
openfarmsubsidies Documentation
Release 0.1-pre-alpha

Holger Drewes

Jun 28, 2017

Contents

1 Scraper (Django/DDS) 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 Configuration . 4
1.4 Scraper Handling . 4
1.5 Data Format . 5
1.6 Creating the Countries Endpoint . 7

2 Search Index (Elastic) 9
2.1 Installation . 9
2.2 Index Creation . 9
2.3 Indexing Documents . 10
2.4 Searching the Index . 10

3 Backend/API (Python/Flask) 11
3.1 Installation . 11
3.2 API . 11

4 Frontend (Boostrap/Javascript) 15
4.1 Installation . 15
4.2 Development . 15

5 Deployment 17
5.1 Server Setup . 17

6 Indices and tables 19

i

ii

openfarmsubsidies Documentation, Release 0.1-pre-alpha

This is the project documentation for openfarmsubsidies, a new approach on building an open scraper infras-
tructure and user interface for researching EU farmsubsidy payments, build upon the experiences made during work
on historically grown Farmsubsidy.org tech infrastructure.

The project has its own organization on GitHub and consists of the following repositories:

Name (GitHub) Description Status Last Status Update
openfarmsubsidies-scraper Scraping Beta 2017-06-28
openfarmsubsidies-elastic Search Index Beta 2017-06-28
openfarmsubsidies-backend-api Backend/API Beta 2017-06-28
openfarmsubsidies-frontend Frontend Beta 2017-06-28

This documentation provides guidance for installation, setup and technical aspects for the different sub modules.

Contents:

Contents 1

http://farmsubsidy.readthedocs.org
https://github.com/openfarmsubsidies
https://github.com/openfarmsubsidies/scraper
https://github.com/openfarmsubsidies/elastic
https://github.com/openfarmsubsidies/backend-api
https://github.com/openfarmsubsidies/frontend

openfarmsubsidies Documentation, Release 0.1-pre-alpha

2 Contents

CHAPTER 1

Scraper (Django/DDS)

Introduction

The scraping infrastructure is build on Python/Django and is using the djang-dynamic-scraper scraping library at
its core.

Scrapers for the various EU member state agencies databases are build and maintained within the Django admin
interface.

Installation

The scraping infrastructure project can be installed by cloning the GitHub repository and install the requirements into
a Python 3.5 virtualenv with:

pip install -r requirements.txt
pip install -r requirements_dev.txt # DEV requirements

The project uses the following main Python/Django libraries:

3

https://github.com/holgerd77/django-dynamic-scraper
https://github.com/openfarmsubsidies/scraper

openfarmsubsidies Documentation, Release 0.1-pre-alpha

• Django 1.10

• Scrapy 1.4

• Django Dynamic Scraper (DDS) 0.13

Configuration

The following environment variables have to be found in your shell environment, e.g. by adding lines like export
OPENFARMSUBSIDIES_SECRET_KEY="..." to the .bash_profile file:

Key Description Place
OPENFARMSUBSIDIES_SECRET_KEY | Project specific Django secret key settings.py

Starting a local Django server should now provide access to the scraper management admin console via the browser
(go to 127.0.0.1:8000):

python manage.py runserver

Scraper Handling

Importing/exporting Scrapers

Scrapers can be found in the scraper_dumps directory inside the repository and imported with the following
command:

python manage.py loaddata scraper_dumps/farmsubsidy_scraper_dump_YYYY-MM-DD_dds_[DDS_
→˓VERSION_NUMBER].json #Generic
python manage.py loaddata scraper_dumps/farmsubsidy_scraper_dump_2016-01-18_dds_v094.
→˓json #Example

Note: It is recommended to match the project installation DDS version with the version from the scraper dump,
otherwise DB changes during DDS version changes have to be looked at closely in the DDS release notes and manual
adoptions to the JSON dump format might be necessary.

Creating a new Scraper

For creating scrapers a ScrapedObjectClass Payment has to be defined in the Django admin (see the definition
from the scraper dumps) in addition to the models.py definition, defining the data structure of the scraped payment
data. See the Data Format section for description of the different payment attributes.

Scrapers are created per-country wise as Scraper objects in the Django admin and are referenced in additional
Country objects, representing a EU member states respectively the associated payments agency.

For further documentation and conceptional overview see the DDS docs

Running a Scraper

Scraper can be run from the command line with the following command:

4 Chapter 1. Scraper (Django/DDS)

https://www.djangoproject.com/
http://scrapy.org/
http://django-dynamic-scraper.readthedocs.org/en/latest/development.html#releasenotes
http://django-dynamic-scraper.readthedocs.org/en/

openfarmsubsidies Documentation, Release 0.1-pre-alpha

scrapy crawl --output=data.json --output-format=jsonlines payment_spider -L DEBUG -a
→˓id=GB -a max_items_read=4 -a max_pages_read=2

This will run the scraper connected to the Agency in the Django admin with the id GB and write the output in a JSON
Lines formatted file called data.json.

Usage options for scraping behaviour can be found in the corresponding DDS doc section for running/testing scrapers.

Data Format

Scraper Format Description

The following are the scraped object attributes of a Payment object. Note that some field are either filled in with
static values (like the country attribute) or are automatically filled via external API (like the name_en) attribute
and are not directly used in the scraping process:

Attribute Scraped
Field

Mandatory Description

base Yes Yes Container atribute for element scraping, see DDS docs
name Yes Yes Name of recipient scraped from the site, use both for en and

non-en names
name_en No No Use ONLY if name should be translated via Yandex API, add

static placeholder processor
country No Yes Always add, with static processor inserting the two-letter country

code
zip_code Yes No ZIP code of recipient
town Yes Yes Town of recipient
region Yes No Region of recipient
year No Yes The year of the scraped data, add static placeholder processor
amount_nc Yes Non-C-

Country
Use for scraping of non-C-country amounts

nc_conv_date No Non-C-
Country

Always use this and following field together with static processor...

nc_conv_rate No Non-C-
Country

...for non-C-countries

amount_euro Yes(C)/No Yes Use for scraping of C-country amounts, otherwiese static
processor

sub_payments_ncIndirect No Use for scraping sub payments of non-C-countries if available
(see extra expl.)

sub_payments_euroIndi-
rect(C)/No

No Use for scraping sub payments of C-country amounts, otherwiese
static processor

sp-x
(sp1,sp2,..)

Yes No Additional helper attributes for sub payments, both C and non-C

ex-
tra_dp_url_123

Yes No Helper attributes for scraping additional data urls per payment, see
DDS docs

Additional note on sub_payment scraping:

Sub payments are indirectly scraped via the sp-x fields and then added via placeholders into a static processor
template of the sub_payments_nc or sub_payments_euro field.

Only scrape sub payments if the two (without market measures)/three main agricultural subsidy pillars are listed,
otherwise things get divided into too small sections. Use the english naming translation in the following unified form
(for easier/useful faceting later on search):

1.5. Data Format 5

http://django-dynamic-scraper.readthedocs.org/en/latest/getting_started.html#running-testing-your-scraper

openfarmsubsidies Documentation, Release 0.1-pre-alpha

Payment Type Sub Payment
Name

Remarks

European Agricultural Guarantee Fund
(EAGF)

EAGF (Direct
Payments)

Direct payments to farmers, largest part

European Agricultural Fund for Rural
Development (EAFRD)

EAFRD (Rural
Development)

Environmental measures, sometimes:
ELER, smaller part

Market Measures (e.g. for milk, fruit
market)

Market Schemes Only sometimes

The scraped sub payments don’t have to sum up to the total subsidy sum, so you can also pick the 2/3 most common
ones. For other payments than the ones above use an english name translation.

The following is an exemplary static processor template for the Bulgarian scraper:

'static': 'EAGF (Direct Payments),{sp1} | EAFRD (Rural Development),{sp2} | Market
→˓Schemes,{sp3}'

In this case the scraper definition also has to provide entries with XPath definitions for the sp1, sp2, sp3 and sp4
fields. The so-scraped values are then automatically added to the static processor text replacing the placeholders.

General format for the sub_payment string:

'static': '[Name of SP1],{sp1} | [Name of SP2],{sp2} | ...'

Note: Is is possible to add up to six sub payment types to the scraper. The amounts of the sub payments doesn’t have
to add up to the total amount of the payment.

Output Format Description

Scraped items are saved with additional serialization customizations defined in the models.py module as JSON
Lines items, more or less (one additional processing is necessary) ready to be indexed in the Elastic index.

If currency is scraped in national unit conversion rate and date is read from fixer.io API.

Data format looks like the following:

{
"town": "PERTH",
"amount_nc": 57444.0,
"name": "\"A F Angelil T/A \"\"Cluny Estate\"\"\"",
"amount_euro": 76126.11,
"country": "GB",
"sub_payments_euro": [{
"amount": 32969.45,
"name": "Rural Development"

}, {
"amount": 43156.83,
"name": "Direct Aid"

}, {
"amount": 0.0,
"name": "Market Schemes"

}],
"sub_payments_nc": [{
"amount": 24878.42,
"name": "Rural Development"

}, {

6 Chapter 1. Scraper (Django/DDS)

http://fixer.io/

openfarmsubsidies Documentation, Release 0.1-pre-alpha

"amount": 32565.71,
"name": "Direct Aid"

}, {
"amount": 0.0,
"name": "Market Schemes"

}],
"year": 2015,
"nc_conv_rate": 0.75459,
"nc_conv_date": "2016-01-22",
"zip_code": "PH2"

}

Recipient Name Translation

For recipient name translation the Yandex translation API is used. YANDEX_TRANSLATE_API_ENDPOINT and
YANDEX_TRANSLATE_API_KEY have to be set in settings.py file.

Translation is automatically activated if name_en attribute is added to a scraper of a specific country, leave attribute
for scrapers with no translation (e.g. GB).

Yandex has the current API limits:

• 1.000.000 characters per day

• 10.000.000 characters per month

OpenFarmsubsidies scraping is coming close, so API usage has to be actively managed/recorded to avoid reach-
ing limitations.

Take the following formula for character estimates:

• (Number of recipients (wc -l)) * 15 characters/recipient

Try to stay under 80% of day/month limit, distribute (translated) scraper runs to different days, avoid double runs.

Creating the Countries Endpoint

The countries endpoint of the API (see: Countries Endpoint) is taking the administrated data from the Country
Django model objects as a starting point.

There is a create_countries_endpoint Django management command providing the JSON output for the
API response:

python manage.py create_countries_endpoint

Recreate the API endpoint every time a country is added and integrate it in the Backend/API python code.

Note: You can exclude a country by setting the corresponding scraper to inactive status.

1.6. Creating the Countries Endpoint 7

openfarmsubsidies Documentation, Release 0.1-pre-alpha

8 Chapter 1. Scraper (Django/DDS)

CHAPTER 2

Search Index (Elastic)

Searching is done with Elastic, currently the following version is used:

• Elastic 2.1.1

Installation

Download Elastic and install in folder elasticsearch (no version number) inside the repository.

The local dev server on http://localhost:9200 can then be started with:

./server.sh

Index Creation

Index Template

For indexing template in conf/template.json is used for mapping and has to be activated/loaded before first
data indexing:

curl -XPUT localhost:9200/_template/template_1 -d '@conf/template.json'

The current mapping for the index can be seen with:

curl -XGET 'http://localhost:9200/openfarmsubsidies/_mapping/payment?pretty'

Deleting the current template:

curl -XDELETE localhost:9200/_template/template_1

See installed templates:

9

https://www.elastic.co/

openfarmsubsidies Documentation, Release 0.1-pre-alpha

curl -XGET localhost:9200/_template/

Index Management

List indices:

curl 'localhost:9200/_cat/indices?v'

Delete index:

curl -XDELETE 'localhost:9200/openfarmsubsidies?pretty'

Indexing Documents

Format Pre-Processing

Input files have to be formatted as JSON Lines format and are prepared with the following command for indexing:

./jl2elastic inputfile.json

Indexing Documents

Index data:

curl -XPUT 'localhost:9200/openfarmsubsidies/payment/_bulk?pretty' --data-binary
→˓"@data_elastic.json"

Searching the Index

Testing search:

curl 'localhost:9200/openfarmsubsidies-test/_search?q=PERTH&pretty'

10 Chapter 2. Search Index (Elastic)

CHAPTER 3

Backend/API (Python/Flask)

Backend/API for creating a simple API layer and connecting to Elastic.

Installation

Installation is done by cloning the repository and install the dependencies from the requirements files:

pip install -r requirements.txt
pip install -r requirements_dev.txt # DEV requirements

The project uses Python 3.5 and is build upon the following main Python/Flask libraries:

• Flask 0.10

The dev server on http://127.0.0.1:5000 can be started with:

python app.py

API

General

Current version of the API: v1

Common Request Parameters

Name Description Example Values
start Result object to start with (default: 0) 0, 9 (10th object!)
rows Number of rows/objects to return (default: 10) 1, 10, 25

11

http://flask.pocoo.org/

openfarmsubsidies Documentation, Release 0.1-pre-alpha

Common Behaviour

API always returns aggregations for towns, years, countries and sub payments type.

Payments Endpoint

Payments endpoint can be reached at:

/[API_VERSION]/payments/

Results are sorted by amount_euro by default.

Endpoint-specific Request Parameters

Name Description Example Values
q Generic search for recipient, town or ZIP code Nestle,London,NR16
name Recipient name Nestle
country 2-letter country code of an EU country GB,SI,NL,PL
zip_code ZIP code of a European town NR16
town Name of a European town or city London
year Year of payment 2014
country 2-letter country code of an EU country GB,SI,NL,PL
amount_euro_gte Amount euro greater than given value 2500,100000,1000000
sub_payments_type Type of the sub payment in national language Direct Aid

Example Requests

https://[URL_TO_API]/[API_VERSION]/payments/?amount_euro_gte=5000&town=London

Example Data Set

_source: {
town: "London",
amount_nc: 6568,
name: "Example Recipient",
amount_euro: 8631.32,
country: "GB",
sub_payments_euro: [
{

amount: 8630.66,
name: "Rural Development"

},
{

amount: 0,
name: "Direct Aid"

},
{

amount: 0,
name: "Market Schemes"

}
],

12 Chapter 3. Backend/API (Python/Flask)

openfarmsubsidies Documentation, Release 0.1-pre-alpha

sub_payments_nc: [
{

amount: 6567.5,
name: "Rural Development"

},
{

amount: 0,
name: "Direct Aid"

},
{

amount: 0,
name: "Market Schemes"

}
],
year: 2014,
nc_conv_rate: 0.76095,
nc_conv_date: "2016-01-26",
zip_code: "SW7"

}

Sub payments are indexed schemaless as they are provided by the specific country agencies.

Note: If both an amount_nc (national currency) and an amount_euro is provided, the Euro value is not coming
originally from the source but is calculated via fixer.io API with the given conv rate at the conv date provided.

Countries Endpoint

The countries endpoint is a simple static endpoint and can be reached at:

/[API_VERSION]/payments/

It provides a list of all countries where payment data is indexed together with some additional information like a
countries responsible paying agency, associated data and info urls and the like.

There are no request parameters supported at the moment.

Example Request

https://[URL_TO_API]/[API_VERSION]/countries/

Example Data Set

{
"GB": {

"name": "Great Britain",
"agency_name": "GOV.UK - Department for Environment, Food and Rural Affairs",
"info_url": "https://www.gov.uk/government/organisations/department-for-

→˓environment-food-rural-affairs",
"data_url": "http://cap-payments.defra.gov.uk/",
"nc_symbol": "GBP",
"nc_sign": "£"

},

3.2. API 13

openfarmsubsidies Documentation, Release 0.1-pre-alpha

...
"IE": {

"name": "Ireland",
"agency_name": "gov.ie - Department of Agriculture, Food and the Marine",
"info_url": "http://www.agriculture.gov.ie",
"data_url": "http://www.agriculture.gov.ie/agri-foodindustry/

→˓euinternationalpolicy/commonagriculturalpolicycap/capbeneficiariesdatabase/
→˓paymentsdatabase/cap_ben_master.jsp",

"nc_symbol": "",
"nc_sign": ""

}
}

14 Chapter 3. Backend/API (Python/Flask)

CHAPTER 4

Frontend (Boostrap/Javascript)

Installation

Requirements

Main runtime library dependencies:

• Bootstrap 4 Alpha 6

• jQuery 3.2.1

Main dev tools:

• Sass (Ruby installation)

• http-server

• (Gulp.js) (build automation)

Running the server

Run the http-server from the main folder of the repository:

http-server

Content is served on http://127.0.0.1:8080, API is expected at http://127.0.0.1:5000.

Development

Sass sources can be compiled with:

sass sass/content.scss css/content.css

15

http://v4-alpha.getbootstrap.com/
https://jquery.com/
http://sass-lang.com/
https://github.com/indexzero/http-server
http://gulpjs.com/

openfarmsubsidies Documentation, Release 0.1-pre-alpha

Or you can run the watch command with:

sass --watch sass/content.scss:css/content.css

16 Chapter 4. Frontend (Boostrap/Javascript)

CHAPTER 5

Deployment

Server Setup

General

Deployment of all server parts is done on an Ubuntu 14.04 AWS/EC2 instance, Python fabric is used for
deployment automation, fabric files can be found in openfarmsubsidies-scraper repository.

The following fabric tasks are just for orientation what need to be installed/done and are not intended to pass through,
depending on your system pre-requisites:

fab prepare_system
fab install_deps

Script templates for setting up Gunicorn, Nginx and Supervisor can be found in the conf folder.

SSL

SSL cert is created with Let’s Encrypt with the following command:

sudo /home/ubuntu/.local/share/letsencrypt/bin/letsencrypt certonly -d
→˓openfarmsubsidies.org -d www.openfarmsubsidies.org -d scraper.openfarmsubsidies.org
→˓-d api.openfarmsubsidies.org

Elasticsearch

Elasticsearch is installed as deb (Debian) package following this instructions.

Installation can be found at /usr/share/elasticsearch/, start/stop is done via init.d script sudo /etc/
init.d/elasticsearch start.

Index backup can be done with:

17

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-elasticsearch-on-ubuntu-14-04

openfarmsubsidies Documentation, Release 0.1-pre-alpha

sudo cp -Rp /var/lib/elasticsearch /var/lib/elasticsearch-backup-2017-06-28

18 Chapter 5. Deployment

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Scraper (Django/DDS)
	Introduction
	Installation
	Configuration
	Scraper Handling
	Data Format
	Creating the Countries Endpoint

	Search Index (Elastic)
	Installation
	Index Creation
	Indexing Documents
	Searching the Index

	Backend/API (Python/Flask)
	Installation
	API

	Frontend (Boostrap/Javascript)
	Installation
	Development

	Deployment
	Server Setup

	Indices and tables

