dev branches
on github.com whenever new material is committed. However, documentation can be generated on a local machine as
described in Section 7.3. Note that on the readthedocs.com site, one can build a PDF of the documentation (click on
lower left corner for options).

7.1 OpenFAST-development philosophy

Under construction

OpenFAST and its underlying modules are mostly written in Fortran (adhering to the 2003 standard), but modules can
be written in C/C++. OpenFAST was created with the goal of being a community model with developers and users
from research laboratories, academia, and industry.

Our goal as developers is to ensure that OpenFAST is sustainable software that is well tested and well docu-
mented. To that end, we are continually improving the documentation and test coverage for existing code, and we
expect that new capabilities will include adequate testing and documentation.

Moving forward, we have the following guidance for developers:

• When fixing a bug, first introduce a unit test that exposes the bug, fix the bug, and submit a Pull Request. See
Section 5 and Section 7.2.

• When adding a new feature, create appropriate automated unit and regression tests as described in Section 5.
The objective is to create a GitHub pull request that provides adequate verification and validation such that the
NREL OpenFAST developer team can merge the pull request with confidence that the new feature is “correct”
and supports our goal of self-sustaining software. See Section 7.2.3 for detailed information on submitting a
pull request.
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• If a code modification affects regression-test results in an expected manner, work with the NREL OpenFAST
developer team to upgrade the regression-test suite via a New Issue on the github.com repository.

• While OpenFAST developer documentation is being enhanced here, developers are encouraged to consult the
legacy FAST v8 Programmer’s Handbook.

7.2 Workflow for interacting with the OpenFAST github.com repo

OpenFAST development should follow “Git Flow” when interacting with the github repository. Git Flow is a git
workflow outlining safe methods of pushing and pulling commits to a shared repository. Maintaining Git Flow is
critical to prevent remote changes from blocking your local development.

7.2.1 Git Flow

The Git Flow process is well defined and adopted throughout the software development community. It is detailed
nicely here and the chart below provides a high level perspective.
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Reference: http://nvie.com/posts/a-successful-git-branching-model
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7.2.2 OpenFAST Specific Git Flow

It is important to consider how your current work will be affected by other developer’s commits and how your commits
will affect other developers. On public branches, avoid using git rebase and never force push.

In OpenFAST development, the typical workflow follows this procedure

1. Fork OpenFAST/OpenFAST on GitHub

2. Clone your new fork: git clone https://github.com/youruser/OpenFAST

3. Create a feature branch for active development: git branch feature/a_great_feature

4. Add new development on feature/a_great_feature: git push/pull

5. Update your feature branch with OpenFAST/dev: git pull https://github.com/OpenFAST/
OpenFAST dev; git push

6. Create a GitHub pull request to merge youruser/OpenFAST/feature/a_great_feature into
OpenFAST/OpenFAST/dev

7.2.3 Pull Requests

New pull requests should contain

• A description of the need for modifications

– If the pull request fixes a bug, the accompanying GitHub issue should be referenced

• A highlight of the work implemented

• Regression test results

– If all tests pass, the summary print out should be provided

– If any tests fail, an explanation of the failing cases and supporting data like plots should be included

• Updated unit tests, if applicable

• Updated documentation in applicable sections ready for compilation and deployment to readthedocs.

• A review request from a specific member of the NREL OpenFAST team

7.3 Building this documentation locally

This document describes how to build the OpenFAST documentation on your local machine. Documentation is auto-
matically built and updated on readthedocs when new material is pushed to the github repo. However, while developing
documentation, one should build locally to see changes quickly, and without the need to push your changes to see them
on readthedocs.

The documentation is based on the use of Doxygen, Sphinx, and Doxylink. Therefore users will need to install these
tools as well as several extensions of Sphinx that are utilized.

7.3.1 Install the Tools

Install CMake, Doxygen, Sphinx, Doxylink, and the extensions used. Doxygen uses the dot application installed
with GraphViz. Sphinx uses a combination of extensions installed with pip install as well as some that come
with OpenFAST located in the _extensions directory. Using Homebrew on Mac OS X, this would look something
like:
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brew install cmake
brew install python
brew install doxygen
brew install graphviz
pip install sphinx
pip install sphinxcontrib-doxylink
pip install sphinxcontrib-bibtex
pip install sphinx_rtd_theme

7.3.2 Run CMake Configure and Make the Docs

In the OpenFAST repository checkout, if it has not been created yet, create a build directory. Change to the build
directory and run CMake with BUILD_DOCUMENTATION on. If all of the main tools are found successfully, CMake
should configure with the ability to build the documentation. If Sphinx or Doxygen aren’t found, the configure will
skip the documentation.

Issue the command make docs which should first build the Doxygen documentation and then the Sphinx docu-
mentation. If this completes successfully, the entry point to the documentation should be in build/docs/html/
index.html.

For example, from the OpenFAST directory:

mkdir build
cd build
cmake -DBUILD_DOCUMENTATION:BOOL=ON ..
make docs

If you modify document source files in OpenFAST/docs/source, you can simply update the html files through
another make docs in OpenFAST/build:

make docs

7.3.3 Documentation Output

After building the documentation, it can be access by opening the output in a browser. Open the high level html file
generated at openfast/build/docs/html/index.html and begin using the page as any other web page.

7.3.4 Additional Build Targets

The html portion of the documentation can be built with make sphinx-html, and the output is available at
openfast/build/docs/html/index.html.

If LaTeX is installed, a pdf version of the documentation can be built with make sphinx-pdf, and the output is
available at openfast/build/docs/latex/Openfast.pdf.

7.4 Doxygen API documentation

If the Doxygen documentation is avaiable, it can be found at the following locations

• Main Page

• Index of Classes
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• Files
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CHAPTER 8

Important Links

• readthedocs.com Documentation: http://openfast.readthedocs.io/en/latest/

• Github Organization Page: https://github.com/OpenFAST

• Github Repository: https://github.com/OpenFAST/OpenFAST

• Nightly Testing Results: http://my.cdash.org/index.php?project=OpenFAST
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CHAPTER 9

Licensing

The OpenFAST software, including its underlying modules, are licensed under Apache License Version 2.0 open-
source license.
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CHAPTER 10

Getting Help

For possible bugs, enhancement requests, or code questions, please submit an issue at the OpenFAST Github reposi-
tory.

For OpenFAST usage questions, users should consider the FAST Forum, which provides a large 10+ year legacy of
FAST-related Q&A; the forum’s search functionality should be used before posting questions to either github issues
or the forum.

Users may find the established FAST v8 through the NWTC Information Portal: https://nwtc.nrel.gov/

Please contact Michael.A.Sprague@NREL.gov. with questions regarding the OpenFAST development plan or how to
contribute.
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