

OpenConcept

[image: Linux Status]
 [https://travis-ci.org/bbrelje/openconcept][image: Windows Status]
 [https://ci.appveyor.com/project/bbrelje/openconcept/branch/master][image: Coverage Status]
 [https://coveralls.io/github/bbrelje/openconcept][image: Documentation Status]
 [https://openconcept.readthedocs.io/en/latest/?badge=latest]OpenConcept is a new toolkit for the conceptual design of aircraft.
OpenConcept was developed in order to model and optimize aircraft with electric propulsion at low computational cost.
The tools are built on top of NASA Glenn’s OpenMDAO [http://openmdao.org/] framework, which in turn is written in Python.

The following charts show more than 250 individually optimized hybrid-electric light twin aircraft (similar to a King Air C90GT).
Optimizing hundreds of configurations can be done in a couple of hours on a standard laptop computer.

[image: _images/readme_charts.png]
The reason for OpenConcept’s efficiency is the analytic derivatives built into each analysis routine and component.
Accurate, efficient derivatives enable the use of Newton nonlinear equation solutions and gradient-based optimization at low computational cost.

Getting Started

	Clone the repo to disk

	Navigate to the root openconcept folder

	Run python setup.py install to install the package

	Navigate to the examples folder

	Run python TBM850.py to test OpenConcept on a single-engine turboprop aircraft (the TBM 850)

	Look at the examples/aircraft data/TBM850.py folder to play with the assumptions / config / geometry and see the effects on the output result

examples/HybridTwin.py is set up to do MDO in a grid of specific energies and design ranges and save the results to disk.
Visualization utilities will be added soon (to produce contour plots as shown in this Readme)

Dependencies

This toolkit requires the use of OpenMDAO 2.3.0 or later and will evolve rapidly as general utilities are moved from OpenConcept into the main OpenMDAO repository.
OpenMDAO requires a late numpy and scipy.

Please Cite Us!

Please cite this software by reference to the conference paper:

Plaintext:

Benjamin J. Brelje and Joaquim R.R.A. Martins.
“Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients”,
2018 AIAA/IEEE Electric Aircraft Technologies Symposium,
AIAA Propulsion and Energy Forum, (AIAA 2018-4979) DOI: TBD

Bibtex:

@inproceedings{Brelje2018,
 Address = {{C}incinnati,~{OH}},
 Author = {Benjamin J. Brelje and Joaquim R. R. A. Martins},
 Booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium},
 Month = jul,
 Title = {Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients},
 Year = 2018,
Number = {AIAA-2018-4979},
 }

Contributing

A contributor’s guide is coming third (after completing documentation and automatic testing coverage).
I’m open to pull requests and issues in the meantime. Stay tuned. The development roadmap is here.

Documentation:

	Features

	Source Docs

	Development Roadmap

Indices and tables

	Index

	Module Index

	Search Page

Features

OpenConcept features will be documented here.

	Propulsion Modeling
	Single Turboprop Example

	Series Hybrid Example

	Components

	OpenMDAO Basics
	Design Philosophy

	Component and Group Classes

	The Problem Class

	Setting and Accessing Values

	Defining Optimization / Analysis Problems

	Recording and Retrieving Results

	Defining Custom Components

Propulsion Modeling

OpenConcept is designed to facilitate bottoms-up modeling of aircraft propulsion architectures with conceptual-level fidelity.
Electric and fuel-burning components are supported.

Single Turboprop Example

This example illustrates the simples possible case (turboprop engine connected to a propeller).
The propulsion system is instantiated as an OpenMDAO Group.

Source: `examples/propulsion_layouts/simple_turboprop.py`

class TurbopropPropulsionSystem(Group):
 """This is an example model of the simplest possible propulsion system
 consisting of a constant-speed prop and a turboshaft.

 This is the Pratt and Whitney Canada PT6A-66D with 4-bladed
 propeller used by the SOCATA-DAHER TBM-850.

 Inputs

 ac|propulsion|engine|rating : float
 The maximum rated shaft power of the engine
 ac|propulsion|propeller|diameter : float
 Diameter of the propeller

 Options

 num_nodes : float
 Number of analysis points to run (default 1)
 """
 def initialize(self):
 self.options.declare('num_nodes', default=1, desc="Number of mission analysis points to run")

 def setup(self):
 nn = self.options['num_nodes']

 # rename incoming design variables
 dvlist = [['ac|propulsion|engine|rating', 'eng1_rating', 850, 'hp'],
 ['ac|propulsion|propeller|diameter', 'prop1_diameter', 2.3, 'm']]
 self.add_subsystem('dvs', DVLabel(dvlist),
 promotes_inputs=["*"], promotes_outputs=["*"])

 # introduce model components
 self.add_subsystem('eng1',
 SimpleTurboshaft(num_nodes=nn, weight_inc=0.14 / 1000, weight_base=104),
 promotes_inputs=["throttle"], promotes_outputs=["fuel_flow"])
 self.add_subsystem('prop1',
 SimplePropeller(num_nodes=nn, num_blades=4,
 design_J=2.2, design_cp=0.55),
 promotes_inputs=["fltcond|*"], promotes_outputs=["thrust"])

 # connect design variables to model component inputs
 self.connect('eng1_rating', 'eng1.shaft_power_rating')
 self.connect('eng1_rating', 'prop1.power_rating')
 self.connect('prop1_diameter', 'prop1.diameter')

 # connect components to each other
 self.connect('eng1.shaft_power_out', 'prop1.shaft_power_in')

Series Hybrid Example

This example illustrates the complexities which arise when electrical components are included.

Source: `examples.propulsion_layouts.simple_series_hybrid.py`

class SingleSeriesHybridElectricPropulsionSystem(Group):
 """This is an example model of a series-hybrid propulsion system. One motor
 draws electrical load from two sources in a fractional split| a battery pack,
 and a turbogenerator setup. The control inputs are the power split fraction and the
 motor throttle setting; the turboshaft throttle matches the power level necessary
 to drive the generator at the required power level.

 Fuel flows and prop thrust should be fairly accurate.
 Heat constraints haven't yet been incorporated.

 The "pilot" controls thrust by varying the motor throttles from 0 to 100+% of rated power.
 She may also vary the percentage of battery versus fuel being
 used by varying the power_split_fraction.

 This module alone cannot produce accurate fuel flows, battery loads, etc.
 You must do the following, either with an implicit solver or with the optimizer:
 - Set eng1.throttle such that gen1.elec_power_out = hybrid_split.power_out_A

 The battery does not track its own state of charge (SOC);
 it is connected to elec_load simply so that the discharge rate can be compared to
 the discharge rate capability of the battery. SOC and fuel flows should be time-integrated
 at a higher level (in the mission analysis codes).

 Inputs

 ac|propulsion|engine|rating : float
 Turboshaft range extender power rating (scalar, kW)
 ac|propulsion|propeller|diameter : float
 Propeller diameter (scalar, m)
 ac|propulsion|motor|rating : float
 Motor power rating (scalar, kW)
 ac|propulsion|generator|rating : float
 Range extender elec gen rating (scalar, kW)
 ac|weights|W_battery : float
 Battery weight (scalar, kg)

 TODO list all the control inputs

 Outputs

 thrust : float
 Propulsion system total thrust (vector, N)
 fuel_flow : float
 Fuel flow consumed by the turboshaft (vector, kg/s)

 Options

 num_nodes : float
 Number of analysis points to run (default 1)
 specific_energy : float
 Battery specific energy (default 300 Wh/kg)
 """
 def initialize(self):
 self.options.declare('num_nodes', default=1, desc="Number of mission analysis points to run")
 self.options.declare('specific_energy', default=300, desc="Battery spec energy in Wh/kg")

 def setup(self):
 nn = self.options['num_nodes']
 e_b = self.options['specific_energy']

 # define design variables that are independent of flight condition or control states
 dvlist = [['ac|propulsion|engine|rating', 'eng_rating', 260.0, 'kW'],
 ['ac|propulsion|propeller|diameter', 'prop_diameter', 2.5, 'm'],
 ['ac|propulsion|motor|rating', 'motor_rating', 240.0, 'kW'],
 ['ac|propulsion|generator|rating', 'gen_rating', 250.0, 'kW'],
 ['ac|weights|W_battery', 'batt_weight', 2000, 'kg']]
 self.add_subsystem('dvs', DVLabel(dvlist), promotes_inputs=["*"], promotes_outputs=["*"])

 # introduce model components
 self.add_subsystem('motor1', SimpleMotor(efficiency=0.97, num_nodes=nn))
 self.add_subsystem('prop1', SimplePropeller(num_nodes=nn),
 promotes_inputs=["fltcond|*"], promotes_outputs=['thrust'])
 self.connect('motor1.shaft_power_out', 'prop1.shaft_power_in')

 self.add_subsystem('hybrid_split', PowerSplit(rule='fraction', num_nodes=nn))
 self.connect('motor1.elec_load', 'hybrid_split.power_in')

 self.add_subsystem('eng1',
 SimpleTurboshaft(num_nodes=nn,
 weight_inc=0.14 / 1000,
 weight_base=104),
 promotes_outputs=["fuel_flow"])
 self.add_subsystem('gen1',SimpleGenerator(efficiency=0.97, num_nodes=nn))

 self.connect('eng1.shaft_power_out', 'gen1.shaft_power_in')

 self.add_subsystem('batt1', SimpleBattery(num_nodes=nn, specific_energy=e_b))
 self.connect('hybrid_split.power_out_A', 'batt1.elec_load')

 # need to use the optimizer to drive hybrid_split.power_out_B to the
 # same value as gen1.elec_power_out.
 # create a residual equation for power in vs power out from the generator
 self.add_subsystem('eng_gen_resid',
 AddSubtractComp(output_name='eng_gen_residual',
 input_names=['gen_power_available', 'gen_power_required'],
 vec_size=nn, units='kW',
 scaling_factors=[1, -1]))
 self.connect('hybrid_split.power_out_B', 'eng_gen_resid.gen_power_required')
 self.connect('gen1.elec_power_out', 'eng_gen_resid.gen_power_available')

 # add the weights of all the motors and props
 # (forward-compatibility for twin series hybrid layout)
 addweights = AddSubtractComp(output_name='motors_weight',
 input_names=['motor1_weight'],
 units='kg')
 addweights.add_equation(output_name='propellers_weight',
 input_names=['prop1_weight'],
 units='kg')
 self.add_subsystem('add_weights', subsys=addweights,
 promotes_inputs=['*'],promotes_outputs=['*'])

 self.connect('motor1.component_weight', 'motor1_weight')
 self.connect('prop1.component_weight', 'prop1_weight')

 #connect design variables to model component inputs
 self.connect('eng_rating', 'eng1.shaft_power_rating')
 self.connect('prop_diameter', ['prop1.diameter'])
 self.connect('motor_rating', ['motor1.elec_power_rating'])
 self.connect('motor_rating', ['prop1.power_rating'])
 self.connect('gen_rating', 'gen1.elec_power_rating')
 self.connect('batt_weight', 'batt1.battery_weight')

Components

	Motor Component

Motor Component

The motor component generates mechanical power and consumes an electrical load.

OpenMDAO Basics

Design Philosophy

Component and Group Classes

The Problem Class

Setting and Accessing Values

Defining Optimization / Analysis Problems

Recording and Retrieving Results

Defining Custom Components

Source Docs

	openconcept.analysis

	openconcept.analysis.atmospherics

	openconcept.components

	openconcept.utilities

	openconcept.utilities.math

openconcept.analysis

	aerodynamics.py

	mission.py

	takeoff.py

aerodynamics.py

Aerodynamic analysis routines usable for multiple purposes / flight phases

	
class openconcept.analysis.aerodynamics.PolarDrag(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Calculates drag force based on drag polar formulation

	Inputs

	
	fltcond|CL (float) – Lift coefficient (vector, dimensionless)

	fltcond|q (float) – Dynamic pressure (vector, Pascals)

	ac|geom|wing|S_ref (float) – Reference wing area (scalar, m**2)

	ac|geom|wing|AR (float) – Wing aspect ratio (scalar, dimensionless)

	CD0 (float) – Zero-lift drag coefficient (scalar, dimensionless)

	e (float) – Wing Oswald efficiency (scalar, dimensionless)

	Outputs

	drag (float) – Drag force (vector, Newtons)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

	
class openconcept.analysis.aerodynamics.Lift(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Calculates lift force based on CL, dynamic pressure, and wing area

	Inputs

	
	fltcond|CL (float) – Lift coefficient (vector, dimensionless)

	fltcond|q (float) – Dynamic pressure (vector, Pascals)

	ac|geom|wing|S_ref (float) – Reference wing area (scalar, m**2)

	Outputs

	lift (float) – Lift force (vector, Newtons)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

	
class openconcept.analysis.aerodynamics.StallSpeed(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Calculates stall speed based on CLmax, wing area, and weight

	Inputs

	
	CLmax (float) – Maximum lfit coefficient (scalar, dimensionless)

	weight (float) – Dynamic pressure (scalar, kg)

	ac|geom|wing|S_ref (float) – Reference wing area (scalar, m**2)

	Outputs

	Vstall_eas (float) – Stall speed (scalar, m/s)

mission.py

Analysis routines for simulating a mission profile with climb, cruise, and descent

	
class openconcept.analysis.mission.MissionFlightConditions(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Generates vectors of flight conditions for a mission profile

	Inputs

	
	mission|climb|vs (float) – Vertical speed in the climb segment (scalar, m/s)

	mission|descent|vs (float) – Vertical speed in the descent segment (should be neg; scalar, m/s)

	mission|climb|Ueas (float) – Indicated/equiv. airspeed during climb (scalar, m/s)

	mission|cruise|Ueas (float) – Indicated/equiv. airspeed in cruise (scalar, m/s)

	mission|descent|Ueas (float) – Indicated/equiv. airspeed during descent (scalar, m/s)

	mission|takeoff|h (float) – Takeoff (and landing, for now) altitude (scalar, m)

	mission|cruise|h (float) – Cruise altitude (scalar, m)

	Outputs

	
	fltcond|mission|vs (float) – Vertical speed vector for all mission phases / analysis points (vector, m/s)

	fltcond|mission|Ueas (float) – Equivalent airspeed vector for all mission phases / analysis points (vector, m/s)

	fltcond|mission|h (float) – Altitude at each analysis point (vector, m)

	mission|climb|time (float) – Time to ascent from end of takeoff to start of cruise (scalar, s)

	mission|descent|time (float) – Time to descend from end of cruise to landing (scalar, s)

	mission|climb|dt (float) – Timestep length during climb phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	mission|descent|dt (float) – Timestep length during descent phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionNoReserves(**kwargs)

	Bases: openmdao.core.group.Group

This analysis group calculates energy/fuel consumption and feasibility for a given mission profile.

This component should be instantiated in the top-level aircraft analysis / optimization script.
Suggested variable promotion list:
“ac|aero|*”, “ac|geom|*”, “fltcond|mission|*”, “mission|*”

Inputs List:

	From aircraft config:

	
	ac|aero|polar|CD0_cruise

	ac|aero|polar|e

	ac|geom|wing|S_ref

	ac|geom|wing|AR

	From mission config:

	
	mission|weight_initial

	From mission flight condition generator:

	
	fltcond|mission|vs

	mission|climb|time

	mission|climb|dt

	mission|descent|time

	mission|descent|dt

	From standard atmosphere model/splitter:

	
	fltcond|mission|Utrue

	fltcond|mission|q

	From propulsion model:

	
	mission|battery_load

	mission|fuel_flow

	mission|thrust

	Outputs

	
	mission|total_fuel (float) – Total fuel burn for climb, cruise, and descent (scalar, kg)

	mission|total_battery_energy (float) – Total energy consumption for climb, cruise, and descent (scalar, kJ)

	thrust_resid.thrust_residual (float) – Imbalance between thrust and drag for use with Newton solver (scalar, N)

	
class openconcept.analysis.mission.ExplicitThrustResidual(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes force imbalance in the aircraft x axis. Enables Newton solve for throttle at steady flight.

	Inputs

	
	drag (float) – Aircraft drag force at each analysis point (vector, N)

	fltcond|mission|singamma (float) – Sine of the flight path angle for all mission phases (vector, dimensionless)

	mission|weights (float) – Aircraft weight at each analysis point (vector, kg)

	mission|thrust (float) – Aircraft thrust force at each analysis point (vector, N)

	Outputs

	thrust_residual (float) – Imbalance in x-axis force at each analysis point (vector, N)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.ComputeDesignMissionResiduals(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes weight margins to ensure feasible mission profiles

For aircraft including battery energy, use ComputeDesignMissionResidualsBattery instead

	Inputs

	
	ac|weights|MTOW (float) – Maximum takeoff weight (scalar, kg)

	ac|weights|W_fuel_max (float) – Max fuel weight (inc. vol limits; scalar, kg)

	mission|payload (float) – Payload weight including pax (scalar, kg)

	mission|total_fuel (float) – Fuel consume during the mission profile (not including TO; scalar, kg)

	OEW (float) – Operational empty weight (scalar, kg)

	takeoff|total_fuel (float) – Fuel consumed during takeoff (only if include_takeoff option is True)

	Outputs

	
	mission|fuel_capacity_margin (float) – Excess fuel capacity for this mission (scalar, kg)
Positive is good

	mission|MTOW_margin (float) – Excess takeoff weight avail. for this mission (scalar, kg)
Positive is good

	fuel_burn (float) – Total fuel burn including takeoff and the mission (scalar, kg)
Only when include_takeoff is True

	Options

	include_takeoff (bool) – Set to True to enable takeoff fuel burn input

	
class openconcept.analysis.mission.ComputeDesignMissionResidualsBattery(**kwargs)

	Bases: openconcept.analysis.mission.ComputeDesignMissionResiduals

Computes weight and energy margins to ensure feasible mission profiles.

This routine is applicable to electric and hybrid architectures.
For fuel-only designs, use ComputeDesignMissionResiduals instead.

	Inputs

	
	ac|weights|MTOW (float) – Maximum takeoff weight (scalar, kg)

	ac|weights|W_battery (float) – Battery weight (scalar, kg)

	ac|weights|W_fuel_max (float) – Max fuel weight (inc. vol limits; scalar, kg)

	battery_max_energy (float) – Maximum energy of the battery at 100% SOC (scalar, MJ)

	mission|payload (float) – Payload weight including pax (scalar, kg)

	mission|total_battery_energy (float) – Battery energy consumed during the mission profile (scalar, MJ)

	mission|total_fuel (float) – Fuel consumed during the mission profile (not including TO; scalar, kg)

	OEW (float) – Operational empty weight (scalar, kg)

	takeoff|total_battery_energy (float) – Battery energy consumed during takeoff (only if include_takeoff option is True)

	takeoff|total_fuel (float) – Fuel consumed during takeoff (only if include_takeoff option is True)

	Outputs

	
	mission|battery_margin (float) – Excess battery energy for this mission (scalar, kg)

	mission|fuel_capacity_margin (float) – Excess fuel capacity for this mission (scalar, kg)
Positive is good

	mission|MTOW_margin (float) – Excess takeoff weight avail. for this mission (scalar, kg)
Positive is good

	battery_energy_used (float) – Total battery energy used including takeoff and the mission (scalar, MJ)
Only when include_takeoff is True

	fuel_burn (float) – Total fuel burn including takeoff and the mission (scalar, kg)
Only when include_takeoff is True

	Options

	include_takeoff (bool) – Set to True to enable takeoff fuel burn input

	
class openconcept.analysis.mission.MissionGroundspeeds(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes groundspeed for vectorial true airspeed and true vertical speed.

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

	Inputs

	
	fltcond|mission|vs (float) – Vertical speed for all mission phases (vector, m/s)

	fltcond|mission|Utrue (float) – True airspeed for all mission phases (vector, m/s)

	Outputs

	
	mission|groundspeed (float) – True groundspeed for all mission phases (vector, m/s)

	fltcond|mission|cosgamma (float) – Cosine of the flght path angle for all mission phases (vector, dimensionless)

	fltcond|mission|singamma (float) – Sine of the flight path angle for all mission phases (vector, dimensionless)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionClimbDescentRanges(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes range over the ground during the climb and descent phases

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

	Inputs

	
	mission|groundspeed (float) – True groundspeed for all mission phases (vector, m/s)

	mission|climb|time (float) – Time elapsed during the climb phase (scalar, s)

	mission|descent|time (float) – Time elapsed during the descent phase (scalar, s)

	Outputs

	
	mission|climb|range (float) – Distance over the ground during climb phase (scalar, m)

	mission|descent|range (float) – Distance over the ground during descent phase (scalar , m)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionTimings(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes cruise distance, time, and dt for a given total mission range

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

	Inputs

	
	mission|range (float) – Total specified range for the given mission (vector, m)

	mission|groundspeed (float) – True groundspeed for all mission phases (vector, m/s)

	mission|climb|range (float) – Distance over the ground during climb phase (scalar, m)

	mission|descent|range (float) – Distance over the ground during descent phase (scalar , m)

	Outputs

	
	mission|cruise|range (float) – Distance over the ground during the cruise phase (scalar, m)

	mission|cruise|time (float) – Time elapsed during cruise phase (scalar, s)

	mission|cruise|dt (float) – Simpson subinterval timestep during the cruise phase (scalar, s)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionSegmentFuelBurns(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Integrates delta fuel between each analysis point

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

Takes 3 * nn fuel flow rates; produces 3 * (nn - 1) fuel burns

	Inputs

	
	mission|fuel_flow (float) – Fuel flow rate for all analysis points (vector, kg/s)

	mission|climb|dt (float) – Timestep length during climb phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	mission|cruise|dt (float) – Timestep length during descent phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	mission|descent|dt (float) – Timestep length during descent phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	Outputs

	mission|segment_fuel (float) – Fuel burn increment between each analysis point (vector, kg)
Note: if the number of analysis points in one phase is nn, the number
of segment fuel burns is nn - 1

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionSegmentBatteryEnergyUsed(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Integrates battery energy used between each analysis point

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

Takes 3 * nn battery loads; produces 3 * (nn - 1) energy increments

	Inputs

	
	mission|battery_load (float) – Battery load / power for all analysis points (vector, kW)

	mission|climb|dt (float) – Timestep length during climb phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	mission|cruise|dt (float) – Timestep length during descent phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	mission|descent|dt (float) – Timestep length during descent phase (scalar, s)
Note: this represents the timestep for the Simpson subinterval, not the whole inteval

	Outputs

	mission|segment_battery_energy_used (float) – Battery energy increment between each analysis point (vector, kW*s)
Note: if the number of analysis points in one phase is nn, the number
of segment energies is nn - 1

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionSegmentWeights(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes aircraft weight at each analysis point including fuel burned

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

	Inputs

	
	mission|segment_fuel (float) – Fuel burn increment between each analysis point (vector, kg)
Note: if the number of analysis points in one phase is nn, the number
of segment fuel burns is nn - 1

	mission|weight_initial (float) – Weight immediately following takeoff (scalar, kg)

	Outputs

	mission|weights (float) – Aircraft weight at each analysis point (vector, kg)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	
class openconcept.analysis.mission.MissionSegmentCL(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes lift coefficient at each analysis point

This is a helper function for the main mission analysis routine MissionNoReserves
and shouldn’t be instantiated directly.

	Inputs

	
	mission|weights (float) – Aircraft weight at each analysis point (vector, kg)

	fltcond|mission|q (float) – Dynamic pressure at each analysis point (vector, Pascal)

	ac|geom|wing|S_ref (float) – Reference wing area (scalar, m**2)

	fltcond|mission|cosgamma (float) – Cosine of the flght path angle for all mission phases (vector, dimensionless)

	Outputs

	fltcond|mission|CL (float) – Lift coefficient (vector, dimensionless)

	Options

	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

takeoff.py

Analysis routines for simulating the takeoff phase and determining takeoff field length

	
class openconcept.analysis.takeoff.TakeoffTotalDistance(**kwargs)

	Bases: openmdao.core.group.Group

This analysis group calculates takeoff field length and fuel/energy consumption.

This component should be instantiated in the top-level aircraft analysis / optimization script.

Suggested variable promotion list:
‘ac|aero*’, ‘ac|weights|MTOW’, ‘ac|geom|*’, ‘fltcond|takeoff|*’, ‘takeoff|battery_load’,
‘takeoff|thrust’,’takeoff|fuel_flow’,’mission|takeoff|v*’

Inputs List:

	From aircraft config:

	
	ac|aero|polar|CD0_TO

	ac|aero|polar|e

	ac|geom|wing|S_ref

	ac|geom|wing|AR

	ac|weights|MTOW

	From Newton solver:

	
	mission|takeoff|v1

	From takeoff flight condition generator:

	
	mission|takeoff|vr

	From standard atmosphere model/splitter:

	
	fltcond|takeoff|q

	fltcond|takeoff|Utrue

	From propulsion model:

	
	takeoff|battery_load

	takeoff|fuel_flow

	takeoff|thrust

	Outputs

	
	takeoff|total_fuel (float) – Total fuel burn for takeoff (scalar, kg)

	takeoff|total_battery_energy (float) – Total energy consumption for takeoff (scalar, kJ)

	takeoff|distance (float) – Takeoff distance with given propulsion settings (scalar, m)

	takeoff|distance_abort (float) – Takeoff distance if maximum braking applied at v1 speed (scalar, m)

	Options

	
	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	track_battery (bool) – Set to True to track battery energy consumption during takeoff (default False)

	track_fuel (bool) – Set to True to track fuel burned during takeoff (default False)

	
openconcept.analysis.takeoff.takeoff_check(prob)

	Checks to ensure positive accelerations during each takeoff phase.

In some cases, the numeric integration scheme used to calculate TOFL can give a spurious result
if the airplane can’t accelerate through to V1. This function detects this case and raises an error.
It should be called following every model.run_driver or run_model call.

	Parameters

	prob (OpenMDAO problem object) – The OpenMDAO problem object

	Inputs

	
	‘takeoff._rate_to_integrate_v0v1’ (float)

	‘takeoff._rate_to_integrate_v1vr’ (float)

	‘takeoff._rate_to_integrate_v1v0’ (float)

	Raises

	ValueError if negative distances are produced

	
class openconcept.analysis.takeoff.ComputeBalancedFieldLengthResidual(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes a residual equation so Newton solver can set v1 to analyze balanced field length

	This residual is equal to zero if:

	
	The rejected takeoff and engine-out takeoff distances are equal, or:

	V1 is equal to VR and the engine out takeoff distance is longer than the RTO distance

Since this is a discontinous function, the partial derivatives are written in a special way
to ‘coax’ the V1 value into the right setting with a Newton step. It’s kind of a hack.

	Inputs

	
	takeoff|distance (float) – Engine-out takeoff distance (scalar, m)

	takeoff|distance_abort (float) – Distance to full-stop when takeoff is rejected at V1 (scalar, m)

	mission|takeoff|v1 (float) – Decision speed (scalar, m/s)

	mission|takeoff|vr (float) – Rotation speed (scalar, m/s)

	Outputs

	
	BFL_residual (float) – Difference between OEI TO distance and RTO distance for diagnostic purposes (scalar, m/s)

	v1vr_diff (float) – Difference between decision and rotation speed for diagnostic purposes (scalar, m/s)

	BFL_combined (float) – Residual equation combining both criteria with special partial derivatives.
Should be used for the Newton solver when doing takeoff field length analysis
(scalar, m)

	
class openconcept.analysis.takeoff.TakeoffFlightConditions(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Generates flight condition vectors for takeoff segments

	Inputs

	
	mission|takeoff|h (float) – Runway altitude (scalar, m)

	mission|takeoff|v1 (float) – Takeoff decision speed (scalar, m/s)

	Vstall_eas (float) – Flaps down stall airspeed (scalar, m/s)

	Outputs

	
	mission|takeoff|vr – Takeoff rotation speed (set as multiple of stall speed). (scalar, m/s)

	mission|takeoff|v2 – Takeoff safety speed (set as multiple of stall speed). (scalar, m/s)

	fltcond|takeoff|Ueas – Takeoff indicated/equiv. airspeed (vector, m/s)

	fltcond|takeoff|h – Takeoff altitude turned into a vector (vector, m/s)

	Options

	
	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	vr_multiple (float) – Rotation speed multiplier on top of stall speed (default 1.1)

	v2_multiple (float) – Climb out safety speed multiplier on top of stall speed (default 1.2)

	
class openconcept.analysis.takeoff.TakeoffCLs(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes lift coefficient at every takeoff and transition analysis point.

This is a helper function for the main TOFL analysis group TakeoffTotalDistance
and shoudln’t be instantiated in the top-level model directly.

During the ground roll, CL is assumed constant.
During rotation and transition, a 1.2g maneuver is assumed

	Inputs

	
	weight (float) – Takeoff weight (scalar, kg)

	fltcond|takeoff|q (float) – Dynamic pressure at each analysis point (vector, Pascals)

	ac|geom|wing|S_ref (float) – Wing reference area (scalar, m**2)

	Outputs

	CL_takeoff (float) – Wing lift coefficient at each TO analysis point (vector, dimensionless)

	Options

	
	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	ground_CL (float) – Assumed CL during takeoff roll (default 0.1)

	
class openconcept.analysis.takeoff.TakeoffAccels(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes acceleration during takeoff run and returns the inverse for the integrator.

This is a helper function for the main TOFL analysis group TakeoffTotalDistance
and shoudln’t be instantiated in the top-level model directly.

This returns the INVERSE of the accelerations during the takeoff run.
Inverse acceleration is required due to integration wrt velocity:
int(dr/dt * dt / dv) dv = int(v / a) dv

	Inputs

	
	weight (float) – Takeoff weight (scalar, kg)

	drag (float) – Aircraft drag at each TO analysis point (vector, N)

	lift (float) – Aircraft lift at each TO analysis point (vector, N)

	takeoff|thrust (float) – Thrust at each TO analysis point (vector, N)

	Outputs

	_inverse_accel (float) – Inverse of the acceleration at ecah time point (vector, s**2/m)

	Options

	
	n_int_per_seg (int) – Number of Simpson’s rule intervals to use per mission segment.
The total number of points is 2 * n_int_per_seg + 1

	free_rolling_friction_coeff (float) – Rolling coefficient without brakes applied (default 0.03)

	braking_friction_coeff (float) – Rolling coefficient with max braking applied (default 0.40)

	
class openconcept.analysis.takeoff.TakeoffV2ClimbAngle(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes climb out angle based on excess thrust.

This is a helper function for the main TOFL analysis group TakeoffTotalDistance
and shoudln’t be instantiated in the top-level model directly.

	Inputs

	
	drag_v2 (float) – Aircraft drag at v2 (climb out) flight condition (scalar, N)

	weight (float) – Takeoff weight (scalar, kg)

	takeoff|thrust_v2 (float) – Thrust at the v2 (climb out) flight condition (scalar, N)

	Outputs

	takeoff|climb|gamma (float) – Climb out flight path angle (scalar, rad)

	
class openconcept.analysis.takeoff.TakeoffTransition(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes distance and altitude at end of circular transition.

This is a helper function for the main TOFL analysis group TakeoffTotalDistance
and shoudln’t be instantiated in the top-level model directly.

Based on TO distance analysis method in Raymer book.
Obstacle clearance height set for GA / Part 23 aircraft
Override for analyzing Part 25 aircraft

	Inputs

	
	fltcond|takeoff|Utrue_vtrans – Transition true airspeed (generally avg of vr and v2) (scalar, m/s)

	takeoff|climb|gamma (float) – Climb out flight path angle (scalar, rad)

	Outputs

	
	s_transition (float) – Horizontal distance during transition to v2 climb out (scalar, m)

	h_transition (float) – Altitude at transition point (scalar, m)

	Options

	h_obstacle (float) – Obstacle height to clear (in meters) (default 10.66, equiv. 35 ft)

	
class openconcept.analysis.takeoff.TakeoffClimb(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes ground distance from end of transition until obstacle is cleared.

This is a helper function for the main TOFL analysis group TakeoffTotalDistance
and shoudln’t be instantiated in the top-level model directly.

Analysis based on Raymer book.

	Inputs

	
	takeoff|climb|gamma (float) – Climb out flight path angle (scalar, rad)

	h_transition (float) – Altitude at transition point (scalar, m)

	Outputs

	s_climb (float) – Horizontal distance from end of transition until obstacle is cleared (scalar, m)

	Options

	h_obstacle (float) – Obstacle height to clear (in meters) (default 10.66, equiv. 35 ft)

openconcept.analysis.atmospherics

	atmospherics_data.py

	compute_atmos_props.py

	density_comp.py

	dynamic_pressure_comp.py

	mach_number_comp.py

	pressure_comp.py

	speed_comp.py

	speedofsound_comp.py

	temperature_comp.py

	true_airspeed.py

atmospherics_data.py

This module provides 1976 Standard Atmosphere constants and calculations.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

compute_atmos_props.py

	
class openconcept.analysis.atmospherics.compute_atmos_props.ComputeAtmosphericProperties(**kwargs)

	Bases: openmdao.core.group.Group

Computes pressure, density, temperature, dyn pressure, and true airspeed

	Inputs

	
	fltcond|h (float) – Altitude (vector, km)

	fltcond|Ueas (float) – Equivalent airspeed (vector, m/s)

	Outputs

	
	fltcond|p (float) – Pressure (vector, Pa)

	fltcond|rho (float) – Density (vector, kg/m3)

	fltcond|T (float) – Temperature (vector, K)

	fltcond|Utrue (float) – True airspeed (vector, m/s)

	fltcond|q (float) – Dynamic pressure (vector, Pa)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

	
class openconcept.analysis.atmospherics.compute_atmos_props.InputConverter(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component adds a unitized interface to the Hwang and Jasa model.

	Inputs

	
	fltcond|h (float) – Altitude (vector, km)

	fltcond|Ueas (float) – Equivalent airspeed (vector, m/s)

	Outputs

	
	h_km (float) – Altitude in km to pass to the standard atmosphere modules (vector, unitless)

	v_m_s (float) – Airspeed in m/s to pass to the standard atmosphere modules (vector, unitless)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

	
class openconcept.analysis.atmospherics.compute_atmos_props.OutputConverter(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component adds a unitized interface to the Hwang and Jasa model.

	Inputs

	
	p_MPa (float) – Pressure in megapascals from the standard atm model (vector, unitless)

	T_1e2_K (float) – Tempreature in 100K units from the std atm model (vector, unitless)

	rho_kg_m3 (float) – Density in kg / m3 from the std atm model (vector, unitless)

	Outputs

	
	fltcond|p (float) – Pressure with units (vector, Pa)

	fltcond|rho (float) – Density with units (vector, kg/m3)

	fltcond|T (float) – Temperature with units (vector, K)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

density_comp.py

	
class openconcept.analysis.atmospherics.density_comp.DensityComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes density from pressure and temperature.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

dynamic_pressure_comp.py

	
class openconcept.analysis.atmospherics.dynamic_pressure_comp.DynamicPressureComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Calculates dynamic pressure from true airspeed and density.

	Inputs

	
	fltcond|Utrue (float) – True airspeed (vector, m/s)

	fltcond|rho (float) – Density (vector, m/s)

	Outputs

	fltcond|q (float) – Dynamic pressure (vector, Pa)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

mach_number_comp.py

	
class openconcept.analysis.atmospherics.mach_number_comp.MachNumberComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes Mach number from stagnation Mach number, density, speed of sound, and pressure.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

pressure_comp.py

	
class openconcept.analysis.atmospherics.pressure_comp.PressureComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes pressure from altitude.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

speed_comp.py

	
class openconcept.analysis.atmospherics.speed_comp.SpeedComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes airspeed from Mach number and speed of sound.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

speedofsound_comp.py

	
class openconcept.analysis.atmospherics.speedofsound_comp.SpeedOfSoundComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes speed of sound from temperature.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

temperature_comp.py

	
class openconcept.analysis.atmospherics.temperature_comp.TemperatureComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component computes temperature from altitude.

Adapted from:
J.P. Jasa, J.T. Hwang, and J.R.R.A. Martins: Design and Trajectory Optimization of a Morphing Wing Aircraft
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum, January 2018

true_airspeed.py

	
class openconcept.analysis.atmospherics.true_airspeed.TrueAirspeedComp(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes true airspeed from equivalent airspeed and density

	Inputs

	
	fltcond|rho (float) – Density (vector, kg/m3)

	fltcond|Ueas (float) – Equivalent airspeed (vector, m/s)

	Outputs

	fltcond|q (float) – Dynamic pressure (vector, Pa)

	Options

	num_nodes (int) – Number of analysis points to run (sets vec length) (default 1)

openconcept.components

	battery.py

	generator.py

	motor.py

	propeller.py

	splitter.py

	turboshaft.py

battery.py

	
class openconcept.components.battery.SimpleBattery(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

A simple battery which tracks power limits and generates heat.

Specific energy assumption INCLUDING internal losses should be used
The efficiency parameter only generates heat

	Inputs

	
	battery_weight (float) – Weight of the battery pack (scalar, kg)

	elec_load (float) – Electric power draw upstream (vector, W)

	Outputs

	
	max_energy (float) – Total energy in the battery at 100% SOC (scalar, Wh)

	heat_out (float) – Waste heat produced (vector, W)

	component_cost (float) – Nonrecurring cost of the component (scalar, USD)

	component_sizing_margin (float) – Equal to 1 when producing full rated power (vector, dimensionless)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	efficiency (float) – Shaft power efficiency. Sensible range 0.0 to 1.0 (default 1.0)

	specific_power (float) – Rated power per unit weight (default 5000, W/kg)

	specific_energy (float) – Battery energy per unit weight NOTE UNITS (default 300, !!!! Wh/kg)

	cost_inc (float) – Cost per unit weight (default 50, USD/kg)

	cost_base (float) – Base cost (default 1 USD)

generator.py

	
class openconcept.components.generator.SimpleGenerator(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

A simple generator which transforms shaft power into electrical power.

	Inputs

	
	shaft_power_in (float) – Shaft power in to the generator (vector, W)

	elec_power_rating (float) – Electric (not mech) design power (scalar, W)

	Outputs

	
	elec_power_out (float) – Electric power produced by the generator (vector, W)

	heat_out (float) – Waste heat produced (vector, W)

	component_cost (float) – Nonrecurring cost of the component (scalar, USD)

	component_weight (float) – Weight of the component (scalar, kg)

	component_sizing_margin (float) – Equal to 1 when producing full rated power (vector, dimensionless)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	efficiency (float) – Shaft power efficiency. Sensible range 0.0 to 1.0 (default 1)

	weight_inc (float) – Weight per unit rated power (default 1/5000, kg/W)

	weight_base (float) – Base weight (default 0, kg)

	cost_inc (float) – Cost per unit rated power (default 0.134228, USD/W)

	cost_base (float) – Base cost (default 1 USD) B

motor.py

	
class openconcept.components.motor.SimpleMotor(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

A simple motor which creates shaft power and draws electrical load.

	Inputs

	
	throttle (float) – Power control setting. Should be [0, 1]. (vector, dimensionless)

	elec_power_rating (float) – Electric (not mech) design power. (scalar, W)

	Outputs

	
	shaft_power_out (float) – Shaft power output from motor (vector, W)

	elec_load (float) – Electrical load consumed by motor (vector, W)

	heat_out (float) – Waste heat produced (vector, W)

	component_cost (float) – Nonrecurring cost of the component (scalar, USD)

	component_weight (float) – Weight of the component (scalar, kg)

	component_sizing_margin (float) – Equal to 1 when producing full rated power (vector, dimensionless)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	efficiency (float) – Shaft power efficiency. Sensible range 0.0 to 1.0 (default 1)

	weight_inc (float) – Weight per unit rated power (default 1/5000, kg/W)

	weight_base (float) – Base weight (default 0, kg)

	cost_inc (float) – Cost per unit rated power (default 0.134228, USD/W)

	cost_base (float) – Base cost (default 1 USD) B

propeller.py

	
class openconcept.components.propeller.SimplePropeller(**kwargs)

	Bases: openmdao.core.group.Group

This propeller is representative of a constant-speed prop.

The technology may be old.
A general, empirical efficiency map for a constant speed turboprop is used for most of the flight regime.
A static thrust coefficient map (from Raymer) is used for advance ratio < 0.2 (low speed).
Linear interpolation from static thrust to dynamic thrust tables at J = 0.1 to 0.2.

	Inputs

	
	shaft_power_in (float) – Shaft power driving the prop (vector, W)

	diameter (float) – Prop diameter (scalar, m)

	rpm (float) – Prop RPM (vector, RPM)

	fltcond|rho (float) – Air density (vector, kg/m**3)

	fltcond|Utrue (float) – True airspeed (vector, m/s)

	Outputs

	
	thrust (float) – Propeller thrust (vector, N)

	component_weight (float) – Prop weight (scalar, kg)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	num_blades (int) – Number of propeller blades (default 4)

	design_cp (float) – Design cruise power coefficient (cp)

	design_J (float) – Design advance ratio (J)

splitter.py

	
class openconcept.components.splitter.PowerSplit(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

A power split mechanism for mechanical or electrical power.

	Inputs

	
	power_in (float) – Power fed to the splitter. (vector, W)

	power_rating (float) – Maximum rated power of the split mechanism. (scalar, W)

	power_split_fraction – If ‘rule’ is set to ‘fraction’, sets percentage of input power directed
to Output A (minus losses). (vector, dimensionless)

	power_split_amount – If ‘rule’ is set to ‘fixed’, sets amount of input power to Output A (minus
losses). (vector, W)

	Outputs

	
	power_out_A (float) – Power sent to first output (vector, W)

	power_out_B (float) – Power sent to second output (vector, W)

	heat_out (float) – Waste heat produced (vector, W)

	component_cost (float) – Nonrecurring cost of the component (scalar, USD)

	component_weight (float) – Weight of the component (scalar, kg)

	component_sizing_margin (float) – Equal to 1 when fed full rated power (vector, dimensionless)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	rule (str) – Power split control rule to use

	efficiency (float) – Component efficiency (default 1)

	weight_inc (float) – Weight per unit rated power
(default 0, kg/W)

	weight_base (float) – Base weight
(default 0, kg)

	cost_inc (float) – Nonrecurring cost per unit power
(default 0, USD/W)

	cost_base (float) – Base cost
(default 0 USD)

turboshaft.py

	
class openconcept.components.turboshaft.SimpleTurboshaft(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

A simple turboshaft which generates shaft power consumes fuel.

This model assumes constant power specific fuel consumption (PSFC).

	Inputs

	
	shaft_power_rating (float) – Rated power of the turboshaft (scalar, W)

	throttle (float) – Engine throttle. Controls power and fuel flow.
Produces 100% of rated power at throttle = 1.
Should be in range 0 to 1 or slightly above 1.
(vector, dimensionless)

	Outputs

	
	shaft_power_out (float) – Shaft power produced by the engine (vector, W)

	fuel_flow (float) – Fuel flow consumed (vector, kg/s)
FUEL FLOW IS NEGATIVE!

	component_cost (float) – Nonrecurring cost of the component (scalar, USD)

	component_weight (float) – Weight of the component (scalar, kg)

	component_sizing_margin (float) – Equal to 1 when producing full rated power (vector, dimensionless)

	Options

	
	num_nodes (int) – Number of analysis points to run (sets vec length; default 1)

	psfc (float) – Power specific fuel consumption.
(default 0.6*1.69e-7 kg/W/s)
Conversion from lb/hp/hr to kg/W/s is 1.69e-7

	weight_inc (float) – Weight per unit rated power
Override this with a reasonable value for your power class
(default 0, kg/W)

	weight_base (float) – Base weight
This is a bad assumption for most turboshafts
(default 0, kg)

	cost_inc (float) – Nonrecurring cost per unit power
(default 1.04, USD/W)

	cost_base (float) – Base cost
(default 0 USD)

openconcept.utilities

	dict_indepvarcomp.py

	dvlabel.py

	linearinterp.py

dict_indepvarcomp.py

	
class openconcept.utilities.dict_indepvarcomp.DictIndepVarComp(data_dict, **kwargs)

	Bases: openmdao.core.indepvarcomp.IndepVarComp

Create indep variables from an external file with a Python dictionary.

Outputs from this component are read from a Python dictionary and given
a name matching their location in the data tree.

For example, let’s assume we have stored some data about a vehicle in a dictionary
which can be accessed using the Python expression vehicledata[‘wheels’][‘diameter’].
The structured_name in this case is ‘wheels|diameter’.

The user instantiates a component as DictIndepVarComp(vehicledata)
and adds an output as follows:
component_instance.add_output_from_dict(‘wheels|diameter’).

Outputs are created after initialization and are user-defined.

	
_data_dict

	dict – A structured dictionary object with input data to read from.

	
__init__(data_dict, **kwargs)

	Initialize the component and store the data dictionary as an attribute.

	Parameters

	data_dict (dict) – A structured dictionary object with input data to read from

	
add_output_from_dict(structured_name, separator='|', **kwargs)

	Create a new output based on data from the data dictionary

	Parameters

	
	structured_name (string) – A string matching the file structure in the dictionary object
Pipe symbols indicate treeing down one level
Example ‘aero:CLmax_flaps30’ accesses data_dict[‘aero’][‘CLmax_flaps30’]

	separator (string) – Separator to tree down into the data dict. Default ‘:’ probably
shouldn’t be overridden

dvlabel.py

	
class openconcept.utilities.dvlabel.DVLabel(vars_list)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Helper component that is needed when variables must be passed directly from
input to output of an element with no other component in between.

This component is adapted from Justin Gray’s pyCycle software.

	Inputs

	Inputs to this component are set upon initialization.

	Outputs

	Outputs from this component are set upon initialization.

	Options

	vars_list (iterable) – A list of lists. One outer list entry per variable.
Format: [[‘input name’,’output name’,’val’,’units’]]

linearinterp.py

	
class openconcept.utilities.linearinterp.LinearInterpolator(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Create a linearly interpolated set of points including two end points

	Inputs

	
	start_val (float) – Starting value (scalar; units set from “units” option)

	end_val (float) – Ending value (scalar; units set from “units” option)

	Outputs

	vec (float) – Vector of linearly interpolated points (scalar; units set from “units” opt)

	Options

	
	units (str, None) – Units for inputs and outputs

	num_nodes (int) – Number of linearly interpolated points to produce (minimum/default 2)

openconcept.utilities.math

	add_subtract_comp.py

	combine_split_comp.py

	multiply_divide_comp.py

	simpson_integration.py

	sum_comp.py

add_subtract_comp.py

Definition of the Add/Subtract Component.

	
class openconcept.utilities.math.add_subtract_comp.AddSubtractComp(output_name=None, input_names=None, vec_size=1, length=1, val=1.0, scaling_factors=None, **kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Compute a vectorized element-wise addition or subtraction.

Use the add_equation method to define any number of add/subtract relations
User defines the names of the input and output variables using
add_equation(output_name=’my_output’, input_names=[‘a’,’b’, ‘c’, …])

\[result = a * \textrm{scaling factor}_a + b * \textrm{scaling factor}_b +
c * \textrm{scaling factor}_c + ...\]

	where:

	
	all inputs shape (vec_size, n)

	b is of shape (vec_size, n)

	c is of shape (vec_size, n)

Result is of shape (vec_size, n)

All input vectors must be of the same shape, specified by the options ‘vec_size’ and ‘length’.
Use scaling factor -1 for subtraction.

	
_add_systems

	list – List of equation systems to be initialized with the system.

	
__init__(output_name=None, input_names=None, vec_size=1, length=1, val=1.0, scaling_factors=None, **kwargs)

	Allow user to create an addition/subtracton system with one-liner.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factors (iterable of numeric) – Scaling factors to apply to each input.
Use [1,1,…] for addition, [1,-1,…] for subtraction
Must be same length as input_names
Default is None which results in a scaling factor of 1 on
each input (element-wise addition)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	**kwargs (str) – Any other arguments to pass to the addition system
(same as add_output method for ExplicitComponent)
Examples include units (str or None), desc (str)

	
initialize()

	Declare options.

	Parameters

	complex (Boolean) – Set True to enable complex math (e.g. for complex step verification)

	
add_equation(output_name, input_names, vec_size=1, length=1, val=1.0, units=None, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=None, var_set=0, scaling_factors=None)

	Add an addition/subtraction relation.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factors (iterable of numeric) – Scaling factors to apply to each input.
Use [1,1,…] for addition, [1,-1,…] for subtraction
Must be same length as input_names
Default is None which results in a scaling factor of 1 on
each input (element-wise addition)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	units (str or None) – Units in which the output variables will be provided to the component during execution.
Default is None, which means it has no units.

	res_units (str or None) – Units in which the residuals of this output will be given to the user when requested.
Default is None, which means it has no units.

	desc (str) – description of the variable.

	lower (float or list or tuple or ndarray or Iterable or None) – lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no lower bound.
Default is None.

	upper (float or list or tuple or ndarray or or Iterable None) – upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no upper bound.
Default is None.

	ref (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 1. Default is 1.

	ref0 (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 0. Default is 0.

	res_ref (float or ndarray) – Scaling parameter. The value in the user-defined res_units of this output’s residual
when the scaled value is 1. Default is 1.

	var_set (hashable object) – For advanced users only. ID or color for this variable, relevant for reconfigurability.
Default is 0.

	
add_output()

	Use add_equation instead of add_output to define equation systems.

	
setup()

	Set up the addition/subtraction system at run time.

	
compute(inputs, outputs)

	Compute the element wise addition or subtraction of inputs using numpy + operator.

	Parameters

	
	inputs (Vector) – unscaled, dimensional input variables read via inputs[key]

	outputs (Vector) – unscaled, dimensional output variables read via outputs[key]

combine_split_comp.py

Definition of the Vector Combiner/Splitter Component.

	
class openconcept.utilities.math.combine_split_comp.VectorConcatenateComp(output_name=None, input_names=None, vec_sizes=None, length=1, val=1.0, **kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Concatenate one or more sets of more than one vector into one or more output vectors.

Use the add_relation method to define any number of concat relationships
User defines the names of the input and output variables using
add_relation(output_name=’my_output’, input_names=[‘a’,’b’, ‘c’, …],vec_sizes=[10,10,5,…])

For each relation declared:
All input vectors must be of the same second dimension, specified by the option ‘length’.
The number of vec_sizes given must match the number of inputs declared.
Input units must be compatible with output units for each relation.

	
_add_systems

	list – List of equation systems to be initialized with the system.

	
__init__(output_name=None, input_names=None, vec_sizes=None, length=1, val=1.0, **kwargs)

	Allow user to create an addition/subtracton system with one-liner.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_sizes (iterable of int) – (required) Lengths of the first dimension of each input vector
(i.e number of rows, or vector length for a 1D vector)

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 (i.e. a vector of scalars)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	**kwargs (str) – Any other arguments to pass to the addition system
(same as add_output method for ExplicitComponent)
Examples include units (str or None), desc (str)

	
initialize()

	Declare options.

	Parameters

	complex (Boolean) – Set True to enable complex math (e.g. for complex step verification)

	
add_relation(output_name, input_names, vec_sizes, length=1, val=1.0, units=None, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=None, var_set=0)

	Add a concatenation relation.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_sizes (iterable of int) – (required) Lengths of the first dimension of each input vector
(i.e number of rows, or vector length for a 1D vector)

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 (i.e. a vector of scalars)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	units (str or None) – Units in which the output variables will be provided to the component during execution.
Default is None, which means it has no units.

	res_units (str or None) – Units in which the residuals of this output will be given to the user when requested.
Default is None, which means it has no units.

	desc (str) – description of the variable.

	lower (float or list or tuple or ndarray or Iterable or None) – lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no lower bound.
Default is None.

	upper (float or list or tuple or ndarray or or Iterable None) – upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no upper bound.
Default is None.

	ref (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 1. Default is 1.

	ref0 (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 0. Default is 0.

	res_ref (float or ndarray) – Scaling parameter. The value in the user-defined res_units of this output’s residual
when the scaled value is 1. Default is 1.

	var_set (hashable object) – For advanced users only. ID or color for this variable, relevant for reconfigurability.
Default is 0.

	
add_output()

	Use add_relation instead of add_output to define concatenate relations.

	
setup()

	Set up the component at run time from both add_relation and __init__.

	
compute(inputs, outputs)

	Concatenate the vector(s) using numpy.

	Parameters

	
	inputs (Vector) – unscaled, dimensional input variables read via inputs[key]

	outputs (Vector) – unscaled, dimensional output variables read via outputs[key]

	
class openconcept.utilities.math.combine_split_comp.VectorSplitComp(output_names=None, input_name=None, vec_sizes=None, length=1, val=1.0, **kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Splits one or more vectors into one or more sets of 2+ vectors.

Use the add_relation method to define any number of splitter relationships
User defines the names of the input and output variables using
add_relation(output_names=[‘a’,’b’, ‘c’, …],input_name=’my_input’,vec_sizes=[10,10,5,…])

For each relation declared:
All output vectors must be of the same second dimension, specified by the option ‘length’.
The first dim length of the input vector must equal the sum of the first dim
lengths of the output vectors.
The number of vec_sizes given must match the number of outputs declared.
Input units must be compatible with output units for each relation.

	
_add_systems

	list – List of equation systems to be initialized with the system.

	
__init__(output_names=None, input_name=None, vec_sizes=None, length=1, val=1.0, **kwargs)

	Allow user to create an addition/subtracton system with one-liner.

	Parameters

	
	output_names (iterable of str) – (required) names of the output (split) variables in this component’s namespace.

	input_name (str) – (required) names of the input variable for this system

	vec_sizes (iterable of int) – (required) Lengths of the first dimension of each input vector
(i.e number of rows, or vector length for a 1D vector)

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 (i.e. a vector of scalars)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	**kwargs (str) – Any other arguments to pass to the addition system
(same as add_output method for ExplicitComponent)
Examples include units (str or None), desc (str)

	
initialize()

	Declare options.

	Parameters

	complex (Boolean) – Set True to enable complex math (e.g. for complex step verification)

	
add_relation(output_names, input_name, vec_sizes, length=1, val=1.0, units=None, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=None, var_set=0)

	Add a concatenation relation.

	Parameters

	
	output_names (iterable of str) – (required) names of the output (split) variables in this component’s namespace.

	input_name (str) – (required) names of the input variable for this system

	vec_sizes (iterable of int) – (required) Lengths of the first dimension of each input vector
(i.e number of rows, or vector length for a 1D vector)

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 (i.e. a vector of scalars)

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	units (str or None) – Units in which the output variables will be provided to the component during execution.
Default is None, which means it has no units.

	res_units (str or None) – Units in which the residuals of this output will be given to the user when requested.
Default is None, which means it has no units.

	desc (str) – description of the variable.

	lower (float or list or tuple or ndarray or Iterable or None) – lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no lower bound.
Default is None.

	upper (float or list or tuple or ndarray or or Iterable None) – upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no upper bound.
Default is None.

	ref (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 1. Default is 1.

	ref0 (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 0. Default is 0.

	res_ref (float or ndarray) – Scaling parameter. The value in the user-defined res_units of this output’s residual
when the scaled value is 1. Default is 1.

	var_set (hashable object) – For advanced users only. ID or color for this variable, relevant for reconfigurability.
Default is 0.

	
add_output()

	Use add_relation instead of add_output to define split relations.

	
setup()

	Set up the component at run time from both add_relation and __init__.

	
compute(inputs, outputs)

	Split the vector(s) using numpy.

	Parameters

	
	inputs (Vector) – unscaled, dimensional input variables read via inputs[key]

	outputs (Vector) – unscaled, dimensional output variables read via outputs[key]

multiply_divide_comp.py

Definition of the Element Multiply Component.

	
class openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp(output_name=None, input_names=None, vec_size=1, length=1, val=1.0, scaling_factor=1, divide=None, input_units=None, **kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Compute a vectorized element-wise multiplication and/or division.

Use the add_equation method to define any number of mult/div relations
User defines the names of the input and output variables using
add_equation(output_name=’my_output’, input_names=[‘a’,’b’, ‘c’, …],
divide=[False,False,True,…])

\[result = (a * b / c) * \textrm{scaling factor}\]

	where:

	
	all inputs shape (vec_size, n)

	b is of shape (vec_size, n)

	c is of shape (vec_size, n)

Result is of shape (vec_size, n)

All input vectors must be of the same shape, specified by the options ‘vec_size’ and ‘length’.
Use scaling factor -1 for subtraction.

	
_add_systems

	list – List of equation systems to be initialized with the system.

	
__init__(output_name=None, input_names=None, vec_size=1, length=1, val=1.0, scaling_factor=1, divide=None, input_units=None, **kwargs)

	Allow user to create an multiplication system with one-liner.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factor (numeric) – Scaling factor to apply to the whole system
Default is 1

	divide (iterable of bool or None) – True to use division operator, False to use mult operator
Default is None which results in mult of every input
Length is same as number of inputs

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	input_units (iterable of str) – Units for each of the input vectors in order.
Output units will be dimensionally consistent.

	**kwargs (str) – Any other arguments to pass to the addition system
(same as add_output method for ExplicitComponent)
Examples include units (str or None), desc (str)

	
initialize()

	Declare options.

	Parameters

	complex (Boolean) – Set True to enable complex math (e.g. for complex step verification)

	
add_equation(output_name, input_names, vec_size=1, length=1, val=1.0, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=None, var_set=0, scaling_factor=1, divide=None, input_units=None)

	Add a multiplication relation.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_names (iterable of str) – (required) names of the input variables for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factor (numeric) – Scaling factor to apply to the whole system
Default is 1

	divide (iterable of bool or None) – True to use division operator, False to use mult operator
Default is None which results in mult of every input
Length is same as number of inputs

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	input_units (iterable of str) – Units for each of the input vectors in order.
Output units will be dimensionally consistent.

	res_units (str or None) – Units in which the residuals of this output will be given to the user when requested.
Default is None, which means it has no units.

	desc (str) – description of the variable.

	lower (float or list or tuple or ndarray or Iterable or None) – lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no lower bound.
Default is None.

	upper (float or list or tuple or ndarray or or Iterable None) – upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no upper bound.
Default is None.

	ref (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 1. Default is 1.

	ref0 (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 0. Default is 0.

	res_ref (float or ndarray) – Scaling parameter. The value in the user-defined res_units of this output’s residual
when the scaled value is 1. Default is 1.

	var_set (hashable object) – For advanced users only. ID or color for this variable, relevant for reconfigurability.
Default is 0.

	
add_output()

	Use add_equation instead of add_output to define equation systems.

	
setup()

	Set up the addition/subtraction system at run time.

	
compute(inputs, outputs)

	Compute the element wise multiplication or division of inputs using numpy.

	Parameters

	
	inputs (Vector) – unscaled, dimensional input variables read via inputs[key]

	outputs (Vector) – unscaled, dimensional output variables read via outputs[key]

simpson_integration.py

	
openconcept.utilities.math.simpson_integration.simpson_integral(dts, q, n_segments=1, n_simpson_intervals_per_segment=2)

	This method integrates a rate over time using Simpson’s rule

A “segment” is defined as a portion of the quantity vector q with a
constant delta t (or delta x, etc)
dts = list of doubles representing the time steps for each segment.
This is the data timestep - the interval timestep is 2x this
q = the data to be integrated
n_segments = how many segments
n_simpson_intervals_per_segment = how many simpson intervals to use per segment.
Each one requires 2*N+1 data points

	Returns

	
	delta_q (float) – Amount of q accumulated during each interval (vector)

	int_q (float) – Total amount of q accumulated during all phases (scalar)

	
openconcept.utilities.math.simpson_integration.simpson_partials(dts, q, n_segments=1, n_simpson_intervals_per_segment=2)

	This method integrates a rate over time using Simpson’s rule

A “segment” is defined as a portion of the quantity vector q
with a constant delta t (or delta x, etc)
dts = list of doubles representing the time steps for each segment.
This is the data timestep - the interval timestep is 2x this
q = the data to be integrated
n_segments = how many segments
n_simpson_intervals_per_segment = how many simpson intervals to use per segment.
Each one requires 2*N+1 data points

	Returns

	
	delta_q (float) – Amount of q accumulated during each interval (vector)

	int_q (float) – Total amount of q accumulated during all phases (scalar)

	
openconcept.utilities.math.simpson_integration.simpson_integral_every_node(dts, q, n_segments=1, n_simpson_intervals_per_segment=2)

	This method integrates a rate over time using Simpson’s rule and assumes that q linearly changes within the Simpson subintervals.
Unlike the intervals above, this method returns a vector of length nn-1 instead of nn-1/2
A “segment” is defined as a portion of the quantity vector q with a constant delta t (or delta x, etc)
dts = list of doubles representing the time steps for each segment. This is the data timestep - the interval timestep is 2x this
q = the data to be integrated
n_segments = how many segments
n_simpson_intervals_per_segment = how many simpson intervals to use per segment. Each one requires 2*N+1 data points

returns:
delta_q = amount of q accumulated during each interval (corresponds to the intervals between q, 2x as often as the simpson subintervals)
int_q = total amount of q accumulated during all phases

	
class openconcept.utilities.math.simpson_integration.IntegrateQuantity(**kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

This component integrates a first-order rate quantity vector over a differential with CONSTANT spacing using Simpson’s 3rd order method.
Inputs:
rate (vector) - rate of change of a quantity q with respect to the differential. E.g. if your differential is time, the rate should be dq/dt. Length must be 2*N+1
lower_limit (scalar) - the lower limit of the integral. e.g. if your differential var is time, lower_limit is t0
upper_limit (scalar) - the upper limit of the integral. e.g. if your differential var is time, upper limit is tf
Outputs:
delta_quantity: the total change in the quantity over the integral period. E.g. if integrating rate dq/dt wrt t, output is total change in q
Options:
num_intervals: Number of Simpson integration intevals to use. Length of the rate input vector will be 2*N+1
quantity_units: Units of quantity (not including the rate) e.g. kg NOT kg/s
diff_units: Units of the differential (not incuding the quantity) e.g. s, not kg/s

Example 1: integrate v (dr/dt) with respect to time over constant time spacing during a fixed-time segment
Example 2: integrate v / a, a.k.a [(dr/dt) * (dt/dv)] wrt velocity over constant velocity spacing during a segment with known starting and ending velocities

sum_comp.py

Definition of the Element Summation Component.

	
class openconcept.utilities.math.sum_comp.SumComp(output_name=None, input_name=None, vec_size=1, length=1, val=1.0, scaling_factor=1, **kwargs)

	Bases: openmdao.core.explicitcomponent.ExplicitComponent

Compute a vectorized summation.

Use the add_equation method to define any number of summations
User defines the names of the input and output variables using
add_equation(output_name=’my_output’, input_name=’my_input’)

Use option axis = None to sum over all array elements. Default
behavior sums along the columns.

\[\textrm{result}_j = \sum_{i=1} ^\text{vec_size} a_{ij} * \textrm{scaling factor}\]

	where

	
	a is shape (vec_size, n)

	b is of shape (vec_size, n)

	c is of shape (vec_size, n)

Result is of shape (1, n) or (1,)

	
_add_systems

	list – List of equation systems to be initialized with the system.

	
__init__(output_name=None, input_name=None, vec_size=1, length=1, val=1.0, scaling_factor=1, **kwargs)

	Allow user to create an multiplication system with one-liner.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_name (str) – (required) name of the input variable for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factor (numeric) – Scaling factor to apply to the whole system
Default is 1

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	**kwargs (str) – Any other arguments to pass to the addition system
(same as add_output method for ExplicitComponent)
Examples include units (str or None), desc (str)

	
initialize()

	Declare options.

	Parameters

	axis (int or None) – Sum along this axis. Default 0 sums along first dimension.
None sums all elements into a scalar.
1 sums along rows.

	
add_equation(output_name, input_name, vec_size=1, length=1, val=1.0, units=None, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=None, var_set=0, scaling_factor=1)

	Add a multiplication relation.

	Parameters

	
	output_name (str) – (required) name of the result variable in this component’s namespace.

	input_name (iterable of str) – (required) names of the input variables for this system

	vec_size (int) – Length of the first dimension of the input and output vectors
(i.e number of rows, or vector length for a 1D vector)
Default is 1

	length (int) – Length of the second dimension of the input and ouptut vectors (i.e. number of columns)
Default is 1 which results in input/output vectors of size (vec_size,)

	scaling_factor (numeric) – Scaling factor to apply to the whole system
Default is 1

	val (float or list or tuple or ndarray) – The initial value of the variable being added in user-defined units. Default is 1.0.

	units (str or None) – Units in which the output variables will be provided to the component during execution.
Default is None, which means it has no units.

	res_units (str or None) – Units in which the residuals of this output will be given to the user when requested.
Default is None, which means it has no units.

	desc (str) – description of the variable.

	lower (float or list or tuple or ndarray or Iterable or None) – lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no lower bound.
Default is None.

	upper (float or list or tuple or ndarray or or Iterable None) – upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like
consistent with the shape arg (if given), or (3) an array_like matching the shape of
val, if val is array_like. A value of None means this output has no upper bound.
Default is None.

	ref (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 1. Default is 1.

	ref0 (float or ndarray) – Scaling parameter. The value in the user-defined units of this output variable when
the scaled value is 0. Default is 0.

	res_ref (float or ndarray) – Scaling parameter. The value in the user-defined res_units of this output’s residual
when the scaled value is 1. Default is 1.

	var_set (hashable object) – For advanced users only. ID or color for this variable, relevant for reconfigurability.
Default is 0.

	
add_output()

	Use add_equation instead of add_output to define equation systems.

	
setup()

	Set up the addition/subtraction system at run time.

	
compute(inputs, outputs)

	Compute the summation using numpy.

	Parameters

	
	inputs (Vector) – unscaled, dimensional input variables read via inputs[key]

	outputs (Vector) – unscaled, dimensional output variables read via outputs[key]

Development Roadmap

OpenConcept is in its infancy and is basically the product of one conference paper and a few months of work by one person.

	Known issues to be addressed include:

	
	No support for compressibility in the standard atmosphere / airspeed calculations

	No support for additional mission phases (especially a diversion/reserve mission)

	Spotty automated testing coverage

	Spotty documentation coverage

	Difficulty accessing / plotting optimized aircraft results (I hacked together some custom OpenMDAO/matplotlib code for this)

	Upcoming major features will include:

	
	Heat exchanger / coolant loop components

	Future ideas include:

	
	OpenAeroStruct integration (once OAS is upgraded to OpenMDAO 2.x)

I can use feedback on the design of the API; in particular, the airplane data structure.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openconcept	

 	
 	
 openconcept.analysis.aerodynamics	

 	
 	
 openconcept.analysis.atmospherics.atmospherics_data	

 	
 	
 openconcept.analysis.atmospherics.compute_atmos_props	

 	
 	
 openconcept.analysis.atmospherics.density_comp	

 	
 	
 openconcept.analysis.atmospherics.dynamic_pressure_comp	

 	
 	
 openconcept.analysis.atmospherics.mach_number_comp	

 	
 	
 openconcept.analysis.atmospherics.pressure_comp	

 	
 	
 openconcept.analysis.atmospherics.speed_comp	

 	
 	
 openconcept.analysis.atmospherics.speedofsound_comp	

 	
 	
 openconcept.analysis.atmospherics.temperature_comp	

 	
 	
 openconcept.analysis.atmospherics.true_airspeed	

 	
 	
 openconcept.analysis.mission	

 	
 	
 openconcept.analysis.takeoff	

 	
 	
 openconcept.components.battery	

 	
 	
 openconcept.components.generator	

 	
 	
 openconcept.components.motor	

 	
 	
 openconcept.components.propeller	

 	
 	
 openconcept.components.splitter	

 	
 	
 openconcept.components.turboshaft	

 	
 	
 openconcept.utilities.dict_indepvarcomp	

 	
 	
 openconcept.utilities.dvlabel	

 	
 	
 openconcept.utilities.linearinterp	

 	
 	
 openconcept.utilities.math.add_subtract_comp	

 	
 	
 openconcept.utilities.math.combine_split_comp	

 	
 	
 openconcept.utilities.math.multiply_divide_comp	

 	
 	
 openconcept.utilities.math.simpson_integration	

 	
 	
 openconcept.utilities.math.sum_comp	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | O
 | P
 | S
 | T
 | V

_

 	
 	__init__() (openconcept.utilities.dict_indepvarcomp.DictIndepVarComp method)

 	(openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	
 	_add_systems (openconcept.utilities.math.add_subtract_comp.AddSubtractComp attribute)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp attribute)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp attribute)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp attribute)

 	(openconcept.utilities.math.sum_comp.SumComp attribute)

 	_data_dict (openconcept.utilities.dict_indepvarcomp.DictIndepVarComp attribute)

A

 	
 	add_equation() (openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	add_output() (openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	
 	add_output_from_dict() (openconcept.utilities.dict_indepvarcomp.DictIndepVarComp method)

 	add_relation() (openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	add_subtract_comp.py

 	AddSubtractComp (class in openconcept.utilities.math.add_subtract_comp)

 	aerodynamics.py

 	atmospherics_data.py

B

 	
 	battery.py

C

 	
 	combine_split_comp.py

 	compute() (openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	
 	compute_atmos_props.py

 	ComputeAtmosphericProperties (class in openconcept.analysis.atmospherics.compute_atmos_props)

 	ComputeBalancedFieldLengthResidual (class in openconcept.analysis.takeoff)

 	ComputeDesignMissionResiduals (class in openconcept.analysis.mission)

 	ComputeDesignMissionResidualsBattery (class in openconcept.analysis.mission)

D

 	
 	density_comp.py

 	DensityComp (class in openconcept.analysis.atmospherics.density_comp)

 	dict_indepvarcomp.py

 	DictIndepVarComp (class in openconcept.utilities.dict_indepvarcomp)

 	
 	DVLabel (class in openconcept.utilities.dvlabel)

 	dvlabel.py

 	dynamic_pressure_comp.py

 	DynamicPressureComp (class in openconcept.analysis.atmospherics.dynamic_pressure_comp)

E

 	
 	ElementMultiplyDivideComp (class in openconcept.utilities.math.multiply_divide_comp)

 	
 	ExplicitThrustResidual (class in openconcept.analysis.mission)

G

 	
 	generator.py

I

 	
 	initialize() (openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	
 	InputConverter (class in openconcept.analysis.atmospherics.compute_atmos_props)

 	IntegrateQuantity (class in openconcept.utilities.math.simpson_integration)

L

 	
 	Lift (class in openconcept.analysis.aerodynamics)

 	
 	linearinterp.py

 	LinearInterpolator (class in openconcept.utilities.linearinterp)

M

 	
 	mach_number_comp.py

 	MachNumberComp (class in openconcept.analysis.atmospherics.mach_number_comp)

 	mission.py

 	MissionClimbDescentRanges (class in openconcept.analysis.mission)

 	MissionFlightConditions (class in openconcept.analysis.mission)

 	MissionGroundspeeds (class in openconcept.analysis.mission)

 	MissionNoReserves (class in openconcept.analysis.mission)

 	
 	MissionSegmentBatteryEnergyUsed (class in openconcept.analysis.mission)

 	MissionSegmentCL (class in openconcept.analysis.mission)

 	MissionSegmentFuelBurns (class in openconcept.analysis.mission)

 	MissionSegmentWeights (class in openconcept.analysis.mission)

 	MissionTimings (class in openconcept.analysis.mission)

 	motor.py

 	multiply_divide_comp.py

O

 	
 	openconcept.analysis.aerodynamics (module)

 	openconcept.analysis.atmospherics.atmospherics_data (module)

 	openconcept.analysis.atmospherics.compute_atmos_props (module)

 	openconcept.analysis.atmospherics.density_comp (module)

 	openconcept.analysis.atmospherics.dynamic_pressure_comp (module)

 	openconcept.analysis.atmospherics.mach_number_comp (module)

 	openconcept.analysis.atmospherics.pressure_comp (module)

 	openconcept.analysis.atmospherics.speed_comp (module)

 	openconcept.analysis.atmospherics.speedofsound_comp (module)

 	openconcept.analysis.atmospherics.temperature_comp (module)

 	openconcept.analysis.atmospherics.true_airspeed (module)

 	openconcept.analysis.mission (module)

 	openconcept.analysis.takeoff (module)

 	openconcept.components.battery (module)

 	
 	openconcept.components.generator (module)

 	openconcept.components.motor (module)

 	openconcept.components.propeller (module)

 	openconcept.components.splitter (module)

 	openconcept.components.turboshaft (module)

 	openconcept.utilities.dict_indepvarcomp (module)

 	openconcept.utilities.dvlabel (module)

 	openconcept.utilities.linearinterp (module)

 	openconcept.utilities.math.add_subtract_comp (module)

 	openconcept.utilities.math.combine_split_comp (module)

 	openconcept.utilities.math.multiply_divide_comp (module)

 	openconcept.utilities.math.simpson_integration (module)

 	openconcept.utilities.math.sum_comp (module)

 	OutputConverter (class in openconcept.analysis.atmospherics.compute_atmos_props)

P

 	
 	PolarDrag (class in openconcept.analysis.aerodynamics)

 	PowerSplit (class in openconcept.components.splitter)

 	
 	pressure_comp.py

 	PressureComp (class in openconcept.analysis.atmospherics.pressure_comp)

 	propeller.py

S

 	
 	setup() (openconcept.utilities.math.add_subtract_comp.AddSubtractComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorConcatenateComp method)

 	(openconcept.utilities.math.combine_split_comp.VectorSplitComp method)

 	(openconcept.utilities.math.multiply_divide_comp.ElementMultiplyDivideComp method)

 	(openconcept.utilities.math.sum_comp.SumComp method)

 	SimpleBattery (class in openconcept.components.battery)

 	SimpleGenerator (class in openconcept.components.generator)

 	SimpleMotor (class in openconcept.components.motor)

 	SimplePropeller (class in openconcept.components.propeller)

 	SimpleTurboshaft (class in openconcept.components.turboshaft)

 	simpson_integral() (in module openconcept.utilities.math.simpson_integration)

 	
 	simpson_integral_every_node() (in module openconcept.utilities.math.simpson_integration)

 	simpson_integration.py

 	simpson_partials() (in module openconcept.utilities.math.simpson_integration)

 	speed_comp.py

 	SpeedComp (class in openconcept.analysis.atmospherics.speed_comp)

 	speedofsound_comp.py

 	SpeedOfSoundComp (class in openconcept.analysis.atmospherics.speedofsound_comp)

 	splitter.py

 	StallSpeed (class in openconcept.analysis.aerodynamics)

 	sum_comp.py

 	SumComp (class in openconcept.utilities.math.sum_comp)

T

 	
 	takeoff.py

 	takeoff_check() (in module openconcept.analysis.takeoff)

 	TakeoffAccels (class in openconcept.analysis.takeoff)

 	TakeoffClimb (class in openconcept.analysis.takeoff)

 	TakeoffCLs (class in openconcept.analysis.takeoff)

 	TakeoffFlightConditions (class in openconcept.analysis.takeoff)

 	TakeoffTotalDistance (class in openconcept.analysis.takeoff)

 	
 	TakeoffTransition (class in openconcept.analysis.takeoff)

 	TakeoffV2ClimbAngle (class in openconcept.analysis.takeoff)

 	temperature_comp.py

 	TemperatureComp (class in openconcept.analysis.atmospherics.temperature_comp)

 	true_airspeed.py

 	TrueAirspeedComp (class in openconcept.analysis.atmospherics.true_airspeed)

 	turboshaft.py

V

 	
 	VectorConcatenateComp (class in openconcept.utilities.math.combine_split_comp)

 	
 	VectorSplitComp (class in openconcept.utilities.math.combine_split_comp)

 _static/up-pressed.png

_static/up.png

_static/plus.png

_static/images/readme_charts.png
00

600

500

Specific energy (Wnrikg)

Speciic energy Wnrikal

Fuel mileage (Ib/nmi)

300 at0

00

Degree of hybridization (electric percent)

50 60 700 800
Design range (i)

50 600 700
Design range (i)

100

a0

0

w0

2

eneray whrgea)

Spe:

Specic energy (Wnrika)

700

600

400

Trip DOC (USD) per nmi

)

Maximum Takeoff Weight (Ib)

00

50 60
Desian range (mi)

50 600
Design range (i)

00

ogrs

000

o725

oazs

oars

000

12000

11000

10000

9000

8000

_images/readme_charts.png
00

600

500

Specific energy (Wnrikg)

Speciic energy Wnrikal

Fuel mileage (Ib/nmi)

300 at0

00

Degree of hybridization (electric percent)

50 60 700 800
Design range (i)

50 600 700
Design range (i)

100

a0

0

w0

2

eneray whrgea)

Spe:

Specic energy (Wnrika)

700

600

400

Trip DOC (USD) per nmi

)

Maximum Takeoff Weight (Ib)

00

50 60
Desian range (mi)

50 600
Design range (i)

00

ogrs

000

o725

oazs

oars

000

12000

11000

10000

9000

8000

nav.xhtml

 Table of Contents

 		
 OpenConcept

 		
 Features

 		
 Propulsion Modeling

 		
 Single Turboprop Example

 		
 Series Hybrid Example

 		
 Components

 		
 OpenMDAO Basics

 		
 Design Philosophy

 		
 Component and Group Classes

 		
 The Problem Class

 		
 Setting and Accessing Values

 		
 Defining Optimization / Analysis Problems

 		
 Recording and Retrieving Results

 		
 Defining Custom Components

 		
 Source Docs

 		
 openconcept.analysis

 		
 aerodynamics.py

 		
 mission.py

 		
 takeoff.py

 		
 openconcept.analysis.atmospherics

 		
 atmospherics_data.py

 		
 compute_atmos_props.py

 		
 density_comp.py

 		
 dynamic_pressure_comp.py

 		
 mach_number_comp.py

 		
 pressure_comp.py

 		
 speed_comp.py

 		
 speedofsound_comp.py

 		
 temperature_comp.py

 		
 true_airspeed.py

 		
 openconcept.components

 		
 battery.py

 		
 generator.py

 		
 motor.py

 		
 propeller.py

 		
 splitter.py

 		
 turboshaft.py

 		
 openconcept.utilities

 		
 dict_indepvarcomp.py

 		
 dvlabel.py

 		
 linearinterp.py

 		
 openconcept.utilities.math

 		
 add_subtract_comp.py

 		
 combine_split_comp.py

 		
 multiply_divide_comp.py

 		
 simpson_integration.py

 		
 sum_comp.py

 		
 Development Roadmap

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

