
openConv Documentation
Release 0.1

Oliver Sebastian Haas

Jan 09, 2020

Contents

1 openConv README 3
1.1 Introduction . 3
1.2 Quick Start . 3
1.3 Dependencies . 4
1.4 Issues . 4
1.5 Transform Methods . 4
1.6 Copyright and License . 5

2 Convolution Methods 7
2.1 Direct Convolution / Trapezoidal Rule . 7
2.2 FFT Convolution . 7
2.3 Fast Multipole Method with Chebyshev Interpolation . 8
2.4 Fast Multipole Method with Chebyshev Interpolation for Approximately Exponential Functions . . . 8
2.5 End Corrections . 8

3 Examples 9
3.1 example000_exponential . 9

i

ii

openConv Documentation, Release 0.1

Start by having a look at the README, at the examples or at a little bit more details on the transform methods.

Contents:

Contents 1

openConv Documentation, Release 0.1

2 Contents

CHAPTER 1

openConv README

Note: It’s best to view this readme in the openConv documentation.

1.1 Introduction

The main goal of openConv is to provide fast and efficient numerical convolutions of symmetric and smooth kernels
and data of equispaced data in Python with all actual calculations done in Cython. It is intended to work in conjunction
with openAbel to calculate 2D convolutions of radially symmetric functions in atomic collisions. The most useful
methods implemented in my module for that purpose use the Fast Multipole Method combined with arbitrary order end
correction of the trapezoidal rule to achieve both fast convergence and linear run time. Other methods are implemented
for comparisons.

1.2 Quick Start

In most cases this should be pretty simple:

• Clone the repository: git clone https://github.com/oliverhaas/openConv.git

• Install: sudo python setup.py install

• Run example: python example000_exponential.py

This assumes dependencies are already met and you run a more or less similar system to mine (see Dependencies).

3

https://travis-ci.org/oliverhaas/openConv
https://openconv.readthedocs.io/en/latest/?badge=latest
https://openconv.readthedocs.io/en/latest/index.html
https://github.com/oliverhaas/openAbel

openConv Documentation, Release 0.1

1.3 Dependencies

The code was run on several Ubuntu systems without problems. More specific I’m running Ubuntu 16.04 and the
following libraries and Python modules, which were all installed the standard way with either sudo apt install
libName or sudo pip install moduleName.

• Python 3.5.2

• Numpy 1.18.1

• Scipy 1.4.1

• Cython 0.29.14

• Matplotlib 3.0.3

• FFTW3 3.3.4

As usual newer versions of the libraries should work as well, and many older versions will too. I’m sure it’s possible
to get openConv to run on vastly different systems, like e.g. Windows systems, but obviously I haven’t extensively
tested different setups.

1.4 Issues

In contrast to other codes I made available, openConv has as of now only very specific use-cases I actually needed, thus
implemented and debugged. I strongly recommend every user to thourougly check if the methods work as intended
for their specific problem. For most people openConv will thus not be a useable code as is, but more a starting point
or inspriration for their own code. If there are any issues, bugs or feature request just let me know. Gaps in the
implementation might be filled by me if requested.

1.5 Transform Methods

It is fairly common to use directly the discrete convolution to approximate the convolution integral, often with smaller
improvements like using trapezoidal rule instead of rectangle rule. This yields usually neither good order of con-
vergence (second order with trapezoidal rule), nor fast calculation (quadratic computational complexity). openConv
intends to provide methods to calculate these convolutions efficiently, fast, and with high accuracy. Beside the common
“fast convolution” algorithm based on the Fast Fourier Transform we provide methods based on the Fast Multipole
Method and high order end correction, which outclass common methods in many cases in most aspects (convergence
order, error, computational complexity, etc.), as long as the kernel is smooth.

For the most important methods of we adapted the Chebyshev interpolation Fast Multipole Method (FMM) as de-
scribed by Tausch and calculated end corrections for smooth functions similar to Kapur. If data points outside of the
integration interval can be provided these end corrections are arbitrary order stable and we provide coefficients up to
20th order, otherwise it’s recommended to use at most 5th order. The FMM leads to an linear O(N) computational
complexity algorithm. For approximately exponentially decaying functions, like e.g. often encountered in atomic
physics, we introduced an exponential shift into the Chebyshev interpolation to get relative errors of the convolution
result of up to machine precision.

In both error and computational complexity there is no better existing method for the intended purpose to my knowl-
edge.

In the documentation and the examples more details are discussed and mentioned; in general both are a good way to
learn how to understand and use the code.

4 Chapter 1. openConv README

https://link.springer.com/chapter/10.1007/978-3-642-25670-7_6
https://epubs.siam.org/doi/abs/10.1137/S0036142995287847

openConv Documentation, Release 0.1

1.6 Copyright and License

Copyright 2016-2020 Oliver Sebastian Haas.

The code openConv is published under the GNU GPL version 3. This program is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

For more information see the GNU General Public License copy provided in this repository LICENSE.

1.6. Copyright and License 5

https://github.com/oliverhaas/openAbel/tree/master/LICENSE

openConv Documentation, Release 0.1

6 Chapter 1. openConv README

CHAPTER 2

Convolution Methods

The convolution integral in one dimension is defined as

(𝑓 * 𝑔)(𝑡) =
∫︁ ∞

−∞
𝑓(𝜏)𝑔(𝑡− 𝜏)𝑑𝜏 ,

and the discrete equivalent (which implies uniformly discretized data and kernel)

(𝑓 * 𝑔)[𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚]𝑔[𝑛−𝑚].

Often both f and g often have some kind of symmetry around 0; openConv deals mainly with both f and g having
some kind of symmetry. In the examples some more details are discussed and mentioned; in general the examples are
a good way to learn how to understand and use the code.

import openConv
convObj = oc.Conv(nData, symData, kern, kernFun, symKern, stepSize, nResult, method =
→˓method, order = order)
result = convObj.execute(data)

2.1 Direct Convolution / Trapezoidal Rule

It is fairly common to use directly the discrete convolution to approximate the convolution integral, often with smaller
improvements like using trapezoidal rule instead of rectangle rule. Especially relevant in case both f and g are smooth
functions, this yields usually neither good order of convergence (second order with trapezoidal rule), nor fast calcula-
tion (quadratic O(N^2) computational complexity).

Direct convolution is chosen by setting method=0.

2.2 FFT Convolution

One option to get a faster calculation is instead of direct calculation is use of the Fast Fourier Transform (FFT) based
convolution, or often called “fast convolution” algorithm. This approach gives linearithmic O(Nlog(N)) computational

7

openConv Documentation, Release 0.1

complexity, but possibly large relative and unpredictable errors of the result, since the error scales with the maximum
value of the result. In case of functions with high dynamic range, e.g. exponential functions, the tails of the results are
poorly resolved.

FFT convolution is chosen by setting method=1.

2.3 Fast Multipole Method with Chebyshev Interpolation

Even better computational complexity (linear O(N)) can be achieved by the Fast Multipole Method (FMM). There are
so called black box FMM described in literature (e.g. by Tausch), which in principle work well for smooth kernels
with not too high dynamic range.

FMM convolution is chosen by setting method=2.

2.4 Fast Multipole Method with Chebyshev Interpolation for Approxi-
mately Exponential Functions

In openConv we extend the FMM to functions with asymptotic somewhat exponential decay and thus can deal with a
large class of functions with high dynamic range.

FMMEXP is chosen by setting method=3.

2.5 End Corrections

To increase the order of convergence openConv uses end corrections for the trapezoidal rule as described in the
reference by Kapur. These end corrections can be used together with every convolution method by setting the keyword
order to the desired order. If data points outside of the integration interval can be provided these end corrections
are arbitrary order stable. Otherwise it is not recommended to go higher than 5th order. As of now we provide the
coefficients up to 20th order. The Mathematica notebook which calculated these coefficients can be found in this
repository as well.

8 Chapter 2. Convolution Methods

https://en.wikipedia.org/wiki/Fast_multipole_method
https://link.springer.com/chapter/10.1007/978-3-642-25670-7_6
https://epubs.siam.org/doi/abs/10.1137/S0036142995287847
https://github.com/oliverhaas/openConv/tree/master/add/calcCoeffsSmooth.nb

CHAPTER 3

Examples

3.1 example000_exponential

This is a simple example which calculates the convolution of a Gaussian with a symmetric approximately exponential
kernel.

1 ##
→˓##

2 # Simple example which calculates the convolution of two somewhat exponential
→˓functions.

3 # Results are compared with the direct solution. Mostly default parameters are used.
4 ##

→˓##
5

6

7 import openConv as oc
8 import numpy as np
9 import matplotlib.pyplot as mpl

10

11

12 ##
→˓##

13 # Plotting setup
14

15 params = {
16 'axes.labelsize': 8,
17 'font.size': 8,
18 'legend.fontsize': 10,
19 'xtick.labelsize': 10,
20 'ytick.labelsize': 10,
21 'text.usetex': False,
22 'figure.figsize': [12., 8.]
23 }
24 mpl.rcParams.update(params)

(continues on next page)

9

openConv Documentation, Release 0.1

Fig. 1: Simple convolution with somewhat exponential kernel.

10 Chapter 3. Examples

openConv Documentation, Release 0.1

(continued from previous page)

25 # Color scheme
26 colors = ['#005AA9','#E6001A','#99C000','#721085','#EC6500','#009D81','#A60084','

→˓#0083CC','#F5A300','#C9D400','#FDCA00']
27 # Plot markers
28 markers = ["o", "v" , "s", "D", "p", "*", "h", "+", "^", "x"]
29 # Line styles
30 linestyles = ['-', '--', '-.', ':','-', '--', '-.', ':','-', '--', '-.', ':']
31 lw = 2
32

33 fig, ((ax1), (ax2)) = mpl.subplots(1, 2)
34

35 ##
→˓##

36 # Parameters and input data
37 order = 5
38 orderM1Half = max(int((order-1)/2),0)
39

40 nData = 1000
41 xMaxData = 8.
42 sigData = 0.5
43 stepSize = xMaxData/(nData-1)
44 xData = np.linspace(-orderM1Half*stepSize, orderM1Half*stepSize+xMaxData,

→˓nData+2*orderM1Half)
45 data = np.exp(-0.5*xData**2/sigData**2) # data can actually be arbitrary
46

47 # Kernel
48 lamKernel = 0.2
49 def kern(xx):
50 return np.exp(-xx/lamKernel) + 10.*np.exp(-3.*xx/lamKernel)
51 nKernel = 2000
52

53

54 # Parameters and output result
55 nResult = nData+nKernel-1 # Can be chosen arbitrary, but use typical length for

→˓example
56 xResult = np.linspace(0., (nResult-1)*stepSize, nResult)
57

58 xKernel = np.linspace(0., (nResult+nData-2)*stepSize, nResult+nData-1)
59 kernel = kern(xKernel)
60

61

62 ##
→˓##

63 # Create convolution object, which does all precomputation possible without knowing
→˓the exact

64 # data. This way it's much faster if repeated convolutions with the same kernel are
→˓done.

65 convObj = oc.Conv(nData, 2, kern, None, 2, stepSize, nResult, method = 0, order =
→˓order)

66 result = convObj.execute(data, leftBoundary = 3, rightBoundary = 3)
67

68 convObj = oc.Conv(nData, 2, kern, None, 2, stepSize, nResult, method = 1, order =
→˓order)

69 result2 = convObj.execute(data, leftBoundary = 3, rightBoundary = 3)
70

71 convObj = oc.Conv(nData, 2, kern, None, 2, stepSize, nResult, method = 2, order =
→˓order)

(continues on next page)

3.1. example000_exponential 11

openConv Documentation, Release 0.1

(continued from previous page)

72 result3 = convObj.execute(data, leftBoundary = 3, rightBoundary = 3)
73

74 convObj = oc.Conv(nData, 2, kern, None, 2, stepSize, nResult, method = 3, order =
→˓order)

75 result4 = convObj.execute(data, leftBoundary = 3, rightBoundary = 3)
76

77 ax1.semilogy(xResult/stepSize, np.abs(result), color = colors[0], marker=markers[0],
→˓linestyle=linestyles[0], label='Direct')

78 ax1.semilogy(xResult/stepSize, np.abs(result2), color = colors[1], marker=markers[1],
→˓linestyle=linestyles[1], label='FFT')

79 ax1.semilogy(xResult/stepSize, np.abs(result3), color = colors[2], marker=markers[2],
→˓linestyle=linestyles[2], label='FMMCheb')

80 ax1.semilogy(xResult/stepSize, np.abs(result4), color = colors[3], marker=markers[3],
→˓linestyle=linestyles[3], label='FMMExpCheb')

81 ax1.legend()
82 ax1.set_xlabel('x')
83 ax1.set_ylabel('value')
84 ax1.grid(True)
85

86 ax2.semilogy(xResult[:-1]/stepSize, np.clip(np.abs((result2[:-1]-result[:-1])/
→˓result[:-1]),1.e-16,10.), color = colors[1], marker=markers[1],
→˓linestyle=linestyles[1], label='FFT')

87 ax2.semilogy(xResult[:-1]/stepSize, np.clip(np.abs((result3[:-1]-result[:-1])/
→˓result[:-1]),1.e-16,10.), color = colors[2], marker=markers[2],
→˓linestyle=linestyles[2], label='FMMCheb')

88 ax2.semilogy(xResult[:-1]/stepSize, np.clip(np.abs((result4[:-1]-result[:-1])/
→˓result[:-1]),1.e-16,10.), color = colors[3], marker=markers[3],
→˓linestyle=linestyles[3], label='FMMExpCheb')

89 ax2.legend()
90 ax2.set_xlabel('x')
91 ax2.set_ylabel('relative error')
92 ax2.grid(True)
93

94 mpl.tight_layout()
95 mpl.savefig('example000_exponential.png', dpi=300)
96

97 mpl.show()
98

99

100

12 Chapter 3. Examples

	openConv README
	Introduction
	Quick Start
	Dependencies
	Issues
	Transform Methods
	Copyright and License

	Convolution Methods
	Direct Convolution / Trapezoidal Rule
	FFT Convolution
	Fast Multipole Method with Chebyshev Interpolation
	Fast Multipole Method with Chebyshev Interpolation for Approximately Exponential Functions
	End Corrections

	Examples
	example000_exponential

