
Openchain Documentation
Release 0.7.0

Flavien Charlon

Sep 05, 2017

Contents

1 Overview 3
1.1 Overview of Openchain . 3

2 Getting Started 5
2.1 Getting started with the wallet . 5
2.2 Openchain Server Docker deployment . 16

3 General 19
3.1 Running Openchain . 19
3.2 The transaction stream . 21
3.3 Anchoring and ledger integrity . 21
3.4 Openchain Server Configuration . 22
3.5 Openchain modules . 25
3.6 Setting the instance info on a new instance . 25
3.7 Upgrading Openchain server . 26
3.8 Deploying Openchain in a production environment . 26
3.9 Troubleshooting . 27

4 Public API 29
4.1 Openchain data structures . 29
4.2 Ledger structure . 31
4.3 Method calls . 33

5 Ledger rules 41
5.1 Default ledger rules . 41
5.2 Dynamic permissions . 44
5.3 How to: Configure a ledger to be closed-loop . 46

i

ii

Openchain Documentation, Release 0.7.0

Openchain is an open source distributed ledger technology. It is suited for organizations wishing to issue and manage
digital assets in a robust, secure and scalable way.

Contents 1

Openchain Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Overview

Overview of Openchain

What is Openchain?

Openchain is an open source distributed ledger technology. It is suited for organizations wishing to issue and manage
digital assets in a robust, secure and scalable way.

Features of Openchain include:

1. Instant confirmation of transactions.

2. No mining fees.

3. Extremely high scalability.

4. Secured through digital signatures.

5. Immutability: Commit an anchor in the Bitcoin Blockchain to benefit from the irreversibility of its Proof of
Work.

6. Assign aliases to users instead of using base-58 addresses.

7. Multiple levels of control:

• Fully open ledger that can be joined anonymously.

• Closed-loop ledger where participants must be approved by the administrator.

• A mix of the above where approved users enjoy more rights than anonymous users.

8. Hierarchical account system allowing to set permissions at any level.

9. Transparency and auditability of transactions.

10. Handle loss or theft of private keys without any loss to the end users.

11. Ability to have multiple Openchain instances replicating from each other.

3

Openchain Documentation, Release 0.7.0

Getting started

To familiarize yourself with Openchain, you can:

• Try the wallet against the test endpoint

• Deploy your own Openchain server

Frequently Asked Questions

Is Openchain a block chain?

Openchain falls under the umbrella of Blockchain technology. However, if we take the term “block chain” literally,
Openchain is not a “block chain”, but a close cousin. A block chain is a data structure that orders blocks of transactions
and links them cryptographically through hashing.

Openchain doesn’t use the concept of blocks. Transactions are directly chained with one another, and they are no
longer grouped in blocks. Having to group transactions in blocks introduces a delay. Even if some systems manage to
reduce the block time to just a few seconds, a few seconds is still a long time for latency-sensitive applications, such
as trading. In Openchain, transactions are linked to the chain as soon as they are submitted to the network. As a result,
Openchain is able to offer real-time confirmations.

This means that a more appropriate term for Openchain is a “transaction chain” rather than a “block chain”.

Is Openchain a sidechain?

It is possible to use a pegging module that will act as a bridge between a Blockchain (such as Bitcoin) and an Openchain
instance. When Bitcoins are sent to a specific address, a proxy for those coins will be created on the Openchain
instance. Later on, these proxy tokens can be redeemed to unlock the Bitcoins on the main chain. This setup creates
a 2-way peg between Bitcoin and the Openchain instance. In that scenario, the Openchain instance is behaving as a
sidechain.

The pegging module is optional, and an instance doesn’t have to be setup as a sidechain if that is not required.

Does Openchain support multi-signature?

Multi-signature is supported. Permissions are expressed using a list of public keys, and a number of require signatures.
If you provide 3 public keys, and require 2 signatures, you have a 2-of-3 multi-signature account. Read about dynamic
permissions to learn more about it.

4 Chapter 1. Overview

CHAPTER 2

Getting Started

Getting started with the wallet

Openchain Server exposes a public HTTP API, which can be called by any program capable of making HTTP calls.

To wrap all those operations in a user-friendly user interface, we also provide a client: the Openchain Wallet.

The Openchain Wallet is an open source web based interface, available at wallet.openchain.org.

Connecting to a server

The wallet is a client side application running in the browser, and capable of connecting to any Openchain endpoint. It
can connect to multiple endpoints at the same time, and pull information and submit transactions to multiple instances
of Openchain, however the first time you use it, you need to connect to at least one endpoint.

5

https://wallet.openchain.org

Openchain Documentation, Release 0.7.0

The first page invites you to connect to an endpoint. Click the link to use the test endpoint provided by Coinprism,
then click “Check endpoint”. The wallet will then try to connect to the Openchain instance and retrieve the instance
information.

6 Chapter 2. Getting Started

Openchain Documentation, Release 0.7.0

Confirm to connect to this endpoint.

Note: The Openchain wallet will memorize the endpoint you are connecting to, so you will only have to perform this
step once.

Logging in

The wallet will now ask you to provide a mnemonic seed used to derive your private key and address.

2.1. Getting started with the wallet 7

Openchain Documentation, Release 0.7.0

Click “Create a new wallet” if you want to generate a new mnemonic, and reuse one you have already generated. Click
“Sign in” to confirm.

After the key has been derived from your seed, you should see your home screen:

8 Chapter 2. Getting Started

Openchain Documentation, Release 0.7.0

You are now able to receive payments on the Openchain instance by giving your account path to the payer (/p2pkh/
n2yYKCsho8gDrr53SUtzgtKCBypD3JMUxo/ in the example above).

Issue an asset

The test endpoint provided by Coinprism has third party asset issuance enabled, so we can now issue an asset.

To do this, click the “Assets” tab.

2.1. Getting started with the wallet 9

Openchain Documentation, Release 0.7.0

Select the endpoint and the first slot, and click “Confirm”.

10 Chapter 2. Getting Started

Openchain Documentation, Release 0.7.0

Click “Issue Asset” and type an amount to issue (10000 for example). Press “Issue”.

You should then see a confirmation of the transaction.

2.1. Getting started with the wallet 11

Openchain Documentation, Release 0.7.0

Your account should have been updated with the newly issued asset.

12 Chapter 2. Getting Started

Openchain Documentation, Release 0.7.0

Tip: You can use the “Edit Asset Definition” box in the asset issuance page to define metadata about your asset, such
as a name and icon.

Send a payment

Now that we have funds, we can send them.

Click the newly issued asset to be taken to the “Send” page.

2.1. Getting started with the wallet 13

Openchain Documentation, Release 0.7.0

Type a valid destination, such as /p2pkh/mfiCwNxuFYMtb5ytCacgzDAineD2GNCnYo/, and a valid amount.

Press “Send” to confirm. If the transaction went through successfully, you should see the transaction confirmation
screen.

14 Chapter 2. Getting Started

Openchain Documentation, Release 0.7.0

Admin tools

The wallet also has admin tools built-in.

Ledger tree view

The ledger tree view displays a visual representation of the account hierarchy. The details of the record selected on
the left will be showed on the right hand side.

2.1. Getting started with the wallet 15

Openchain Documentation, Release 0.7.0

Alias editor

The alias editor lets you configure aliases for specific paths. After an alias has been set, it is possible to send funds to
the alias directly using the @ prefix. The wallet will automatically resolve the alias.

Note: In the default permission layout, aliases can only be modified by an administrator.

Openchain Server Docker deployment

Openchain Server is cross platform and can be deployed as a DNX application on Windows, OS X and Linux. How-
ever, to simplify dependency management and homogenize deployment of Openchain, we are shipping it as a Docker
image.

This document explains the few steps necessary to have the Openchain server running. Refer to the next section to
deploy Openchain directly.

Install Docker

16 Chapter 2. Getting Started

https://dotnet.readthedocs.org/en/latest/dnx/overview.html
https://docs.openchain.org/en/latest/general/running-openchain.html

Openchain Documentation, Release 0.7.0

Note: This assumes you are running Linux. Use these instructions if you are running Windows, and these instructions
if you are running OS X.

First, install Docker if you don’t have it:

wget -qO- https://get.docker.com/ | sh

Then install Docker Compose:

apt-get install python-pip
pip install -U docker-compose

Install Openchain Server

Clone the openchain/docker repository from GitHub, and copy the configuration files from the templates provided.

git clone https://github.com/openchain/docker.git openchain
cd openchain
cp templates/docker-compose-direct.yml docker-compose.yml
mkdir data
cp templates/config.json data/config.json

Now, edit the configuration file (data/config.json):

nano data/config.json

Set the instance_seed setting to a random (non-empty) string.

[...]
// Define transaction validation parameters
"validator_mode": {

// Required: A random string used to generate the chain namespace
"instance_seed": "",
"validator": {

[...]

Note: By default, the Openchain server will run on port 8080. You can edit docker-compose.yml if you want
to run on a non-default port.

You can now start the server:

docker-compose up -d

This will start the Openchain server in the background. To check that the server is running properly, check the docker
logs:

docker logs openchain-server

You should not see any error:

info: General[0]
[2016-07-10 18:20:10Z] Starting Openchain v0.7.0

info: General[0]

2.2. Openchain Server Docker deployment 17

http://docs.docker.com/installation/windows/
http://docs.docker.com/installation/mac/

Openchain Documentation, Release 0.7.0

[2016-07-10 18:20:11Z]
info: General[0]

[2016-07-10 18:20:13Z] Stream subscriber disabled
info: General[0]

[2016-07-10 18:20:13Z] Anchoring disabled
Hosting environment: Production
Content root path: /openchain
Now listening on: http://0.0.0.0:8080
Application started. Press Ctrl+C to shut down.

Tip: You can also run the Openchain Docker container in the foreground by running docker-compose up and
omitting the -d switch.

Now that you have a server running, you can connect to the server with a client.

Configuring admin keys

Use the client to generate a seed, and derive it into an address. Once you have an address, you can use it as an admin
address on your server instance. To do so, update data/config.json and add it to the admin_addresses list:

// ...
"admin_addresses": [
"<your_address_here>"

],
// ...

Tip: Follow these steps to configure the info record on your new instance. The info record is used by clients
connecting to the instance to receive additional information about the instance they are connecting to.

Controlling the server

To restart the server, use:

docker-compose restart

To stop it, use:

docker-compose stop

18 Chapter 2. Getting Started

CHAPTER 3

General

Running Openchain

Deploying Openchain server can be done through Docker.

This document explains how to deploy Openchain directly on a machine without using docker.

Prerequisites

Install the .NET Command Line Interface . This is cross-platform and runs on Windows, Linux and OS X.

Download the project files

Download the project.json, Program.cs and config.json files from GitHub, then restore the NuGet de-
pendencies. On Linux:

$ wget https://raw.githubusercontent.com/openchain/openchain/v0.6.2/src/Openchain/
→˓project.json
$ wget https://raw.githubusercontent.com/openchain/openchain/v0.6.2/src/Openchain/
→˓Program.cs
$ wget https://raw.githubusercontent.com/openchain/openchain/v0.6.2/src/Openchain/
→˓data/config.json -P data
$ dotnet restore

Note: On Windows, simply download the files manually using your browser, then run dotnet restore.

Run Openchain Server

Run openchain server using the following command:

19

https://www.microsoft.com/net/core

Openchain Documentation, Release 0.7.0

$ dotnet run

Configuration

The dependencies section of the project.json file references the external providers pulled from NuGet:

"dependencies": {
"Microsoft.NETCore.App": {

"version": "1.0.0",
"type": "platform"

},
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Openchain.Server": "0.6.2",

"Openchain.Anchoring.Blockchain": "0.6.2",
"Openchain.Sqlite": "0.6.2",
"Openchain.SqlServer": "0.6.2",
"Openchain.Validation.PermissionBased": "0.6.2"

},

By defaut, this imports the Sqlite storage engine (Openchain.Sqlite), the SQL Server storage en-
gine (Openchain.SqlServer), the permission-based validation module (Openchain.Validation.
PermissionBased), and the Blockchain anchoring module (Openchain.Anchoring.Blockchain). Up-
date this list with the modules (and versions) you want to import.

You can then edit the data/config.json file to reference the providers you want to use.

Tip: For example, if you want to use the SQLite provider as a storage engine, you will need to make sure the
Openchain.Sqlite module is listed in the dependencies.

Make sure you run dotnet restore again after modifying project.json.

Note: The Openchain.Server dependency is the only one that is always required. The version of the Openchain.
Server package is the version of Openchain you will be running.

Updating the target platform

The frameworks section of the project.json file lists the available target frameworks:

"frameworks": {
"netcoreapp1.0": {},
"net451": {}

}

By default .NET Core (cross-platform) and the .NET Framework (Windows only) are both targeted. Some providers
run only on a subset of frameworks. In that case, remove the unsupported frameworks from the list to ensure the
project runs.

20 Chapter 3. General

Openchain Documentation, Release 0.7.0

The transaction stream

Openchain server exposes a websocket endpoint (/stream) called the transaction stream. The transaction stream
provides a live stream of transactions as they get committed into the ledger.

Note: See the documentation about the /stream endpoint for more details.

Validator nodes

The Openchain Server node can function in two different modes: validator mode and observer mode.

In validator mode, the node accepts transactions and validates them. Rules that make a transaction valid or invalid are
customizable. They can be defined by the administrator of the validator node, and are a combination of implicit rules,
and explicit permissions.

When a transaction is deemed valid, it gets committed into the ledger.

Observer nodes

Observer nodes are nodes connecting to an upstream node, and downloading all transactions in real time using the
transaction stream. The validator node is always the most upstream node. When it verifies a transaction, the transaction
trickles down to its observers. All the observers should have an exact copy of the state held by the verifying node.

It is not possible to submit a transaction for validation to an observer node, as it only has a read-only view of the ledger.

Observer nodes have the ability to verify the integrity of their copy of the ledger through anchors.

Configuration

To configure a node to be in observer mode, the observer_mode section needs to exist in the configuration file, and
the upstream_url must be set to the root URL of the upstream node.

Anchoring and ledger integrity

Openchain is capable of immutability by committing a hash of the entire ledger (the cumulative hash) onto a non-
reversible Blockchain such as Bitcoin.

Note: In the current version, the only anchoring mode available is the blockchain mode, based on the Bitcoin
blockchain. Different anchoring modes will be available in the future, such as anchoring in a central repository.

With the Bitcoin anchoring mode, one transaction is committed in every Bitcoin block, and contains the cumulative
hash at the current time.

By doing this, even if Openchain is processing thousands of transactions per second, only one transaction gets sent to
the Bitcoin blockchain every 10 minutes. There are multiple benefits to this approach:

• The irreversibility of the Openchain ledger is ensured by the Bitcoin miners, therefore Openchain enjoys the
same level of irreversibility as Bitcoin itself.

3.2. The transaction stream 21

Openchain Documentation, Release 0.7.0

• At the maximum resolution (one anchor per block), no more than 4,320 transactions per month (in average) will
be committed into the blockchain, which will cost about $10 per month (as of October 2015), regardless of the
number of transactions processed.

• The resolution can be tuned to further reduce that cost.

• Openchain can process thousands of transactions per second while remaining very cost-efficient.

“Observer nodes” replicating all the verified transactions locally have the ability to compute their own version of the
cumulative hash and compare it to the anchor in the Bitcoin blockchain.

Calculating the cumulative hash

The cumulative hash is updated every time a new transaction is added to the ledger.

The cumulative hash at a given height is calculated using the previous cumulative hash and the hash of the new
transaction being added to the ledger:

cumulative_hash = SHA256(SHA256(previous_cumulative_hash + new_transaction_hash))

• previous_cumulative_hash (32 bytes) is the cumulative hash at the previous height. At height 0 (when
the ledger has no transaction), a 32 bytes buffer filled with zeroes is used.

• new_transaction_hash (32 bytes) is the double SHA-256 hash of the raw transaction being added to the
ledger.

Both values are concatenated to form a 64 bytes array, then hashed using double SHA-256.

Blockchain anchor format

The Blockchain anchor is stored in the blockchain using an OP_RETURN operator, followed by a pushdata containing
the anchor.

OP_RETURN <anchor (42 bytes)>

The anchor is constructed in the following way:

0x4f 0x43 <transaction count (8 bytes)> <cumulative hash (32 bytes)>

• The first two bytes indicates that the output represents an Openchain anchor.

• The transaction count is the number of transactions being represented by the cumulative hash (the height). It’s
an unsigned 64 bits integer, encoded in big endian.

• The cumulative hash is full cumulative hash (256 bits) as calculated in the previous section.

Openchain Server Configuration

The configuration of Openchain server is handled through a JSON file named config.json. The file is stored under the
data folder.

It is possible to override a configuration value through environment variables. The name of the variable
should be the concatenation of all the components of the path, separated by the character :. For example:
validator_mode:validator:allow_third_party_assets.

22 Chapter 3. General

Openchain Documentation, Release 0.7.0

config.json

Here is the default file:

{
"enable_transaction_stream": true,

"storage": {
"provider": "SQLite",
"path": "ledger.db"

},

// Define transaction validation parameters
"validator_mode": {
// Required: A random string used to generate the chain namespace
"instance_seed": "",
"validator": {

"provider": "PermissionBased",
// Enable /p2pkh/<address>/ accounts
"allow_p2pkh_accounts": true,
// Enable /asset/p2pkh/<address>/ accounts
"allow_third_party_assets": true,
// Base-58 addresses that must have admin rights
"admin_addresses": [
],
"version_byte": 76

}
},

// Uncomment this and comment the "validator_mode" section to enable observer mode
// "observer_mode": {
// "upstream_url": ""
// },

"anchoring": {
"provider": "Blockchain",
// The key used to publish anchors in the Blockchain
"key": "",
"bitcoin_api_url": "https://testnet.api.coinprism.com/v1/",
"network_byte": 111,
"fees": 5000,
"storage": {

"provider": "SQLite",
"path": "anchors.db"

}
}

}

Root section

• enable_transaction_stream: Boolean indicating whether the transaction stream websocket should be
enabled on this instance.

storage section

provider defines which storage engine to use. The two built-in values are SQLite and MSSQL.

3.4. Openchain Server Configuration 23

Openchain Documentation, Release 0.7.0

SQLite storage engine

If the storage provider is set to SQLite, the chain is stored locally using SQLite. In that case, the following setting is
used:

• path: The path of the Sqlite database, relative to the wwwroot/App_Data folder. Absolute paths are also
allowed, however, make sure the user under which the DNX process is running has write access to the file.

MSSQL storage engine

If the storage provider is set to MSSQL, the chain is stored using Microsoft SQL Server. In that case, the following
setting is used:

• connection_string: The connection string to the SQL Server database.

Note: Third party storage engines can be build and used by Openchain. The provider setting is used to identify at
runtime which storage engine should be instantiated.

validator_mode and observer_mode sections

These two sections are mutually exclusive. Depending whether the instance is setup in validator mode or observer
mode, either the validator_mode section or observer_mode section should be present.

In the case of validator mode:

• validator_mode:instance_seed: A random string that should be unique to that instance. It is hashed
to obtain a namespace specific to that instance.

• validator_mode:validator:provider: The type of validation performed by the Openchain instance
when transactions are submitted. The only supported values currently are PermissionBased, PermitAll
and DenyAll.

– PermitAll indicates that all transactions are valid, regardless of who signed them. Use this mostly for
testing.

– DenyAll indicates that all transactions are invalid, regardless of who signed them. Use this to set the
chain in read-only mode.

– See this section for more details about the implicit rules of the PermissionBased mode. The relevant
configuration settings with the PermissionBased mode are the following:

* validator_mode:validator:allow_p2pkh_accounts: Boolean indicating whether
P2PKH accounts (/p2pkh/<address>/) are enabled.

* validator_mode:validator:allow_third_party_assets: Boolean indicating
whether thrid party issuance accounts (/asset/p2pkh/<address>/) are enabled.

* validator_mode:validator:admin_addresses: List of strings representing all addresses
with admin rights.

* validator_mode:validator:version_byte: The version byte to use when representing a
public key using its Bitcoin address representation.

In the case of observer mode:

• observer_mode:upstream_url: The endpoint URL of the upstream instance to connect to. Transactions
will be replicated using this endpoint.

24 Chapter 3. General

Openchain Documentation, Release 0.7.0

anchoring section

This section contains configuration settings relative to publishing an anchor to preserve data integrity.

• provider: Value defining which anchoring mode to use. Currently, the only supported value is
Blockchain, and publishes a cumulative hash of the database onto a Bitcoin-compatible blockchain.

• key: The private key to use (in WIF format) as the signing address for the proof of publication transactions.

• bitcoin_api_url: The Coinprism API endpoint to use to list unspent outputs and broadcast the signed
transaction. Valid values include:

– https://api.coinprism.com/v1/ (Bitcoin mainnet)

– https://testnet.api.coinprism.com/v1/ (Bitcoin testnet)

• network_byte: The network byte corresponding to the network on which the anchor transaction is published.

• storage:provider: Value defining how to cache anchors locally. Currently, the only supported value is
SQLite and caches data locally in a SQLite database.

• storage:path: The path of the local anchor cache database, relative to the wwwroot/App_Data folder.

Openchain modules

Openchain uses an extensible architecture where modules can be swapped in and out depending on the functionality
needed. Modules are selected by:

• Referencing the appropriate package in the project.json file. Packages are then pull automatically from
NuGet.

• Referencing the module in config.json.

This document lists the available modules, and relevant packages.

Storage engines

Storage engines are core components responsible for storing the transaction chain and records.

Provider Module Description Maintainer
SQLite Openchain.Sqlite Stores the chain in a local Sqlite database. Coinprism
MsSQL Openchain.SqlServer Stores the chain in a SQL Server database. Coinprism
MongoDB Openchain.MongoDb Stores the chain in a MongoDB database. @fluce

Validation engines

Anchoring media

Setting the instance info on a new instance

The ledger info record exposes meta-information about the ledger itself. It is used by clients that connect to the
instance to retrieve informations such as the name of the instance, and the associated terms of service.

After you have deployed a new instance, it is a good idea to create the info record. This can be done from the web
interface.

3.5. Openchain modules 25

https://api.coinprism.com/v1/
https://testnet.api.coinprism.com/v1/
https://www.nuget.org/packages/Openchain.Sqlite
https://github.com/openchain/openchain
https://www.nuget.org/packages/Openchain.SqlServer
https://github.com/openchain/openchain
https://github.com/openchain/mongodb-storage

Openchain Documentation, Release 0.7.0

1. First, follow these steps to connect to the instance and log in. Make sure you log in with a seed that has admin
access on this instance as the info record can only be modified by an administrator.

2. Go to the Advanced tab and click Edit Ledger Info on the left. The screen will show you a form that will let
you edit the ledger name and other fields stored in the info record.

Important: Make sure that the Validator Root URL is set to the same value as the root_url setting in the
configuration file.

Upgrading Openchain server

To upgrade an Openchain deployment done through Docker, run the following commands:

git reset --hard
git pull
cp templates/docker-compose-direct.yml docker-compose.yml
docker-compose build
docker-compose restart

Note: If the new version you are upgrading to includes a configuration file schema change, don’t forget to update the
configuration file before restarting Openchain.

Deploying Openchain in a production environment

In production, it is recommended to proxy the Openchain server behind a reverse proxy server such as Nginx. This
architecture enables a number of possibilities:

• Expose Openchain through SSL/TLS

• Host multiple Openchain server instances on the same port

• Change the URL path under which the Openchain server is being exposed

• Route requests to different Openchain instances depending on the host name used

This document explain the few steps necessary to expose Openchain through Nginx.

Install Docker

Refer to the base Docker deployment documentation to find out how to install Docker and Docker Compose.

Pull the Docker images through Docker Compose

Clone the openchain/docker repository from GitHub, and copy the configuration files from the templates provided.

git clone https://github.com/openchain/docker.git openchain
cd openchain
cp templates/docker-compose-proxy.yml docker-compose.yml
cp templates/nginx.conf nginx/nginx.conf

26 Chapter 3. General

Openchain Documentation, Release 0.7.0

mkdir data
cp templates/config.json data/config.json

Edit the configuration file (data/config.json) as described in the base Docker deployment documentation.

You can now start the server:

docker-compose up -d

Note: By default, Nginx will run on port 80.

Troubleshooting

Error “The namespace used in the transaction is invalid”

You might receive this error message when submitting a transaction. You will get this error if the root_url set in
the configuration doesn’t match the namespace set by the client in the transaction. Clients will always use the URL
they are connected to as the namespace.

This ensures that a transaction is only valid for one specific instance of Openchain, and that it is not possible to reuse
a signed transaction on multiple ledgers.

Solution

To solve this, make sure the URL set in your configuration file (validator_mode:root_url) matches the URL
that clients use to connect to your Openchain instance. All the components of the URL must match:

• The scheme, e.g.: http://endpoint.com/ vs https://endpoint.com/

• The hostname, e.g.: http://127.0.0.1/ vs http://localhost/

• The port, e.g.: http://endpoint.com:80/ vs http://endpoint.com/

• The path, e.g.: http://endpoint.com/path/ vs http://endpoint.com/

Important: Make sure you don’t forget the trailing slash, as clients will always include it in the namespace. E.g.:
https://endpoint.com/ instead of https://endpoint.com.

3.9. Troubleshooting 27

Openchain Documentation, Release 0.7.0

28 Chapter 3. General

CHAPTER 4

Public API

Openchain data structures

Openchain relies on several data structures for communication between clients and servers. These data structures are
a key part of the Openchain API.

These data structures are serialized and deserialized using Protocol Buffers.

Schema

The full schema is the following:

syntax = "proto3";

package Openchain;

message RecordValue {
bytes data = 1;

}

message Record {
bytes key = 1;
RecordValue value = 2;
bytes version = 3;

}

message Mutation {
bytes namespace = 1;
repeated Record records = 2;
bytes metadata = 3;

}

message Transaction {
bytes mutation = 1;

29

https://developers.google.com/protocol-buffers/

Openchain Documentation, Release 0.7.0

int64 timestamp = 2;
bytes transaction_metadata = 3;

}

Note: The schema uses the version 3 of Protocol Buffers.

Record

A record object represents the intent to modify the value of a record in the data store. The key, value and version of a
record can be any arbitrary byte string.

message Record {
bytes key = 1;
RecordValue value = 2;
bytes version = 3;

}

• key: A value that uniquely identifies the record to modify.

• value: The new value that the record should have after update. If it is unspecified, the record version is
checked, but no update is made to the value.

• version: The last version of the record being updated. Every modification of the record will cause the version
to change. If the version specified doesn’t match the actual version in the data store, then the update fails.

A record that has never been set has a value and version both equal to an empty byte string.

Check-only records

If a record object has a null value field, the record object is called a check-only record, and does not cause a
mutation to the record. It however expresses the requirement that the record (as represented by the key field) must
have the version specified in the version field of the record object. If the versions don’t match, the whole mutation
fails to apply.

This provides a way to ensure that a given record has not been modified between the moment the transaction was
created and the moment it gets validated, even if the record doesn’t have to be modified.

Mutation

A mutation is a set of records atomically modifying the state of the data. They are typically generated by a client,
signed, then sent to the validator along with the signatures.

message Mutation {
bytes namespace = 1;
repeated Record records = 2;
bytes metadata = 3;

}

• namespace: The namespace under which the records live. Generally, each instance of Openchain has its own
namespace.

30 Chapter 4. Public API

Openchain Documentation, Release 0.7.0

• records: A set of records to be modified atomically by this mutation. Each record is identified by its key. The
version of each record in the mutation has to match the versions at the current time. If any version mismatches,
then the entire mutation fails to apply. Records with an unspecified value don’t cause updates, but their versions
still have to match for the mutation to succeed.

• metadata: Arbitrary metadata to be stored in the mutation.

The version of all updated records after a mutation becomes the hash of that mutation.

Transaction

A transaction is a wapper around a mutation.

message Transaction {
bytes mutation = 1;
int64 timestamp = 2;
bytes transaction_metadata = 3;

}

• mutation: The mutation applied by the transaction. It is represented as a byte string but deserialized according
to the Mutation schema.

• timestamp: A timestamp for the transaction.

• transaction_metadata: Arbitrary metadata to be stored in the mutation. This will typically contain a
digital signature of the mutation by the required parties.

Ledger structure

At the core, an Openchain ledger is a key-value store, represented by records. At the data store level, record keys can
be any arbitrary byte string, however Openchain Ledger expects a well defined structure for the record keys.

Record keys

Record keys are UTF8-encoded strings. They are structured in three parts, separated by colons (:).

1. The record path: A path in the account hierarchy indicating where the record is situated.

2. The record type: A value indicating the type of the record.

3. The record name: The name of the record.

The combination of these three values uniquely identify a record.

Example 1

/p2pkh/mfiCwNxuFYMtb5ytCacgzDAineD2GNCnYo/:ACC:/asset/p2pkh/
→˓n15g8F3sVLufwvPmmX7tYPWrGGbGSbcaEB/

The path is /p2pkh/mfiCwNxuFYMtb5ytCacgzDAineD2GNCnYo/, the record type is ACC and the record
name is /asset/p2pkh/n15g8F3sVLufwvPmmX7tYPWrGGbGSbcaEB/.

4.2. Ledger structure 31

Openchain Documentation, Release 0.7.0

Example 2

/:DATA:info

The path is / (root path), the record type is DATA and the record name is info.

Account hierarchy

Openchain uses a hierarchy of accounts, similar to a file system. This adds a lot of interesting management options
that systems like Bitcoin don’t have.

Accounts are identified by a path.

Account paths

The syntax for an account path follows a number of rules:

• Account paths start with the character /.

• Account paths end with the character /.

• Sections of an account path are separated by the character /.

• Sections of an account path may only contain alphanumeric characters and characters from the following set:
$-_.+!*'(),.

Record types

There are two valid record types as of this version of Openchain.

32 Chapter 4. Public API

Openchain Documentation, Release 0.7.0

ACC record

The ACC record is used for representing a balance for a given asset type. The name of the record must be a path that
represents the asset type. The value must be a 64-bits signed integer encoded in big endian. The value represents the
current balance for the given account and the given asset type.

DATA record

The DATA record is used to store arbitrary text data. The record name can be any valid UTF-8 string. It can be used to
store things such as asset metadata, symbolic links within the accounting system, permissions, or any other important
piece of arbitrary data that needs to be cryptographically secure.

Method calls

The Openchain server exposes an HTTP API that can be used to interact with the data. The URL of an operation
is constructed from the base URL of the endpoint, and concatenating it with the relative path of the operation being
called.

For example, if the base URL is https://www.openchain.org/endpoint/, for calling the /record oper-
ation (query a record), the full URL should be https://www.openchain.org/endpoint/record.

Submit a transaction (/submit)

Submits a transaction for validation.

Method: POST

Inputs

The input is a JSON document passed as part of the body of the request.

The format of the JSON document is the following:

{
"mutation": "<string>",
"signatures": [

{
"pub_key": "<string>",
"signature": "<string>"

}
]

}

Description of the payload:

• mutation: The hex-encoded mutation. The mutation is serialized using the Mutation Protocol Buffers schema.

• signatures: An array of documents with two properties, pub_key and signature.

– pub_key: The hex-encoded public key used to sign.

– signature: The hex-encoded signature of the hash of the mutation.

4.3. Method calls 33

Openchain Documentation, Release 0.7.0

Signing Process

For producing the signatures:

1. Serialize the mutation using the Mutation Protocol Buffers schema.

2. Hash the mutation byte string using double SHA256.

3. Sign it with the relevant private key using Secp256k1. The matching public key must be submitted along with
the signature.

Important: You must submit the exact byte string as obtained after step 1. If it modified, the hash won’t match and
the signature will then be invalid.

Outputs

The output is a JSON document passed as part of the body of the response.

{
"transaction_hash": "<string>"

}

The transaction_hash field contains the hex-encoded hash of the full transaction.

Query a record (/record)

Query the value and version of a record given its key.

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

key The hex-encoded key of the record being queried.

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document is the following:

{
"key": "<string>",
"value": "<string>",
"version": "<string>"

}

The fields are the following:

• key: The hex-encoded key of the record.

• value: The hex-encoded value of the record.

• version: The hex-encoded version of the record.

34 Chapter 4. Public API

Openchain Documentation, Release 0.7.0

Transaction stream (/stream)

Method: GET

This endpoint is a WebSocket endpoint. It can be used to receive all the newly confirmed transaction in real-time.

Inputs

Inputs are passed through the query string as URL encoded parameters.

from (optional) The hex-encoded hash of the last transaction to resume from. If omitted, it will start from the
first transaction.

Output

The output is a WebSocket binary stream.

Each message in the stream is the serialized transaction.

Retrieve the chain info (/info)

Get information about the Openchain instance.

Method: GET

Inputs

This method has no input parameters.

Output

The output is a JSON array passed as part of the body of the response.

The format of the JSON array is the following:

{
"namespace": "<string>"

}

namespace is the hex representation of the namespace expected in transactions submitted to the Openchain instance.

Query an account (/query/account)

Query all the ACC records at a given path (non-recursively).

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

account The path to query for.

4.3. Method calls 35

Openchain Documentation, Release 0.7.0

Output

The output is a JSON array passed as part of the body of the response.

The format of the JSON array is the following:

[
{

"account": "<string>",
"asset": "<string>",
"balance": "<string>",
"version": "<string>"

}
]

The fields of each item of the array are the following:

• account: The path of the record.

• value: The asset ID of the record (the record name).

• balance: The balance for that asset ID at that path.

• version: The hex-encoded version of the record.

Query a transaction (/query/transaction)

Retrieve a transaction given the hash of the mutation.

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

mutation_hash The hex-encoded hash of the mutation represented by the transaction.
format The output format (raw or json).

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document depends on the format argument:

1. raw output format (default):

{
"raw": "<string>"

}

The raw property contains the serialized transaction.

2. json output format

{
"transaction_hash": "<string>",
"mutation_hash": "<string>",
"mutation": {

36 Chapter 4. Public API

Openchain Documentation, Release 0.7.0

"namespace": "<string>",
"records": [

{
"key": "<string>",
"value": "<string>",
"version": "<string>"

}
]

},
"timestamp": "<string>",
"transaction_metadata": "<string>"

}

Query a specific version of a record (/query/recordversion)

Retrieve a specific version of a record.

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

key The hex-encoded record key.

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document is the following:

{
"key": "<string>",
"value": "<string>",
"version": "<string>"

}

The fields are the following:

• key: The hex-encoded key of the record.

• value: The hex-encoded value of the record.

• version: The hex-encoded version of the record.

If the record version doesn’t exist, HTTP code 404 will be returned by the server.

Query all mutations that have affected a record (/query/recordmutations)

Retrieve all the mutations that have affected a given record.

Method: GET

4.3. Method calls 37

Openchain Documentation, Release 0.7.0

Inputs

Inputs are passed through the query string as URL encoded parameters.

key The key of the record of which mutations are being retrieved.

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document is the following:

[
{

"mutation_hash": "<string>"
}

]

The output is a list representing all the mutation hashes of the mutations that have affected the key represented by the
key argument.

Query records in an account and its subaccounts (/query/subaccounts)

Retrieve all the record under a given path (includes sub-paths).

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

account The path being queried.

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document is the following:

[
{

"key": "<string>",
"value": "<string>",
"version": "<string>"

}
]

The fields are the following:

• key: The hex-encoded key of the record.

• value: The hex-encoded value of the record.

• version: The hex-encoded version of the record.

38 Chapter 4. Public API

Openchain Documentation, Release 0.7.0

Query all records with a given type and name (/query/recordsbyname)

Retrieve all records with a given type and name

Method: GET

Inputs

Inputs are passed through the query string as URL encoded parameters.

name The name of the records being queried.
type The type of the records being queried.

Output

The output is a JSON document passed as part of the body of the response.

The format of the JSON document is the following:

[
{

"key": "<string>",
"value": "<string>",
"version": "<string>"

}
]

The fields are the following:

• key: The hex-encoded key of the record.

• value: The hex-encoded value of the record.

• version: The hex-encoded version of the record.

4.3. Method calls 39

Openchain Documentation, Release 0.7.0

40 Chapter 4. Public API

CHAPTER 5

Ledger rules

Default ledger rules

Global rules

A transaction is made of multiple record mutations. ACC record mutations are subject to a balancing rule. The
balancing rule works as follow:

1. For every ACC record, the delta between the previous balance and the new proposed balance is calculated.

2. The sum of all deltas per asset type is calculated.

3. For every asset type, the sum must be equal to zero.

This ensures every asset creation and destruction is recorded through an account in the system. This means however
that at least one account must be able to have a negative balance. Usually, a special account is used to do so, and the
ability to create a negative balance on an account requires special permissions.

Tip: Third-party asset issuance accounts are allowed to have negative balances.

Aliases (/aka/<name>/)

Openchain has the ability to define aliases for accounts, this simplify the user experience as users no longer have to
remember a base-58 random string of characters.

To do so, clients should understand the following syntax as a valid account path: @<name>, and turn it internally into
/aka/<name>/.

Example

If a user wants to send funds to the following account:

41

Openchain Documentation, Release 0.7.0

@bank

The client application should convert it internally into:

/aka/bank/

Goto records (goto)

Goto records are special DATA records instructing the client application to use a different account.

Goto records must have the special name goto.

When a client application sends funds to a path, it must first look for a DATA record named goto. If it exists, the
client application must use the path defined as the value of the record instead.

Example

If a user wants to send funds to the following account:

/account/alpha/

The client must first check the existance of a record with the following key:

/account/alpha/:DATA:goto

If the record doesn’t exist, nothing happens and funds are sent to /account/alpha/. If the record exists, assuming
its value is:

/account/beta/

Then funds are sent instead to /account/beta/.

Note: It is possible and recommended for security reasons that the client application uses a check-only record with
the goto record to make sure the value of the goto record is still valid and hasn’t changed when the transaction is
validated.

Asset definition record (asdef)

It is important to be able to associate information with an asset type so that users have the right expectations about it.

The asset definition record can be used to record this information. The asset definition record is a DATA record with
the special name asdef. In addition, it must be placed under the same path as the asset it is attached to.

Example

In order to associate information with the asset represented by path /asset/gold/, the following record must be
set:

/asset/gold/:DATA:asdef

The value of the record is a UTF-8 string representing a JSON document with the following schema:

42 Chapter 5. Ledger rules

Openchain Documentation, Release 0.7.0

{
name: '<string>',
name_short: '<string>',
icon_url: '<string>'

}

The definition of these fields are the following:

• name: The full name of the asset (e.g.: U.S. Dollar, Gold Ounce).

• name_short: The short name of the asset. This is used to denominate amounts (e.g.: USD, XAU)

• icon_url: The URL to an icon representing the asset.

Ledger info record (info)

Each Openchain instance can store a DATA record named info at the root path (/). In other words, the record key
should be /:DATA:info.

The info record exposes meta-information about the ledger itself. The value must be a JSON document with the
following schema:

{
name: '<string>',
validator_url: '<string>',
tos: '<string>',
webpage_url: '<string>'

}

The definition of these fields are the following:

• name: The name of the Openchain instance.

• validator_url: The URL of the main validator for this Openchain instance.

• tos: The terms of service of the Openchain instance.

• webpage_url: A link to user-readable content where users can get more information about this Openchain
instance.

Pay-To-Pubkey-Hash accounts (/p2pkh/<address>/)

Pay-To-Pubkey-Hash accounts are special accounts with implicit permissions. Signing a transaction spending funds
from this account or any sub-account requires the private key corresponding to <address>.

This automatically works with any account of that format, where <address> is a valid base-58 address.

Note: <address> is a base-58 address constructed in the same way a Bitcoin address for the same private and
public key would be.

Third-party asset issuance accounts (/asset/p2pkh/<address>/)

Third-party asset issuance accounts are special accounts with implicit permissions. The owner of the private key
corresponding to <address> can sign transactions spending funds from this account. Funds have to be of the asset type

5.1. Default ledger rules 43

Openchain Documentation, Release 0.7.0

/asset/p2pkh/<address>. Also, this address is authorized to have a negative balance. This means it is possible
to use this address as the issuance source of asset type /asset/p2pkh/<address>.

This automatically works with any account of that format, where <address> is a valid base-58 address.

Note: <address> is a base-58 address constructed in the same way a Bitcoin address for the same private and
public key would be.

Dynamic permissions

Openchain supports an implicit permission layout through P2PKH accounts (/p2pkh/<address>/) and thrid
party issuance accounts (/asset/p2pkh/<address>/). It is also possible to dynamically define permissions by
submitting transactions modifying a special record: the acl record.

Access Control Lists

Permissions are applied to a specific path. To apply an access control list to a path, set the acl record under that path.
It must be a DATA record. The value is a JSON file.

For example, when trying to set the permissions to the path /users/alice/, the following record must be set:
/users/alice/:DATA:acl.

Schema

The schema of the JSON file that the record contains is the following:

[
{

"subjects": [
{

"addresses": ["<string>"],
"required": <integer>

}
],
"recursive": <boolean>,
"record_name": "<string>",
"record_name_matching": "<record-matching-type>",
"permissions": {

"account_negative": "<permission>",
"account_spend": "<permission>",
"account_modify": "<permission>",
"account_create": "<permission>",
"data_modify": "<permission>"

}
}

]

The contents is an array containing all the applicable permissions. When the acl record does not exist, this is
equivalent to having an empty array.

The meaning of the fields within a permission object are the following:

• subjects: An array of subjects for which this permission object applies.

44 Chapter 5. Ledger rules

Openchain Documentation, Release 0.7.0

– addresses: An array of strings representing the addresses for which signatures are expected.

– required: The number of required signatures from the addresses array. If the addresses array
contains 3 addresses, and required is set to 2, that means that for the permission to apply, at least
2 signatures from the 3 addresses specified must be present. This is known as a n-of-m multi-signature
scheme.

• recursive: (Default: true) A boolean indicating whether the permission applies recursively to the sub ac-
counts.

Note: With recursion, lower level permissions overrule higher level permissions.

• record_name: (Default: empty string) The pattern to use for record name matching.

• record_name_matching: (Default: Prefix) The type of record name matching to use. There are two
possible values:

– Exact means that the record name must be exactly equal to the value of the record_name field for the
permission to apply.

– Prefix means that the record name must start with the value of the record_name field for the per-
mission to apply. Using Prefix with an empty record_name means that the permission applies to all
records.

Hint: The record name of an ACC record is the asset path.

• permissions: Contains the permissions being applied if this permission object is a match. The meaning of
the various permissions is explained in the next section. The value must be set to Permit for the permission to
be granted, or Deny for the permission to be denied. If it is unset, the inherited value is used.

Permissions

account_negative

This permission indicates the right to affect the balance of ACC records, both to increase it (receive funds) and decrease
it (send funds) with no restriction on the final balance. If this permission is granted, the ACC record balance can be
made negative.

This permission is typically granted to the users allowed to issue an asset.

account_spend

This permission indicates the right to affect the balance of ACC records, both to increase it (receive funds) and decrease
it (send funds) with the restriction that the final balance must remain positive or zero.

account_modify

This permission is required to affect the balance of ACC records that have already been modified before (the record
version is non-empty).

5.2. Dynamic permissions 45

Openchain Documentation, Release 0.7.0

account_create

This permission is required to affect the balance of ACC records that have never been modified before (the record
version is empty).

Note: A user can only send funds from an account if she has the account_negative or account_spend rights
plus the account_modify or account_create rights. Sending to an account requires account_modify or
account_create on the destination account.

A closed loop ledger can be created by denying account_modify and account_create by default, and selec-
tively granting these for some accounts. By doing this, only approved accounts can receive funds.

data_modify

This permission is required to modify a DATA record.

How to: Configure a ledger to be closed-loop

Financial institutions and companies letting their users transfer value often have to comply with regulations that require
them to “know their customers” (KYC).

It is possible to use Openchain in this configuration with little effort. This section describes the necessary steps.

The goal of this walkthrough is to configure Openchain so that:

1. Users go through an external registration process where they have their identity verified by the company admin-
istrating the ledger, and associate their identity with a public key.

2. Only public keys matching a registered user can be used to send funds.

3. Funds can only be sent to registered users.

This way, funds can only circulate amongst “known” users.

Initial configuration

The Openchain instance must be configured with both P2PKH accounts and thrid party issuance ac-
counts disabled. The settings validator_mode:validator:allow_p2pkh_accounts and
validator_mode:validator:allow_third_party_assets must both be set to false to achieve
this. See this section for more details.

With this configuration, by default, users have no rights, while administrators have all rights. It is not possible for any
normal user to either send or receive tokens.

Onboarding process

The second step is to build an onboarding workflow for the users. For example, this could be a mobile application
where the user creates a username and password, enters her email address and submits a proof of identity (photo of
her passport).

As part of the process, a private key is generated and stored on the user’s device. The matching public key is sent
along with the other pieces of information. This part can be entirely invisible to the user.

46 Chapter 5. Ledger rules

Openchain Documentation, Release 0.7.0

Creating the access rights

Once the company has validated the identity of the user, it can create an account on Openchain for that user, and
associate her username with her public key.

Aliases are based on a special path (/aka/<alias>/). Assuming that the username of the user is alice, we need
to:

1. Allow other users to send funds to /aka/alice/ (and subaccounts).

2. Allow Alice’s public key to be used to spend funds on /aka/alice/ (and subaccounts).

This can be achieved by creating an acl record under /aka/alice/.

Tip: See the documentation about dynamic permissions for more details.

The record /aka/alice/:DATA:acl must be created and set to:

[
{

"subjects": [{ "addresses": [], "required": 0 }],
"permissions": { "account_modify": "Permit", "account_create": "Permit" }

},
{

"subjects": [{ "addresses": ["<alices-address>"], "required": 1 }],
"permissions": { "account_spend": "Permit" }

}
]

Important: Since only an administrator will have the right to modify this record, the mutation creating this record
must be signed using an administrator key.

Alice’s address is the base-58 representation of the hash of her public key. It is constructed the same way it would be
for a Bitcoin address.

By tweaking the access control list, it is possible to:

1. Handle multiple devices (with different keys) per user.

2. Implement multisignature schemes, for joint accounts for example.

Credit the user’s account

Now that the user has an account she can use, she will want to fund it. There are many possible configurations for this:

• A treasury is initially created by the company and credits are send from that treasury.

• Tokens are issued dynamically whenever the user purchases them through an external payment method.

Assuming the following:

• The asset path for the tokens is /asset/usd/ (this can be arbitrarily chosen).

• The tokens are dynamically issued from the account /treasury/usd/.

A funding transaction will simply take the form of a transaction sending X units of the asset /asset/usd/ from the
account /treasury/usd/ to the account /aka/alice/.

5.3. How to: Configure a ledger to be closed-loop 47

Openchain Documentation, Release 0.7.0

The transaction should be signed by an administrator only an administrator has access to /treasury/usd/. The
balance on /treasury/usd/ will be negative, and reflect the total amount of tokens that have been issued on the
ledger. Again, the administrator is allowed to make the balance negative.

The final ledger tree should look as follow:

48 Chapter 5. Ledger rules

Openchain Documentation, Release 0.7.0

Addressing loss and theft of the private keys

Inevitably, some users will lose the device on which their private key is stored.

When this happens, they should report it to the company administering the Openchain instance. The company will
first perform identity checks, then ask the user to generate a new key on a new device.

The administrator can then simply update the relevant acl record to change the previous address into the new address,
corresponding to the new key.

Handling fraudulent transactions

If fraudulent transactions have happened in the meantime, the administrator can commit a new transaction representing
the opposite transfer.

For example, if 10 units have been sent fraudulently from /aka/alice/ to /aka/oscar/, then the administrator
can simply submit a new transaction sending 10 units from /aka/oscar/ to /aka/alice/, thus reverting the
effects of the fraudulent transaction. The ledger being immutable, both transactions will remain visible in the ledger,
with the fact that the second transaction transferring funds back from /aka/oscar/ is not signed by Oscar’s key,
but instead signed by the administrator’s key.

Note: It bears mentioning that in a setup where all the users have to go through an identity verification process,
it is unlikely that Oscar steals funds from Alice in the first place, since the company running the ledger has all the
information about Oscar, and could press charges against him.

Conclusion

With this setup, users are able to send tokens to each other, however, they are not able to send funds to addresses that
are not associated to a registered user.

5.3. How to: Configure a ledger to be closed-loop 49

Openchain Documentation, Release 0.7.0

This represents just one way to implement a closed-loop ledger, and there are many other possible configurations
depending on the requirements.

50 Chapter 5. Ledger rules

	Overview
	Overview of Openchain

	Getting Started
	Getting started with the wallet
	Openchain Server Docker deployment

	General
	Running Openchain
	The transaction stream
	Anchoring and ledger integrity
	Openchain Server Configuration
	Openchain modules
	Setting the instance info on a new instance
	Upgrading Openchain server
	Deploying Openchain in a production environment
	Troubleshooting

	Public API
	Openchain data structures
	Ledger structure
	Method calls

	Ledger rules
	Default ledger rules
	Dynamic permissions
	How to: Configure a ledger to be closed-loop

