

openATTIC 2.0 Documentation

The times when storage was considered a server-based resource and every system
needed to have its own hard drives are long gone. In modern data centers central
storage systems have become ubiquitous for obvious reasons. Centrally managed
storage increases flexibility and reduces the cost for unused storage reserves.
With the introduction of a cluster or virtualization solution shared storage
becomes a necessity.

This mission-critical part of IT used to be dominated by proprietary offerings.
Even though mature open source projects may now meet practically every
requirement of a modern storage system, managing and using these tools is often
quite complex and is mostly done decentrally.

openATTIC is a full-fledged central storage management system. Hardware resources
can be managed, logical storage areas can be shared and distributed and data
can be stored more efficiently and less expensively than ever before – and you
can control everything from a central management interface. It is no longer
necessary to be intimately familiar with the inner workings of the individual
storage tools. Any task can be carried out by either using openATTIC’s intuitive
web interface or via the REST API.

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License version 2 as published by the Free
Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

	Trademarks

	Installation and Getting Started
	System requirements

	Base Operating System Installation

	Basic Storage Configuration

	Installation on Debian Linux

	Installation on Ubuntu Linux

	Installation on Red Hat Enterprise Linux (and Derivatives)

	Installation on SUSE Linux Enterprise Server and openSUSE Leap

	Post-installation Configuration

	Enabling Ceph Support in openATTIC

	Download Preconfigured Virtual Machine

	Getting started

	Installing an openATTIC Multi-node System

	Configuring Authentication and Single Sign-On

	Hardware Recommendations

	Storage Recommendations

	Further Operating System Configuration Hints

	User Manual
	Administration Guide

	How to Perform Common Tasks

	Background-Tasks

	Developer Documentation
	Create Your own openATTIC git Fork on BitBucket

	Setting up a Development System with Vagrant

	Setting up a Development System

	Contributing Code to openATTIC

	openATTIC Contributing Guidelines

	openATTIC Core

	Working on the openATTIC documentation

	Customizing the openATTIC WebUI

	openATTIC Web UI Tests - E2E Test Suite

	openATTIC REST API Tests - Gatling Test Suite

Indices and Tables

	Index

	Module Index

	Search Page

Trademarks

“Apache HTTP Server”, “Apache”, and the Apache feather logo are trademarks of
The Apache Software Foundation.

“DRBD®”, the DRBD logo, “LINBIT®”, and the LINBIT logo are
trademarks or registered trademarks of LINBIT in Austria, the United States
and other countries.

“Linux” is the registered trademark of Linus Torvalds in the U.S. and other
countries.

“Red Hat Linux” and “CentOS” are trademarks of Red Hat, Inc. in the U.S. and
other countries.

“openSUSE”, “SUSE” and the SUSE and openSUSE logo are trademarks of SUSE IP
Development Limited or its subsidiaries or affiliates.

“VMware” is a trademark or registered trademark of VMware, Inc. in the United
States and/or other jurisdictions.

All other names and trademarks used herein are the property of their
respective owners.

Installation and Getting Started

This section guides you through the necessary operating system preparation and
the installation and configuration process of the openATTIC software.

The installation can be broken down into the following steps:

	Base Operating System Installation

	Basic Storage Configuration

	
	openATTIC installation:

	
	Installation on Debian Linux

	Installation on Ubuntu Linux

	Installation on Red Hat Enterprise Linux (and Derivatives)

	Installation on SUSE Linux Enterprise Server and openSUSE Leap

	Post-installation Configuration

	Download Preconfigured Virtual Machine

	Getting started

	System requirements

	Base Operating System Installation
	Post-installation Operating System Configuration

	Basic Storage Configuration
	Create an LVM Volume Group for openATTIC

	Tag OS Volume Groups / Logical Volumes

	Create a ZFS zpool

	Installation on Debian Linux
	Importing the openATTIC Keyfile

	Enabling the openATTIC Apt Package Repository

	Package Installation

	Installation on Ubuntu Linux
	Importing the openATTIC Keyfile

	Enabling the openATTIC Apt Package Repository

	Package Installation

	Installation on Red Hat Enterprise Linux (and Derivatives)
	Preliminary Preparations on RHEL 7

	Disable SELinux

	Yum Repository Configuration

	Package Installation

	Configure PNP4Nagios on EL7

	Installation on SUSE Linux Enterprise Server and openSUSE Leap
	Zypper Repository Configuration

	Package Installation

	Post-installation Configuration
	openATTIC Base Configuration

	Changing the Default User Password

	Installing additional openATTIC Modules

	Enabling Ceph Support in openATTIC

	Download Preconfigured Virtual Machine

	Getting started
	Accessing the Web UI

	Installing an openATTIC Multi-node System
	Step 1 - Install Two openATTIC Hosts

	Step 2 - Database Configuration on openattic01

	Step 3 - Remote Database Configuration on openattic02

	Step 4 - Execute oaconfig install on openattic02

	Configuring Authentication and Single Sign-On
	Authentication

	Authorization

	Joining openATTIC to a Windows Active Directory Domain Using oaconfig

	Configuring Domain Authentication and Single Sign-On

	Troubleshooting Authentication Issues

	Hardware Recommendations

	Storage Recommendations

	Further Operating System Configuration Hints

System requirements

openATTIC can be installed on the most popular Linux distributions. It is designed
to run on commodity hardware, so you are not in any way bound to a specific
vendor or hardware model.

You need to make sure that your Linux distribution of choice supports the
hardware you intend to use. Check the respective hardware compatibility lists
or consult your hardware vendor for details.

Installable packages of openATTIC are currently available for the following Linux
distributions:

	Debian Linux 8 “Jessie”

	Red Hat Enterprise Linux 7 (RHEL) and derivatives (CentOS 7, Oracle Linux 7
or Scientific Linux 7)

	openSUSE Leap 42.1, SUSE Linux Enterprise Server 12 (SLES12) (via the
openSUSE Build Service)

	Ubuntu 14.04 LTS “Trusty Thar”

	Ubuntu 16.04 LTS “Xenial Xerus”

Note

openATTIC has been designed to be installed on a 64-bit Linux operating system.
Installation on 32-bit systems is not supported.

For testing openATTIC, you should dedicate and prepare at least one additional
entire hard disk to it. See Basic Storage Configuration for details.

When setting up a production server, there are a couple of things you should
be aware of when designing the system. See Storage Recommendations and
Hardware Recommendations for further details.

Base Operating System Installation

The basic installation of the operating system (Linux distribution) depends on
your requirements and preferences and is beyond the scope of this document.

Consult the distribution’s installation documentation for details on how to
perform the initial deployment.

We recommend performing a minimal installation that just installs the basic
operating system (no GUI, no development tools or other software not suitable
on a production system).

Post-installation Operating System Configuration

After performing the base installation of your Linux distribution of choice,
the following configuration changes should be performed:

	The system must be connected to a network and should be able to establish
outgoing Internet connections, so additional software and regular OS
updates can be installed.

	Make sure the output of hostname --fqdn is something that makes sense,
e.g. srvopenattic01.yourdomain.com instead of localhost.localdomain.
If this doesn’t fit, edit /etc/hostname and /etc/hosts to contain
the correct names.

	Install and configure an NTP daemon on every host, so the clocks on all
these nodes are in sync.

	HTTP access and other things might be blocked by the default firewall
configuration. For example on EL7 system, execute the following commands:

firewall-cmd --permanent --zone=<your zone ie internal|public> --add-service=http
firewall-cmd --permanent --zone=<your zone ie internal|public> --add-service=samba
firewall-cmd --permanent --zone=<your zone ie internal|public> --add-service=nfs
firewall-cmd --permanent --zone=<your zone ie internal|public> --add-service=iscsi-target
firewall-cmd --reload

Consult your Linux distribution’s documentation for further details on how to
make these changes.

Basic Storage Configuration

Note

If you only want to use openATTIC for managing and monitoring a Ceph cluster, you
can skip the storage configuration. No additional local disks or storage
pools are required for performing this functionality. After performing the
basic openATTIC software installation, follow the steps outlined in
Enabling Ceph Support in openATTIC to make your Ceph cluster known to openATTIC.

At a minimum, openATTIC should have one dedicated storage pool (e.g. an LVM volume
group or a ZFS zpool) for creating storage volumes. In the following chapters,
we’ll explain how to create an LVM volume group or, alternatively, a ZFS zpool.

Configuring storage for openATTIC in a reliable and performant way depends on a
number of factors. See Storage Recommendations and Hardware Recommendations for some recommendations.

Note

Currently, openATTIC requires that a storage pool (LVM or ZFS) has already been
configured/prepared on the command line. This step has to be performed until
the required functionality has been implemented in openATTIC itself. See OP-108 [https://tracker.openattic.org/browse/OP-108] and OP-109 [https://tracker.openattic.org/browse/OP-109] for details.

Create an LVM Volume Group for openATTIC

One way of managing storage with openATTIC is using the Linux Logical Volume
Manager “LVM”. The required command line tools are usually installed on a
Linux distribution by default. To learn more about LVM, consult your
distribution’s documentation or the LVM HOWTO [http://tldp.org/HOWTO/LVM-HOWTO/].

In the following steps, we’ll create a logical volume group for openATTIC to use.
The volume group name and device names may differ on your system. In this
example, we’ll use the second and third hard disk of the system, and create a
volume group named vgdata:

vgcreate vgdata /dev/sdb /dev/sdc

Consult the lvm(8) manual page and the LVM HOWTO for further
information on how to create volume groups and the supported modes of
redundancy and performance.

Tag OS Volume Groups / Logical Volumes

If you have installed your operating system’s file systems on logical volumes
(which is the default for many distributions), you can tag these volumes or
the entire volume group with a sys tag to prevent openATTIC from registering
them for usage when running oaconfig install.

For example, on CentOS, you could run the following command to mark the entire
centos volume group as reserved for the operating system:

vgchange --addtag sys centos

This will prevent the entire centos volume group from being registered for
management as a storage pool by openATTIC.

Alternatively, you can tag selected logical volumes within the volume group:

lvchange --addtag sys centos/root
lvchange --addtag sys centos/swap

The centos volume group will be visible as a storage pool in openATTIC and you
can create and manage volumes in there, except for the root and swap
volumes.

Create a ZFS zpool

As an alternative to using LVM, openATTIC also supports using the OpenZFS [http://open-zfs.org/] file system for managing the underlying storage.

In order to use the ZFS file system, you need to install the required
filesystem driver modules for ZFS on Linux separately. Installation packages
for various Linux distributions are available from the ZFS on Linux web site [http://zfsonlinux.org/]. See the “Getting Started” pages on that site for
details on the distribution-specific installation steps.

Once ZFS on Linux has been installed and configured, a simple zpool for
testing purposes on a single disk could be created using the following
command:

zpool create -m /media/tank tank /dev/sdb

In a production environment, you should create a zpool across multiple disks
(e.g. in a RAID-1 configuration), to achieve the desired level of performance
and redundancy. See Storage Recommendations and the ZFS documentation
for recommendations.

Note

The ZFS zpool needs to be mounted below /media/<poolname> in order for
openATTIC to manage it.

To enable ZFS support in openATTIC, you also need to install the additional
openattic-module-zfs package and run oaconfig install to register the
newly created zpool.

Installation on Debian Linux

We provide installable DEB packages of openATTIC via apt package repositories from
http://apt.openattic.org .

Note

Before proceeding with the openATTIC installation, make sure that you have
followed the steps outlined in Base Operating System Installation and
Basic Storage Configuration.

Importing the openATTIC Keyfile

The openATTIC packages are signed using a cryptographic key. You can import the
public GPG key from the download site using the following command:

wget http://apt.openattic.org/A7D3EAFA.txt -q -O - | apt-key add -

The GPG key’s fingerprint can be verified with apt-key finger and should
look as follows:

pub 2048R/A7D3EAFA 2012-03-05
 Key fingerprint = 9A91 1EDD 45A2 4B25 9C39 E7D4 1D5C D44D A7D3 EAFA
uid Business Critical Computing <is-bcc@it-novum.com>
sub 2048R/A99076EE 2012-03-05

Enabling the openATTIC Apt Package Repository

In order to add the openATTIC apt repository, create a file named
/etc/apt/sources.list.d/openattic.list, and put the following lines into it:

deb http://apt.openattic.org/ jessie main
deb-src http://apt.openattic.org/ jessie main

Enabling Nightly Builds

In addition to the official releases, we also provide nightly builds, built off
the current “default” branch that will eventually become the next official openATTIC
release.

To enable the nightly repo, the file /etc/apt/sources.list.d/openattic.list
needs to be expanded to look as follows:

deb http://apt.openattic.org/ jessie main
deb-src http://apt.openattic.org/ jessie main
deb http://apt.openattic.org/ nightly main
deb-src http://apt.openattic.org/ nightly main

Package Installation

After enabling the apt repository, run the following commands to install the
openATTIC DEB packages:

apt-get update
apt-get install openattic

Note

Installation of the openattic-gui package will replace the
distribution’s default index.html page in the Apache web server’s
document root with a redirect page to the openATTIC web interface.

Proceed with the installation by following the steps outlined in
Post-installation Configuration.

Installation on Ubuntu Linux

We provide installable DEB packages of openATTIC via apt package repositories from
http://apt.openattic.org .

Note

Before proceeding with the openATTIC installation, make sure that you have
followed the steps outlined in Base Operating System Installation and
Basic Storage Configuration.

Importing the openATTIC Keyfile

The openATTIC packages are signed using a cryptographic key. You can import the
public GPG key from the download site using the following command:

$ sudo apt-key adv --fetch-keys http://apt.openattic.org/A7D3EAFA.txt

The GPG key’s fingerprint can be verified with apt-key finger and should
look as follows:

pub 2048R/A7D3EAFA 2012-03-05
 Key fingerprint = 9A91 1EDD 45A2 4B25 9C39 E7D4 1D5C D44D A7D3 EAFA
uid Business Critical Computing <is-bcc@it-novum.com>
sub 2048R/A99076EE 2012-03-05

Enabling the openATTIC Apt Package Repository

In order to add the openATTIC apt repository, run the following command for adding the openATTIC repository.

Note

The command lsb_release -cs will return the correct code name of your distribution.

	trusty (for Ubuntu 14.04 LTS “Trusty Thar”)

	xenial (for Ubuntu 16.04 LTS “Xenial Xerus”)

$ sudo add-apt-repository "deb http://apt.openattic.org/ $(lsb_release -cs) main"

Enabling Nightly Builds

In addition to the official releases, we also provide nightly builds, built off
the current “default” branch that will eventually become the next official openATTIC
release.

To enable the nightly repo, run the following command:

$ sudo add-apt-repository "deb http://apt.openattic.org/ $(lsb_release -cs) main"
$ sudo add-apt-repository "deb http://apt.openattic.org/ nightly main"

Package Installation

After enabling the apt repository, run the following commands to install the
openATTIC DEB packages.

Note

For Ubuntu 14.04 LTS it is necessary to install some extra package in
order to get the lio-utils package working which is used by
openattic-module-lio (installed by the base openATTIC package). You may
need to restart the target service as well:

$ sudo apt-get install linux-image-extra-$(uname -r)
$ sudo service target restart

Now, install openATTIC:

$ sudo apt-get update
$ sudo apt-get install openattic

Note

Installation of the openattic-gui package will replace the
distribution’s default index.html page in the Apache web server’s
document root with a redirect page to the openATTIC web interface.

Note

For Ubuntu 16.04 LTS some required LVM services may not run after the installation of openATTIC.
Please enable them by executing:

$ sudo systemctl enable lvm2-lvmetad.socket
$ sudo systemctl start lvm2-lvmetad.socket

Proceed with the installation by following the steps outlined in
Post-installation Configuration.

Installation on Red Hat Enterprise Linux (and Derivatives)

Starting with version 2.0, openATTIC is also available for RPM-based Linux
distributions, namely Red Hat Enterprise Linux 7 (RHEL) and derivatives (e.g.
CentOS 7, Oracle Linux 7 or Scientific Linux 7). For the sake of simplicy, we
refer to these distributions as Enterprise Linux 7 (EL7).

The software is delivered in the form of RPM packages via dedicated yum
repositories.

Note

Before proceeding with the openATTIC installation, make sure that you have
followed the steps outlined in Base Operating System Installation and
Basic Storage Configuration.

Preliminary Preparations on RHEL 7

Note

This step is not required on CentOS and other RHEL derivatives.

To install on RHEL 7, be sure to disable the “EUS” and “RT” yum repos, and
enable the “Optional” repo:

subscription-manager repos --disable=rhel-7-server-eus-rpms
subscription-manager repos --disable=rhel-7-server-rt-rpms
subscription-manager repos --enable=rhel-7-server-optional-rpms

Afterwards, just continue with the following installation steps.

Disable SELinux

For the time being, SELinux needs to be disabled or put into “permissive” mode
when running openATTIC (see OP-543 [https://tracker.openattic.org/browse/OP-543]
for details).

On the command line, run the following command:

setenforce 0

To disable SELinux at system bootup, edit /etc/sysconfig/selinux and
change the configuration option SELINUX to permissive.

Use the command getenforce to ensure that SELinux has been disabled
correctly.

Yum Repository Configuration

openATTIC requires some additional packages that are not part of the official EL7
distribution, but can be obtained from the Extra Packages for Enterprise Linux
(EPEL [https://fedoraproject.org/wiki/EPEL]) yum repository.

To enable the EPEL repository, you need to run the following command:

yum install epel-release

Download and install the openattic-release RPM package located in the
following directory:

yum install http://repo.openattic.org/rpm/openattic-2.x-el7-x86_64/openattic-release.rpm

This will automatically enable package installation from the openATTIC Release
repository.

To enable the nightly RPM builds, edit /etc/yum.repos.d/openattic.repo and
enable the [openattic-nightly] yum repository by setting enabled to
1.

Package Installation

To install the openATTIC base packages on EL7, run the following command:

yum install openattic

The openATTIC web GUI is not installed automatically when using yum install
openattic, as it might not be required on each node of an openATTIC cluster.

It can be installed with the following command:

yum install openattic-gui

Note

Installation of the openattic-gui package will install an index.html
page in the Apache web server’s document root that will redirect requests to
the openATTIC web interface.

Configure PNP4Nagios on EL7

openATTIC uses Nagios [https://www.nagios.org/] and the PNP4Nagios [http://pnp4nagios.org/] addon for analyzing performance data and generating
graphs to display the performance and utilization of disks and volumes.

By default, PNP4Nagios is configured by openATTIC automatically to run in bulk
mode with npcdmod [http://docs.pnp4nagios.org/pnp-0.6/modes#bulk_mode_with_npcdmod] to process
performance data.

Unfortunately Nagios in the EPEL repository has been updated to version 4.0.x
some time ago, which does no longer support this mode. See OP-820 [https://tracker.openattic.org/browse/OP-820] for more details.

Instead, PNP4Nagios on EL7 needs to be configured manually for using bulk
mode with NPCD [http://docs.pnp4nagios.org/pnp-0.6/modes#bulk_mode_with_npcd], by following
the steps outlined below.

Append the following to /etc/nagios/nagios.cfg:

#
Bulk / NPCD mode
#

*** the template definition differs from the one in the original nagios.cfg
#
service_perfdata_file=/var/log/pnp4nagios/service-perfdata
service_perfdata_file_template=DATATYPE::SERVICEPERFDATA\tTIMET::$TIMET$\tHOSTNAME::$HOSTNAME$\tSERVICEDESC::$SERVICEDESC$\tSERVICEPERFDATA::$SERVICEPERFDATA$\tSERVICECHECKCOMMAND::$SERVICECHECKCOMMAND$\tHOSTSTATE::$HOSTSTATE$\tHOSTSTATETYPE::$HOSTSTATETYPE$\tSERVICESTATE::$SERVICESTATE$\tSERVICESTATETYPE::$SERVICESTATETYPE$
service_perfdata_file_mode=a
service_perfdata_file_processing_interval=15
service_perfdata_file_processing_command=process-service-perfdata-file

*** the template definition differs from the one in the original nagios.cfg
#
host_perfdata_file=/var/log/pnp4nagios/host-perfdata
host_perfdata_file_template=DATATYPE::HOSTPERFDATA\tTIMET::$TIMET$\tHOSTNAME::$HOSTNAME$\tHOSTPERFDATA::$HOSTPERFDATA$\tHOSTCHECKCOMMAND::$HOSTCHECKCOMMAND$\tHOSTSTATE::$HOSTSTATE$\tHOSTSTATETYPE::$HOSTSTATETYPE$
host_perfdata_file_mode=a
host_perfdata_file_processing_interval=15
host_perfdata_file_processing_command=process-host-perfdata-file

Add the following to /etc/nagios/objects/commands.cfg:

#
definitions for PNP processing commands
Bulk with NPCD mode
#
define command {
 command_name process-service-perfdata-file
 command_line /bin/mv /var/log/pnp4nagios/service-perfdata /var/spool/pnp4nagios/service-perfdata.$TIMET$
}

define command {
 command_name process-host-perfdata-file
 command_line /bin/mv /var/log/pnp4nagios/host-perfdata /var/spool/pnp4nagios/host-perfdata.$TIMET$
}

To make sure that all changes have been applied correctly, please run nagios
--verify-config /etc/nagios/nagios.cfg afterwards, to verify the
configuration files for errors.

Nagios will be restarted during the openATTIC installation and should then generate
the necessary RRD and XML files in /var/lib/pnp4nagios/<hostname>.

Proceed with the installation by following the steps outlined in
Post-installation Configuration.

Installation on SUSE Linux Enterprise Server and openSUSE Leap

openATTIC is available for installation on SUSE Linux Enterprise Server 12 (SLES12)
and openSUSE Leap 42 from the openSUSE Build Service [https://build.opensuse.org].

The software is delivered in the form of RPM packages via dedicated yum
repositories named filesystems:openATTIC.

Note

Before proceeding with the openATTIC installation, make sure that you have
followed the steps outlined in Base Operating System Installation and
Basic Storage Configuration.

Zypper Repository Configuration

From a web browser, the installation of openATTIC on SLES or Leap can be performed
via “1 Click Install” from the openSUSE download site [http://software.opensuse.org/package/openattic].

From the command line, you can run the following command to enable the openATTIC
package repository.

For openSUSE Leap 42.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/filesystems:openATTIC/openSUSE_Leap_42.1/filesystems:openATTIC.repo
zypper refresh

For SLE 12 SP1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/filesystems:openATTIC/SLE_12_SP1/filesystems:openATTIC.repo
zypper refresh

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/filesystems:openATTIC/SLE_12/filesystems:openATTIC.repo
zypper refresh

Package Installation

To install the openATTIC base packages on SUSE Linux, run the following command:

zypper install openattic

The openATTIC web GUI is not installed automatically when using zypper install
openattic, as it might not be required on each node of an openATTIC cluster.

It can be installed with the following command:

zypper install openattic-gui

Proceed with the installation by following the steps outlined in
Post-installation Configuration.

Post-installation Configuration

openATTIC Base Configuration

After all the required packages have been installed and a storage pool has
been created, you need to perform the actual openATTIC configuration, by running
oaconfig:

oaconfig install

oaconfig install will start and enable a number of services, initialize
the openATTIC database and scan the system for pools and volumes to include.

Changing the Default User Password

By default, oaconfig creates a local adminstrative user account
openattic, with the same password.

As a security precaution, we strongly recommend to change this password
immediately:

oaconfig changepassword openattic
Changing password for user 'openattic'
Password: <enter password>
Password (again): <re-enter password>
Password changed successfully for user 'openattic'

Now, your openATTIC storage system can be managed via the user interface.

See Getting started for instructions on how to access the web user
interface.

If you don’t want to manage your users locally, consult the chapter
Configuring Authentication and Single Sign-On for alternative methods for authentication and
authorization.

Installing additional openATTIC Modules

After installing openATTIC, you can install additional modules
(openattic-module-<module-name>), by using your operating system’s native
package manager, i.e.:

apt-get install openattic-module-drbd # Debian/Ubuntu
yum install openattic-module-btrfs # RHEL/CentOS

Note

Don’t forget to run oaconfig install after installing new modules.

Enabling Ceph Support in openATTIC

Note

Ceph support in openATTIC is currently developed against Ceph 10.2 aka “Jewel”.
Older Ceph versions may not work as expected. If your Linux distribution
ships an older version of Ceph (as most currently do), please either use the
upstream Ceph package repositories [http://docs.ceph.com/docs/master/install/get-packages/] or find an
alternative package repository for your distribution that provides a version
of Ceph that meets the requirements. Note that this applies to both the
version of the Ceph tools installed on the openATTIC node as well as the version
running on your Ceph cluster.

To set up openATTIC with Ceph you first have to copy the Ceph administrator keyring
and configuration from your Ceph admin node to your local openATTIC system.

From your Ceph admin node, you can perform this step by using ceph-deploy
(assuming that you can perform SSH logins from the admin node into the
openATTIC host):

ceph-deploy admin openattic.yourdomain.com

On the openATTIC node, you should then have the following files:

/etc/ceph/ceph.client.admin.keyring
/etc/ceph/ceph.conf

Note

Please ensure that these files are actually readable by the openATTIC user
(openattic) and the Nagios/Icinga user account (usually nagios or
icinga) that runs the related Nagios checks. In a default installation,
these users are added to the group openattic, so it should be sufficient
to make sure these files are either world-readable or owned and readable by
this group:

chgrp openattic /etc/ceph/ceph.conf /etc/ceph/ceph.client.admin.keyring
chmod g+r /etc/ceph/ceph.conf /etc/ceph/ceph.client.admin.keyring

Alternatively, you can copy these files manually.

Note

openATTIC supports managing multiple Ceph clusters, provided they have different
names and FSIDs. You can add another cluster by copying the cluster’s admin
keyring and configuration into /etc/ceph using a different cluster name,
e.g. development instead of the default name ceph:

/etc/ceph/development.client.admin.keyring
/etc/ceph/development.conf

The next step is to install the openATTIC Ceph module openattic-module-ceph on your
system:

apt-get install openattic-module-ceph
- or -
yum install openattic-module-ceph

The packages should automatically install any additionally required packages.
The last step is to recreate your openATTIC configuration:

oaconfig install

Download Preconfigured Virtual Machine

openATTIC can be downloaded as preconfigured virtual machines from http://download.openattic.org/vms/.

At the moment you can download openATTIC installed on Debian and Ubuntu. More coming soon…

You can choose between two different image files - qcow2 for KVM and vdi for VirtualBox.

The default login username for the VMs is root and the password is openattic.

The default login username for the openATTIC WebUI is openattic and the password is openattic.

Note

Please run oaconfig install the first time you’ve started the virtual machine.
Otherwise the WebUI will be empty.

How to use those images:

	KVM - Libvirt XML example file - you can use this example and import it to libvirt if you want to.
Revise disk path and bridge name according to your needs.
Otherwise create a new vm and select the image file as your disk.

<domain type='kvm'>
 <name>oa-vm-deb</name>
 <uuid>e8afb480-d464-ed28-c200-000000000002</uuid>
 <memory unit='KiB'>2097152</memory>
 <currentMemory unit='KiB'>2097152</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <resource>
 <partition>/machine</partition>
 </resource>
 <os>
 <type arch='x86_64' machine='pc-1.0'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/bin/kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none' io='native'/>
 <source file='/var/lib/libvirt/images/oa-vm-debian-2.0.22.qcow2'/>
 <target dev='sda' bus='scsi'/>
 </disk>
 <disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <target dev='sdb' bus='scsi'/>
 <readonly/>
 </disk>
 <controller type='ide' index='0'>
 </controller>
 <controller type='usb' index='0'>
 </controller>
 <controller type='pci' index='0' model='pci-root'/>
 <controller type='scsi' index='0'>
 </controller>
 <interface type='bridge'>
 <mac address='52:54:00:00:00:02'/>
 <source bridge='virbr0'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0' keymap='de'>
 <listen type='address' address='0.0.0.0'/>
 </graphics>
 <video>
 <model type='cirrus' vram='16384' heads='1'/>
 </video>
 <memballoon model='virtio'>
 </memballoon>
 </devices>
</domain>

	VirtualBox - Create a new virtual machine and select “already existing disk” or create a virtual
machine without a disk and add it afterwards.

Getting started

Accessing the Web UI

openATTIC can be managed using a web-based user interface, if the package
openattic-gui has been installed and the Apache http Server has been
restarted afterwards.

Open a web browser and navigate to http://openattic.yourdomain.com/openattic

The default login username is openattic. Use the password you defined during
the Post-installation Configuration.

See the User Manual for further information.

Installing an openATTIC Multi-node System

openATTIC can be installed in a multi-node setup, in which any node can be used to
manage the whole system and commands are distributed to the appropriate node
automatically. This is implemented by using a shared configuration database,
connecting all openATTIC nodes to the same PostgreSQL database.

This is usually the database of the first node that you have installed and
configured, but can be a database running on a dedicated node, too.

In order to use DRBD®, you will need to set up a multi-node setup consisting
of two hosts.

Note

Note that multi-node support currently applies to the “traditional” storage
management functionality of openATTIC only. For managing Ceph, you need to
connect to the web interface of the openATTIC node configured to connect to the
Ceph cluster directly.

Step 1 - Install Two openATTIC Hosts

In the following example the first host is called openattic01.yourdomain.com
(IP address: 192.168.1.101) and the second openattic02.yourdomain.com (IP
address: 192.168.1.102). Both hosts should be able to connect to each other
using their host names, so make sure that DNS is configured correctly (or you
have configured /etc/hosts accordingly on both nodes).

Note that these two systems don’t necessarily need to have the exact same
specifications (e.g. hardware, hard disks). However, the version of openATTIC and the
operating system (and particularly the Django version) running on these hosts
must be identical.

In the example below, Debian Linux is assumed as the operating system. The path
names to configuration files and some configuration details (e.g. PostgreSQL or
firewall configuration) might differ on other platforms.

As a first step, you should setup and install these two openATTIC hosts as described
in Installation and Getting Started.

Note

You should only perform the Post-installation Configuration on
one of the two hosts for now! This example assumes that the command was
executed on host openattic01, which will result in the installation of
the entire openATTIC system including the configuration database on that node.

Step 2 - Database Configuration on openattic01

Next, the PostgreSQL database configuration on openattic01 needs to be
adjusted so it accepts incoming remote connection attempts from openattic02.

Edit the /etc/postgresql/<VERSION>/main/postgresql.conf and
/etc/postgresql/<VERSION>/main/pg_hba.conf configuration files on
openattic01.

Note

The location of these files might be different on other Linux distributions.

First, set the correct listen addresses within the postgresql.conf file. Add
openattic01’s external IP address to listen_addresses and uncomment this
configuration setting:

#--
CONNECTIONS AND AUTHENTICATION
#--

- Connection Settings -

listen_addresses = 'localhost, 192.168.1.101' # what IP address(es) to listen on;
 # comma-separated list of addresses;
 # defaults to 'localhost'; use '*' for all

Note

On some operating systems, the firewall configuration might prevent external
communication requests to the TCP port used by PostgreSQL (5432 by default).
Please consult your distribution’s documentation on how to configure the
firewall to accept incoming connections from openattic02 to this port.

Next, you need to add openattic02 to PostgreSQL’s client authentication
configuration file pg_hba.conf. Edit the file and add the following line to
the IPv4 local connections section as follows:

IPv4 local connections:
host all all 127.0.0.1/32 md5
host openattic openattic 192.168.1.102/32 md5

This ensures that PostgreSQL accepts authentication requests to the local
openattic database from the remote host openattic02.

You need to restart the PostgreSQL service on openattic01 afterwards, to
apply these settings:

systemctl restart postgresql

Step 3 - Remote Database Configuration on openattic02

Since openattic02 needs to connect to the database of openattic01 you
will have to enter the database information (database name, user, password and
host) from openattic01 into the database configuration file
/etc/openattic/database.ini on openattic02 manually. The password can be
obtained from the database.ini file on openattic01. The username and
database name are openattic by default.

The database.ini file on openattic02 should look something like this:

[default]
engine = django.db.backends.postgresql_psycopg2
name = openattic
user = openattic
password = <password>
host = openattic01.yourdomain.com
port =

Step 4 - Execute oaconfig install on openattic02

Now that you have configured openattic02 to connect to the database running
on openattic01, you can conclude the Post-installation Configuration
on openattic02 by executing oaconfig install there.

If everything worked out well, you should now see both openattic01 and
openattic02 in the Hosts tab of the web UI running on openattic01
(and openattic02 respectively), as well as the disks, pools and volumes of both
hosts.

Configuring Authentication and Single Sign-On

When logging in, each user passes through two phases: Authentication and
Authorization. The authentication phase employs mechanisms to ensure the
users are who they say they are. The authorization phase then checks if that
user is allowed access.

“Authentication is the mechanism of associating an incoming request with a set
of identifying credentials, such as the user the request came from, or the
token that it was signed with (Tom Christie).”

The openATTIC authentication is based on the Django REST framework authentication
methods.

Currently openATTIC supports the following authentication methods of the Django REST
framework:

	BasicAuthentication

	TokenAuthentication

	SessionAuthentication

Read more about the Django REST framework authentication methods here:
Django REST framework - Authentication [https://tomchristie.github.io/rest-framework-2-docs/api-guide/authentication]

Authentication

openATTIC supports three authentication providers:

	Its internal database. If a user is known to the database and they entered
their password correctly, authentication is passed.

	Using Pluggable Authentication Modules [http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules] to
delegate authentication of username and password to the Linux operating
system. If PAM accepts the credentials, a database user without any
permissions is created and authentication is passed.

	Using Kerberos tickets via mod_auth_kerb [http://modauthkerb.sourceforge.net/]. Apache will verify the Kerberos
ticket and tell openATTIC the username the ticket is valid for, if any.
openATTIC will then create a database user without any permissions and
pass authentication.

Authorization

Once users have been authenticated, the authorization phase makes sure that
users are only granted access to the openATTIC GUI if they posess the
necessary permissions.

Authorization is always checked against the openATTIC user database. In order
to pass authorization, a user account must be marked active and a staff
member.

Users created by the PAM and Kerberos authentication backends will
automatically be marked active, but will not be staff members. Otherwise,
every user in your domain would automatically gain access to openATTIC,
which is usually not desired.

However, usually there is a distinct group of users which are designated
openATTIC administrators and therefore should be allowed to access all
openATTIC systems, without needing to be configured on every single one.

In order to achieve that, openATTIC allows the name of a system group to be
configured. During the authorization phase, if a user is active but not a
staff member, openATTIC will then check if the user is a member of the
configured user group, and if so, make them a staff member automatically.

Joining openATTIC to a Windows Active Directory Domain Using oaconfig

It is possible to configure openATTIC to join an Microsoft Windows Active Directory
Domain for authentication and authorization purposes.

Note

The automatic Domain join using oaconfig currently works on Debian/Ubuntu
Linux only.

The oaconfig tool performs the required steps for joining an Active
Directory (AD) domain.

This process requires the following packages and their dependencies to be
installed: openattic-auth-kerberos, openattic-module-samba.

You need to provide your Windows domain name and administrator username and
password:

oaconfig domainjoin username yourdomain.com YOURDOMAIN
User: username
Domain: yourdomain.com
Realm: YOURDOMAIN.COM
Workgroup: YOURDOMAIN
Machine Account: HOSTNAME$
Updating krb5.conf...
Probing Kerberos...
Password for username@YOURDOMAIN.COM: ********
Configuring Samba...
method return sender=:1.248 -> dest=:1.251 reply_serial=2
Removing old keytab...
Joining Domain...
Enter username's password: ********
Using short domain name -- YOURDOMAIN
Joined 'HOSTNAME' to realm 'yourdomain.com'
Processing principals to add...
Logging in as HOSTNAME$ (this may fail a couple of times)...
kinit: Preauthentication failed while getting initial credentials
kinit: Preauthentication failed while getting initial credentials
Configuring openATTIC...
[ok] Stopping: openATTIC systemd.
[ok] Starting: openATTIC systemd.
[ok] Reloading web server config: apache2.
Configuring libnss...
Restarting Samba and Winbind...
Initialized config from /etc/openattic/cli.conf
Could not connect to the server: [Errno 111] Connection refused
Initialized config from /etc/openattic/cli.conf
pong
method return sender=:1.252 -> dest=:1.253 reply_serial=2
[ok] Stopping Samba daemons: nmbd smbd.
[ok] Starting Samba daemons: nmbd smbd.
[ok] Stopping the Winbind daemon: winbind.
[ok] Starting the Winbind daemon: winbind.
To see if it worked, let's try 'getent passwd "username"':
username:*:20422:10513:Lastname, Firstname:/home/YOURDOMAIN/username:/bin/true

Configuring Domain Authentication and Single Sign-On

To configure authentication via a domain and to use Single Sign-On via
Kerberos, a few steps are required.

	Configuring openATTIC

As part of the domain join process, the oaconfig script creates a file
named /etc/openattic/domain.ini which contains all the relevant
settings in Python’s ConfigParser [https://docs.python.org/2/library/configparser.html] format.

The [domain] section contains the kerberos realm and Windows
workgroup name.

The [pam] section allows you to enable password-based domain account
authentication, and allows you to change the name of the PAM service to be
queried using the service parameter. Note that by default, the PAM
backend changes user names to upper case before passing them on to PAM –
change the is_kerberos parameter to no if this is not desired.

Likewise, the [kerberos] section allows you to enable ticket-based
domain account authentication.

In order to make use of the domain group membership check, add a section
named [authz] and set the group parameter to the name of your group
in lower case, like so:

[authz]
group = yourgroup

To verify the group name, you can try the following on the shell:

$ getent group yourgroup
yourgroup:x:30174:user1,user2,user3

	Configuring Apache

Please take a look at the openATTIC configuration file
(/etc/apache2/conf.d/openattic on Debian/Ubuntu). At the bottom, this
file contains a configuration section for Kerberos. Uncomment the section,
and adapt the settings to your domain.

In order to activate the new configuration, run:

apt-get install libapache2-mod-auth-kerb
a2enmod auth_kerb
a2enmod authnz_ldap
service apache2 restart

	Logging in with Internet Explorer should work already. Mozilla Firefox
requires you to configure the name of the domain in about:config under
network.negotiate-auth.trusted-uris.

Troubleshooting Authentication Issues

Kerberos and LDAP are complex technologies, so it’s likely that some errors
occur.

Before proceeding, please double-check that NTP is installed and configured
and make sure that hostname --fqdn returns a fully qualified domain name
as outlined in the installation instructions.

Below is a list of common error messages and their usual meanings.

	Client not found in Kerberos database while getting initial credentials

Possible reason: The KDC doesn’t know the service (i.e., your domain join
failed).

	Preauthentication failed while getting initial credentials

Possible reason: Wrong password or /etc/krb5.keytab is outdated (the
latter should not happen because oaconfig domainjoin ensures that it
is up to date).

	Generic preauthentication failure while getting initial credentials

Possible reason: /etc/krb5.keytab is outdated. Update it using the
following commands:

net ads keytab flush
net ads keytab create
net ads keytab add HTTP

	gss_acquire_cred() failed: Unspecified GSS failure. Minor code may provide
more information (,)

Possible reason: Apache is not allowed to read /etc/krb5.keytab, or
wrong KrbServiceName in /etc/apache2/conf.d/openattic.

Hardware Recommendations

	Buy an enclosure with enough room for disks. The absolute minimum
recommendation is twelve disks, but if you can, you should add two
hot-spares, so make that fourteen. For larger setups, use 24 disks.

Warning

Any other number of disks will hinder performance.

	Are you building a storage backend for virtualization? If so, you will
require SAS disks, a very clean setup and a good caching mechanism to
achieve good performance.

Note

Using SSDs instead of SAS disks does not necessarily boost performance. A
clean setup on SAS disks delivers the same performance as SSDs, and an
unclean SSD setup may even be slower.

	If the enclosure has any room for hot spare disks, you should have some
available. This way a disk failure can be dealt with immediately, instead
of having to wait until the disk has been replaced.

Note

A degraded RAID only delivers limited performance. Taking measures to
minimize the time until it can resume normal operations is therefore
highly advisable.

	You should have some kind of hardware device for caching. If you’re using a
RAID controller, make sure it has a BBU installed so you can make use of
the integrated cache. For ZFS setups, consider adding two SSDs.

Note

When using SSDs for caching, the total size of the cache should be one
tenth the size of the device being cached, and the cache needs to be ten
times faster. So:

	only add a cache if you have to - no guessing allowed, measure!

	don’t make it too large

	don’t add an SSD cache to a volume that is itself on SSDs

	Do you plan on using replication in order to provide failure tolerance? If
so, …

	you will require the same hardware for all of your nodes, because when
using synchronous replication, the slowest node limits the
performance of the whole system.

	make sure the network between the nodes has a low latency and enough
bandwidth to support not only the bandwidth your application needs, but
also has some extra for bursts and recovery traffic.

Note

When running VMs, a Gigabit link will get you pretty far. Money for a
10GE card would be better spent on faster disks.

	You should have a dedicated line available for replication and cluster
communication. There should be no other active components on that line, so
that when the line goes down, the cluster can safely assume its peer to be
dead.

	Up to the supported maximum of 128GB per node, add as much RAM as you
can (afford). The operating system will require about 1GB for itself,
everything else is then used for things like caching and the ZFS
deduplication table. Adding more RAM will generally speed things up and is
always a good idea.

Storage Recommendations

	Consider dedicating two disks to a RAID1 for the operating system. It
doesn’t matter if you use hardware or software RAID for this volume, just
that you split it off from the rest.

Note

You can also use other devices to boot from if they fit your redundancy needs.

	When using hardware RAID:

	Group the other disks into RAID5 arrays of exactly 5 disks each with a
chunk size (strip size) of 256KiB. Do not create a partition table on
these devices. If your RAID controller does not support 256KiB chunks,
use the largest supported chunk size.

	Using mdadm, create a Software-RAID0 device on exactly two or four of
your hardware RAID devices. Again, do not create a partition table on
the resulting MD device. Make sure the chunk size of the RAID0 array
matches that of the underlying RAID5 arrays. This way, you will not
be able to add more than 20 disks to one PV. This is intentional. If
you need to add more disks, create multiple PVs in the same manner.

	Using pvcreate, create an LVM Physical Volume on the MD device and add
it to a VG using vgcreate or vgextend.

	Do not mix PVs of different speeds in one single VG.

	When using ZFS:

You will need to specify the complete layout in the zpool create command,
so before running it, consider all the following points.

	Group exactly six disks in each raidz2. Use multiple raidz2 vdevs in
order to add all disks to the zpool.

	When adding SSDs, add them as mirrored log devices.

	Set the mount point to /media/<poolname> instead of just /<poolname>.

	Do not use /dev/sdc etc, but use /dev/disk/by-id/… paths instead.

So, the command you’re going to use will look something like this:

zpool create -m /media/tank tank \
 raidz2 /dev/disk/by-id/scsi-3500000e1{1,2,3,4,5,6} \
 raidz2 /dev/disk/by-id/scsi-350000392{1,2,3,4,5,6} \
 log mirror /dev/disk/by-id/scsi-SATA_INTEL_SSD{1,2}

Further Operating System Configuration Hints

	Disable swap.

	In a two-node cluster, add a variable named $PEER to your environment
that contains the hostname (not the FQDN) of the cluster peer node. This
simplifies every command that has something to do with the peer. Exchange
SSH keys.

	In pacemaker-based clusters, define the following Shell aliases to make
your life easier:

alias maint="crm configure property maintenance-mode=true"
alias unmaint="crm configure property maintenance-mode=false"

	After setting up MD raids, make sure mdadm.conf is up to date. This can
be ensured by running these commands:

/usr/share/mdadm/mkconf > /etc/mdadm/mdadm.conf
update-initramfs -k all -u

	You may want to install the ladvd package, which will ensure that your
switches correctly identify your system using LLDP.

	Make sure /etc/drbd.d/global_common.conf contains the following
variables:

disk {
 no-disk-barrier;
 no-disk-flushes;
 no-md-flushes;
}

net {
 max-buffers 8000;
 max-epoch-size 8000;
}

syncer {
 al-extents 3389;
}

User Manual

This section covers the openATTIC web user interface (GUI), focusing on storage
tasks like adding volumes and shares, system management tasks like the
configuration of users and API credentials, and the integrated monitoring
system.

	Administration Guide
	Introducing the New Graphical User Interface

	How to Perform Common Tasks

	Background-Tasks
	What is a background task?

	Where can I find the running background tasks?

	Are there different types of tasks?

	How can I test it?

	Can I delete them?

	Do I have to wait for the task to finish?

	Which processes create a background task?

Administration Guide

Introducing the New Graphical User Interface

The new user interface is now based on Bootstrap to make it look more modern,
realizing this was a great advantage when we switched from the ExtJS [https://www.sencha.com/products/extjs/] to the AngularJS [https://angularjs.org/] JavaScript framework.

We restructured the openATTIC user interface in order to make it more intuitive and
user-friendly. This included a clean-up of the menu tree as well. Actions like
snapshots and shares are now directly available in the volumes panel - by
selecting a volume those options get activated and will only display useful
actions, depending on the volume type.

Also, we have integrated wizards on the dashboard so that users can be guided
through the single steps based on specific use cases like VM storage or
Raw Block Storage.

How to Perform Common Tasks

	Dashboard

	overview of the system (disk load, cpu load)

	cluster/host status (written data, network traffic)

	wizards

	Disks

	displays all disks

	create pool

	Pools

	all existing pools

	add pool

	Volumes

	volumes overview

	actions

	add

	delete

	set deletion protection for volume

	clone

	resize

	more options (detail-view)

	click volume and

	make a snapshot

	create clone from snapshot

	create a share

	automatically only shows available options for volume type

	without filesystem

	only iSCSI/FibreChannel

	with filesystem

	http

	NFS

	CIFS

	check performance

	Hosts

	host overview

	actions

	add

	add attribute (peer, initiator for iSCSI share/FibreChannel WWN for FC share)

	System

	Users

	add

	edit

	delete

	update: field “is superuser” was changed to “has all privileges” | “is staff” was changed to “is administrator”

	Command Logs

	all nagios logs

	options

	delete by date

	delete

	CRUSH Map

Removed: API-Keys

Background-Tasks

What is a background task?

A background task is a task of a process that takes time, while you would
normally be waiting on the frontend, for it to already finish. Instead of
waiting in the UI you will be redirected as soon as the task is created.
The task will finish in the background fulfilling it’s duty.

Where can I find the running background tasks?

You can watch your current background tasks by one click on “Background-Tasks”
at the top right, to the left of your login name. A dialogue will open and
list the current pending tasks if any.

Are there different types of tasks?

There are three categories of tasks - pending, failed and finished tasks.
You can choose them through the tabs, named after the category, in the
background task dialog. The pending tab is always opened when you open up
the dialog.
* Pending task are queued and waiting to run or running.
* Failed tasks are tasks that failed due to there process or because a user
deleted a pending task.
* Finished tasks are task that have successfully processed what they should do.

How can I test it?

You can. The openATTIC API needed to implement the creation of test task which are
doing nothing than counting numbers, in order to test the functionality with
tasks of a predefined running time.

Open up your Javascript console of your browser after your have logged in and
paste the following function in it:

var createTestTask = function (time) {
 var xhr = new XMLHttpRequest();
 var url = "/openattic/api/taskqueue/test_task";
 xhr.open("post", url, true);
 xhr.setRequestHeader("Content-Type", "application/json");
 var data = JSON.stringify({times: time});
 xhr.send(data);
}

Now you can create a test task like this:

createTestTask(<time in seconds>)

The time a task runs is not really the value you pass, the value determines
the calculation rounds the task will do. One round estimates to around one
second at low numbers.

Can I delete them?

Yes, even pending tasks, but you will be warned if you want that, because
the running process will not be stopped immediately instead all follow up
executions will be canceled and the action taken will not be revoked.
But if you do so, the task will be handled as a failed task.
Failed and finished task can be deleted with out the risk of data corruption.

Do I have to wait for the task to finish?

No, you see the changes more rapidly. For example if you create a ceph pool
the pool will be created and be available in the pool listing, while it’s still
building up, so you should’t modify it right away.

Which processes create a background task?

At the moment the following operations are running as background tasks:

	Setting the number of PGs in a ceph pool.

	Getting RBD performance data of a cluster.

Developer Documentation

openATTIC consists of a set of components built on different frameworks, which work
together to provide a comprehensive storage management platform.

This document describes the architecture and components of openATTIC and provides
instructions on how to set up a development environment and work on the openATTIC
code base.

When an application (e.g. the openATTIC Web UI, a command line tool or an external
application), wants to perform an action, the following happens:

	The REST API receives a request in form of a function call, decides which
host is responsible for answering the request, and forwards it to the core
on that host.

	The openATTIC Core consists of two layers:

	Django Models, the brains. They keep an eye on the whole system and decide
what needs to be done.

	File system layer: Decides which programs need to be called in order to
implement the actions requested by the models, and calls those programs
via the openATTIC systemd background process (not to be confused with the
systemd System and Service Manager [http://www.freedesktop.org/wiki/Software/systemd/]).

	The openATTIC systemd executes commands on the system and delivers the results.

If you would like to contribute to the openATTIC project, you need to prepare a
development environment first.

Follow the outlined steps to Create Your own openATTIC git Fork on BitBucket.

Next, follow the instructions on Setting up a Development System with Vagrant or Setting up a Development System.
Then code away, implementing whatever changes you want to make.

If you’re looking for inspiration or some easy development tasks to get started
with, we’ve created a list of
low hanging fruit tasks [https://wiki.openattic.org/display/OP/Low+hanging+fruit+tasks]
that are limited in scope and should be fairly easy to tackle.

See Contributing Code to openATTIC for details on how to submit your changes to
the upstream developers. Follow the openATTIC Contributing Guidelines
to make sure your patches will be accepted.

If your changes modify documented behaviour or implement new functionality,
the documentation should be updated as well. See
Working on the openATTIC documentation for instructions on how to update the
documentation.

	Create Your own openATTIC git Fork on BitBucket

	Setting up a Development System with Vagrant
	Vagrant Installation

	Network preparation

	Starting the Virtual Machine

	Choosing a different Linux distribution

	Debugging openATTIC with PyCharm Professional

	Debugging openATTIC with PyCharm Community

	Perform an openATTIC Base Configuration

	Troubleshooting

	Setting up a Development System
	Installing the Development Tools

	How to get the authentication token for your own user

	Contributing Code to openATTIC
	Keeping Your Local Repository in Sync

	Using git+ssh behind a Proxy Server

	Working With Branches

	Submitting Pull Requests

	openATTIC Contributing Guidelines
	Documenting Your Changes

	Signing Your Patch Contribution

	Merging Pull Requests

	Backport commits

	Error Handling in Python

	Database migrations

	openATTIC Core
	Models

	Filesystem API

	Working on the openATTIC documentation
	Requirements

	Documentation Guidelines

	Building the documentation

	Customizing the openATTIC WebUI
	Changing the favicon

	Changing the logo

	openATTIC Web UI Tests - E2E Test Suite
	About Protractor

	System Requirements

	Install Protractor

	Protractor Configuration

	Enable BeforeAll / AfterAll

	Maximize Browser Window

	Use Multiple Browsers

	Set up configs.js

	Start webdriver manager Environment

	Make Protractor Execute the Tests

	Starting Only a Specific Test Suite

	How to Cancel the Tests

	E2E-Test Directory and File Structure

	Writing Your Own Tests

	Style Guide - General e2e.js File Structure / Architecture

	Tips on how to write tests that also support Firefox

	Debugging your tests

	openATTIC REST API Tests - Gatling Test Suite
	Quick start

	Dependencies

	Configuration

	CI integration

	Advanced options

	Source code layout

Create Your own openATTIC git Fork on BitBucket

The openATTIC source code is managed using the git distributed version control
system [https://www.git-scm.com/].

Git offers you a full-fledged version control, where you can commit and manage
your source code locally and also exchange your modifications with other
developers by pushing and pulling change sets across repositories.

If you’re new to git, take a look at the git documentation [https://www.git-scm.com/documentation] web site. This will teach you the
basics of how to get started.

The openATTIC source code repository is publicly hosted in a git Repository
on BitBucket [https://bitbucket.org/openattic/openattic/].

A “fork” is a remote git clone of a repository. Every openATTIC developer makes code
modifications on a local copy (clone) of his fork before they are merged into
the main repository via pull requests. See Contributing Code to openATTIC for
instructions on how to get your code contributions included in the openATTIC main
repository.

The quickest way to create a local clone of the main openATTIC git repository is to simply
run the following command:

$ git clone https://bitbucket.org/openattic/openattic

However, if you would like to collaborate with the openATTIC developers, you should
consider creating a user account [https://bitbucket.org/account/signup/] on
BitBucket and create a “Fork”. We require real user names over pseudonyms when
working with contributors.

Once you are logged into BitBucket, go to the openATTIC main repository [https://bitbucket.org/openattic/openattic] and click Fork on the left
side under ACTIONS. Now you should have your own openATTIC fork on BitBucket,
which will be used to create a local copy (clone). You can find your
repository’s SSH or HTTPS URL in the top right corner of the repository
overview page. Use this URL with git clone to create your local development
clone.

Take a look at the BitBucket Documentation [https://confluence.atlassian.com/bitbucket/bitbucket-cloud-documentation-home-221448814.html]
for further instructions on how to use BitBucket and how to work with
repositories.

If you would like to contribute code to openATTIC, please make sure to read
Contributing Code to openATTIC for instructions specfic to our project.

Setting up a Development System with Vagrant

Setting up a development system using Vagrant [https://www.vagrantup.com/] is by far the easiest
way to start developing on openATTIC. However, we also provide instructions for setting up a classical
development environment in Setting up a Development System.

Vagrant Installation

Our Vagrant setup uses either a VirtualBox or a KVM/libvirt VM as base image.
You will need to install at least one of them.

For example, KVM/libvirt can be installed on Ubuntu by running:

sudo apt-get install qemu-kvm

Please follow the official documentation for
installing Vagrant [https://www.vagrantup.com/docs/installation/].

After installing Vagrant, install the vagrant-cachier plugin for caching
packages that are downloaded while setting up the development environment:

vagrant plugin install vagrant-cachier

The vagrant-libvirt plugin is required when using KVM on Linux:

vagrant plugin install vagrant-libvirt

If you’re using VirtualBox on your host operating system, the
vagrant-vbguest plugin enables guest support for some VirtualBox features
like shared folders:

vagrant plugin install vagrant-vbguest

Note

If you experience an error while trying to install vagrant-libvirt, you might need to
install the libvirt-dev and gcc package.

Network preparation

In order to enable internet access for your Vagrant box you need to enable IP forwarding and NAT
on your host system:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 192.168.10.0/24 \! -d 192.168.10.0/24 -j MASQUERADE

Starting the Virtual Machine

The openATTIC source code repository contains a Vagrant configuration file that
performs the necessary steps to get you started. Follow the instructions
outlined in Create Your own openATTIC git Fork on BitBucket on how to create your own fork and
local git repository.

Navigate to the vagrant subdirectory of your local git clone and run this command to
start your VM:

vagrant up

or, in case you are using KVM/libvirt, you need to specify the libvirt provider:

vagrant up --provider libvirt

This command will perform all steps to provide a running VM for developing openATTIC. After the
completion of vagrant up, ssh into the VM:

vagrant ssh

In your VM, start openATTIC by running these commands. Notice, your local repository is available in the
virtual machine at ~/openattic:

. env/bin/activate
python openattic/backend/manage.py runserver 0.0.0.0:8000

Then, start your browser an open the URL as shown in the last lines of the log output of
vagrant up.

Note

If you experience an error while trying to run vagrant up --provider libvirt, you might need to
restart libvirtd service.

Choosing a different Linux distribution

Per default, the VM is based on OpenSUSE, but developing openATTIC based on an other
Vagrant box [https://www.vagrantup.com/docs/boxes.html] is also possible by setting
the environment variable DISTRO. These distributions are available:

	DISTRO=jessie (for Debian 8 “Jessie”)

	DISTRO=trusty (for Ubuntu 14.04 LTS “Trusty Thar”)

	DISTRO=xenial (for Ubuntu 16.04 LTS “Xenial Xerus”)

	DISTRO=malachite (for openSUSE 42.1 “Malachite”)

For example, to run a Xenial VM, run:

DISTRO=xenial vagrant up

or using KVM/libvirt:

DISTRO=xenial vagrant up --provider libvirt

Note

On a Windows host system using Windows Powershell, the environment variable can be
defined as follows:

$env:DISTRO="xenial"
vagrant up

Debugging openATTIC with PyCharm Professional

With a running Vagrant VM, you can now debug the openATTIC Python backend using PyCharm.

First, configure a
Vagrant Remote Interpreter [https://www.jetbrains.com/help/pycharm/2016.2/configuring-remote-interpreters-via-vagrant.html]
pointing to /home/vagrant/env/bin/python on your VM. Then, add
/home/vagrant/openattic/backend to the Python interpreter paths. You will be asked to activate
a few PyCharm extensions, like a Django support or the remote interpreter tools.

Finally, add the openATTIC Django Server as a Pycharm Django server in the Run Configurations using
your configured remote interpreter and host 0.0.0.0.

Debugging openATTIC with PyCharm Community

Please follow the instructions from the official documentation [https://www.jetbrains.com/help/pycharm/2016.2/remote-debugging.html#6]

Perform an openATTIC Base Configuration

It is not possible to execute oaconfig install in a Vagrant VM, you have to execute the
following commands instead.

. env/bin/activate
cd openattic/backend
which systemctl && sudo systemctl reload dbus || sudo service dbus reload
sudo /home/vagrant/env/bin/python /home/vagrant/openattic/backend/manage.py runsystemd &
python manage.py pre_install
python manage.py migrate
python manage.py loaddata */fixtures/initial_data.json
python manage.py createcachetable status_cache
python manage.py add-host
python manage.py makedefaultadmin
python manage.py post_install

Troubleshooting

openATTIC systemd

If the openATTIC systemd is not running on your VM, you can start it by executing:

sudo env/bin/python openattic/backend/manage.py runsystemd

in your VM.

`vagrant destroy` fails due to a permission problem

To fix this error:

/home/<user>/.vagrant.d/gems/gems/fog-libvirt-0.0.3/lib/fog/libvirt/requests/compute/volume_action.rb:6:in `delete': Call to virStorageVolDelete failed: Cannot delete '/var/lib/libvirt/images/vagrant_default.img': Insufficient permissions (Libvirt::Error)

Run this command or change the owner of /var/lib/libvirt/images:

chmod 777 /var/lib/libvirt/images

`vagrant destroy` fails due to wrong provider

You may also encounter the error that Vagrant tells you to vagrant destroy, but it doesn’t seem to work. In that case
you may be experiencing this [https://github.com/vagrant-libvirt/vagrant-libvirt/issues/561] issue.

A workaround for this is to specify your provider as default provider in the Vagrantfile like so:

ENV['VAGRANT_DEFAULT_PROVIDER'] = 'libvirt'

`vagrant up` fails on “Waiting for domain to get an IP address…”

It looks like this problem has something to do with the libvirt library and specific mainboards. We
haven’t found the cause of this problem, but using a different libvirt driver at least works around
it.

Using qemu instead of kvm as driver does the trick. But kvm is and will be enabled by
default, because qemu runs slower than kvm. You have to adapt the driver yourself in the
Vagrantfile like so:

Vagrant.configure(2) do |config|
 config.vm.provider :libvirt do |lv|
 lv.driver = 'qemu'
 end
end

If you want to know more about this problem or even want to contribute to it, visit our bug tracker
on issue OP-1455 [https://tracker.openattic.org/browse/OP-1455].

Setting up a Development System

In order to begin coding on openATTIC, you need to set up a development system, by
performing the following steps. The instructions below assume a Debian
“Jessie” or Ubuntu “Trusty” Linux environment. The package names and path
names likely differ on other Linux distributions.

If you don’t want to bother with performing the following steps manually,
take a look at Setting up a Development System with Vagrant, which automates the process
of setting up a development environment in a virtual machine to keep it
separated from your local system.

Installing the Development Tools

openATTIC requires a bunch of tools and software to be installed and configured,
which is handled automatically by the Debian packages. While you could of
course configure these things manually, doing so would involve a lot of manual
work which isn’t really necessary. Set up the system just as described in
Installation and Getting Started, but do not yet execute oaconfig install.

We recommend installing a nightly build for development systems, which is
based on the latest commit in the default branch.

	Set the installed packages on hold to prevent Apt from updating them:

apt-mark hold 'openattic-.*'

	Install Git:

apt-get install git

	Install Node.JS and the Node Package Manager npm:

apt-get install nodejs npm
ln -s /usr/bin/nodejs /usr/bin/node

	Install Bower and Grunt (to build the Web UI):

npm install -g bower
npm install -g grunt-cli

	Go to the /srv directory, and create a local clone of your openATTIC fork
there, using the current master branch as the basis:

cd /srv
git clone https://bitbucket.org/<Your user name>/openattic.git
git checkout master

	Customize the Apache configuration by editing
/etc/apache2/conf-available/openattic.conf:

	Replace the path /usr/share/openattic with /srv/openattic/backend

	Add the following directive:

<Directory /srv/openattic>
 Require all granted
</Directory>

	Adapt the WSGIScriptAlias paths to your local clone:

WSGIScriptAlias /openattic/serverstats /srv/openattic/backend/serverstats.wsgi
WSGIScriptAlias /openattic /srv/openattic/backend/openattic.wsgi

	In file /etc/default/openattic, change the OADIR variable to point
to the local git clone:

OADIR="/srv/openattic/backend"

	Now build the Web UI:

cd /srv/openattic/webui
npm install
bower install --allow-root
grunt build

If you intend to make changes to the web interface, it may be useful to
run grunt dev as a background task, which watches the project
directory for any changed files and triggers an automatic rebuild of the
web interface code (including the jshint output), if required.

	Run oaconfig install and start openATTIC by running oaconfig start.

The openATTIC web interface should now be accessible from a local web browser via
<http://localhost/openattic/>_ . The default username and password is
“openattic”.

You can now start coding by making modifications to the files in
/srv/openattic. The openATTIC daemons, GUI and the oaconfig tool will
automatically adapt to the new directory and use the code located therein.

See chapters Contributing Code to openATTIC and
openATTIC Contributing Guidelines for further details on how to prepare
your code contributions for upstream inclusion.

How to get the authentication token for your own user

If you like to use the openATTIC TokenAuthentication (Configuring Authentication and Single Sign-On)
in your own scripts in order to achieve automatization for example, you need
to find out your own authentication token at first.

Here are two examples how you can get your authentication token via the REST
API:

Curl:

curl --data "username=username&password=password"
http://<openattic-host>/openattic/api/api-token-auth/

Python requests:

import requests

requests.post("http://<openattic-host>/openattic/api/api-token-auth/",
data={"username": "<username>", "password": "<password>"})

Examples for additional scripts can be found here:

	Snapshot Python script with authtoken [http://blog.openattic.org/posts/snapshot-python-script-with-authtoken/]

	Cronjob Snapshot Script for openATTIC [http://blog.openattic.org/posts/cron-snapshot-script-for-openattic/]

Contributing Code to openATTIC

This is an introduction on how to contribute code or patches to the openATTIC
project. If you intend to submit your code upstream, please also review and
consider the guidelines outlined in chapter
openATTIC Contributing Guidelines.

Keeping Your Local Repository in Sync

If you have followed the instructions in Create Your own openATTIC git Fork on BitBucket, you
should already have a local openATTIC instance that is based on the current
master branch.

You should update your repository configuration so that you will always pull
from the upstream openATTIC repository and push to your openATTIC fork by default. This
ensures that your fork is always up to date, by tracking the upstream
development.

It is pretty common to name the upstream remote repository upstream and your
personal fork origin.

If you’ve cloned your local repo from your personal fork already, it should
already be named origin - you can verify this with the following command:

$ git remote -v
origin git@bitbucket.org:<username>/openattic.git (fetch)
origin git@bitbucket.org:<username>/openattic.git (push)

If the name differs, you can use git remote rename <old> <new>.

Now add the upstream repository by running the following command:

$ git remote add upstream ssh://git@bitbucket.org/openattic/openattic.git

Now you can keep your local repository in sync with the upstream repository by
running git fetch upstream.

Using git+ssh behind a Proxy Server

If you want to use SSH behind a proxy you may use corkscrew [http://agroman.net/corkscrew/]. After the installation, append the
following two lines to your $HOME/.ssh/config file:

Host bitbucket.org
 ProxyCommand corkscrew <proxy name or ip> <port number> %h %p

Now you can use SSH behind the proxy, because corkscrew now tunnels your SSH
connections through the proxy to bitbucket.org.

Working With Branches

It is strongly recommended to separate changes required for a new feature or for
fixing a bug in a separate git branch. Please refer to the git documentation for
a detailed introduction into working with branches [https://www.git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell].

If you intend to submit a patch to the upstream openATTIC repository via a pull
request, please make sure to follow the
openATTIC Contributing Guidelines.

To create a new feature branch, update your repository, change to the
master branch and create your new branch on top of it, in which you
commit your feature changes:

$ git fetch upstream
$ git checkout master
$ git pull upstream master
$ git checkout -b <branchname>
< Your code changes >
$ git commit -a

To list your branches type the following (the current branch will be marked with
an asterisk):

$ git branch --list

To just see the current branch you are working with type:

$ git rev-parse --abbrev-ref HEAD

After you are done with your changes, you can push them to your fork:

$ git push origin

Submitting Pull Requests

Now that your fork on BitBucket contains your changes in a separate branch, you
can create a pull-request on Bitbucket [https://bitbucket.org] to request an
inclusion of the changes you have made into the master branch of the
upstream openATTIC repository.

To do this, go to your fork on Bitbucket [https://bitbucket.org] and click
Create pull request in the left panel. On the next page, choose the branch
with your changes as source and the openATTIC master branch as target.

Below the Create pull request button, first check out the Diff part if
there are any merge conflicts. If you have some, you have go back into your
branch and update it:

$ git fetch upstream
$ git rebase upstream/master
<resolve conflicts, mark them as resolved using "git add">
<test and review changes>
$ git rebase --continue
$ git push -f origin

After you have resolved the merge conflicts and pushed them into your fork,
retry submitting the pull-request. If you already created a pull request,
BitBucket will update it automatically.

After the pull-request was reviewed and accepted, your feature branch will be
merged into the main repository. You may delete your feature branch on your
local repository and BitBucket fork once it has been merged.

openATTIC Contributing Guidelines

Please see Contributing Code to openATTIC for details on the process of how to
contribute code changes.

The following recommendations should be considered when working on the openATTIC
code base.

While adhering to these guidelines may sound more work in the first place,
following them has multiple benefits:

	It supports the collaboration with other developers and others involved in
the product development life cycle (e.g. documentation, QA, release
engineering).

	It makes the product development life cycle more reliable and reproducible.

	It makes it more transparent to the user what changes went into a build or
release.

Some general recommendations for making changes and for documenting and
tracking them:

	New Python code should adhere to the Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/] (PEP 8). Use the flake8
tool to verify that your changes don’t violate this style before comitting
your modifications.

	Existing code can be refactored to adhere to PEP 8, if you feel like it.
However, such style changes must be committed separately from other code
modifications, to ease the reviewing of such pull requests.

	For JavaScript code, we use grunt-jscs and
grunt-contrib-jshint [https://github.com/gruntjs/grunt-contrib-jshint/] to
perform automated syntax and style checks of the JavaScript code. The
configuration files for these WebUI tests can be found in file
webui/.jshintrc and webui/.jscsrc, please consult them for more
details on the coding style and conventions. By running grunt inspect
--force on the command line, you can check the quality of your JavaScript
code.

	Every bug fix or notable change made to a release branch must be accompanied
by a JIRA issue [https://tracker.openattic.org/]. The issue ID must be
mentioned in the commit message and pull request.

	Pull requests must be accompanied with a corresponding CHANGELOG entry that
documents the change.

	New features and other larger changes also require a related JIRA issue that
provides detailed background information about the change.

	Code and the related changes to the documentation should be committed
in the same change set, if possible. This way, both the code and
documentation are changed at the same time.

	Write meaningful commit messages and pull request descriptions. Commit
messages should include a detailed description of the change, including a
reference to the related JIRA issue, if appropriate. “Fixed OP-xxx” is not a
valid or useful commit message! For details on why this matters, see The
Science (or Art?) of Commit Messages [http://www.joinfu.com/2012/01/the-science-of-commit-messages/] and How to
Write a Git Commit Message [http://chris.beams.io/posts/git-commit/]

	When resolving a JIRA issue as fixed, include the resulting git
revision ID or add a link to the ChangeSet or related pull request on
BitBucket for reference. This makes it easier to review the code changes
that resulted from a bug report or feature request.

Documenting Your Changes

Depending on what you have changed, your modifications should be clearly
described and documented. Basically, you have two different audiences that
have different expectations on how and where you document your changes:

	Developers that need to review and comment on your changes from an
architectural and code quality point of view. They are primarily interested
in the descriptions you put into the git commit messages and the
description of your pull request, but will also review and comment on any
other documentation you provide.

	End users or administrators that use openATTIC and need to be aware of
potential changes in behaviour, new features or important bug and security
fixes. They primarily consult the official documentation, release notes and
the CHANGELOG.

Changes that should be user-visibly documented in the CHANGELOG, release
notes or documentation include:

	Bug/security fixes on a release branch.

	User-visible changes or changes in behavior on a release branch. Make sure
to review and update the documentation, if required.

	Major changes / new features. In addition to the CHANGELOG, these must be
described in the documentation as well. See Working on the openATTIC documentation for
details on how to update the openATTIC documentation.

Minor or “behind the scene” changes that have no user-visible impact or do not
cause changes in behavior/functionality (e.g. improvements to build scripts,
typo fixes, internal code refactoring) usually don’t have to be documented in
the CHANGELOG or the release notes.

Trust your judgment or ask other developers if you’re unsure if something
should be user-visibly documented or not.

Don’t worry too much about the wording or formatting, the CHANGELOG and
Release Notes will be reviewed and improved before a final release build
anyway. It’s much more important that we keep track of all notable changes
without someone having to trawl JIRA or the commit messages prior to a
release.

Signing Your Patch Contribution

To improve tracking of who did what, we use the “sign-off” procedure
introduced by the Linux kernel [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/process/submitting-patches.rst].
The sign-off is a simple line at the end of the explanation for the patch,
which certifies that you wrote it or otherwise have the right to pass it on as
an open-source patch.

The rules are pretty simple: if you can certify the following:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

then you just add the following line below your commit message and pull
request saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name and email address (sorry, no pseudonyms or anonymous
contributions).

Using git, this can be performed by adding the option --signoff to your
commit command.

If you like, you can put extra tags at the end:

	Reported-by: is used to credit someone who found the bug that
the patch attempts to fix.

	Acked-by: says that the person who is more familiar with the
area the patch attempts to modify liked the patch.

	Reviewed-by:, unlike the other tags, can only be offered by the
reviewer and means that she is completely satisfied that the patch is
ready for application. It is usually offered only after a detailed review.

	Tested-by: is used to indicate that the person applied the patch
and found it to have the desired effect.

You can also create your own tag or use one that’s in common usage
such as Thanks-to:, Based-on-patch-by:, or Mentored-by:.

Merging Pull Requests

The following steps should be performed when you’re reviewing and processing a
pull request on BitBucket:

	A developer fixes a bug or implements a new feature in a dedicated
feature branch. If required, he documents the changes in the documentation
(for end-users) and the git commit messages (including the related
Jira issue ID and a Signed-off by: line as outlined in chapter
Signing Your Patch Contribution)

	The developer creates a new Pull Request on BitBucket as described in
chapter Submitting Pull Requests. The Pull Request description
should include a detailed description of the change in a form suitable
for performing a code review, summarizing the necessary changes. The
description should also include a text suitable for inclusion into the
CHANGELOG, describing the change from an end-user perspective.

	After the pull request has been reviewed and approved, you perform the
merge into the master branch using the BitBucket merge functionality.

	Use a “merge” commit, not a “squash” commit for merging pull requests via
BitBucket.

Backport commits

The following steps should be performed when you want to backport a fix to a
stable release branch:

	Ensure that the commits you want to backport exists on master
(original pull request is merged to master)

	Update your upstream repo:
git fetch upstream

	Create a branch from the stable release branch:
git checkout -b OP-<issue_id>-backport upstream/2.x

	Cherry pick the commits, using -x option:
git cherry-pick -x <sha-1>

	Adapt the CHANGELOG

	Run all tests

	Submit a pull request to the 2.x stable release branch
(title should be prefixed with “[2.x]”)

Error Handling in Python

A few notes about error handling in openATTIC.

Good error handling is a key requirement in creating a good user experience
and providing a good API. In our opinion, providing good errors to users is a
blocker for releasing any non-beta releases of openATTIC.

Assume all user input is bad. As we are using Django, we can make use
of Django’s user input validation. For example, Django will validate model
objects when deserializing from JSON and before saving them into the
database. One way to achieve this is to add constraints to Django’s
model field definitions, like unique=True to catch duplicate inserts.

In general, input validation is the best place to catch errors and generate
the best error messages. If feasible, generate errors as soon as possible.

Django REST framework has a default way of serializing errors [http://www.django-rest-framework.org/api-guide/exceptions/#exception-handling-in-rest-framework-views].
We should use this standard when creating own exceptions. For example,
we should attach an error to a specific model field, if possible.

Our WebUI should show errors generated by the API to the user. Especially
field-related errors in wizards and dialogs or show non-intrusive notifications.

Handling exceptions in Python should be an exception. In general, we
should have few exception handlers in our project. Per default, propagate
errors to the API, as it will take care of all exceptions anyway. In general,
log the exception by adding logger.exception() with a description to the
handler.

In Python it is easier to ask for forgiveness than permission (EAFP) [https://docs.python.org/2/glossary.html#term-bdfl]. This common Python
coding style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The
technique contrasts with the LBYL style common to many other languages such as C.

When calling system utilities or call external libraries, raise exceptions if
appropriate to inform the user of problems. For example, if mounting a
volume fails, raise an exception. From the Zen Of Python [https://www.python.org/dev/peps/pep-0020/]:

Errors should never pass silently.
Unless explicitly silenced.

Distinguish user errors from internal errors and programming errors. Using
different exception types will ease the task for the API layer and for the
user interface:

	Use NotImplementedError in abstract methods when they require derived classes
to override the method. Have a look at the official documentation [https://docs.python.org/2/library/exceptions.html#exceptions.NotImplementedError].

	Use ValidationError in an input validation step. For example. Django is using
ValidationErrors when deserializing input.

	In case a NotImplementedError is not appropriate, because it is intentional
not to implement a method and a ValidationError is not appropriate, because
you’re not validating any input, you can use a NotSupportedError. For example,
if a file system does not support shrinking, you can use this exception here.
They will be converted to a 400 status code in the API.

	Standard Python errors, like SystemError, ValueError or KeyError
will end up as internal server errors in the API.

	Assert statements can help, if you want to protect functions from having bad
side effects or return bad results.

In general, do not return error responses in the REST API. They will be
returned by the openATTIC error handler exception.custom_handler. Instead, raise
the appropriate exception.

In a Python function, in case of an error, try to raise an exception instead of
returning None. Returning None in this case forces your caller to always
check for None values.

Database migrations

In order to support database migrations from Django 1.6 onwards, we had to build our own
database migration framework. This framework has three major requirements. First, we need to
migrate the database without the Django 1.7 migration framework [https://docs.djangoproject.com/en/1.7/topics/migrations/]. Second, updates of Django should
be possible. Finally, Django updates of already updated databases should work, too.

Our framework will listen to the django_16_migrate Django command and will then perform
database migrations which are compatible to future Django versions. This allows Django’s migration
framework to take over existing migrations.

The idea is to execute Django 1.7+ migrations on Django 1.6 by running
the same SQL command of later Django versions. You just need to generate
the SQL statements by running sqlmigrate on a Django 1.7+ installation.

1. Adding an initial migration:

When creating a new migration, don’t forget to add the “initial” migration, if it doesn’t exist.
Keep in mind that you need need at least Django 1.7:

~/openattic/backend$./manage.py makemigrations taskqueue

Migrations for 'taskqueue':
 0001_initial.py:
 - Create model TaskQueue

Then, add the migrations directory to your git clone:

~/openattic/backend$ git add taskqueue/migrations/__init__.py taskqueue/migrations/0001_initial.py

Now, open backend/sysutils/management/commands/django_16_migrate.py and add the initial migration to the _migrations array:

_migrations = [
 ...
 (
 'taskqueue', u'0001_initial', None, None
),
]

2. Adding a new migration

Call makemigrations to create the Django migration, rename your new migration and add it to git:

~/openattic/backend$./manage.py makemigrations taskqueue

Migrations for 'taskqueue':
 0002_auto_20161216_1059.py:
 - Alter field description on taskqueue
 - Alter field result on taskqueue
~/openattic/backend/taskqueue/migrations$ mv 0002_auto_20161216_1059.py 0002_taskqueue_description_textfield.py
~/openattic/backend$ git add taskqueue/migrations/0002_taskqueue_description_textfield.py

Now, call sqlmigrate to generate the SQL statement needed for migrating older installations. Note
that the generated SQL should be compatible to all supported Postgres versions:

~/openattic/backend$./manage.py sqlmigrate taskqueue 0002_taskqueue_description_textfield
BEGIN;
ALTER TABLE "taskqueue_taskqueue" ALTER COLUMN "description" TYPE text;
ALTER TABLE "taskqueue_taskqueue" ALTER COLUMN "result" TYPE text;
COMMIT;

You can now append your generated migration to the _migrations array in
backend/sysutils/management/commands/django_16_migrate.py:

_migrations = [
 ...
 (
 'taskqueue', u'0002_taskqueue_description_textfield',
 test_taskqueue_0002_taskqueue_description_textfield,
 """
 BEGIN;
 ALTER TABLE "taskqueue_taskqueue" ALTER COLUMN "description" TYPE text;
 ALTER TABLE "taskqueue_taskqueue" ALTER COLUMN "result" TYPE text;
 COMMIT;
 """
),
]

Afterwards, make sure that already applied migrations (by executing syncdb) will never
be applied again, as this could lead to data loss in future migrations. Thus, create a test
function named test_taskqueue_0002_taskqueue_description_textfield which returns True,
if and only if the migration should be applied. For example like this:

def test_taskqueue_0002_taskqueue_description_textfield(cursor):
 stmt = """SELECT data_type FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'taskqueue_taskqueue'
 AND column_name = 'description';"""
 res = execute_and_fetch(cursor, stmt)
 return len(res) == 1 and res[0]['data_type'] != 'text'

Please review previous test functions of the same
database table, as they should still work as expected.

Warning

Remember to add all migrations to django_16_migrate.py, otherwise updating from Django 1.6
to Django 1.7 won’t work anymore.

Manually migrating the database:

If you want to perform a manual migration from one database to another, please execute these
Django commands:

	From \ To

	Django 1.6 original DB

	Django 1.6 + DB Migrations

	Django 1.7 original DB

	Django 1.7 + DB Migrations

	Django 1.8 original DB

	Django 1.8 + DB Migrations

	No DB Table

	syncdb

	syncdb + django_16_migrate

	migrate

	migrate

	migrate

	migrate

	Django 1.6 original DB

	syncdb

	syncdb + django_16_migrate

	migrate

	migrate

	migrate --fake-initial

	migrate --fake-initial

	Django 1.6 + DB Migrations

	unsupported

	syncdb + django_16_migrate

	unsupported

	migrate

	unsupported

	migrate --fake-initial

	Django 1.7 original DB

	unsupported

	unsupported

	
	

	migrate

	migrate

	migrate

	Django 1.7 + DB Migrations

	unsupported

	unsupported

	migrate

	migrate

	migrate

	migrate

	Django 1.8 original DB

	unsupported

	unsupported

	migrate

	migrate

	
	

	migrate

	Django 1.8 + DB Migrations

	unsupported

	unsupported

	migrate

	migrate

	migrate

	migrate

Notice that syncdb will not perform any alterations to exiting database tables, instead it only
creates new database tables based on the current model information. Also, notice that
--fake-initial is required to take over existing database tables without any exiting database
migration files in Django 1.8.

In order to add a database migration, take a look at our migration framework in
backend/sysutils/management/commands/django_16_migrate.py.

openATTIC Core

The openATTIC core makes heavy use of the Django framework [http://djangoproject.com] and is implemented as a Django project,
consisting of several apps, one for each supported functionality or backend
system.

Each app bundles a set of submodules. Models are used to represent the
structure of the objects an app is supposed to be able to manage. The REST API
(based on the Django REST Framwork [http://www.django-rest-framework.org/]
is used for interaction with the models. And lastly, the System API can be
used in order to run other programs on the system in a controlled way.

Models

Models are used to provide an abstraction for the real-world objects that your
app has to cope with. They are responsible for database communication and for
keeping an eye on the state of the whole system, being able to access any other
piece of information necessary.

Please check out
Django at a glance [https://docs.djangoproject.com/en/1.7/intro/overview/]
for more information.

Filesystem API

The filesystem API abstracts handling different file systems, translates actions
initiated by the model into commands to be executed and calls Systemd accordingly.

Working on the openATTIC documentation

The documentation for openATTIC consists of several documents, which are managed in
the subdirectory documentation of the source code repository:

	Installation and Getting Started (subdirectory install_guides)

	User Manual (subdirectory gui_docs)

	Developer Documentation (subdirectory developer_docs)

The documentation is written in the reStructuredText markup language [http://docutils.sourceforge.net/rst.html]. We use the Sphinx documentation
generator [http://sphinx-doc.org/] to build the documentation in HTML and
PDF format, which is available online from http://docs.openattic.org/.

If you would like to work on the documentation, you first need to checkout a
copy of the openATTIC source code repository as outlined in chapter
Setting up a Development System (you can skip the steps of installing the
development tools, if you intend to only work on the documentation).

Requirements

The documentation can be edited using your favorite text editor. Many editors
provide built-in support for reStructuredText to ease the task of formatting.

To setup the Sphinx document generator, consult your Linux distribution’s
documentation. Most distributions ship with Sphinx included in the base
distribution, so installing the package python-sphinx using your
distribution’s package management tool usually gets you up and running
quickly, at least for creating the HTML documentation. Creating the PDF
documentation is somewhat more involved, as it requires a LateX environment
(e.g. the texlive distribution) and the latexpdf utility (usually
included in the pdftex package).

For previewing the HTML documentation, you need a local web browser, e.g.
Mozilla Firefox or Google Chrome/Chromium. The PDF document can be previewed
using any PDF viewer, e.g. Evince or Adobe Acrobat Reader®.

Documentation Guidelines

In order to maintain a common document structure and formatting, please keep
the following recommendation in mind when working on the documentation:

	Use 2 spaces for indendation, not tabs.

	Wrap long lines at 78 characters, if possible.

	Overlong command line examples should be wrapped in a way that still
supports cutting and pasting them into a command line, e.g. by using a
backslash (“") for breaking up shell commands.

Building the documentation

After you have made your changes to the respective reST text files, you can
perform a build of the HTML documentation by running the following command
from within the documentation directory:

$ make html

Take a close look at the build output for any errors or warnings that might
occur. The resulting HTML files can be found in the directory _build/html.
To open the start page of the documentation, open the index page in a web
browser, e.g. as follows:

$ firefox _build/html/index.html

To build the PDF document, run the following command:

$ make latexpdf

This build process will take some more time, again make sure to check for any
warnings or errors that might occur. The resulting PDF can be found in the
directory _build/latex. Open it in a PDF viewer, e.g. as follows:

$ evince _build/latex/openATTIC.pdf

If you are satisfied with the outcome, commit and push your changes.

If you would like to contribute your changes, please make sure to read
Contributing Code to openATTIC for instructions.

Customizing the openATTIC WebUI

The openATTIC user interface is a web application based on the AngularJS 1 [https://angularjs.org/] JavaScript MVW framework the Bootstrap [http://getbootstrap.com/] framework. Using Cascading Style Sheets (CSS), it is
possible to customize the look to some degree, e.g. by replacing the logo or
adapting the color scheme.

These modifications can be performed by adding your changes to the
vendor.css CSS file. It is located in the directory
webui/app/styles/vendor.css in the Mercurial source code repository and the
source tar archive, or in /usr/share/openattic-gui/styles/vendor.css in the
RPM and DEB packages.

Take a look at the file webui/app/styles/openattic-theme.css [https://bitbucket.org/openattic/openattic/src/default/webui/app/styles/openattic-theme.css] to get
an overview about the existing class names and their attributes.

Alternatively, you can use Mozilla Firebug [http://getfirebug.com/] or
similar web development tools to obtain this information.

Changing the favicon

An alternative favicon image (PNG format, 32x32 pixels) must be copied to the
images/ directory (webui/app/images in the source,
/usr/share/openattic-gui/images for the installation packages).

If you choose a different name for the image file, the file name in
index.html must be adapted. As of the time of writing, this information is
located in lines 27-29:

<!-- favicons -->
<link rel="shortcut icon" href="images/openattic_favicon_32x32.png" type="image/x-icon">
<link rel="icon" href="images/openattic_favicon_32x32.png" type="image/x-icon">

Changing the logo

It is possible to customize the application logo displayed in the top left
corner of the application window. The format should be PNG, the size should not
exceed 250x25 pixel (to ensure it is displayed properly on mobile devices).

The logo file should be copied into the images/ directory. If you choose a
different name than the default, update the file name in file
components/navigation/templates/navigation.html (currently located in line 5).

If you comment out line 5 and enable line 6, the graphical logo can be replaced
with regular text:

<!--openATTIC storage management framework-->

In addition to that, the logo on the login screen should be replaced to match your
desired logo. It should be in PNG format and should not exceed 256x256 px. This
can be achieved by changing the image file name in file
components/auth/templates/login.html, line 4:

openATTIC Web UI Tests - E2E Test Suite

This section describes how our test environment is set up, as well as how you
can run our existing tests on your openATTIC system and how to write your own
tests.

By continuously writing E2E-tests, we want to make sure that our graphical
user interface is stable and acts the way it is supposed to be - that offered
functionalities really do what we expect them to do.

We want to deliver a well-tested application, so that you - as users and
community members - do not get bothered with a buggy user interface. Instead,
you should be able to get started with the real deal - MANAGING storage with
openATTIC.

About Protractor

Protractor is a end-to-end test framework, which is especially made for
AngularJS applications and is based on
WebDriverJS [http://docs.seleniumhq.org/projects/webdriver/].
Protractor will run tests against the application in a real browser and
interacts with it in the same way a user would.

For more information, please refer to the
protractor documentation [https://angular.github.io/protractor/#/].

System Requirements

Testing VM:

	Based on our experience,the system on which you want to run the tests needs
at least 4GB RAM to prevent it from being laggy or very slow!

Install Protractor

	npm install -g protractor@4.0.10

Note

Protractor version 4.x.x requires Node.js® version 4.x (you can check
your installed version with node -v).

	apt-get install openjdk-7-jre-headless

	webdriver-manager version should be 10.3.x

	npm install -g jasmine-beforeAll (in case this package is not available,
try npm install -g jasmine-before-all)

	Choose/Install your preferred browser (Protractor supports the two
latest major versions of Chrome, Firefox, Safari, and IE)

	Please adapt the protractor.conf.js file which can be found in
/openattic/webui/ to your system setup - see instructions below

Protractor Configuration

Before starting the tests, you need to configure and adapt some files.

Here’s what you have to do in protractor.conf.js:

Enable BeforeAll / AfterAll

In order to use beforeAll and afterAll you need to tell protractor to use
jasmine2 as framework (protractor uses an older version by default, which
does not support beforeAll/afterAll).

Add the following line to your protractor.conf:

exports.config = {

 seleniumAddress: ...

 jasmineNodeOpts: {

 },

``framework: 'jasmine2',``

 suites: {
 ...
 ...

 },

}

Maximize Browser Window

If the browser window in which the tests will be executed is too small, it
occurs that protractor can’t click an element and tests will fail. To prevent
this, you can maximize your browser window by default by adding the following
line to webui/protractor.conf.js:

exports.config = {

 seleniumAddress: ...
 jasmineNodeOpts: {

 },

 framework: 'jasmine2',

 suites: {
 ...
 ...
 ..

 },

``onPrepare: function(){``
 ``browser.driver.manage().window().maximize();``
``},``
}

Use Multiple Browsers

When using Chrome and Firefox for the tests, you could append the following to
your protractor.conf.js so the test will run in both browsers:

exports.config.multiCapabilities = [
 {'browserName': 'chrome'},
 {'browserName': 'firefox'}
];

To prevent running both browsers at the same time you can add:

exports.config.maxSessions = 1;

Set up configs.js

Create a configs.js file in folder e2e and add the URL to you openATTIC
system as well as login data - see below:

(function() {
 module.exports = {
 url : 'http://IP-to-your-oA-test-sys/openattic/#/login',
 //leave this if you want to use openATTIC's default user for login
 username: 'openattic',
 password: 'openattic',
 };
}());

In order to run our graphical user interface tests, please make sure that your
openATTIC system at least has:

	One LVM volume group

	One ZFS zpool

and add them to e2e/configs.js.

Note

For more information have a look at e2e/configs.js.sample.

It is important that the first element in this config file is your volume
group.

If you do not have a ZFS zpool configured and you do not want to create one,
you can of course skip those tests by removing the suite from
protractor.conf.js or putting them in to the comment section.

Start webdriver manager Environment

Use a separate tab/window to run the following command:

$ webdriver-manager start

Make Protractor Execute the Tests

Go to /srv/openattic/webui/ and type protractor protractor.conf.js in
order to run the tests:

$ protractor protractor.conf.js (--suite <suiteName>)

Important

Without a given suite protractor will execute all tests (and this will
probably take a while!)

Starting Only a Specific Test Suite

If you only want to test a specific action, you can run i.e.
protractor protractor.conf.js --suite snapshot_add.

Available test cases can be looked up in protractor.conf.js, i.e.:

suites: {
 //suite name : '/path/to/e2e-test/file.e2e.js'
 snapshot_add : '../e2e/snapshots/add/**/*.e2e.js',
}

Note

When running protractor.conf and the browser window directly closes and you
can see something like “user-data error” (i.e. when using Chrome) in your
console just create a dir (i.e. in your home directory) and run
google-chrome --user-data-dir=/path/to/created/dir

How to Cancel the Tests

When running the tests and you want to cancel them, rather press CTRL+C
on the commandline (in same window in which you’ve started
protractor.conf.js) than closing the browser. Just closing the browser
window causes every single test to fail because protractor now tries to
execute the tests and can not find the browser window anymore.

E2E-Test Directory and File Structure

In directory /srv/openattic/e2e/ the following directories can be found:

+-- auth
+-- commandLogs
+-- ceph
+-- dashboard
| `-- dashboard
+-- disks
+-- general
+-- hosts
+-- pools
+-- pagination
+-- shares
| +-- cifs
| +-- http
| +-- lun
| `-- nfs
+-- snapshots
| +-- add
| `-- clone
+-- users
+-- volumes
| +-- add
| +-- protection
| +-- resize
| `-- zvol
`-- wizards
 +-- block
 +-- file
 `-- vm

Most of the directories contain a .._workflow.e2e.js in which we only test
things like validation, the number of input fields, the title of the form etc.
Actions like add, clone etc. are always in a separate file. This
makes it better to get an overview and prevents the files from getting very
huge and confusing.

Writing Your Own Tests

Please include common.js in every .e2e.js file by adding var helpers
= require('../common.js');. In some cases (depending on how you’ve
structured your tests) you may need to adapt the path.

By including it as var helpers you can now make use of helper functions
from common.js, i.e. the create_volume function, you just have to add
helpers. to the function: helpers.create_volume(name , type [, size]).

The following helper functions are implemented:

	create_volume

	delete_volume

	create_snapshot

	delete_snapshot

	create_snap_clone

	delete_snap_clone

	create_host

	delete_host

So if you want to write a test and you need a volume to test an action which
is based on a volume (i.e. creating a share), you can use the following lines
to create a new volume:

beforeAll(function(){
 helpers.login();

 //create an xfs volume before executing any test
 helpers.create_volume("volumename_here","xfs");

});

You can also specify the size as a string as third argument, otherwise the
volume will always be initiated with 100MB by default.

Depending on which volume type you need, you can set the parameter to:

	xfs

	btrfs

	zfs (if openattic-module-zfs is installed)

	lun

Every helper function which is based on a volume needs to get the volume object passed.:

//var volumename = 'demo_volume';
//volume: var volume = element(by.cssContainingText('tr', volumename));

* ``create_snap_clone(volume)``
* ``helpers.delete_volume(volume, volumename);``
* ``helpers.create_snapshot(volume);``
* ``helpers.delete_snapshot(volume);``

When using more than one helper function in one file, please make sure that
you use the right order of creating and deleting functions in beforeAll
and afterAll.

Example:

If you put helpers.delete_volume(); before helpers.delete_snapshot();
the snapshot will be deleted with the volume and the second one
(delete_snapshot();) will search for an element which does not longer
exist. A second option is to only use helpes.delete_volume(); so
everything which relates to this volumes (like snapshots, shares) will be
deleted with the deletion of the volume automatically.

If you need to navigate to a specific menu entry (every time!) where your tests
should take place, you can make use of:

beforeEach(function(){

 //always navigates to menu entry "Volumes" before executing the actions defined in 'it('', function(){});'
 element.all(by.css('ul .tc_menuitem')).get(3);

});

Style Guide - General e2e.js File Structure / Architecture

	describe should contain a general description of what is going to be tested (functionality) in this spec file
i.e. the site, menu entry (and its content), panel, wizard etc.
example: “should test the user panel and its functionalities”

	it - should describe, what exactly is going to be tested in this specific it-case
i.e. (based on the described example above): “should test validation of form field “Name”“

	Elements which are going to be used more than once should be defined in a variable
on top of the file (under described)

	Put required files at the top of the file

	Do not make tests complex by using a lot of for loops, if statements or even nested functions

	If something has to be done frequently one can define those steps in a function defined
in above mentioned common.js and use this function in specific spec files
i.e. if you always/often need a user before you can start the actual testing you can define a function create_user
which contains the steps of creating a user and use the create_user-function in the tests where it’s required.
Therefore you just have to require the common.js file in the spec file and call the create_user-function in
the beforeAll function. This procedure is a good way to prevent duplicated code.
(for examples see common.js -> create_volume-/ delete_volume-function)

	Make use of the beforeAll/afterAll-functions if possible (see the Install Protractor instructions).
Those functions allow you to do some steps (which are only required once) before anything else in the spec file
is going to be executed.
For example, if you need to login first before testing anything, you can put this step in a beforeAll-function.
Also, using a beforeAll instead of a beforeEach saves a lot of time when executing tests. Furthermore, it’s not
always necessary to repeat a specific step beforeEach ìt-section.
The afterAll-function is a good way to “clean up” things which are no longer needed after the test.
If you already have a function (i.e. create_user) which creates something, you probably want to delete it after
the tests have been executed. So it makes sense having another function, which deletes the object
(in this case a delete_user-function) that can simply be called in afterAll.
In addition we decided to put an afterAll at the end of each test file which contains a
console.log("<protractor suite name> -> <filename>.e2e.js"). By doing so it is possible to track which test in
which file is currently executed when running all tests.

	If possible use protractor locators like by.model or by.binding (those are performant locators).
Example:

<ul class="example">
 {{volume.name}}

-> Avoid doing: var elementName = element.all(by.css('.example li')).get(0);
-> Recommended: var elementName = element(by.binding('volume.name'));

	If by.model or by.binding is not available, try using locators like by.id or by.css (those are
also performant locators)

	Avoid using text locators like by.linkText, by.buttonText or by.cssContainingText at least for
text which tend to change over time / often (like buttons, links and labels)

	Try to avoid using xpath - it is a very slow locator. Xpath expressions are hard to read and to debug

	In a bunch of openATTIC HTML files (see openattic/webui/app/templates)
you’ll find css classes which are especially set for tests (those test
classes are recognizable by the tc_-term which stands for “test
class”). This is very useful when protractor finds more than one element
of something (i.e. “Add”-button) and you can specify the element by adding
or just using this tc_class of the element you’re looking for to the
locator. This makes the needed element unique (i.e.:
element(by.css('oadatatable .tc_add_btn')).click();)

	Tests should be readable and understandable for someone who is not familiar in detail with tests in order to make
it easy to see what exactly the test does and to make it simple writing tests for contributors.
Also, for someone who does not know what the software is capable of, having a look at the tests should help
understanding the behavior of the application

	Make test spec files independent from each other because it’s not guaranteed that test files will be executed in a
specific order

	Always navigate to the page which should be tested before each test to make sure that the page is in a “clean state”.
This can be done by putting the navigation part in a beforeEach-function - which ensures that it-sections
do not depend on each other as well.

	Locators and specs should apply to the Jasmine2 and Protractor version 3.x.x functionalities

	Make sure that written tests do work in Chrome (v. 49.x.x) and Firefox (v. 45.x)

	The name of folders/files should tell what the test is about (i.e. folder “user” contains “user_add.e2e.js”)

	“Workflow”-files contain tests which do not place value on functionalities itself (i.e. add, delete, edit something)
but check validation and user feedback in forms or dialogs (like error messages)

Tips on how to write tests that also support Firefox

Let protractor only click on clickable elements, like a, button or input.

If you want to select an option element use the following command to make sure that
the item is selected (issue #480 [https://github.com/angular/protractor/issues/480#issuecomment-122429984]):

browser.actions().sendKeys(protractor.Key.ENTER).perform();

Debugging your tests

To set a breakpoint use browser.pause() in your code.

After your test pauses, go to the terminal window where you started the test.

You can type c and hit enter to continue to the next command
or you can type repl to enter the interactive mode, here you can type
commands that will be executed in the test browser.

To continue the test execution press ctrl + c.

openATTIC REST API Tests - Gatling Test Suite

Gatling is the openATTIC integration test suite. It’s based on the
Python unit testing framework [https://docs.python.org/2/library/unittest.html]
and contains a bunch of tests to be run against a live openATTIC installation.

Gatling sends requests to openATTIC’s REST API and checks if the responses are
correct. For example Gatling tries to create a volume via openATTIC’s REST API and
checks if it’s getable and deletable afterwards. If an error should be included
in a response, Gatling checks if it is really included.

Afterwards Gatling checks the openATTIC internal command log if errors occurred
during execution time.

Quick start

To run Gatling, you need to have an openATTIC host set up that has all the features
installed (have a look at Installation and Getting Started) which you intend to
test. Then create a configuration file in the conf subdirectory (i.e.,
conf/<yourhost>.conf) as explained in section
Configuration and run Gatling with the following
command:

$ python gatling.py -t yourhost

Gatling will adapt to your environment, automatically skipping tests that
cannot be run on your installation, and run all tests that can run in your
environment.

Dependencies

Gatling depends on the testtools and xmlrunner packages. To install
them, type:

apt-get install python-testtools python-xmlrunner

Configuration

In order to get Gatling work well with your openATTIC environment it needs some
information about the system configuration. These information are organized in
configuration files. For an example configuration, have a look at the
gatling.conf file included in the distribution. These settings are
suitable in most of the cases. However all the settings which do not match
your openATTIC installation need to be overridden in a separate configuration file.

The first section of the configuration file is the options section. It
holds general settings about how to connect to your openATTIC host. Enter the
complete name of your openATTIC host at the host_name setting. If the username
or the password of the admin account does not match the default values you will
need to configure them too.

If you don’t want to test a specific feature - for example you don’t have the
openATTIC DRBD module installed, so you don’t want to test it by Gatling, you just
need to disable the related tests by:

[drbd]
enabled = no

For a complete overview of the configuration section and options please have a
look at the gatling.conf file.

All available tests of Gatling are enabled by default.

CI integration

Gatling supports integration in Continuous Integration systems like Jenkins.
To use this functionality, pass the --xml option to Gatling, which will
instruct Gatling to write JUnit-compatible test reports in XML format into
an output directory of your choice. You can then instruct your build server
to generate reports from these documents.

Advanced options

Gatling uses the following command line structure:

python gatling.py [options] -- [unittest.TestProgram options]

Gatling supports all the options that the standard Python unittest module
supports when run using python -m unittest. However, in order to separate
Gatling’s own options from those passed on to unittest, you need to add
-- in front of unittest options, like such:

python gatling.py --xml -- --failfast

If the Gatling command line does not include --, Gatling will by default
activate test discovery and verbosity. If you want to run Gatling without
any unittest arguments, pass -- at the end of the command line.

Source code layout

Test cases are laid out in a way that ensures maximum flexibility while
keeping the amount of duplicate code to an absolute minimum.

The openATTIC API is flexible enough to allow lots of different combinations
of storage technologies, and testing all those different combinations is
somewhat of a challenge. To mediate this without having to duplicate test
cases, Gatling uses a system of combining test scenarios and tests to test
cases that are then added to the test suite and run by Gatling.

Scenarios

A scenario defines the environment in which tests are supposed to be run,
for instance:

	Test sharing an XFS-formatted LV using NFS.

	Test sharing a ZFS subvolume using NFS.

	Test sharing an Ext4-formatted ZVol using NFS.

	Test sharing an unformatted ZVol using iSCSI.

Scenario classes use the setUpClass and tearDownClass classmethods
to prepare the openATTIC system for the tests that are to be run, creating
any necessary Volume pools or other objects to be used by the tests, and
provide a _get_pool method that returns the Volume pool on which the
tests are to be run.

When implementing a Scenario, make sure that its setUpClass method

	raises SkipTest if the test scenario cannot be run on this system
due to missing openATTIC modules or other errors,

	properly calls its superclass so that inheriting multiple scenarios
works the way it should, like so:

class LvTestScenario(GatlingTestCase):
 @classmethod
 def setUpClass(cls):
 super(LvTestScenario, cls).setUpClass()

Generally lay out your class in a way that it can be combined with as many
other scenarios as possible.

Tests

Tests are collected in classes that inherit from object and only define
test_<something> methods. These classes must not inherit
unittest.TestCase so they can be imported into other modules without
causing the tests to be discovered and run twice.

Although this class does not inherit unittest.TestCase directly, their
code can make use of everything the TestCase class provides. This is
because the *Tests classes are abstract classes meant to be combined
with a test scenario in order to be run, which then makes it a full
TestCase subclass.

TestCases

In order to create a TestCase subclass that can be discovered and run,
create a third class that inherits both the Scenario and the Tests, like so:

class LioTestCase(LvTestScenario, LunTestScenario, LvLioTests):
 pass

Be sure to inherit all the test scenarios you need for your test functions
to run, so that the environment is set up and torn down correctly and tests
can be skipped if necessary modules are missing.

Index

 _static/minus.png

_static/openattic.png
open JATTIC

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/images/openattic.png
open JATTIC

_static/images/openattic_small.png
open ATTIC

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 openATTIC 2.0 Documentation

 		
 Trademarks

 		
 Installation and Getting Started

 		
 System requirements

 		
 Base Operating System Installation

 		
 Post-installation Operating System Configuration

 		
 Basic Storage Configuration

 		
 Create an LVM Volume Group for openATTIC

 		
 Tag OS Volume Groups / Logical Volumes

 		
 Create a ZFS zpool

 		
 Installation on Debian Linux

 		
 Importing the openATTIC Keyfile

 		
 Enabling the openATTIC Apt Package Repository

 		
 Package Installation

 		
 Installation on Ubuntu Linux

 		
 Importing the openATTIC Keyfile

 		
 Enabling the openATTIC Apt Package Repository

 		
 Package Installation

 		
 Installation on Red Hat Enterprise Linux (and Derivatives)

 		
 Preliminary Preparations on RHEL 7

 		
 Disable SELinux

 		
 Yum Repository Configuration

 		
 Package Installation

 		
 Configure PNP4Nagios on EL7

 		
 Installation on SUSE Linux Enterprise Server and openSUSE Leap

 		
 Zypper Repository Configuration

 		
 Package Installation

 		
 Post-installation Configuration

 		
 openATTIC Base Configuration

 		
 Changing the Default User Password

 		
 Installing additional openATTIC Modules

 		
 Enabling Ceph Support in openATTIC

 		
 Download Preconfigured Virtual Machine

 		
 Getting started

 		
 Accessing the Web UI

 		
 Installing an openATTIC Multi-node System

 		
 Step 1 - Install Two openATTIC Hosts

 		
 Step 2 - Database Configuration on openattic01

 		
 Step 3 - Remote Database Configuration on openattic02

 		
 Step 4 - Execute oaconfig install on openattic02

 		
 Configuring Authentication and Single Sign-On

 		
 Authentication

 		
 Authorization

 		
 Joining openATTIC to a Windows Active Directory Domain Using oaconfig

 		
 Configuring Domain Authentication and Single Sign-On

 		
 Troubleshooting Authentication Issues

 		
 Hardware Recommendations

 		
 Storage Recommendations

 		
 Further Operating System Configuration Hints

 		
 User Manual

 		
 Administration Guide

 		
 Introducing the New Graphical User Interface

 		
 How to Perform Common Tasks

 		
 Background-Tasks

 		
 What is a background task?

 		
 Where can I find the running background tasks?

 		
 Are there different types of tasks?

 		
 How can I test it?

 		
 Can I delete them?

 		
 Do I have to wait for the task to finish?

 		
 Which processes create a background task?

 		
 Developer Documentation

 		
 Create Your own openATTIC git Fork on BitBucket

 		
 Setting up a Development System with Vagrant

 		
 Vagrant Installation

 		
 Network preparation

 		
 Starting the Virtual Machine

 		
 Choosing a different Linux distribution

 		
 Debugging openATTIC with PyCharm Professional

 		
 Debugging openATTIC with PyCharm Community

 		
 Perform an openATTIC Base Configuration

 		
 Troubleshooting

 		
 Setting up a Development System

 		
 Installing the Development Tools

 		
 How to get the authentication token for your own user

 		
 Contributing Code to openATTIC

 		
 Keeping Your Local Repository in Sync

 		
 Using git+ssh behind a Proxy Server

 		
 Working With Branches

 		
 Submitting Pull Requests

 		
 openATTIC Contributing Guidelines

 		
 Documenting Your Changes

 		
 Signing Your Patch Contribution

 		
 Merging Pull Requests

 		
 Backport commits

 		
 Error Handling in Python

 		
 Database migrations

 		
 openATTIC Core

 		
 Models

 		
 Filesystem API

 		
 Working on the openATTIC documentation

 		
 Requirements

 		
 Documentation Guidelines

 		
 Building the documentation

 		
 Customizing the openATTIC WebUI

 		
 Changing the favicon

 		
 Changing the logo

 		
 openATTIC Web UI Tests - E2E Test Suite

 		
 About Protractor

 		
 System Requirements

 		
 Install Protractor

 		
 Protractor Configuration

 		
 Enable BeforeAll / AfterAll

 		
 Maximize Browser Window

 		
 Use Multiple Browsers

 		
 Set up configs.js

 		
 Start webdriver manager Environment

 		
 Make Protractor Execute the Tests

 		
 Starting Only a Specific Test Suite

 		
 How to Cancel the Tests

 		
 E2E-Test Directory and File Structure

 		
 Writing Your Own Tests

 		
 Style Guide - General e2e.js File Structure / Architecture

 		
 Tips on how to write tests that also support Firefox

 		
 Debugging your tests

 		
 openATTIC REST API Tests - Gatling Test Suite

 		
 Quick start

 		
 Dependencies

 		
 Configuration

 		
 CI integration

 		
 Advanced options

 		
 Source code layout

_static/ajax-loader.gif

