
openanalysis Documentation
Release 1.0-rc

OpenWeavers

Aug 28, 2017

Table of contents

I The Python Language 1

1 Introduction to Python 2
1.1 What is Python? . 2
1.2 Prerequisites . 2
1.3 Your First Program . 3

2 Formatting Output 4

3 Arithmetic and Logical Operators 5
3.1 Arithmetic Operators . 5
3.2 Logical Operators - and, or and not . 6

4 Control Structures 7
4.1 if statement . 7
4.2 if-else statement . 8
4.3 Single Line if-else . 8
4.4 if-else ladder . 9
4.5 while loop . 9
4.6 for loop . 10

5 Functions 12
5.1 Defining a function . 12

6 Inbuilt Data Structures 15

7 Lists 16
7.1 Creating Lists . 16
7.2 Accessing List elements . 16
7.3 Obtaining Partitions of the List - Slicing . 16
7.4 Deleting List elements by index - del . 17
7.5 Using Operators on List . 17
7.6 Operations on List . 18
7.7 Obtaining length of list - len . 19
7.8 Membership Operator in . 19
7.9 Converting an iterator to list . 19

8 Tuples 20
8.1 Creating Tuples . 20
8.2 Operations on Tuples . 21

9 Sets 22

i

9.1 Creating Set . 22
9.2 Accessing Set Elements . 22
9.3 Operations on Set . 22
9.4 Set of Sets . 23

10 Dictionaries 24
10.1 Creating Dictionaries . 24
10.2 Dictionary Methods . 25

11 Strings 26
11.1 Creating Strings . 26
11.2 Accessing the elements of Strings . 26
11.3 Operators on Strings . 27
11.4 Operations on Strings . 27

12 Comprehensions 29
12.1 Problem 1 . 29
12.2 Problem 2 . 30
12.3 Comprehension based approach . 30
12.4 Problem 3 . 30
12.5 Problem 4 . 31
12.6 Zen revisited . 32
12.7 Fibonacci Again . 34

13 Filtering Lists - Need for lambdas 35
13.1 Problem : Find even numbers in a given sequence 35
13.2 Solution 3: Use 𝜆s . 35

14 Modules 37
14.1 What is a module? . 37
14.2 An Example . 37
14.3 More ways to import methods from a module 38
14.4 Executing modules as scripts . 38
14.5 The Module Search Path . 38
14.6 Packages . 39

15 Object Oriented Programming 41
15.1 Defining Classes . 41
15.2 Special Methods inside the class . 41
15.3 Static members and methods . 42
15.4 A note on private members . 42
15.5 A sample class, Student . 42
15.6 Duck Typing and Interfaces . 43
15.7 type() - Obtaining the data type of a variable 44

16 Inheritance 46
16.1 Syntax . 46

17 Exceptions 48
17.1 Facing a first exception . 48
17.2 try-except-finally . 48
17.3 div with exception handling . 49
17.4 Cleaning the things up . 49
17.5 Raising Exceptions . 50
17.6 User-defined Exceptions . 50

18 File Handling 52
18.1 Opening Files . 52
18.2 Methods of File Objects . 53

ii

19 Going Further 55

II Essential Libraries 56

20 Need for a faster array 57
20.1 Importing numpy . 57
20.2 Creating ndarray from Lists . 57
20.3 Accessing array elements and random shuffling 58
20.4 Functions that operates on ndarrays . 59

21 Data Visualization 61
21.1 Standard Import statement . 61
21.2 Our First Graph - A Parabola . 61
21.3 Customizing the Graph - Changing its type and color 62
21.4 Plotting multiple graphs on same axis . 63
21.5 An All-in-One example . 63
21.6 Subplots . 64
21.7 Adding Title . 64
21.8 An example . 64
21.9 Plotting irregular data - Scatter and Bar Plots 65
21.10 Visualizing 2D Data - Matrix . 67
21.11 Going Further . 69

22 Introduction to Graph Analysis with networkx 70
22.1 Standard import statement . 70
22.2 Creating Graphs . 70
22.3 Nodes . 70
22.4 Edges . 70
22.5 Accessing edges . 71
22.6 Adding attributes to graphs, nodes, and edges 72
22.7 Converting Graph to Adjacency matrix . 73
22.8 Drawing graphs . 73
22.9 Going Further . 75

III Exploring openanalysis 76

23 Introduction to openanalysis 77
23.1 Types of supported algorithms . 77
23.2 Setting up openanalysis . 77
23.3 Inside the package . 78
23.4 importing the modules . 78
23.5 Key factor for analysis . 78

24 Sorting Analysis 79
24.1 sorted(collection,reverse = False[,key]) 79
24.2 Standard import statement . 80
24.3 SortingAlgorithm class . 80
24.4 An example Bubble Sort . 80
24.5 SortAnalyzer class . 81
24.6 compare(algs) . 82
24.7 Why use a class if sorting could be done using a function 82
24.8 Example File . 82

25 Searching Analysis 83
25.1 The in operator and list.index() . 83
25.2 Standard import statement . 83
25.3 SearchingAlgorithm class . 84

iii

25.4 An example Binary Search . 84
25.5 SearchAnalyzer class . 84
25.6 compare(algs) . 85
25.7 Example File . 85

26 String Matching Analysis 86
26.1 The in operator and str.index() . 86
26.2 Standard import statement . 86
26.3 StringMatchingAlgorithm class . 87
26.4 An example Horspool String Matching Algorithm 87
26.5 StringMatchingAnalyzer class . 88
26.6 Example File . 88

27 Data Structures 89
27.1 Standard import statement . 89
27.2 DataStructureBase class . 89
27.3 DataStructureVisualization class . 90
27.4 An example Binary Search Tree . 90
27.5 Example File . 92

28 Tree Growth based Graph Algorithms 93
28.1 Standard import statement . 93
28.2 Implementation Notes . 93
28.3 Example - Dijkstra’s Algorithm . 94
28.4 Implementation . 94
28.5 Visualizing the Algorithm . 95
28.6 Random Geometric Graph . 95
28.7 Example File . 96

29 Dynamic Programming based Graph Algorithms 97
29.1 Standard import statement . 97
29.2 Implementation Notes . 97
29.3 Example Warshall- Floyd Algorithm . 98
29.4 Visualizing the Algorithm - MatrixAnimator class 98
29.5 Example File . 99

IV API Referance 100

30 openanalysis.base_data_structures module 101

31 openanalysis.data_structures module 103

32 openanalysis.matrix_animator module 104

33 openanalysis.searching module 105

34 openanalysis.sorting module 106

35 openanalysis.string_matching module 107

36 openanalysis.tree_growth module 108

Python Module Index 109

iv

Part I

The Python Language

1

1
Introduction to Python

1.1 What is Python?

Python is a widely used high-level programming language for general-purpose programming, created by
Guido Van Rossum and first released in 1991. An interpreted language, Python has a design philosophy
which emphasizes code readability (notably using whitespace indentation to delimit code blocks rather
than curly brackets or keywords), and a syntax which allows programmers to express concepts in fewer
lines of code than might be used in languages such as C++ or Java. The language provides constructs
intended to enable writing clear programs on both a small and large scale.

1.2 Prerequisites

We assume that you have:

• Basic understanding of what computer does and what computer programs do

• Knowledge of C Language

• Knowledge of Object Oriented Concepts like Objects,Classes,Inheritance,Polymorphism, etc. . .

• Knowledge of any Object Oriented Language like C++,Java or C#

These Software must be installed to follow the Language tutorial.

• Python 3 (Download from Python Website1 or apt install it)

• IPython 3 (An interactive Python Shell, Download from IPython Project Site2 or apt install it)

We will be using several libraries throughout the tutorial. They can be installed with pip (or pip3)
as pip install <library-name>. Following is a list of libraries that has to be installed to follow the
tutorial.

• matplotlib (For visualizing data sets)

• numpy (For faster array operations)

• networkx (Provides Graph Data Structure) - OpenAnalysis (An open source package to analyse
and visualise algorithms and data structures)

1 https://www.python.org/
2 https://ipython.org/

2

https://www.python.org/
https://ipython.org/

openanalysis Documentation, Release 1.0-rc

WARNING

The Python executable is python or python3 depending on your type of installation. Use --version
flag with python executable to determine the version of Python installed on your system

1.3 Your First Program

As a tradition, we start with a program to display Hello World on the Console Screen (the stdout)

Open the Interative Python Shell by typing ipython(or ipython3) from the terminal. If everything
goes well, you will get a prompt where you can enter statements and see the effect of it. Now enter the
following statement to get started

In [1]: print("Hello World")

Hello World

Congrats! You have successfully executed your first statement in Python. In fact there are many ways
to execute python statements. Interactive Console is one of them. You can also pack the statements
into single file, whose name ends with an extension .py, and call python (or python3) to execute them.
We will also check this method to execute Python statements. Save the contents of below cell into a file
named first.py.

Run this command to execute the file

python3 first.py # Or python

In [1]: print("Hello World")
print("Hi from Python File")

Hello World
Hi from Python File

Note: The usage of print() function is

print(list_of_values[,sep,end])

• sep is the seperator string to be printed in between values in list_of_values

• end is the terminating string that has to be printed after list_of_values

Example:

In [2]: print('a','b','c',sep=':',end=',')
print('e','f','g',sep='.')

a:b:c,e.f.g

1.3. Your First Program 3

2
Formatting Output

In C Language, we had printf() function to display a formatted string to stdout. We also had format
specifiers like %s for string, %d for integers and so on. . .

In Python, there are many ways to format a string, We shall have a look at each way.

Python provides % as String formatting operator, which has to be used with C style format specifiers.
General usage of this operator is as follows.

result = format_string % collection_of_items

Now Let’s see the Formatting Operator in action

In [16]: '8 = %d , 8.5 = %.1f , name = %s , 3 = %04d ' % (8, 8.5, 'Ravi', 3)

Out[16]: '8 = 8 , 8.5 = 8.5, name = Ravi, 3 = 0003'

There is one more way to format, without the hassle of remembering the format specifiers. You can use
format() method of the current string. Same output of above example can be obtained as follows

In [18]: '8 = {} , 8.5 = {} , name = {} , 3 = {:04} '.format(8, 8.5, 'Ravi', 3)

Out[18]: '8 = 8, 8.5 = 8.5, name = Ravi, 3 = 0003'

If the number of items to be formatted goes long, it would become hard to remember their positions.
You can name each entry in format string, and refer to them in the call to format() as shown below.
Note that the order of items can be changed now as the items are only referred by name.

In [19]: '8 = {a} , 8.5 = {b} , name = {c} , 3 = {d:04} '.format(a = 8, c = 'Ravi', d = 3, b =
8.5)→˓

Out[19]: '8 = 8, 8.5 = 8.5, name = Ravi, 3 = 0003'

Note

• In C and other related languages, '' is used to refer character and "" is used to refer string. But
in Python, both refer to string. In Python single character is also a string

• Know more about Python String Formatting at PyFormat3

3 https://pyformat.info/

4

https://pyformat.info/

3
Arithmetic and Logical Operators

The main factor that led to the invention of Computers was the search to simplify Mathematical Op-
erations. Every computer language provides extensive support for wide range of arithmetic operations.
Python’s arithmetic operators are superset of those in C.

Let’s have look at some of operations. . .

3.1 Arithmetic Operators

In [21]: 4 + 3

Out[21]: 7

In [32]: 'hi' + ' ' + 'how are you'

Out[32]: 'hi how are you'

In [37]: 'c' + 1

TypeError Traceback (most recent call last)
<ipython-input-37-4e0a1d805b35> in <module>()
----> 1 'c' + 1

TypeError: Can't convert 'int' object to str implicitly

In C, char is equivalent to uint8 and arithmetic operations can be done. In Python, it’s not the case.
Thus trying to do so raises a TypeError

In [22]: 4 - 3

Out[22]: 1

In [23]: 4 / 3

Out[23]: 1.3333333333333333

Note

Division results in floating point number, unlike C. This behaviour is default from Python 3. Earlier
version behaved in the same way as C. Use // operator to perform floor division.

In [24]: 4 // 3

Out[24]: 1

In [27]: 5.9 // 3.0

5

openanalysis Documentation, Release 1.0-rc

Out[27]: 1.0

// operator results in integer division, it rounds down the result to nearest integer

In [34]: 4 * 5

Out[34]: 20

In [4]: 'he' * 2 + 'h' # A string expression!

Out[4]: 'heheh'

In [28]: 4 ** 3

Out[28]: 64

In [2]: 4 ** 0.5

Out[2]: 2.0

** operator is Power operator. a**b gives a raised to the power b

In [3]: 5 % 4

Out[3]: 1

All other arithmetic operators and bitwise operators and comparison operators that are present in C are
supported. But the Logical Operators differs from C.

3.2 Logical Operators - and, or and not

Before starting with Logical Operators, note that True and False are boolean primitives in Python as
opposed to true and false in C++,Java and C#

Note

• In Python, Single line comments start with #

• Multiline comments start and end with triple quotes, i.e., '''

Example

This is a single line comment
'''This is

a multi-
line comment'''

In [43]: # Initialize 2 integer variables
a = 20
b = 10

In [44]: a == 20 and b == 10

Out[44]: True

In [45]: a is 20 or b is 0

Out[45]: True

In [46]: not a == 20

Out[46]: False

3.2. Logical Operators - and, or and not 6

4
Control Structures

Control Structures construct a fundamental part of language along with syntax,semantics and core
libraries. It is the Control Structures which makes the program more lively. Since they contol the flow
of execution of program, they are named Control Structures

4.1 if statement

4.1.1 Usage:

if condition:
statement_1
statement_2
...
statement_n

Note

In Python, block of code means, the lines with same indentation(i.e., same number of tabs or spaces
before it). Here statement_1 upto statement_n are in if block. This enhances the code readability

4.1.2 Example:

In [1]: response = input("Enter an integer : ")
num = int(response)
if num % 2 == 0:

print("{} is an even number".format(num))

Enter an integer : 4
4 is an even number

Note Typecasting

int(response) converted the string response to integer. If user enters anything other than integer,
ValueError is raised

7

openanalysis Documentation, Release 1.0-rc

4.2 if-else statement

4.2.1 Usage:

if condition:
statement_1
statement_2
...
statement_n

else:
statement_1
statement_2
...
statement_n

4.2.2 Example:

In [59]: response = input("Enter an integer : ")
num = int(response)
if num % 2 == 0:

print("{} is an even number".format(num))
else:

print("{} is an odd number".format(num))

Enter an integer : 5
5 is an odd number

4.3 Single Line if-else

This serves as a replacement for ternery operator avaliable in C

4.3.1 Usage:

C ternery

result = (condition) ? value_true : value_false

Python Single Line if else

result = value_true if condition else value_false

4.3.2 Example:

In [60]: response = input("Enter an integer : ")
num = int(response)
result = "even" if num % 2 == 0 else "odd"
print("{} is {} number".format(num,result))

Enter an integer : 9
9 is odd number

4.2. if-else statement 8

openanalysis Documentation, Release 1.0-rc

4.4 if-else ladder

4.4.1 Usage:

if condition_1:
statements_1

elif condition_2:
statements_2

elif condition_3:
statements_3

...

...

...
elif condition_n:

statements_n
else:

statements_last

Note

Python uses elif instead of else if like in C,Java or C#

4.4.2 Example:

In [63]: response = input("Enter an integer (+ve or -ve) : ")
num = int(response)
if num > 0:

print("{} is +ve".format(num))
elif num == 0:

print("Zero")
else:

print("{} is -ve".format(num))

Enter an integer (+ve or -ve) : -78
-78 is -ve

Note: No switch-case

There is no switch-case structure in Python. It can be realized using if-else ladder or any other
ways

4.5 while loop

4.5.1 Usage:

while condition:
statement_1
statement_2
...
statement_n

4.4. if-else ladder 9

openanalysis Documentation, Release 1.0-rc

4.5.2 Example:

In [65]: response = input("Enter an integer : ")
num = int(response)
prev,current = 0,1
i = 0
while i < num:

prev,current = current,prev + current
print('Fib[{}] = {} '.format(i,current),end=',')
i += 1

Enter an integer : 5
Fib[0] = 1,Fib[1] = 2,Fib[2] = 3,Fib[3] = 5,Fib[4] = 8,

Note

• Multiple assignments in single statement can be done -Python doesn’t support ++ and -- operators
as in C

• There is no do-while loop in Python

4.6 for loop

4.6.1 Usage:

for object in collection:
do_something_with_object

Notes

• C like for(init;test;modify) is not supported in Python

• Python provides range object for iterating over numbers

Usage of range object:

x = range(start = 0,stop,step = 1)

now x can be iterated, and it generates numbers including start excluding stop differing in the steps
of step

4.6.2 Example:

In [66]: for i in range(10):
print(i, end=',')

0,1,2,3,4,5,6,7,8,9,

In [67]: for i in range(2,10,3):
print(i, end=',')

2,5,8,

In [68]: response = input("Enter an integer : ")
num = int(response)
prev,current = 0,1
for i in range(num):

prev,current = current,prev + current
print('Fib[{}] = {} '.format(i,current),end=',')

4.6. for loop 10

openanalysis Documentation, Release 1.0-rc

Enter an integer : 5
Fib[0] = 1,Fib[1] = 2,Fib[2] = 3,Fib[3] = 5,Fib[4] = 8,

Note

Loop control statements break and continue work in the same way as they work in C

4.6. for loop 11

5
Functions

If a task has to be performed in a program many times, it is better to code that task as a function.
Function is a piece of reusable code that can be invoked(called) from anywhere. They perform the
intended task with supplied parameters and return the result if needed.

Python function has several advanatages over C functions and Java methods:

• Functions can take variable number of arguments. This is supported natively

• Functions can have named arguments (you had seen it in print())

• Functions can return multiple values

• If you need a helper function for a function, you can define it inside the function

5.1 Defining a function

The syntax for defining a function is as follows

def function_name(argument_list):
statement_1
statement_2
...
statement_n
return values

Let’s write a function for calculating 𝐹𝑖𝑏(𝑛), 𝑛‘th Fibonacci Number, defined by

𝐹𝑖𝑏(𝑛) = 𝐹𝑖𝑏(𝑛− 1) + 𝐹𝑖𝑏(𝑛− 2), where 𝐹𝑖𝑏(0) = 𝑎 and 𝐹𝑖𝑏(1) = 𝑏

First implementation uses 𝑎 = 0, 𝑏 = 1. Further implementations include options for modifying 𝑎 and 𝑏

In [2]: def fibonacci_first(n):
first,second = 0,1
while n != 0:

n, first, second = n - 1, second, first + second
return first

In [3]: fibonacci_first(10) # Function call

Out[3]: 55

Let’s have an option to choose 𝑎 and 𝑏

In [4]: def fibonacci_second(n,a,b):
first,second = a,b
while n != 0:

12

openanalysis Documentation, Release 1.0-rc

n, first, second = n - 1, second, first + second
return first

In [5]: fibonacci_second(9,1,1)

Out[5]: 55

Let 𝑎 and 𝑏 have the default values 0 and 1 respectively

In [6]: def fibonacci_third(n,a=0,b=1):
first,second = a,b
while n != 0:

n, first, second = n - 1, second, first + second
return first

In [7]: fibonacci_third(10) # behaves like fibonacci_first()

Out[7]: 55

In [8]: fibonacci_third(9,1) # behaves like fibonacci_second(9,1,1)

Out[8]: 55

In [9]: fibonacci_third(9,1,2) # Run with fully different parameters

Out[9]: 89

You can also change one default value. You can do this by passing named argument to function

In [10]: fibonacci_third(9,b=3)

Out[10]: 102

5.1.1 What we have to do if we want 𝑛 Fibonacci Numbers instead of 𝑛th Fi-
bonacci Number?

• One soulution is to return a list of 𝑛 numbers. We will see that once we learn about Lists in next
chapter

• What we can do now is return an iterable object, that iterates through 𝑛 Fibonacci numbers.
Instead of returning a number, we can simply yield it to construct a genertor. The resulting
Generator object can be used with for loop. (remember range object)

In [2]: def fibonacci_generator(n,a=0,b=1):
first,second = a,b
while n != 0:

yield first
n, first, second = n - 1, second, first + second

In [3]: for num in fibonacci_generator(10):
print(num,end=',')

0,1,1,2,3,5,8,13,21,34,

Now you can also use in operator to check the membership of an element in the Generator Object

In [4]: 8 in fibonacci_generator(10)

Out[4]: True

In [5]: 10 in fibonacci_generator(10)

Out[5]: False

Let’s modify above loop in order to print Fibonacci Numbers with numbering

In [6]: for i,num in enumerate(fibonacci_generator(10,a = 2, b = 3)):
print('Fib({})={} '.format(i,num))

5.1. Defining a function 13

openanalysis Documentation, Release 1.0-rc

Fib(0)=2
Fib(1)=3
Fib(2)=5
Fib(3)=8
Fib(4)=13
Fib(5)=21
Fib(6)=34
Fib(7)=55
Fib(8)=89
Fib(9)=144

enumerate() function takes an iterable object as an argument and returns an iterator which is the
original iterator enumerated.

5.1. Defining a function 14

6
Inbuilt Data Structures

Data Structures in a language determine the level of flexibility of using the language. If a Language has
efficient, inbuilt data structures then the effort of the programmer is reduced. He does not have to code
everything from the scratch. Furthermore, if it has user friendly syntax, it also makes the code more
readable.

Python accounts for both readability and efficiency. It provides many inbuilt data structure classes
that are suitable for day to day programming. In next 4 chapters, we will look at the details of
lists,tuples,sets and dictionarys.

First, let’s look at *Zen* of Python - Python Design Principles

In [1]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Python is designed according to this philosophy. Now we shall examine basic data structures which
comes handy in our journey of Python.

15

7
Lists

List is a mutable collection of elements(may be of same or different types), which is indexed by a 0-based
integer. Lists are so much like C arrays. But the capability of Python lists called Slicing makes them
more powerful.

7.1 Creating Lists

• Creating an empty list

x = [] # [] denotes a list type
or
x = list()

• Creating list with some initial elements

x = [2,3,0,'g']

In [1]: x = [1,2,4,5]

In [2]: x

Out[2]: [1, 2, 4, 5]

7.2 Accessing List elements

List elements can be accessed by 0-based integer index as in C. In addition to this, Negative indexes are
also supported. If x is a list, x[-1] gives 1st element from the last, x[-2] gives second element from the
last and so on. . .

In [3]: x[3]

Out[3]: 5

In [4]: x[-2]

Out[4]: 4

7.3 Obtaining Partitions of the List - Slicing

One can extract a portion of a list, and modify the value of it. If x is a list, it is achieved by a statement
in the form of

16

openanalysis Documentation, Release 1.0-rc

x[start:stop:step]

It returns elements of x from index start to the index stop (excluding stop) in the steps of step. These
3 arguments are not mandatory. If not specified start is set to 0, stop is set to length of list and step
is set to 1

In [5]: x = [1,2,5,6,7,0,3]

In [6]: x[1:3] # Access from x[1] to x[2]

Out[6]: [2, 5]

In [7]: x[2:5:2] # Access from x[2] to x[4] in the steps of 2

Out[7]: [5, 7]

In [8]: x[1:3] = [6] # They can modify original list

In [9]: x # Look at modified list, 6 is replaced twice

Out[9]: [1, 6, 6, 7, 0, 3]

In [25]: x[::-1] # Access the array in reverse order

Out[25]: [3, 0, 7, 6, 6, 1]

In [10]: x[:] # Returns copy of list x

Out[10]: [1, 6, 6, 7, 0, 3]

You have observed that slices return a list, which have the reference to original list. Hence modifying
slice results the change in original array.

7.4 Deleting List elements by index - del

If the position of element to be deleted is known, it can be deleted by del statement

To delete the ith element of list x,

del x[i]

In [11]: del x[2]

In [12]: x

Out[12]: [1, 6, 7, 0, 3]

7.5 Using Operators on List

In [13]: x = [4,3,5,0,1]
y = [2,1,5,4,0]

In [14]: x + y

Out[14]: [4, 3, 5, 0, 1, 2, 1, 5, 4, 0]

Note

x + y returns a new list that contains elements of y appended to x. This has no effect on original lists
x and y

In [15]: y * 2

Out[15]: [2, 1, 5, 4, 0, 2, 1, 5, 4, 0]

7.4. Deleting List elements by index - del 17

openanalysis Documentation, Release 1.0-rc

7.6 Operations on List

Unlike the Operators, operations performed on list can act directly on lists and may not return anything

Here are some of operations on list. They are member functions of class list. If x is a list,

• x.append(elem) - adds a single element to the end of the list. It does not return the new list, just
modifies the original list x.

• x.insert(index, elem) - inserts the element at the given index, shifting elements to the right.

• x.extend(list2) - adds the elements in list2 to the end of the list. Using + or += on a list is
similar to using extend().

• x.index(ele) - searches for the given element from the start of the list and returns its index.
Throws a ValueError if the element does not appear (use in to check without a ValueError).

• x.remove(elem) - searches for the first instance of the given element and removes it (throws
ValueError if not present)

• x.sort() - sorts the list in place (does not return it). (The sorted() function is preferred.)

• x.reverse() - reverses the list in place (does not return it)

• x.pop(index) - removes and returns the element at the given index. Returns the rightmost element
if index is omitted (roughly the opposite of append()).

In [16]: x = [0,3,7,2,1]

In [17]: x.append(9)
x

Out[17]: [0, 3, 7, 2, 1, 9]

In [18]: x.insert(4,4)
x

Out[18]: [0, 3, 7, 2, 4, 1, 9]

In [19]: x.extend([8,7,6])
x

Out[19]: [0, 3, 7, 2, 4, 1, 9, 8, 7, 6]

In [20]: x.remove(6)
x

Out[20]: [0, 3, 7, 2, 4, 1, 9, 8, 7]

In [21]: x.sort()
x

Out[21]: [0, 1, 2, 3, 4, 7, 7, 8, 9]

In [22]: x.reverse()
x

Out[22]: [9, 8, 7, 7, 4, 3, 2, 1, 0]

In [23]: x.pop()

Out[23]: 0

In [24]: x.pop(0)

Out[24]: 9

In [25]: x

Out[25]: [8, 7, 7, 4, 3, 2, 1]

In [26]: sorted(x)

Out[26]: [1, 2, 3, 4, 7, 7, 8]

7.6. Operations on List 18

openanalysis Documentation, Release 1.0-rc

List elements can also be lists, which gives 2-D array like structure

In [27]: x = [[2,3,4],
[1,2,2],
[2,3,4]]

In [28]: x[1]

Out[28]: [1, 2, 2]

In [29]: x[2][1]

Out[29]: 3

Note

There is no rule that the length of each sublist in a list must be same

7.7 Obtaining length of list - len

In [30]: x = [1,2,3]
len(x)

Out[30]: 3

In [31]: x = [[2,3,4],2,['a','v']]

In [32]: len(x)

Out[32]: 3

7.8 Membership Operator in

in operator can be used to check the existance of an element in the list

In [33]: x = [1,2,3,0,5,4]
4 in x

Out[33]: True

In [34]: 10 in x

Out[34]: False

7.9 Converting an iterator to list

Using yield keyword, one can create an iterator. Using list(), one can make a list of all values yielded
by iterator

In [60]: list(range(10))

Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

7.7. Obtaining length of list - len 19

8
Tuples

Tuple is an immutable collection of elements (may be of same or different types), which is indexed by a
0-based integer. A 2-tuple can represent a point in 2-D plane, or a 3-Tuple can represent a point in 3-D
plane.

8.1 Creating Tuples

• Creating an empty tuple

x = () # () denotes a tuple type
or
x = tuple()

• Creating list with some initial elements

x = (2,3,0,'g')

In [1]: x = (2,3)

In [2]: x

Out[2]: (2, 3)

In [3]: x = (2,) # x = (2) assigns int 2 to x. To make it a tuple, a comma is appended

In [4]: x

Out[4]: (2,)

In [5]: x + (1,2)

Out[5]: (2, 1, 2)

Tuples are immutable. So once a tuple is created, its contents are permanent unless it is reassigned with
another tuple.

Tuples can also be Indexed and Sliced like lists

In [6]: x

Out[6]: (2,)

In [7]: x = x + (1,3,4) # Reassignment

In [8]: x

Out[8]: (2, 1, 3, 4)

In [9]: x[1]

20

openanalysis Documentation, Release 1.0-rc

Out[9]: 1

In [10]: x[2:5]

Out[10]: (3, 4)

In [11]: x[::-1]

Out[11]: (4, 3, 1, 2)

8.2 Operations on Tuples

Since tuples are immutable, operations do not modify the original tuple

Here are some of the operations on list. They are member functions of class tuple. If x is a tuple,

• x.index(ele) - searches for the given element from the start of the list and returns its index.
Throws a ValueError if the element does not appear (use in to check without a ValueError).

• x.count(ele) - counts the number of occurances of ele in x

Membership operator in is also supported

In [12]: x

Out[12]: (2, 1, 3, 4)

In [13]: 2 in x

Out[13]: True

In [14]: x.count(2)

Out[14]: 1

In [17]: x.index(3)

Out[17]: 2

Using a list of tuples, one can model a collection of points in space

8.2. Operations on Tuples 21

9
Sets

Set is a mutable, unordered collection of unique, hashable elements(may be of same or different types),
which is not indexed.

9.1 Creating Set

• Creating an empty set

x = set()

• Creating set with some initial elements

x = {2,3,0,'g'}

• Creating an empty set with {} is not possible as {} is reserved for dictionary dict objects

In [1]: x = {1,2,5,3}
x

Out[1]: {1, 2, 3, 5}

9.2 Accessing Set Elements

Being an unordered collection, sets do not record element position or order of insertion. Accordingly,
sets do not support indexing, slicing, or other sequence-like behavior.

9.3 Operations on Set

Like any other collection, set supports membership operators in and not in, elements of set can be
iterated. If A and B are 2 sets,Following is a list of other operations on set

• A.union(B) - returns 𝐴 ∪𝐵

• A.union_update(B) - 𝐴 = 𝐴 ∪𝐵

• A.intersection(B) - returns 𝐴 ∩𝐵

• A.intersection_update(B) - 𝐴 = 𝐴 ∩𝐵

• A.isdisjoint(B) - returns 𝐴 ∩𝐵 == ∅

• A.issubset(B) - returns 𝐴 ⊆ 𝐵

22

openanalysis Documentation, Release 1.0-rc

• A.issuperset(B) - returns 𝐴 ⊇ 𝐵

Other operations like set difference are also supported

In [2]: x

Out[2]: {1, 2, 3, 5}

In [3]: x.union([2,4,6])

Out[3]: {1, 2, 3, 4, 5, 6}

In [4]: x.intersection([2,3])

Out[4]: {2, 3}

In [5]: x.intersection_update([1,3,4])

In [6]: x

Out[6]: {1, 3}

Note Graph and Sets

Many Graph Algorithms are modelled using sets. A Graph 𝐺 is considered as a collection of sets of
vertices 𝑉 and sets of edges 𝐸

9.4 Set of Sets

In many cases, it is required to have set of sets as in case of finding subsets of a set. Since set is not
hashable, it is not possible to have a ‘‘set‘‘ as an element of ‘‘set‘‘. In this case frozenset comes
handy. The only difference between frozenset and a set is that frozenset is immutable. We have to
reassign value to it if we want to modify it.

9.4. Set of Sets 23

10
Dictionaries

Dictionary is a set of key-value pairs, where value is any hashable object. As Lists are indexed by
integers, Dictionries are indexed by keys.

10.1 Creating Dictionaries

• Creating an Empty Dictionary

x = {} # {} denotes dictionary type (not set)
x = dict()

• Creating Dictionary with initial values

x = {'eight':8,'nine':9}

In [1]: x = {'eight':8,'nine':9}

In [2]: x['eight']

Out[2]: 8

In [3]: x[0]

KeyError Traceback (most recent call last)
<ipython-input-3-1ae75c28907a> in <module>()
----> 1 x[0]

KeyError: 0

If a key is not present in Dictionary, KeyError is raised

In [4]: x['zero'] = 0 # Adding a key-value to dictionary
x

Out[4]: {'eight': 8, 'nine': 9, 'zero': 0}

In [5]: del x['nine'] # Deleting based on key
x

Out[5]: {'eight': 8, 'zero': 0}

In [6]: 'zero' in x # Only key membership can be checked

Out[6]: True

24

openanalysis Documentation, Release 1.0-rc

10.2 Dictionary Methods

If d is a dictionary

• d.keys() returns a view of d’s keys

• d.values() returns a view of d’s values

• d.items() returns a view of d’s key-value pairs

In [7]: x

Out[7]: {'eight': 8, 'zero': 0}

In [8]: x.keys()

Out[8]: dict_keys(['zero', 'eight'])

In [9]: x.values()

Out[9]: dict_values([0, 8])

In [10]: x.items()

Out[10]: dict_items([('zero', 0), ('eight', 8)])

In [12]: for k,v in x.items():
print("{} = {} ".format(k,v))

zero = 0
eight = 8

Dictionary Values can be any hashable object. This means they can be lists, tuples,. . . . Using
Dictionaries, one can implement an Adjacency List Representation of Graph Data Structure.

10.2. Dictionary Methods 25

11
Strings

Strings play a major role in a programming language. Apart from providing nicer user interactions, they
can also serve as communication tool within the parts of the program. Python provides a rich set of
tools for Pattern matching using RegEx4s, String formatting based on locate and Various encryption
methods. We have seen basic String Formatting in previous chapter . In this chapter let’s study about
some basic functions that operates on strings.

11.1 Creating Strings

• Creating Empty String

s = str()

or

s = '' # quotes can be any of '' or ""

• Creating String with Initial Value

s = "Some text goes here"

11.2 Accessing the elements of Strings

String elements can be accessed using integer indices. A slice can also be specified for accessing a required
part of the string

In [1]: s = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua"→˓

s

Out[1]: 'Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua'→˓

In [2]: s[10]

Out[2]: 'm'

In [3]: s[20:] # start from 10 to end of string

Out[3]: 't amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua'→˓

4 http://regexr.com/

26

http://regexr.com/

openanalysis Documentation, Release 1.0-rc

In [4]: s[:20] # start from 0 to index 19

Out[4]: 'Lorem ipsum dolor si'

In [5]: s[10:30:2] # start from 10, end at 29 with steps of 2

Out[5]: 'mdlrstae,c'

In [6]: s[30:10:-2] # in reverse order

Out[6]: 'nc,eatsrld'

11.3 Operators on Strings

In [7]: 'Lorem' in s

Out[7]: True

In [8]: 'Some Random text : ' + s

Out[8]: 'Some Random text : Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua'→˓

In [10]: for i,c in enumerate(s): # string is iterable
if i == 11:

break
else:

print(c,end='')

Lorem ipsum

11.4 Operations on Strings

If s is a string,

• s.format(elements) formats s and returns it

• s.join(elements) returns a string in which the elements have been joined by s separator.

• s.capitalize() Return a copy of the string with its first character capitalized and the rest low-
ercased.

• s.count(sub[, start[, end]]) Return the number of non-overlapping occurrences of substring
sub in the range [start, end]. Optional arguments start and end are interpreted as in slice
notation.

• s.find(sub[, start[, end]]) Return the lowest index in the string where substring sub is found
within the slice s[start:end]. Optional arguments start and end are interpreted as in slice
notation. Return -1 if sub is not found.

• s.isalpha() Return True if all characters in the string are alphabetic and there is at least one
character, False otherwise.

• s.split(sep=None, maxsplit=-1) Return a list of the words in the string, using sep as the
delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have
at most maxsplit+1 elements). If maxsplit is not specified or -1, then there is no limit on the
number of splits (all possible splits are made).

• s.strip([chars]) Return a copy of the string with the leading and trailing characters removed.
The chars argument is a string specifying the set of characters to be removed. If omitted or None,
the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix;
rather, all combinations of its values are stripped

In [17]: s

11.3. Operators on Strings 27

openanalysis Documentation, Release 1.0-rc

Out[17]: 'Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua'→˓

In [18]: s.count('it')

Out[18]: 2

In [19]: s.find('it')

Out[19]: 19

In [20]: s.split(',')

Out[20]: ['Lorem ipsum dolor sit amet',
' consectetur adipiscing elit',
' sed do eiusmod tempor incididunt ut labore et dolore magna aliqua']

In [21]: part = s.split(',')[2]
part

Out[21]: ' sed do eiusmod tempor incididunt ut labore et dolore magna aliqua'

In [22]: part = part.strip()
part

Out[22]: 'sed do eiusmod tempor incididunt ut labore et dolore magna aliqua'

In [23]: part = part.upper()
part

Out[23]: 'SED DO EIUSMOD TEMPOR INCIDIDUNT UT LABORE ET DOLORE MAGNA ALIQUA'

In [24]: '-'.join('defg')

Out[24]: 'd-e-f-g'

In [25]: s = 'abcd'

In [26]: s += 'defg' # Appending
s

Out[26]: 'abcddefg'

This is just an overview of Python String Functions. There are many more functions which can do
various tasks. You will get to know them when you need the functionality.

11.4. Operations on Strings 28

12
Comprehensions

Sometimes, it is useful to make some operations on Data Structures and return the same Data Structure.
Examples may include squaring every element of a collection, constructing a lookup table and so on.
Python provides an easier syntax for doing these tasks. Let’s understand comprehension techiniques by
solving some problems

12.1 Problem 1

Given a list of integers, Create a new list containing their squares

12.1.1 Classic, C like approach

In [3]: num = [10,8,3,5,2,7,0,1,4,9,6]
num

Out[3]: [10, 8, 3, 5, 2, 7, 0, 1, 4, 9, 6]

In [6]: def square_classic_approach(x):
"""
Input: x - List of Integers
Return: A list containing squares of each element of list
"""
squared = [] # Empty list
for i in range(len(num)): # Equivalent to for(i=0;i<num;i++)

squared.append(num[i]**2) # Power operator
return squared

Note

Documentation of Python code can be done using docstrings5s like in above code

In [7]: square_classic_approach(num)

Out[7]: [100, 64, 9, 25, 4, 49, 0, 1, 16, 81, 36]

12.1.2 Comprehension Based Approach

In [13]: def square_pythonic_approach(x): # Pythonic! :P
"""

5 https://www.python.org/dev/peps/pep-0257/

29

https://www.python.org/dev/peps/pep-0257/

openanalysis Documentation, Release 1.0-rc

Input: x - List of Integers
Return: A list containing squares of each element of list
"""
return [num**2 for num in x]

In [9]: square_pythonic_approach(num)

Out[9]: [100, 64, 9, 25, 4, 49, 0, 1, 16, 81, 36]

Note

Comprehension increases code readability. Comprehension can be applied to any collection.

12.2 Problem 2

Given a list of integers, square them if they are even number and return a list

12.2.1 Classic, C like approach

In [23]: def square_if_even_classic_approach(x):
"""
Input: x - List of Integers
Return: A list containing squares of each element of list if element is even
"""
squared = [] # Empty list
for i in range(len(x)): # Equivalent to for(i=0;i<num;i++)

if x[i] % 2 == 0:
squared.append(x[i]**2) # Power operator

else:
squared.append(x[i])

return squared

In [24]: square_if_even_classic_approach([10,9,2,4,5,67])

Out[24]: [100, 9, 4, 16, 5, 67]

Observe how list is created and passed on the fly

12.3 Comprehension based approach

In [16]: def square_if_even_pythonic_approach(x): # Pythonic! :P
"""
Input: x - List of Integers
Return: A list containing squares of each element of list if element is even
"""
return [num**2 if num % 2 == 0 else num for num in x]

In [17]: square_if_even_pythonic_approach(([10,9,2,4,5,67]))

Out[17]: [100, 9, 4, 16, 5, 67]

12.4 Problem 3

Given a string, return the vowels occuring in it, ignoring the case

12.2. Problem 2 30

openanalysis Documentation, Release 1.0-rc

In [31]: def vowels_in(string):
"""
Input: string - a string
Return: List of vowels occuring in string
Example:
>>> vowels_in('Apple`)
['a','e']
"""
We use a set because it stores unique elements
l_string = str.lower(string) # Converting to unique form
vowel_set = {c for c in l_string if c in 'aeiou'} # Note the imposal of condition
return sorted(list(vowel_set))

In [29]: vowels_in('Apple')

Out[29]: ['a', 'e']

In [30]: vowels_in('Karnataka')

Out[30]: ['a']

Above function can be written in more compact form

In [32]: def vowels_in_compact(string):
"""
Input: string - a string
Return: List of vowels occuring in string
Example:
>>> vowels_in('Apple`)
['a','e']
"""
return sorted(list({c for c in str.lower(string) if c in 'aeiou'}))

In [33]: vowels_in_compact('violin')

Out[33]: ['i', 'o']

12.5 Problem 4

Given a string, count the number of occurance of each character, ignoring the case

The nature of the problem makes us to use the dicionary data structure.

In [36]: def alphabet_occurance_count(string):
"""
Input: a string
Output: the number of occurance od f each character in the string
"""
return {x:string.count(x) for x in string}

In [38]: alphabet_occurance_count("Hello from Notebook")

Out[38]: {' ': 2,
'H': 1,
'N': 1,
'b': 1,
'e': 2,
'f': 1,
'k': 1,
'l': 2,
'm': 1,
'o': 5,
'r': 1,
't': 1}

12.5. Problem 4 31

openanalysis Documentation, Release 1.0-rc

12.6 Zen revisited

In the beginning of this chapter, we looked at Zen of Python. Now we inspect the things in ‘‘this‘‘
module In the ‘‘this‘‘ module of Python, ‘‘this.s‘‘ contains the encoded text, which has to
be decoded using ‘‘this.d‘‘. Decode it

In [39]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Obviously, this is Zen

Now let’s have a look at other things in this module

In [40]: this.c

Out[40]: 97

In [41]: this.d

Out[41]: {'A': 'N',
'B': 'O',
'C': 'P',
'D': 'Q',
'E': 'R',
'F': 'S',
'G': 'T',
'H': 'U',
'I': 'V',
'J': 'W',
'K': 'X',
'L': 'Y',
'M': 'Z',
'N': 'A',
'O': 'B',
'P': 'C',
'Q': 'D',
'R': 'E',
'S': 'F',
'T': 'G',
'U': 'H',
'V': 'I',
'W': 'J',
'X': 'K',
'Y': 'L',
'Z': 'M',

12.6. Zen revisited 32

openanalysis Documentation, Release 1.0-rc

'a': 'n',
'b': 'o',
'c': 'p',
'd': 'q',
'e': 'r',
'f': 's',
'g': 't',
'h': 'u',
'i': 'v',
'j': 'w',
'k': 'x',
'l': 'y',
'm': 'z',
'n': 'a',
'o': 'b',
'p': 'c',
'q': 'd',
'r': 'e',
's': 'f',
't': 'g',
'u': 'h',
'v': 'i',
'w': 'j',
'x': 'k',
'y': 'l',
'z': 'm'}

It looks like a mapping from one character to another. . . Hmm. . . Interesting!

In [42]: this.i

Out[42]: 25

In [43]: this.s

Out[43]: "Gur Mra bs Clguba, ol Gvz Crgref\n\nOrnhgvshy vf orggre guna htyl.\nRkcyvpvg vf
orggre guna vzcyvpvg.\nFvzcyr vf orggre guna pbzcyrk.\nPbzcyrk vf orggre guna
pbzcyvpngrq.\nSyng vf orggre guna arfgrq.\nFcnefr vf orggre guna qrafr.\nErnqnovyvgl
pbhagf.\nFcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.\nNygubhtu cenpgvpnyvgl
orngf chevgl.\nReebef fubhyq arire cnff fvyragyl.\nHayrff rkcyvpvgyl fvyraprq.\nVa gur snpr
bs nzovthvgl, ershfr gur grzcgngvba gb thrff.\nGurer fubhyq or bar-- naq cersrenoyl bayl
bar --boivbhf jnl gb qb vg.\nNygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er
Qhgpu.\nAbj vf orggre guna arire.\nNygubhtu arire vf bsgra orggre guna *evtug* abj.\nVs gur
vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.\nVs gur vzcyrzragngvba vf rnfl gb
rkcynva, vg znl or n tbbq vqrn.\nAnzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs
gubfr!"

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

Wow!. . . Looks like encoded text.

We will decode it using this.d mapping

In [47]: decoded = ''.join([this.d[c] if str.isalnum(c) else c for c in this.s]) # join() joins
the iterable with string→˓

print(decoded)

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

12.6. Zen revisited 33

openanalysis Documentation, Release 1.0-rc

Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

This is again *Zen of Python!*

In fact ‘‘this‘‘ module uses a function to build the Translation Table ‘‘d‘‘ in it’s __init.py__ to print the
Zen. The encoding done here is rot13 encoding. We will look about modules in upcoming chapters.

12.7 Fibonacci Again

Now you have understood the lists and operations. Let’s look at a recursive Fibonacci Number Generator

In [53]: def fibonacci_recursive(n,first=0,second=1):
return [] if n == 0 else [first] + fibonacci_recursive(n - 1, second, first +

second)→˓

In [54]: fibonacci_recursive(5)

Out[54]: [0, 1, 1, 2, 3]

12.7. Fibonacci Again 34

13
Filtering Lists - Need for lambdas

In Python, functions are also objects. It means that you can pass them to other function like a variable.
This flexibility of functions allows us to do many useful tasks. filtering a collection is one of them.

13.1 Problem : Find even numbers in a given sequence

13.1.1 Solution 1: Use List comprehension

In [55]: x = [0,1,3,5,8,7,6]

In [57]: evens = [i for i in x if i%2 == 0]
evens

Out[57]: [0, 8, 6]

13.1.2 Solution 2: Use filter with functions

filter function takes a list and a function returning bool as argument and filter’s the list, returns
the iterator through filtered list. One can use list() to convert iterator to a list

Usage

result = list(filter(condition,collection))

condition is a boolean function that takes an element as input

In [58]: def is_even(item):
return item % 2 == 0

In [61]: list(filter(is_even,x))

Out[61]: [0, 8, 6]

13.2 Solution 3: Use 𝜆s

In previous example, we passed a function object to filter(). The same case happens in many situa-
tions. In some cases function to be passed might be too short like is_even(). In this case lambdas can
be used. lambdas create function in place.

Usage:

35

openanalysis Documentation, Release 1.0-rc

function_name = lambda argument_list : executable_statements

This has the same effect as that of

def function_name(argument_list):
executable_statements

Now our is_even function can be defined in terms of lambdas

is_even = lambda x : x % 2 == 0 # Note that return may be omitted

If multi-line statements are needed, Statements can be put inside ()s or line can be extended with \s

In [62]: list(filter(lambda x: x % 2 == 0,x))

Out[62]: [0, 8, 6]

Lambdas are a fundamental concept of Functional Programming where every task is achieved via a
function. They constitute the basis of a branch of Mathematics and Computation Theory called
:math:‘lambda‘ calculus.

As a final thought, we shall see Recursive Fibonacci Generator in terms of lambdas

In [5]: fibonacci_lambda = \
lambda n,first=0,second=1 :\

[] if n == 0 \
else \

[first] + fibonacci_lambda(n - 1, second, first + second)

In [6]: fibonacci_lambda(4)

Out[6]: [0, 1, 1, 2]

Note that lines are broken with \

13.2. Solution 3: Use 𝜆s 36

14
Modules

In previous chapter, we saw the *Zen* of Python . We also noticed that this resides in this module.
In this chapter, we discuss about modules. We also study how to create modules.

14.1 What is a module?

According to official documentation, a module is a file containing Python definitions and statements.
The file name is the module name with the suffix .py appended.

14.2 An Example

In a directory, create a file called fibo.py and paste the following code in it.

fibo.py

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print(b, end=' ')
a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now open ipython (ipython3) in the same directory and execute the following statements:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it
only enters the module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

37

openanalysis Documentation, Release 1.0-rc

>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

14.3 More ways to import methods from a module

There is a variant of the import statement that imports names from a module directly into the importing
module’s symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table
(so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python program-
mers do not use this facility since it introduces an unknown set of names into the interpreter, possibly
hiding some things you have already defined.

14.4 Executing modules as scripts

When you run a Python module with:

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to
"__main__". That means that by adding this code at the end of your module:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses
the command line only runs if the module is executed as the “main” file:

python fibo.py 50 1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes
(running the module as a script executes a test suite).

14.5 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that
name. If not found, it then searches for a file named spam.py in a list of directories given by the variable
sys.path. sys.path is initialized from these locations:

14.3. More ways to import methods from a module 38

openanalysis Documentation, Release 1.0-rc

• The directory containing the input script (or the current directory when no file is specified).

• PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

• The installation-dependent default.

14.6 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For
example, the module name A.B designates a submodule named B in a package named A. Just like the
use of modules saves the authors of different modules from having to worry about each other’s global
variable names, the use of dotted module names saves the authors of multi-module packages like NumPy
or the Python Imaging Library from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files
and sound data. There are many different sound file formats (usually recognized by their extension, for
example: .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules
for the conversion between the various file formats. There are also many different operations you might
want to perform on sound data (such as mixing, adding echo, applying an equalizer function, creating an
artificial stereo effect), so in addition you will be writing a never-ending stream of modules to perform
these operations. Here’s a possible structure for your package (expressed in terms of a hierarchical
filesystem):

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories on sys.path looking for the package
subdirectory.

The __init__.py files are required to make Python treat the directories as containing packages; this
is done to prevent directories with a common name, such as string, from unintentionally hiding valid
modules that occur later on the module search path. In the simplest case, __init__.py can just be
an empty file, but it can also execute initialization code for the package or set the __all__ variable,
described later.

Users of the package can import individual modules from the package, for example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

14.6. Packages 39

openanalysis Documentation, Release 1.0-rc

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used
as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage)
of the package, or some other name defined in the package, like a function, class or variable. The import
statement first tests whether the item is defined in the package; if not, it assumes it is a module and
attempts to load it. If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last
must be a package; the last item can be a module or a package but can’t be a class or function or
variable defined in the previous item.

14.6.1 Reference

This chapter is copied from Official Python Documentation6

6 https://docs.python.org/3/tutorial/modules.html

14.6. Packages 40

https://docs.python.org/3/tutorial/modules.html

15
Object Oriented Programming

In Object Oriented Programming, everything is an object. Objects are real world entities having some
attributes and some related methods that operate on attributes. We assume that the reader has some
familiarity with Object Oriented Concepts such as Inheritance, Polymorphism, Abstraction and so on
. . .

15.1 Defining Classes

Syntax:

class ClassName:
<statement 1>
<statement 2>
....
....
<statement n>

15.2 Special Methods inside the class

Unlike C++ and Java classes, class methods does not hold the reference of current object (this object).
Class methods should take the class object as their first argument. This is not required for static methods.
At the point of invocation of object methods, the object is passed to method implicitly. It is a covention
to name the first parameter of class method as self. Now let’s see some special functions of classes.

• __init__(self,elements) : Constructor, called when object is created. All properties of the
object have to be declared here.

• __del__(self) : Destructor, called when del is applied to an object.

• __str__(self) : Returns the string representation of object. Called when str() is called on the
object.

• __iter__(self) : Returns the iterator of elements of the object. Called when iter() is called on
the object. Also this enables us to use the for ele in object like construct.

• __len(self)__ : Returns the length of the collection. Called when len() is invoked on the object.

• __getitem(self,item)__ : Allows us to use object[item] like accessor to get an item

41

openanalysis Documentation, Release 1.0-rc

15.3 Static members and methods

Any member declared inside the class, but not in the methods, are shared by all instances of classes.
A method annotated with @staticmethod is static method, and doesn’t recieve class object as it’s first
parameter.

15.4 A note on private members

A member or method whose name starts with ‘__’ is regarded as a private member or method.

15.5 A sample class, Student

Here we implement a simple Student class.

In [86]: class Student:
count = 0 # Total number of objects created so far, it is static variable as it is

declared outside→˓

def __init__(self,name,usn,marks):
"""
Constructor of class Student
Input: name - name of the student : string

usn - university serial number : string
marks - marks in 3 subjects out of 20

"""
Student.count += 1
self.name = name
self.usn = usn
self.marks = marks[:] # Copy marks to self.marks .. a simple self.marks =

marks make only reference equal→˓

def print_details(self):
print(str(self))

def total_marks(self):
return sum(self.marks)

def __iter__(self):
details = {'name':self.name,'usn':self.usn,'marks':self.marks}
for k,v in details.items():

yield k,v # A tuple

def __str__(self):
return "Name : {0} \nUSN = {1} \nMarks in 3 subjects =

{2} ".format(self.name,self.usn,self.marks)→˓

@staticmethod
def get_total_count():

return Student.count

In [87]: s1 = Student('Ramesh','4jc11cs111',[20,16,18])
s2 = Student('Ravi','4jc15cs112',[15,18,18])

In [88]: print(s1) # calls __str__()

Name : Ramesh
USN = 4jc11cs111
Marks in 3 subjects = [20, 16, 18]

In [89]: print(s2)

15.3. Static members and methods 42

openanalysis Documentation, Release 1.0-rc

Name : Ravi
USN = 4jc15cs112
Marks in 3 subjects = [15, 18, 18]

In [91]: Student.count

Out[91]: 2

In [90]: Student.get_total_count()

Out[90]: 2

In [92]: for k,v in s1:
print('{} = {} '.format(k,v))

usn = 4jc11cs111
name = Ramesh
marks = [20, 16, 18]

In [95]: s1.print_details() # self of Student.print_details(self) is passed as s1

Name : Ramesh
USN = 4jc11cs111
Marks in 3 subjects = [20, 16, 18]

In [97]: Student.print_details(s1) # Explicitly passing self parameter

Name : Ramesh
USN = 4jc11cs111
Marks in 3 subjects = [20, 16, 18]

In [98]: Student.get_total_count()

Out[98]: 2

In [100]: s1.get_total_count() # This is also possible, @staticmethod attribute prevents
passing object to method→˓

Out[100]: 2

15.6 Duck Typing and Interfaces

In C, C++, Java and C#, we have to predefine the data type of every variable declared. In Python, you
may have observed that you are not defining any data type during variable declaration. In fact, Python
does not require you to do that.

In C,

int x;

means storage space allocated to x is constant 8 bytes (on x64 system) and this space will never change.
This also implies that x will never hold other values than int. Trying to do so will raise a compiler error.
This nature of C makes the language statically typed, i.e., data type of a variable is determined at
the compile time.

On the other hand, in Python, the type of variable is determined entirely during runtime. Storage space
allocated to a variable can vary dynamically. When we assign a string to a variable x, it will be str. If
we reassign it to a list, it will be list. This nature of Python makes it dynamically typed language.
It is also called as Duck typing.

Duck typing is an application of the duck test in type safety. It requires that type checking be deferred
to runtime, and is implemented by means of dynamic typing or reflection.

The Duck test is a humorous term for a form of abductive reasoning. This is its usual expression:

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

15.6. Duck Typing and Interfaces 43

openanalysis Documentation, Release 1.0-rc

The duck test can be seen in the following example. As far as the function in_the_forest is concerned,
the Person object is a duck:

In [1]: class Duck:
def quack(self):

print("Quaaaaaack!")
def feathers(self):

print("The duck has white and gray feathers.")

class Person:
def quack(self):

print("The person imitates a duck.")
def feathers(self):

print("The person takes a feather from the ground and shows it.")
def name(self):

print("John Smith")

def in_the_forest(duck):
duck.quack()
duck.feathers()

def game():
donald = Duck()
john = Person()
in_the_forest(donald)
in_the_forest(john)

game()

Quaaaaaack!
The duck has white and gray feathers.
The person imitates a duck.
The person takes a feather from the ground and shows it.

15.7 type() - Obtaining the data type of a variable

In [102]: x = 8
type(x)

Out[102]: int

In [103]: type(8.5)

Out[103]: float

In [104]: type('hello')

Out[104]: str

In [105]: type([1,2,1])

Out[105]: list

In [106]: type({})

Out[106]: dict

In [108]: type((1,))

Out[108]: tuple

In [109]: type(s1)

Out[109]: __main__.Student

In [111]: import random
type(random)

Out[111]: module

15.7. type() - Obtaining the data type of a variable 44

openanalysis Documentation, Release 1.0-rc

The main intention of interfaces in Java and C# was to make the classes to have a set of common
functions, which makes their usage alike. Due to Duck Typing, the need for interfaces is now gone

15.7. type() - Obtaining the data type of a variable 45

16
Inheritance

Inheritance means extending the properties of one class by another. Inheritance implies code reusability,
because of which client classes do not need to implement everything from scratch. They can simply refer
to their base classes to execute the code.

Unlike Java and C#, like C++, Python allows Multiple inheritance. Name resolution is done by the order
in which the base classes are specified.

16.1 Syntax

class ClassName(BaseClass1[,BaseClass2,....,BaseClassN]):
<statement 0>
<statement 1>
<statement 2>
...
...
...
<statement n>

16.1.1 A First Example

In [3]: class Person:

Constructor
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return 'name = {} \nage = {} '.format(self.name,self.age)

Inherited or Sub class
class Employee(Person):

def __init__(self, name, age, employee_id):
Person.__init__(self, name, age) # Referring Base class
Can also be done by super(Employee, self).__init__(name, age)
self.employee_id = employee_id

Overriding implied code reusability
def __str__(self):

return Person.__str__(self) + '\nemployee id = {} '.format(self.employee_id)

46

openanalysis Documentation, Release 1.0-rc

In [4]: s = Person('Kiran',18)
print(s)

name = Kiran
age = 18

In [6]: e = Employee('Ramesh',18,48)
print(e)

name = Ramesh
age = 18
employee id = 48

Note

Base class can be referred from derived class in two ways

• Base Class name - BaseClass.function(self,args)

• using super() - super(DerivedClass, self).function(args)

16.1.2 Multiple inheritance and Order of Invocation of Methods

In [7]: class Base1:
def some_method(self):

print('Base1')

class Base2:
def some_method(self):

print('Base2')

class Derived1(Base1,Base2):
pass

class Derived2(Base2,Base1):
pass

Note how pass statement is used to leave the class body empty. Otherwise it would have raised a Syntax
Error. Since Drived1 and Derived2 are empty, they would have imported the methods from their base
classes

In [8]: d1 = Derived1()
d2 = Derived2()

Now what will be the result of invoking some_method on d1 and d2? . . . Does the name clash ocuur?
. . . Let’s see

In [9]: d1.some_method()

Base1

In [10]: d2.some_method()

Base2

Wow! . . . It executed smoothly . . .

If a name of a function is same in base classes, the one will be executed, which appears first in the base
class list

16.1. Syntax 47

17
Exceptions

In an ideal situation, our program runs smoothly without any errors. However it is not always the case.
Errors may be due to developer’s fault or programmer’s mistake or of computer. Source of some errors
might be hard to undertsand. However it is the task of Good Programmer to handle all kinds of errors
that might occur in his program. If some error condition escapes from the developer and user catches
it, It is a bug in the program. Developers must update the programs periodically to fix the bugs in the
software. You may remember that recent ransomware attack which caused the loss of enormous amount
of data, was due to a bug in Microsoft Windows.

17.1 Facing a first exception

Let’s write a lambda to divide 2 numbers

In [1]: div = lambda x,y : x/y

In [2]: div(8,2)

Out[2]: 4.0

In [3]: div(0/0)

ZeroDivisionError Traceback (most recent call last)
<ipython-input-3-d742f81f0a4a> in <module>()
----> 1 div(0/0)

ZeroDivisionError: division by zero

Oh No!. . . It was a error. Let’s handle it.

17.2 try-except-finally

try-except-finally provides an easy way to handle errors that can arise during program execution. It
works similar to try-catch-finally blocks in Java and C#

Syntax:

try:
<statement 1>
<statement 2>
...
<statement n>

except (Exception List): # Refer note

48

openanalysis Documentation, Release 1.0-rc

<statement 1>
<statement 2>
...
<statement n>

finally:
<cleanup 1>
<cleanup 2>
...
<cleanup n>

Note:

• finally block is optional

• If Exception List is empty all exceptions are handled by except block

• If catching a single exception, it can be referred with its name.

except RangeError as e:
<do-something-with-e>

• Base Exception classes must be captured at last, if catching exceptions in hierarchy

17.3 div with exception handling

In [5]: def div_good(x,y):
try:

return x/y
except ZeroDivisionError:

print("Division by zero")

In [6]: div_good(8,2)

Out[6]: 4.0

In [7]: div_good(0,0)

Division by zero

Note how the exception was handled

17.4 Cleaning the things up

In this version of div, we will return a NaN if a ZeroDivisionError occures. 'NaN' is Not a Number.
'Inf' refers infinity

In [4]: def div_clean(x,y):
try:

value = x/y
except ZeroDivisionError:

value = float('NaN')
return value

In [2]: div_clean(4,3)

Out[2]: 1.3333333333333333

In [3]: div_clean(8,0)

Out[3]: nan

17.3. div with exception handling 49

openanalysis Documentation, Release 1.0-rc

17.5 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

In [5]: raise NameError('HiThere')

NameError Traceback (most recent call last)
<ipython-input-5-93385ba972b1> in <module>()
----> 1 raise NameError('HiThere')

NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception
instance or an exception class (a class that derives from Exception). If an exception class is passed, it
will be implicitly instantiated by calling its constructor with no arguments:

In [6]: raise ValueError # shorthand for 'raise ValueError()'

ValueError Traceback (most recent call last)
<ipython-input-6-f4e87a14b34e> in <module>()
----> 1 raise ValueError # shorthand for 'raise ValueError()'

ValueError:

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form
of the raise statement allows you to re-raise the exception:

In [7]: try:
raise NameError('HiThere')

except NameError:
print('An exception flew by!')
raise

An exception flew by!

NameError Traceback (most recent call last)
<ipython-input-7-3f47609917d7> in <module>()

1 try:
----> 2 raise NameError('HiThere')

3 except NameError:
4 print('An exception flew by!')
5 raise

NameError: HiThere

17.6 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically
be derived from the Exception class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are usually kept simple,
often only offering a number of attributes that allow information about the error to be extracted by
handlers for the exception. When creating a module that can raise several distinct errors, a common
practice is to create a base class for exceptions defined by that module, and subclass that to create
specific exception classes for different error conditions:

In [1]: class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):

17.5. Raising Exceptions 50

openanalysis Documentation, Release 1.0-rc

"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

"""

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in Error, similar to the naming of the standard
exceptions.

17.6. User-defined Exceptions 51

18
File Handling

So far, we have worked with the objects in Primary Memory. However Primary Memory is volatile.
In order to save the current state of program, objects for future use, we have to save it in Secondary
Memory. It is achieved via file handling.

18.1 Opening Files

open() returns a file object, and is most commonly used with two arguments: open(filename, mode).
mode is a string that determines how the file should be opened. Normally, files are opened in text mode,
that means, you read and write strings from and to the file, which are encoded in a specific encoding.
If encoding is not specified, the default is platform dependent (see open()). ‘b’ appended to the mode
opens the file in binary mode: now the data is read and written in the form of bytes objects. This mode
should be used for all files that don’t contain text.

• r - Read

• w - Write

• a - Append

• r+ - Read and Write, similarly w+ and a+

If no mode is specified, it is defaulted to r

Normally, files are opened in text mode, that means, you read and write strings from and to the file,
which are encoded in a specific encoding. If encoding is not specified, the default is platform dependent.
'b' appended to the mode opens the file in binary mode: now the data is read and written in the form
of bytes objects. This mode should be used for all files that don’t contain text.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the
file is properly closed after its suite finishes, even if an exception is raised at some point. Using with is
also much shorter than writing equivalent try-finally blocks:

>>> with open('workfile') as f:
... read_data = f.read()
>>> f.closed
True

If you’re not using the with keyword, then you should call f.close() to close the file and immediately
free up any system resources used by it. If you don’t explicitly close a file, Python’s garbage collector
will eventually destroy the object and close the open file for you, but the file may stay open for a while.
Another risk is that different Python implementations will do this clean-up at different times.

After a file object is closed, either by a with statement or by calling f.close(), attempts to use the file
object will automatically fail.

52

openanalysis Documentation, Release 1.0-rc

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file

18.2 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string
(in text mode) or bytes object (in binary mode). size is an optional numeric argument. When size is
omitted or negative, the entire contents of the file will be read and returned; it’s your problem if the file
is twice as large as your machine’s memory. Otherwise, at most size bytes are read and returned. If the
end of the file has been reached, f.read() will return an empty string ('').

>>>
>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string,
and is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return
value unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while
a blank line is represented by ‘\n’, a string containing only a single newline.

>>>
>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads
to simple code:

>>>
>>> for line in f:
... print(line, end='')
...
This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can also use list(f) or .readlines().

f.write(string) writes the contents of string to the file, returning the number of characters written.

>>>
>>> f.write('This is a test\n')
15

Other types of objects need to be converted – either to a string (in text mode) or a bytes object (in
binary mode) – before writing them:

>>>
>>> value = ('the answer', 42)
>>> s = str(value) # convert the tuple to string

18.2. Methods of File Objects 53

openanalysis Documentation, Release 1.0-rc

>>> f.write(s)
18

f.tell() returns an integer giving the file object’s current position in the file represented as number of
bytes from the beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f.seek(offset, from_what). The position is computed from
adding offset to a reference point; the reference point is selected by the from_what argument. A
from_what value of 0 measures from the beginning of the file, 1 uses the current file position, and
2 uses the end of the file as the reference point. from_what can be omitted and defaults to 0, using the
beginning of the file as the reference point.

>>>
>>> f = open('workfile', 'rb+')
>>> f.write(b'0123456789abcdef')
16
>>> f.seek(5) # Go to the 6th byte in the file
5
>>> f.read(1)
b'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13
>>> f.read(1)
b'd'

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the
file are allowed (the exception being seeking to the very file end with seek(0, 2)) and the only valid
offset values are those returned from the f.tell(), or zero. Any other offset value produces undefined
behaviour.

File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

Note : This chapter is copied from Python Reference7

7 https://docs.python.org/3/tutorial/inputoutput.html

18.2. Methods of File Objects 54

https://docs.python.org/3/tutorial/inputoutput.html

19
Going Further

Now that you have touched Python, you can tell how easy it is! Python makes many things possible
that would be possible with many complications in C or Java.

• You can use as many libraries as you want, Don’t code everything from the scratch

– requests for sending HTTP Request

– scipy for Scientific Computation

– numpy for High Performace Arrays

– tensorflow for neural networks (By Google) and many more

• Make your code well documented with the usage of docstrings

• Don’t hesitate to Google

• StackOverflow8 is the place

• Feel free to contribute to this project at GitHub9

Good Luck Ahead!

8 https://stackoverflow.com/questions/tagged/python
9 https://github.com/OpenWeavers/OpenAlgorithm

55

https://stackoverflow.com/questions/tagged/python
https://github.com/OpenWeavers/OpenAlgorithm

Part II

Essential Libraries

56

20
Need for a faster array

We know how lists work in Python. We also know that lists can hold the data items of various data
types. This means that the list storage allocated to elements can vary in size. This factor makes the list
access slow, and operations on array could take long time. numpy provides a elagent solution in the form
of ndarray, a 𝑛 - Dimensional collections of elements with same data types. numpy also provides easier
way to manipulate arrays, This makes it High Performance Numerical Calculation possible.

20.1 Importing numpy

Following is the standard statement to import numpy. In future examples and library usages, we assume
that you have imported the library in this way

In [1]: import numpy as np

20.2 Creating ndarray from Lists

numpy allows us to create an array from exsisting Python List. Datatype conversions are performed if
the input list contains elements of multiple datatypes. Datatypes are always promoted. Let’s look at
some examples.

In [2]: a = np.array([1,2,3,4])
a

Out[2]: array([1, 2, 3, 4])

In [3]: b = np.array([[1],[2],[3]])
b

Out[3]: array([[1],
[2],
[3]])

In [4]: c = np.array([1,2,'x'])
c

Out[4]: array(['1', '2', 'x'],
dtype='<U21')

Note how int is converted into str. U21 is 32-bit Unicode Encoding. (Actual bits needed to store data
is 21)

In [5]: d = np.array([1.3,1,3])
d

Out[5]: array([1.3, 1. , 3.])

57

openanalysis Documentation, Release 1.0-rc

Note how int is converted to float

20.3 Accessing array elements and random shuffling

Array elements can be accessed using indices, slices and using masked arrays

Let’s create a random array and then illustrate the methods of accessing array elements

In [6]: x = np.arange(20) # Like range(), but returns ndarry instead
x

Out[6]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19])

In [7]: x.shape # (rows,cols)

Out[7]: (20,)

In [8]: x.shape = (4,5) # 4 rows 5 cols
x

Out[8]: array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

In [9]: x.size # Total number of elements

Out[9]: 20

In [10]: np.random.shuffle(x) # shuffles ndarray in-place
x

Out[10]: array([[5, 6, 7, 8, 9],
[0, 1, 2, 3, 4],
[15, 16, 17, 18, 19],
[10, 11, 12, 13, 14]])

This is how we can shuffle an array. random.shuffle() function takes an ndarray as an argument and
sorts it in place. NEVER treat its return value as result!

In [11]: x[0]

Out[11]: array([5, 6, 7, 8, 9])

In [12]: x[0][2] # Ok, inefficient

Out[12]: 7

Above method is inefficient access because, it fetches x[0] first and accesses it’s element at index 2.
Next method computes the address from 2 co-ordinates directly, and fetches the element at one access

In [13]: x[0,2] # Efficient

Out[13]: 7

In [14]: x[0,1:4]

Out[14]: array([6, 7, 8])

Above example selects the elements at indices (0,1),(0,2),(0,3). Note that the slices can also be used to
select elements from multi-dimensional array

In [15]: x[1:4,0]

Out[15]: array([0, 15, 10])

In [16]: x > 15

20.3. Accessing array elements and random shuffling 58

openanalysis Documentation, Release 1.0-rc

Out[16]: array([[False, False, False, False, False],
[False, False, False, False, False],
[False, True, True, True, True],
[False, False, False, False, False]], dtype=bool)

Note that it returned a boolean array after performing suitable operation. It is called masked array

In [17]: x [x > 15]

Out[17]: array([16, 17, 18, 19])

This method to access array element is called as Access by Masked array

20.4 Functions that operates on ndarrays

Numpy provides many Mathematical functions, that not only operates on inividual numbers, but also
on entire arrays. Let’s illustrate them

In [18]: np.sin(x)

Out[18]: array([[-0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849],
[0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025],
[0.65028784, -0.28790332, -0.96139749, -0.75098725, 0.14987721],
[-0.54402111, -0.99999021, -0.53657292, 0.42016704, 0.99060736]])

In [19]: x[np.sin(x) > 0] # elements whose sine is non-negative

Out[19]: array([7, 8, 9, 1, 2, 3, 15, 19, 13, 14])

many trigonometrical functions like 𝑠𝑖𝑛,𝑐𝑜𝑠, calculus related functions like 𝑔𝑟𝑎𝑑 are also available

20.4.1 concatenate the arrays

concatenate((a1, a2, ...), axis=0) Join a sequence of arrays along an existing axis.

Parameters: - a1, a2, . . . : sequence of array_like

• The arrays must have the same shape, except in the dimension corresponding to axis (the first, by
default).

• axis : int, optional

• The axis along which the arrays will be joined. Default is 0.

• Returns:

• res : ndarray

• The concatenated array.

• hstack((a1, a2, ...)) combines a1, a2, . . . horizontally

• vstack((a1, a2, ...)) combines a1, a2, . . . vertically

• dstack((a1, a2, ...)) combines a1, a2, . . . depthwise

In [20]: a = np.array([1,2,3,4])
b = np.array([9,8,7,6])

In [21]: a

Out[21]: array([1, 2, 3, 4])

In [22]: b

Out[22]: array([9, 8, 7, 6])

In [23]: np.concatenate((a,b),axis=0) # (a,b) is a tuple of arrays

Out[23]: array([1, 2, 3, 4, 9, 8, 7, 6])

20.4. Functions that operates on ndarrays 59

openanalysis Documentation, Release 1.0-rc

In [24]: np.dstack((a,b))

Out[24]: array([[[1, 9],
[2, 8],
[3, 7],
[4, 6]]])

In [25]: np.vstack((a,b))

Out[25]: array([[1, 2, 3, 4],
[9, 8, 7, 6]])

In [26]: np.hstack((a,b))

Out[26]: array([1, 2, 3, 4, 9, 8, 7, 6])

We will use these functions frequently in upcoming chapters

20.4.2 Aggregate Functions

Aggregate Functions are those which operates on entire array, to provide an overview of the elements

sum, average like functions fall in this catagory

We will use the below array to illustrate the usage of aggregate functions

In [27]: s = np.sin(x)
s

Out[27]: array([[-0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849],
[0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025],
[0.65028784, -0.28790332, -0.96139749, -0.75098725, 0.14987721],
[-0.54402111, -0.99999021, -0.53657292, 0.42016704, 0.99060736]])

In [28]: np.sum(s) # You understood it, right?!

Out[28]: 0.085276633692154657

In [29]: np.average(s)

Out[29]: 0.0042638316846077325

In [30]: np.min(x)

Out[30]: 0

In [31]: np.max(s)

Out[31]: 0.99060735569487035

At current point, we will stop. This basic understanding of numpy is enough to understand the concepts
of Algorithm Analysis in upcoming part.

Interested readers can refer the NumPy Official Tutorial at SciPy10

10 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

20.4. Functions that operates on ndarrays 60

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

21
Data Visualization

When we have thousands of sampled numerical data, it makes no sense without classifying them and
analyzing them. Many Statistical tools are available to classify the data in Python. pandas is one such
library. After classifying the data, it is useful to visualize the classified data. Visualization can result
in greater understanding of Data, such as Corelation and so on. matplotlib is one of the famous,
easy-to-use library for data visualization

21.1 Standard Import statement

In matplotlib, we won’t use entire library. We just use a part of library which is dedicated for plotting
data. In further discussions related about matplotlib, we assume that the reader has imported the
library in following manner

In [1]: import matplotlib.pyplot as plt

21.2 Our First Graph - A Parabola

𝑦 = 𝑥2 is the equation of standard parabola. We sample some 𝑥 values and calculate the square of them.
Then we plot a graph of 𝑦 versus 𝑥 to obtain the parabola

In [2]: import numpy as np

In [3]: x = np.arange(50) # 0..19
y = x**2

In [4]: plt.plot(x,y) # First argument is x data, second data is y data
plt.show() , If in Python Script

Out[4]: [<matplotlib.lines.Line2D at 0x7fda54f14ba8>]

61

openanalysis Documentation, Release 1.0-rc

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Note

If not using a Interactive Notebook or IPython shell, then issue a

plt.show()

to see the plot

Also see how matplotlib converted set of points to represent a parabola by interpolation

21.3 Customizing the Graph - Changing its type and color

When representing various data in graph, different style must be used to distinguish between the data
sets. In this section, we will see how to manipulate the line style and color. Following are the named
arguments that are sent to plot() functions.

21.3.1 linestyle = value

can be used to change line style.

We shall see the inbuilt lineStyles dict to see what are the possible styles for value

{'-': '_draw_solid', '--': '_draw_dashed', '-.': '_draw_dash_dot', ':': '_draw_dotted', 'None
→˓': '_draw_nothing', ' ': '_draw_nothing', '': '_draw_nothing'}

21.3.2 color = value

can be used to change color of line. value can be one of

• b: blue

• g: green

• r: red

• c: cyan

21.3. Customizing the Graph - Changing its type and color 62

openanalysis Documentation, Release 1.0-rc

• m: magenta

• y: yellow

• k: black

• w: white

21.3.3 alpha = value

𝛼 - value determines the visibility of plot. It is a floating point number between 0 and 1. 𝛼 = 0 implies
that the plot is not visible. 𝛼 = 1 implies that the plot is completely visible

21.4 Plotting multiple graphs on same axis

Many times, it is required to plot many datasets on same axis, so that we can compare them. MatPlotLib
makes it possibe in a simple way. One can achieve this by issuing plotting commands successively and
finally issuing a show().

21.5 An All-in-One example

Let’s examine all these things by plotting 𝑦 = 1
𝑥 , 𝑦 = sin(𝑥), 𝑦 = cos(2𝑥) and 𝑦 = 2 sin(2𝑥) in a single

plot. Instead of using np.arange() for 𝑥 data, We shall use the np.linspace() method

21.5.1 np.linspace(start, stop, num=50)

Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

Parameters:

• start : scalar : The starting value of the sequence.

• stop : scalar : The end value of the sequence, unless endpoint is set to False. In that case, the
sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded.
Note that the step size changes when endpoint is False.

• num : int, optional : Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional

Returns:

• samples : ndarray : There are num equally spaced samples in the closed interval [start, stop]
or the half-open interval [start, stop) (depending on whether endpoint is True or False).

In [5]: f1 = lambda x: 1/x
f2 = lambda x: np.sin(x)
f3 = lambda x: np.cos(2 * x)
f4 = lambda x: 2 * np.sin(2 * x)
x = np.linspace(-4 * np.pi, 4 * np.pi , 200)
p1 = plt.plot(x,f1(x), color = 'r', alpha = 0.5)
plt.plot(x,f2(x), color = 'g', alpha = 0.8)
plt.plot(x,f3(x), color = 'b', alpha = 0.6)

21.4. Plotting multiple graphs on same axis 63

openanalysis Documentation, Release 1.0-rc

plt.plot(x,f4(x), color = 'y', alpha = 0.6)
plt.show() # If using in Python Script

Out[5]: [<matplotlib.lines.Line2D at 0x7fda54bc49b0>]

10 5 0 5 10

15

10

5

0

5

10

15

21.6 Subplots

In many cases, we want the opposite of what we have just discussed. We want to plot the data sets in
different subplots. MatplotLib has many ways to obtain the subplots of given plot. Here we will just
discuss one of them.

plt.subplot(nrows,ncols,active)

creates the subplots with shape 𝑛𝑟𝑜𝑤𝑠 × 𝑛𝑐𝑜𝑙𝑠, and selects a subplot for plotting specified on active.
active is a 1 based index for selecting subplot. It selects subplots in row-wise order.

21.7 Adding Title

Adding title to subplot can be achieved via

plt.title('label')

Adding title to Super plot can be achieved by

plt.suptitle('label')

21.8 An example

In the below example, Let’s see all of the things discussed in action

In [6]: functions = [lambda x: 1/x, lambda x: np.sin(x), lambda x: np.cos(2 * x), lambda x: 2
* np.sin(2 * x)]→˓

lables = [r'$y = \frac{1} {x} $' , '$y = sin(x)$', '$y = cos(2x)$', '$y = 2 sin(2x)$']

21.6. Subplots 64

openanalysis Documentation, Release 1.0-rc

x = np.linspace(-4 * np.pi, 4 * np.pi , 200)
plt.suptitle('Some curves in xy plane')

for i,(function,label) in enumerate(zip(functions,lables),start = 1):
zip() combines 2 iterables as list of tuples
enumerate() enumerated the zip here
enumerate returns an iterator through (count,value) tuples
but value is iteself is a tuple of (funciton,label) here
So we have to catch a tuple (count,(function,lablel))
plt.subplot(2,2,i)
plt.plot(x, function(x))
plt.title(label)

plt.tight_layout(h_pad=3) # Exclude this and see what happens
plt.show() # if using in script

10 0 10

10

0

10

y = 1
x

10 0 10
1

0

1
y = sin(x)

10 0 10
1

0

1
y = cos(2x)

10 0 10
2

0

2
y = 2sin(2x)

Some curves in xy plane

21.9 Plotting irregular data - Scatter and Bar Plots

Some data shows irregular pattern, due to which they can’t be interpolated. When plotting such data,
MatplotLib behaves crazily. In this situation, we have to use some other plotting method other than
plot(). Before exploring other methods, Let’s see a situation where ordinary plotting doesn’t work.

In [7]: arr = np.linspace(-10,10)
x = np.copy(arr) # If you use x = arr, their reference will be copied
np.random.shuffle(arr)
plt.plot(x,arr)
plt.show() # if using in Python Script

Out[7]: [<matplotlib.lines.Line2D at 0x7fda540f7eb8>]

21.9. Plotting irregular data - Scatter and Bar Plots 65

openanalysis Documentation, Release 1.0-rc

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Above image does not seem to be like a plot of some Polynomial or Other function. In fact, We will not
treat them as plot of some function. They are just data.

To visualize this kind of data, Scatter and Bar plots can be used

21.9.1 Scatter Plot

Scatter plot only plots the sample points, instead of interpolation and drawing lines between them. It
takes the same arguments as that of plot(). Let’s see one

In [8]: plt.scatter(x, arr, color='b',alpha = 0.6)

Out[8]: <matplotlib.collections.PathCollection at 0x7fda540dec50>

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Note how we changed the color and alpha of plot.

21.9. Plotting irregular data - Scatter and Bar Plots 66

openanalysis Documentation, Release 1.0-rc

21.9.2 Bar Plot

Bar plot visualizes the data as bars, whose height is proportional to the magnitude of data. Let’s plot
the same data as bar chart and understand it’s customization.

In [9]: plt.bar(x, arr, alpha = 0.6, edgecolor='k')

Out[9]: <Container object of 50 artists>

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Note how rectangle edges are visible with black color. Overlapping rectangles are also visible with 𝛼 = 0.6

21.10 Visualizing 2D Data - Matrix

A matrix can be interpreted as values of a function 𝑓(𝑖, 𝑗) where 𝑖 and 𝑗 are indices of matrix. Now 𝑓
can be visualized as a surface over 𝑖𝑗𝑝𝑙𝑎𝑛𝑒. This requires switching to 3D co-ordinates. Instead of doing
that, one can visualize the same in 2D plane by mapping the each value to a colormap. In MatplotLib,
we can do this by imshow() and matshow()

In [10]: data = np.arange(100)
np.random.shuffle(data)
data.shape = (10,10)
plt.matshow(data)

Out[10]: <matplotlib.image.AxesImage at 0x7fda54bfa400>

21.10. Visualizing 2D Data - Matrix 67

openanalysis Documentation, Release 1.0-rc

0 2 4 6 8

0

2

4

6

8

To know what color means what value, one can enable the colorbar

In [11]: plt.matshow(data)
plt.colorbar()

Out[11]: <matplotlib.colorbar.Colorbar at 0x7fda54b9ddd8>

0 2 4 6 8

0

2

4

6

8

0

20

40

60

80

Let’s experiment with some large data

In [12]: n = 1000
data = np.arange(n**2)
np.random.shuffle(data)
data.shape = (n,n)
plt.matshow(data)
plt.colorbar()

Out[12]: <matplotlib.colorbar.Colorbar at 0x7fda4efbf828>

21.10. Visualizing 2D Data - Matrix 68

openanalysis Documentation, Release 1.0-rc

0 200 400 600 800 1000
0

200

400

600

800

1000

0

200000

400000

600000

800000

It looks like above plot is like a random image. In fact, images are also matrices. Different file formats
like jpeg,png and tiff store the matrix and associated data in different ways.

Consider an image with resolution 1900 * 1600

• Its data is a matrix with shape (1900 , 1600)

• If it is a color image, Each element of matrix is either a value, 3-tuple or 4-tuple based on it’s color
scheme

• If image is monochromatic, each element of matrix is value. 0 representing white, 255 representing
black

• If color scheme of image is RGB, each element of matrix is (Red,Green,Black) tuple with each
element ranging from 0 to 256

• If color scheme of image is CMYK, each element of matrix is (Cyan,Magenta,Yellow,blacK) tuple
with each element ranging from 0 to 256

Since image is a matrix, any operation on matrix is a operation on image. It is the basis of how Photo
Editing Softwares work. It is also the fundamental of a field of Computer Science known as Image
Processing

21.11 Going Further

In this tutorial, we have seen just the fundamentals of Data Visualizations using matplotlib. There are
many more kinds of plots, one can even animate the plots. Interested reader can refer Official Tutorial11

11 https://matplotlib.org/users/pyplot_tutorial.html

21.11. Going Further 69

https://matplotlib.org/users/pyplot_tutorial.html

22
Introduction to Graph Analysis with networkx

Graph theory deals with various properties and algorithms concerned with Graphs. Although it is very
easy to implement a Graph ADT in Python, we will use networkx library for Graph Analysis as it has
inbuilt support for visualizing graphs. In future versions of networkx, graph visualization might be
removed. When this happens, it is required to modify some parts of this chapter

22.1 Standard import statement

Throughout this tutorial, we assume that you have imported networkx as follows

In [38]: import networkx as nx

22.2 Creating Graphs

Create an empty graph with no nodes and no edges.

In [39]: G = nx.Graph()

By definition, a Graph is a collection of nodes (vertices) along with identified pairs of nodes (called edges,
links, etc). In NetworkX, nodes can be any hashable object e.g. a text string, an image, an XML object,
another Graph, a customized node object, etc. (Note: Python’s None object should not be used as a
node as it determines whether optional function arguments have been assigned in many functions.)

22.3 Nodes

The graph G can be grown in several ways. NetworkX includes many graph generator functions and
facilities to read and write graphs in many formats. To get started, we’ll look at simple manipulations.
You can add one node at a time,

In [40]: G.add_node(1)

add a list of nodes,

In [41]: G.add_nodes_from([2,3])

22.4 Edges

G can also be grown by adding one edge at a time,

70

openanalysis Documentation, Release 1.0-rc

In [42]: G.add_edge(1,2)
e=(2,3)
G.add_edge(*e) # Unpacking tuple

by adding a list of edges,

In [43]: G.add_edges_from([(1,2),(1,3)])

we add new nodes/edges and NetworkX quietly ignores any that are already present.

At this stage the graph G consists of 3 nodes and 3 edges, as can be seen by:

In [44]: G.number_of_nodes()

Out[44]: 3

In [45]: G.number_of_edges()

Out[45]: 3

22.5 Accessing edges

In addition to the methods Graph.nodes, Graph.edges, and Graph.neighbors, iterator versions (e.g.
Graph.edges_iter) can save you from creating large lists when you are just going to iterate through
them anyway.

Fast direct access to the graph data structure is also possible using subscript notation.

Warning

Do not change the returned dict–it is part of the graph data structure and direct manipulation may
leave the graph in an inconsistent state.

In [46]: G.nodes()

Out[46]: [1, 2, 3]

In [47]: G.edges()

Out[47]: [(1, 2), (1, 3), (2, 3)]

In [48]: G[1]

Out[48]: {2: {}, 3: {}}

In [49]: G[1][2]

Out[49]: {}

You can safely set the attributes of an edge using subscript notation if the edge already exists.

In [50]: G[1][2]['weight'] = 10

In [51]: G[1][2]

Out[51]: {'weight': 10}

Fast examination of all edges is achieved using adjacency iterators. Note that for undirected graphs this
actually looks at each edge twice.

In [52]: FG=nx.Graph()
FG.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in FG.adjacency_iter():

for nbr,eattr in nbrs.items():
data=eattr['weight']
if data<0.5: print('(%d , %d , %.3f)' % (n,nbr,data))

(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)

22.5. Accessing edges 71

openanalysis Documentation, Release 1.0-rc

In [53]: list(FG.adjacency_iter())

Out[53]: [(1, {2: {'weight': 0.125}, 3: {'weight': 0.75}}),
(2, {1: {'weight': 0.125}, 4: {'weight': 1.2}}),
(3, {1: {'weight': 0.75}, 4: {'weight': 0.375}}),
(4, {2: {'weight': 1.2}, 3: {'weight': 0.375}})]

Convenient access to all edges is achieved with the edges method.

In [54]: for (u,v,d) in FG.edges(data='weight'):
if d<0.5: print('(%d , %d , %.3f)'%(n,nbr,d))

(4, 3, 0.125)
(4, 3, 0.375)

22.6 Adding attributes to graphs, nodes, and edges

Attributes such as weights, labels, colors, or whatever Python object you like, can be attached to graphs,
nodes, or edges.

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary
(the keys must be hashable). By default these are empty, but attributes can be added or changed using
add_edge, add_node or direct manipulation of the attribute dictionaries named G.graph, G.node and
G.edge for a graph G.

22.6.1 Graph attributes

Assign graph attributes when creating a new graph

In [55]: G = nx.Graph(day="Friday")
G.graph

Out[55]: {'day': 'Friday'}

Or you can modify attributes later

In [56]: G.graph['day']='Monday'
G.graph

Out[56]: {'day': 'Monday'}

22.6.2 Node attributes

Add node attributes using add_node(), add_nodes_from() or G.node

In [57]: G.add_node(1,time = '5pm')

In [58]: G.add_nodes_from([3], time='2pm')

In [59]: G.node[1]

Out[59]: {'time': '5pm'}

In [60]: G.node[1]['room'] = 714

In [61]: G.nodes(data=True)

Out[61]: [(1, {'room': 714, 'time': '5pm'}), (3, {'time': '2pm'})]

Note that adding a node to G.node does not add it to the graph, use G.add_node() to add new nodes.

22.6. Adding attributes to graphs, nodes, and edges 72

openanalysis Documentation, Release 1.0-rc

22.6.3 Edge Attributes

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

In [62]: G.add_edge(1, 2, weight=4.7)

In [63]: G[1][2]

Out[63]: {'weight': 4.7}

In [64]: G.add_edges_from([(3,4),(4,5)], color='red')

In [65]: G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])

In [66]: G[1][2]['weight'] = 4.7

In [67]: G.edge[1][2]['weight'] = 4

In [68]: G.edges(data=True)

Out[68]: [(1, 2, {'color': 'blue', 'weight': 4}),
(2, 3, {'weight': 8}),
(3, 4, {'color': 'red'}),
(4, 5, {'color': 'red'})]

22.7 Converting Graph to Adjacency matrix

You can use nx.to_numpy_matrix(G) to convert G to numpy matrix. If the graph is weighted, the
elements of the matrix are weights. If an edge doesn’t exsist, its value will be 0, not Infinity. You have
to manually modify those values to Infinity (float('inf'))

In [69]: nx.to_numpy_matrix(G)

Out[69]: matrix([[0., 4., 0., 0., 0.],
[4., 0., 8., 0., 0.],
[0., 8., 0., 1., 0.],
[0., 0., 1., 0., 1.],
[0., 0., 0., 1., 0.]])

In [70]: nx.to_numpy_matrix(FG)

Out[70]: matrix([[0. , 0.125, 0.75 , 0.],
[0.125, 0. , 0. , 1.2],
[0.75 , 0. , 0. , 0.375],
[0. , 1.2 , 0.375, 0.]])

22.8 Drawing graphs

NetworkX is not primarily a graph drawing package but basic drawing with Matplotlib as well as an
interface to use the open source Graphviz software package are included. These are part of the net-
workx.drawing package and will be imported if possible

In [71]: %matplotlib inline
import matplotlib.pyplot as plt

In [72]: nx.draw(FG)

22.7. Converting Graph to Adjacency matrix 73

openanalysis Documentation, Release 1.0-rc

Now we shall draw the graph using graphviz layout

In [73]: from networkx.drawing.nx_agraph import graphviz_layout
pos = graphviz_layout(FG)
plt.axis('off')
nx.draw_networkx_nodes(FG,pos,node_color='g',alpha = 0.8) # draws nodes
nx.draw_networkx_edges(FG,pos,edge_color='b',alpha = 0.6) # draws edges
nx.draw_networkx_edge_labels(FG,pos,edge_labels = nx.get_edge_attributes(FG,'weight'))

edge lables→˓

nx.draw_networkx_labels(FG,pos) # node lables

Out[73]: {1: <matplotlib.text.Text at 0x7f2e2eecacc0>,
2: <matplotlib.text.Text at 0x7f2e2eecaba8>,
3: <matplotlib.text.Text at 0x7f2e2ee97e80>,
4: <matplotlib.text.Text at 0x7f2e2ee97be0>}

22.8. Drawing graphs 74

openanalysis Documentation, Release 1.0-rc

0.125

0.75

0.375

1.2

1

2

3

4

22.9 Going Further

We have only seen the basic graph functionalities. In addition to this, NetworkX provides many Graph
Algorithms, and Many types of Graphs. Interested reader can look at Official Documentation12

12 https://networkx.readthedocs.io/en/stable/

22.9. Going Further 75

https://networkx.readthedocs.io/en/stable/

Part III

Exploring openanalysis

76

23
Introduction to openanalysis

In our daily life, we encounter many algorithms. Knowingly or Unknowingly, algorithms make our life
easier. Analysis of algorithms is a special field of interest in Computer Science. Analysis evaluates the
algorithm, and leads to invention of faster algorithms. Visualization leads to the better understanding
of how algorithms work. The package openanalysis is inteded as a tool for analyzing and visualizing
algorithms.

23.1 Types of supported algorithms

The following types of algorithms are currently supported. We plan to support more kind of algorithms
in the future.

• Comparison based Sorting Algorithms (Analysis + Visualization)

• Comparison based Searching Algorithms (Analysis)

• Comparison based Pattern Matching Algorithms (Analysis)

• Data Structures and Related algorithms (Visualization)

• Graph Algorithms based on Tree Growth technique (Visualizaiton)

• Graph Algorithms utilizing Matrix and Dynamic Programming (Visualization)

23.2 Setting up openanalysis

23.2.1 Dependency Binary Packages

openanalysis expects few binary packages to be installed, which are not installed automatically by the
installer. In Linux, you can install these packages via your package manager. For Windows, grab the
downloads from their websites.

• graphviz13

• ffmpeg14

• libgraphviz-dev for compiling pygraphviz in Linux

• pkg-config for compiling pygraphviz in Linux

• python3-tk as matplotlib backend in Linux
13 http://www.graphviz.org/
14 https://johnvansickle.com/ffmpeg/

77

http://www.graphviz.org/
https://johnvansickle.com/ffmpeg/

openanalysis Documentation, Release 1.0-rc

• Visual C++ 2015 Build Tools15 for compiling pygraphviz in Windows

• Python 3.5 or later

23.2.2 Installation

pip install openanalysis # Or pip3 depending on your configuration

If all things go well, you have a working installation of openanalysis.

23.3 Inside the package

openanalysis has following package structure.

openanalysis/
base_data_structures.py - Provides PriorityQueue and UnionFind data structures
datastructures.py - Provides classes for Data Structure Visualization
matrix_animator.py - Provides classes for DP based Graph algorithms
searching.py - Provides classes for Sorting algorithms
sorting.py - Provides classes for Searching algorithms
string_matching.py - Provides classes for String Matching algorithms
tree_growth.py - Provides classes for Tree growth based Graph␣

→˓Algorithms

23.4 importing the modules

Since openanalysis root does not have any classes as is, we will import methods from its modules. In
further chapters, we shall see the purpose of every modules and shall use it.

23.5 Key factor for analysis

In Computer Science, running time of algorithms is greately considered. Every alorithm solves the given
instance of problem by performing some basic operation. The time taken by the algorithm is directly
proportional to number of basic operations it has performed.

In normal working environment, time taken by the algorithm to solve a problem is affected by task
scheduling performed by OS. We have to fit the obtained running time data in order to analyse the
algorithm. Instead of using running time as a key for analysis, we will use number of basic operations
as a key in openanalysis.

This change in key factor implies, we have to adhere to a standard for implementing algorithms. In fact,
openanalysis provides such standards, either in the form of rules, or in the form of Base Classes. We
shall see those rules in upcomming chapter. In future builds, we plan to include Time-based analysis
also.

15 http://landinghub.visualstudio.com/visual-cpp-build-tools

23.3. Inside the package 78

http://landinghub.visualstudio.com/visual-cpp-build-tools

24
Sorting Analysis

Consider a finite collection of orderable elements. Re-arranging that collection, so that the collection is
completely ordered is called sorting. There are many techiniques to sort a collection. Following are some
of the comparision based Sorting Algorithms.

• Bubble Sort

• Insertion Sort

• Selection Sort

• Merge Sort

• Quick Sort

• Heap Sort

Before looking at the analysis part, we shall examine the Language in built methods to sorting

24.1 sorted(collection,reverse = False[,key])

This function takes an iterable as argument, and returns it in sorted form based on key. If key is not
given, sorting is done according to default comparision rules. Let’s see the examples and understand the
working of sorted(). If reverse is True, reversed collection is returned after sorting.

In [1]: x = list(range(10))
import random
random.shuffle(x)

In [2]: x

Out[2]: [6, 7, 9, 0, 4, 5, 8, 2, 1, 3]

In [3]: sorted(x)

Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [4]: import math
y = sorted(x,key = lambda x: math.sin(x)) # Sort elements of x in increasing order of

their sines→˓

y

Out[4]: [5, 4, 6, 0, 3, 9, 7, 1, 2, 8]

In [5]: [math.sin(i) for i in y]

Out[5]: [-0.9589242746631385,
-0.7568024953079282,
-0.27941549819892586,
0.0,

79

openanalysis Documentation, Release 1.0-rc

0.1411200080598672,
0.4121184852417566,
0.6569865987187891,
0.8414709848078965,
0.9092974268256817,
0.9893582466233818]

Note how the elements of sin(y) are in increasing order.

24.2 Standard import statement

In [2]: from openanalysis.sorting import SortingAlgorithm,SortAnalyzer
import numpy as np # for doing vstack()

SortingAlgorithm is the base class providing the standards to implement sorting algorithms,
SortAnalyzer visualizes and analyses the algorithm

24.3 SortingAlgorithm class

Any sorting algorithm, which has to be implemented, has to be derived from this class. Now we shall
see data members and member functions of this class.

24.3.1 Data Members

• name - Name of the Sorting Algorithm

• count - Holds the number of basic operations performed

• hist_arr - A 2D numpy array, holding the instances of array, as exchange is performed

24.3.2 Member Functions

• __init__(self, name): - Initializes algorithm with a name

• sort(self, array, visualization): - The base sorting function. Sets count to 0. array is 1D
numpy array, visualization is a bool indicating whether array has to be vstacked into hist_arr

24.4 An example Bubble Sort

Now we shall implement the class BubbleSort

In [7]: class BubbleSort(SortingAlgorithm): # Derived from
SortingAlgorithm→˓

def __init__(self):
SortingAlgorithm.__init__(self, "Bubble Sort") # Initializing with name

def sort(self, array, visualization=False): # MUST have this signature
SortingAlgorithm.sort(self, array, visualization) # sets self.count to 0
for i in range(0, array.size): # Not len(array)

exch = False
for j in range(0, array.size - i - 1):

self.count += 1 # Increment self.count after
each basic operation→˓

if array[j] > array[j + 1]:
array[j], array[j + 1] = array[j + 1], array[j]
exch = True

24.2. Standard import statement 80

openanalysis Documentation, Release 1.0-rc

if visualization:
self.hist_array = np.vstack([self.hist_array, array]) # Save the

current state to hist_array→˓

if not exch:
break

if visualization:
self.hist_array = np.vstack([self.hist_array, array]) # Save the final

state to hist_array→˓

24.5 SortAnalyzer class

This class provides the visualization and analysis methods. Let’s see its methods in detail

• __init__(self, sorter): Initializes visualizer with a Sorting Algorithm.

– sorter is a class, which is derived from SortingAlgorithm

• visualize(self, num=100, save=False): Visualizes the given algorithm with a randomly shuf-
fled array.

– num size of randomly shuffled array

– save is True means animation is saved in output/

• analyze(self, maxpts=1000):

– Plots the running time of sorting algorithm by sorting for 3 cases

– Already Sorted array, reverse sorted array and Shuffled array

– Analysis is done by inputting randomly shuffled integer arrays with size staring from 100, and
varying upto maxpts in the steps of 100, and counting the number of basic operations

– maxpts - Upper bound on size of elements chosen for analysing efficiency

In [8]: bubble_visualizer = SortVisualizer(BubbleSort)

In [9]: bubble_visualizer.efficiency()

0 250 500 750
No. of Elements

0

500

No
. o

f B
as

ic
Op

er
at

io
ns Sorted Array

0 250 500 750
No. of Elements

0

200000

400000

No
. o

f B
as

ic
Op

er
at

io
ns Randomly Shuffled Array

0 250 500 750
No. of Elements

0

200000

400000

No
. o

f B
as

ic
Op

er
at

io
ns Reverse Sorted Array

Bubble Sort Analysis

24.5. SortAnalyzer class 81

openanalysis Documentation, Release 1.0-rc

As you can see in the above plot, BubbleSort takes 𝒪(𝑛) time on best case and 𝒪(𝑛2) time on both
avarage and worst cases

You can call the visualize function as shown below and see the ‘mp4’ file saved at output/ folder

bubble_visualizer.visualize(save=True)

24.6 compare(algs)

algs is a list of classes derived from SortingAlgorithm. It performs tests and plots the bar graph
comparing the number of basic operations performed by each algorithm.

24.7 Why use a class if sorting could be done using a function

We have just seen how BubbleSort is implemented. Every sorting algorithm is not as simple as
BubbleSort. QuickSort and MergeSort needs several auxiliary methods to work with. If they are
scattered throughout the code, they decrease the readability. So it is better to pack everything in a class.

24.8 Example File

You can see more examples at Github16

16 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/sorting.py

24.6. compare(algs) 82

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/sorting.py

25
Searching Analysis

Consider a finite collection of element. Finding whether element exsists in collection is known as Search-
ing. Following are some of the comparision based Searching Algorithms.

• Linear Search

• Binary Search

Before looking at the analysis part, we shall examine the Language in built methods to searching

25.1 The in operator and list.index()

We have already seen the in operator in several contexts. Let’s see the working of in operator again

In [1]: x = list(range(10))

In [2]: x

Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [3]: 6 in x

Out[3]: True

In [4]: 100 in x

Out[4]: False

In [5]: x.index(6)

Out[5]: 6

In [6]: x.index(100)

ValueError Traceback (most recent call last)
<ipython-input-6-0f87238c301b> in <module>()
----> 1 x.index(100)

ValueError: 100 is not in list

25.2 Standard import statement

In [16]: from openanalysis.searching import SearchingAlgorithm,SearchAnalyzer
%matplotlib inline
%config InlineBackend.figure_formats={"svg", "pdf"}

83

openanalysis Documentation, Release 1.0-rc

SearchingAlgorithm is the base class providing the standards to implement searching algorithms,
SearchAnalyzer analyses the algorithm

25.3 SearchingAlgorithm class

Any searching algorithm, which has to be implemented, has to be derived from this class. Now we shall
see data members and member functions of this class.

25.3.1 Data Members

• name - Name of the Searching Algorithm

• count - Holds the number of basic operations performed

25.3.2 Member Functions

• __init__(self, name): - Initializes algorithm with a name

• search(self, array, key): _ The base searching function. Sets count to 0. array is 1D numpy
array,key is the key of element to be found out

25.4 An example Binary Search

Now we shall implement the class BinarySearch

In [17]: class BinarySearch(SearchingAlgorithm): # Inheriting
def __init__(self):

SearchingAlgorithm.__init__(self, "Binary Search") # Initailizing with name

def search(self, arr, key):
SearchingAlgorithm.search(self, arr, key) # call base class search
low, high = 0, arr.size - 1
while low <= high:

mid = int((low + high) / 2)
self.count += 1 # Increment for each basic

operation performed→˓

if arr[mid] == key:
return True

elif arr[mid] < key:
low = mid + 1

else:
high = mid - 1

return False

25.5 SearchAnalyzer class

This class provides the visualization and analysis methods. Let’s see its methods in detail

• __init__(self, searcher): Initializes visualizer with a Searching Algorithm.

– searcher is a class, which is derived from SearchingAlgorithm

• analyze(self, maxpts=1000):

– Plots the running time of searching algorithm by searching in 3 cases

– Key is the first element, Key is the last element, Key at random index

25.3. SearchingAlgorithm class 84

openanalysis Documentation, Release 1.0-rc

– Analysis is done by inputting sorted integer arrays with size staring from 100, and varying
upto maxpts in the steps of 100, and counting the number of basic operations

– maxpts Upper bound on size of elements chosen for analysing efficiency

In [18]: bin_visualizer = SearchAnalyzer(BinarySearch)

<matplotlib.figure.Figure at 0x7ff57329b978>

In [19]: bin_visualizer.analyze(progress=False)

Please wait while analyzing Binary Search Algorithm

0 250 500 750
No. of Elements

0.0
2.5
5.0
7.5

No
. o

f B
as

ic
Op

er
at

io
ns First Element is the key

0 250 500 750
No. of Elements

0.0
2.5
5.0
7.5

No
. o

f B
as

ic
Op

er
at

io
ns Middle Element is the key

0 250 500 750
No. of Elements

0

5

10

No
. o

f B
as

ic
Op

er
at

io
ns Key not in array

0 250 500 750
No. of Elements

0

5

10

No
. o

f B
as

ic
Op

er
at

io
nsKey at random position in the array

Binary Search Analysis

Note 𝒪(log 𝑛) performance in all cases

25.6 compare(algs)

algs is a list of classes derived from SearchingAlgorithm. It performs tests and plots the bar graph
comapring the number of basic operations performed by each algorithm.

25.7 Example File

You can see more examples at Github17

17 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/searching.py

25.6. compare(algs) 85

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/searching.py

26
String Matching Analysis

Consider a string of finite length 𝑚 Let it be 𝑇 . Finding whether a string 𝑃 of length 𝑛 exsists in 𝑇 is
known as String Matching, Following is some of the comparision based String Matching Algorithms.

• Brute Force String Matching Algorithm

• Horspool String Matching

• Boyer - Moore String Matching

Before looking at the analysis part, we shall examine the Language in built methods to sorting

26.1 The in operator and str.index()

We have already seen the in operator in several contexts. Let’s see the working of in operator again

In [1]: x = 'this is some random text used for illustrative purposes'

In [2]: x

Out[2]: 'this is some random text used for illustrative purposes'

In [3]: 'this' in x

Out[3]: True

In [4]: 'not' in x

Out[4]: False

In [5]: x.index('is')

Out[5]: 2

In [6]: x.index('not')

ValueError Traceback (most recent call last)
<ipython-input-6-a1f052cc5af7> in <module>()
----> 1 x.index('not')

ValueError: substring not found

26.2 Standard import statement

In [10]: from openanalysis.string_matching import
StringMatchingAlgorithm,StringMatchingAnalyzer→˓

%matplotlib inline

86

openanalysis Documentation, Release 1.0-rc

%config InlineBackend.figure_formats={"svg", "pdf"}

StringMatchingAlgorithm is the base class providing the standards to implement sorting algorithms,
SearchVisualizer visualizes and analyses the algorithm

26.3 StringMatchingAlgorithm class

Any String Matching Algorithm, which has to be implemented, has to be derived from this class. Now
we shall see data members and member functions of this class.

26.3.1 Data Members

• name - Name of the Searching Algorithm

• count - Holds the number of basic operations performed

26.3.2 Member Functions

• __init__(self, name): - Initializes algorithm with a name

• match(self, text, pattern) _ The base String Matching function. Sets count to 0.

26.4 An example Horspool String Matching Algorithm

Now we shall implement the class Horspool

In [11]: class Horspool(StringMatchingAlgorithm): # Must derive from
StringMatchingAlgorithm→˓

def __init__(self):
StringMatchingAlgorithm.__init__(self, "Hosrpool String Matching")
self.shift_table = {}
self.pattern = ''

def generate_shift_table(self, pattern): # class is needed to include
helper methods→˓

self.pattern = pattern
for i in range(0, len(pattern) - 1):

self.shift_table[pattern[i]] = len(pattern) -i - 1

def match(self, text: str, pattern: str):
StringMatchingAlgorithm.match(self, text, pattern)
self.generate_shift_table(pattern)
i = len(self.pattern) - 1
while i < len(text):

j = 0
while j < len(self.pattern) and text[i-j] ==

self.pattern[len(self.pattern)-1-j]:→˓

j += 1
self.count += j # Increment count

here→˓

if j == len(self.pattern):
return i-len(self.pattern)+1

if text[i] in self.shift_table:
i += self.shift_table[text[i]]

else:
i += len(self.pattern)

return -1

26.3. StringMatchingAlgorithm class 87

openanalysis Documentation, Release 1.0-rc

26.5 StringMatchingAnalyzer class

This class provides the visualization and analysis methods. Let’s see its methods in detail

• __init__(self, matching): Initializes visualizer with a String Matching Algorithm.

– searcher is a class, which is derived from StringMatchingAlgorithm

• analyze(self,progress = True):

– Plots the number of basic operations performed

– Both Text length and Pattern Length are varied

– Samples are chosen randomly from pre defined large data

– progress indicates whether Progress Bar has to be shown or not

In [13]: StringMatchingAnalyzer(Horspool).analyze(progress=False)

Please wait while analysing Hosrpool String Matching algorithm

length of text n

200040006000800010000
len

gth of
patt

ern
 m

200
400

600
800

1000

nu
m

be
r o

f b
as

ic
op

er
at

io
ns

 p
er

fo
rm

ed
 c

0
200
400
600
800
1000

200

300

400

500

600

700

800

900

Hosrpool String Matching Analysis
 Sample = upanishad.txt

Note 𝒪(𝑛) performance of algorithm

26.6 Example File

You can see more examples at Github18

18 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/string_matching.py

26.5. StringMatchingAnalyzer class 88

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/string_matching.py

27
Data Structures

Data structures are a concrete implementation of the specification provided by one or more particular
abstract data types (ADT), which specify the operations that can be performed on a data structure and
the computational complexity of those operations.

Different kinds of data structures are suited for different kinds of applications, and some are highly
specialized to specific tasks. For example, relational databases commonly use B-tree indexes for data
retrieval, while compiler implementations usually use hash tables to look up identifiers.

Usually, efficient data structures are key to designing efficient algorithms.

27.1 Standard import statement

In [1]: from openanalysis.data_structures import DataStructureBase, DataStructureVisualization
import gi.repository.Gtk as gtk # for displaying GUI dialogs

DataStructureBase is the base class for implementing data structures
DataStructureVisualization is the class that visualizes data structures in GUI

27.2 DataStructureBase class

Any data structure, which is to be implemented, has to be derived from this class. Now we shall see
data members and member functions of this class:

27.2.1 Data Members

• name - Name of the DS

• file_path - Path to store output of DS operations

27.2.2 Member Functions

• __init__(self, name, file_path) - Initializes DS with a name and a file_path to store the
output

• insert(self, item) - Inserts item into the DS

89

openanalysis Documentation, Release 1.0-rc

• delete(Self, item) - Deletes item from the DS, if item is not present in the DS, throws a
ValueError

• find(self, item) - Finds the item in the DS returns True if found, else returns Falsesimilar to
__contains__(self, item)

• get_root(self) - Returns the root (for graph and tree DS)

• get_graph(self, rt) - Gets the dict representation between the parent and children (for graph
and tree DS)

• draw(self, nth=None) - Draws the output to visualize the operations performed on the DS nth
is used to pass an item to visualize a find operation

27.3 DataStructureVisualization class

This class is used for visualizing data structures in a GUI (using GTK+ 3). Now we shall see data
members and member functions of this class:

27.3.1 Data Members

• ds - Any DS, which is an instance of DataStructureBase

27.3.2 Member Functions

• __init__(self, ds) - Initializes ds with an instance of DS that is to be visualized

• run(self) - Opens a GUI window to visualize the DS operations

27.4 An example Binary Search Tree

Now we shall implement the class BinarySearchTree

In [2]: class BinarySearchTree(DataStructureBase): # Derived from
DataStructureBase→˓

class Node: # Class for creating
a node→˓

def __init__(self, data):
self.left = None
self.right = None
self.data = data

def __str__(self):
return str(self.data)

def __init__(self):
DataStructureBase.__init__(self, "Binary Search Tree", "t.png") #

Initializing with name and path→˓

self.root = None
self.count = 0

def get_root(self): # Returns root node
of the tree→˓

return self.root

def insert(self, item): # Inserts item into
the tree→˓

27.3. DataStructureVisualization class 90

openanalysis Documentation, Release 1.0-rc

newNode = BinarySearchTree.Node(item)
insNode = self.root
parent = None
while insNode is not None:

parent = insNode
if insNode.data > newNode.data:

insNode = insNode.left
else:

insNode = insNode.right
if parent is None:

self.root = newNode
else:

if parent.data > newNode.data:
parent.left = newNode

else:
parent.right = newNode

self.count += 1

def find(self, item): # Finds if item is
present in tree or not→˓

node = self.root
while node is not None:

if item < node.data:
node = node.left

elif item > node.data:
node = node.right

else:
return True

return False

def min_value_node(self): # Returns the
minimum value node→˓

current = self.root
while current.left is not None:

current = current.left
return current

def delete(self, item): # Deletes item from
tree if present→˓

else shows Value
Error→˓

if item not in self:
dialog = gtk.MessageDialog(None, 0, gtk.MessageType.ERROR,

gtk.ButtonsType.CANCEL, "Value not found ERROR")
dialog.format_secondary_text(

"Element not found in the %s " % self.name)
dialog.run()
dialog.destroy()

else:
self.count -= 1
if self.root.data == item and (self.root.left is None or self.root.right is

None):→˓

if self.root.left is None and self.root.right is None:
self.root = None

elif self.root.data == item and self.root.left is None:
self.root = self.root.right

elif self.root.data == item and self.root.right is None:
self.root = self.root.left

return self.root
if item < self.root.data:

temp = self.root
self.root = self.root.left
temp.left = self.delete(item)

27.4. An example Binary Search Tree 91

openanalysis Documentation, Release 1.0-rc

self.root = temp
elif item > self.root.data:

temp = self.root
self.root = self.root.right
temp.right = self.delete(item)
self.root = temp

else:
if self.root.left is None:

return self.root.right
elif self.root.right is None:

return self.root.left
temp = self.root
self.root = self.root.right
min_node = self.min_value_node()
temp.data = min_node.data
temp.right = self.delete(min_node.data)
self.root = temp

return self.root

def get_graph(self, rt): # Populates
self.graph with elements depending→˓

upon the
parent-children relation→˓

if rt is None:
return

self.graph[rt.data] = {}
if rt.left is not None:

self.graph[rt.data][rt.left.data] = {'child_status': 'left'}
self.get_graph(rt.left)

if rt.right is not None:
self.graph[rt.data][rt.right.data] = {'child_status': 'right'}
self.get_graph(rt.right)

Now, this program can be executed as follows:

In [3]: DataStructureVisualization(BinarySearchTree).run()

In [4]: import io
import base64
from IPython.display import HTML

video = io.open('../res/bst.mp4', 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''<video alt="test" width="500" height="350" controls>

<source src="data:video/mp4;base64,{0} " type="video/mp4" />
</video>'''.format(encoded.decode('ascii')))

Out[4]: <IPython.core.display.HTML object>

27.5 Example File

You can see more examples at Github19

19 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/data_structures.py

27.5. Example File 92

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/data_structures.py

28
Tree Growth based Graph Algorithms

These class of algorithms takes a Graph as input, and generates Tree, which consists of some of edges of
input Graph, which are selected according to particular criteria. Some examples are

• DFS

• BFS

• Minimum Spanning Tree Problem (Prim’s and Kruskal’s Algorithm)

• Single Source Shortest Path Problem (Dijkstra’s Algorithm)

28.1 Standard import statement

In [6]: import openanalysis.tree_growth as TreeGrowth

28.2 Implementation Notes

• The algorithm should be implemented as a method

• The algorithm works on a networkx graph

• All algorithms start building the tree from a given source, But if source is not given, select source
as the first node of Graph

def algorithm_name(G,source = None):
if source is None:

source = G.nodes()[0]
do other work now

• As soon as node v is visited from node u, yield the tuple containing them

Assume that visiting is done
yield (u,v)

• To make your life easy, some data structures which comes handy while working with Graphs are
included in OpenAnalysis.base_data_structures

93

openanalysis Documentation, Release 1.0-rc

28.3 Example - Dijkstra’s Algorithm

Dijkstra’s Algorithm finds minimum spanning tree of a graph in greedy manner. The algorithm is given
below

Fig. 28.1: Dijkstra’s Algorithm

28.4 Implementation

Since we need a Priority Queue here, Let’s import it

In [7]: from openanalysis.base_data_structures import PriorityQueue

Now, Let’s implement the algorithm

In [8]: def dijkstra(G, source=None): # This signature is must
if source is None: source = G.nodes()[0] # selecting root as source
V = G.nodes()
dist, prev = {}, {}
Q = PriorityQueue()
for v in V:

dist[v] = float("inf")
prev[v] = None
Q.add_task(task=v, priority=dist[v])

dist[source] = 0
Q.update_task(task=source, new_priority=dist[source])
visited = set()
for i in range(0, len(G.nodes())):

u_star = Q.remove_min()
if prev[u_star] is not None:

28.3. Example - Dijkstra’s Algorithm 94

openanalysis Documentation, Release 1.0-rc

yield (u_star, prev[u_star]) # yield the edge as soon as we visit the
nodes→˓

visited.add(u_star)
for u in G.neighbors(u_star):

if u not in visited and dist[u_star] + G.edge[u][u_star]['weight'] <
dist[u]:→˓

dist[u] = dist[u_star] + G.edge[u][u_star]['weight']
prev[u] = u_star
Q.update_task(u, dist[u])

Note how implementation looks similiar to the algorithm, except the if block, which is used to yield
the edges.

28.5 Visualizing the Algorithm

• apply_to_graph(fun): Creates Random Geometric Graph of 100 nodes and applies fun on it to
build the tree. After building the tree, it shows original graph and the tree side by side

• tree_growth_visualizer(fun): Creates Random Geometric Graph of 100 nodes and applies fun
on it to build the tree. Saves the animation of building the tree in output/ folder

28.6 Random Geometric Graph

Random Geometric Graph is created using two parameters. Number of nodes 𝑛, and radiuus 𝑟. 𝑛 points
are chosen randomly on plane. The edge between 2 nodes is created if and only if the distance between
2 nodes is less than 𝑟

import networkx as nx
G = nx.random_geometric_graph(100,2.3) # n,r
pos = nx.get_node_attribute('pos')

In [10]: TreeGrowth.apply_to_graph(dijkstra)

28.5. Visualizing the Algorithm 95

openanalysis Documentation, Release 1.0-rc

Original Graph G Resultant Graph, R = dijkstra(G)

dijkstra algorithm application

After executing

TreeGrowth.tree_growth_visualizer(dijkstra)

go to output/ directory to see mp4 files

28.7 Example File

You can see more examples at Github20

20 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/tree_growth.py

28.7. Example File 96

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/tree_growth.py

29
Dynamic Programming based Graph Algorithms

These class of algorithms takes a Graph as input, using it’s adjacancy matrix , generates result matrix.
Some examples are

• Transitive clousure of graph

• All pair shortest path problem

29.1 Standard import statement

In [1]: from openanalysis.matrix_animator import MatrixAnimator
import numpy as np # Needed to work with arrays

29.2 Implementation Notes

• The algorithm should be implemented as a method

• The algorithm works on a networkx graph

• Obtain the adjacancy matrix as follws

def algorithm_name(G):
import networkx as nx
M = nx.to_numpy_matrix(G)
do other work now

• If Graph is weighted, matrix elements are weights. Default weight for an edge is 1. If an edge
doesn’t exsist, its weight will be treated as 0. When working with weighted graphs, You have to
MANUALLY set those weigthts to infinity.

m, n = M.shape
for i in range(0, n):

for j in range(0, n):
if i != j and D[i, j] == 0:

M[i, j] = float('inf')

• After each change in matrix, yield matrix, yield copy of current version of matrix, along with a
tuple containing current 3 co-ordinates at which change is caused

yield np.array(D), (i, j, k)

97

openanalysis Documentation, Release 1.0-rc

29.3 Example Warshall- Floyd Algorithm

Warshal-Floyd Algorithm computes All Pair Shortest Paths of a Graph using its adjacancy matrix

Now, Let’s implement the algorithm

In [2]: def Floyd_Warshall(G): # Must have signature like this
D = nx.to_numpy_matrix(G) # Obtaining Adj. matrix
m, n = D.shape
for i in range(0, n): # Making non-diagonal zeros to infinity, as it is

a Weighted Graph→˓

for j in range(0, n):
if i != j and D[i, j] == 0:

D[i, j] = float('inf')
yield np.array(D), (0, 0, 0) # Starting yield
count = 0
for k in range(0, n):

for i in range(0, n):
for j in range(0, n):

if D[i, j] > D[i, k] + D[k, j]:
yield np.array(D), (i, j, k) # yield as array changes
D[i, j] = D[i, k] + D[k, j]

count += 1
yield np.array(D), (0, 0, 0)

29.4 Visualizing the Algorithm - MatrixAnimator class

• __init__(self, fn, G):

– fn : A function yielding matrix along with 3-tuple

– G : Graph on which fn has to be applied and visualized

• animate(self, save=False):

– save is True implies animation is saved in output/ folder

• apply_to_graph(self, show_graph=True):

– applies self.fn to self.G and displays the result

– show_graph is True implies Graph is shown along with adjacancy matrix and final matrix

Here we shall create a matrix from numpy array, and assign random weights to its edges. Then we apply
our function to graph

In [3]: import networkx as nx
M = nx.from_numpy_matrix(

np.matrix(
[[0, 1, 0, 0, 1, 0],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
[1, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0]]

))
import random
for u, v in M.edges():

M.edge[u][v]['weight'] = random.randint(1, 10)
animator = MatrixAnimator(Floyd_Warshall, M)
animator.apply_to_graph()

29.3. Example Warshall- Floyd Algorithm 98

openanalysis Documentation, Release 1.0-rc

6

7

9

5

5

2

9

0

1

2

3

4

5

Graph G

0 1 2 3 4 5

0

1

2

3

4

5

0.0

6.0

inf

inf

5.0

inf

6.0

0.0

7.0

inf

2.0

inf

inf

7.0

0.0

9.0

inf

inf

inf

inf

9.0

0.0

5.0

9.0

5.0

2.0

inf

5.0

0.0

inf

inf

inf

inf

9.0

inf

0.0

Adjacency Matrix M

0 1 2 3 4 5

0

1

2

3

4

5

0.0

6.0

13.0

10.0

5.0

19.0

6.0

0.0

7.0

7.0

2.0

16.0

13.0

7.0

0.0

9.0

9.0

18.0

10.0

7.0

9.0

0.0

5.0

9.0

5.0

2.0

9.0

5.0

0.0

14.0

19.0

16.0

18.0

9.0

14.0

0.0

Final Matrix R

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Floyd_Warshall algorithm

After executing

animator.animate(save=True)

go to output/ directory to see the mp4 files

29.5 Example File

You can see more examples at Github21

21 https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/matrix_dp.py

29.5. Example File 99

https://github.com/OpenWeavers/openanalysis/blob/master/analysistest/matrix_dp.py

Part IV

API Referance

100

30
openanalysis.base_data_structures module

class openanalysis.base_data_structures.UnionFind
Union-find data structure.

Each unionFind instance X maintains a family of disjoint sets of hashable objects, supporting the
following two methods:

• X[item] returns a name for the set containing the given item. Each set is named by an
arbitrarily-chosen one of its members; as long as the set remains unchanged it will keep the
same name. If the item is not yet part of a set in X, a new singleton set is created for it.

• X.union(item1, item2, . . .) merges the sets containing each item into a single larger set. If
any item is not yet part of a set in X, it is added to X as one of the members of the merged
set.

union(*objects)
Find the sets containing the objects and merge them all.

class openanalysis.base_data_structures.PriorityQueue
A simple Priority Queue Implementation for usage in algorithms. Internally uses heapq to main-
tain min-heap and tasks are added as tuples (priority,task) to queue. To make the order of tasks
with same priority clear, count of element insertion is added to the tuple, making it as (prior-
ity,count,task), which means that tasks are first ordered by priority then by count

add_task(task, priority)
Add a task to priority queue

Parameters

• task – task to be added to queue

• priority – priority of the task, must be orderable

remove(task)
Removes the tasks from Queue Currently it takes O(n) time to find , and O(log n) to remove,
making it O(n) further improvements can be done

Parameters task – task to removed from the Queue

remove_min()
Removes the minimum element of heap

Returns task with less priority

update_task(task, new_priority)
Updates the priority of exsisting task in Queue Updation is implemented as deletion and
insertion, takes O(n) time further improvements can be done

Parameters

101

openanalysis Documentation, Release 1.0-rc

• task – task to be updated

• new_priority – new value of priority

102

31
openanalysis.data_structures module

class openanalysis.data_structures.DataStructureBase(name, file_path)
Base class for implementing Data Structures

delete(item)
Delete the item from Data Structure While removing, delete item from self.graph and modify
the edges if necessary :param item: item to be deleted

draw(nth=None)

find(item)
Finds the item in Data Structure :param item: item to be searched :return: True if item in
self else False also can implement __contains__(self,item)

get_graph(rt)

get_root()
Return the root for drawing purpose :return:

insert(item)
Insert item to Data Structure While inserting, add a edge from parent to child in self.graph
:param item: item to be added

class openanalysis.data_structures.DataStructureVisualization(ds)
Class for visualizing data structures in GUI Using GTK+ 3

action_clicked_cb(button)

on_stage_destroy(x)

run()

103

32
openanalysis.matrix_animator module

104

33
openanalysis.searching module

105

34
openanalysis.sorting module

106

35
openanalysis.string_matching module

107

36
openanalysis.tree_growth module

108

Python Module Index

o
openanalysis.base_data_structures, 101
openanalysis.data_structures, 103

109

Index

A
action_clicked_cb() (openanaly-

sis.data_structures.DataStructureVisualization
method), 103

add_task() (openanaly-
sis.base_data_structures.PriorityQueue
method), 101

D
DataStructureBase (class in openanalysis.data_structures),

103
DataStructureVisualization (class in

openanalysis.data_structures), 103
delete() (openanalysis.data_structures.DataStructureBase

method), 103
draw() (openanalysis.data_structures.DataStructureBase

method), 103

F
find() (openanalysis.data_structures.DataStructureBase

method), 103

G
get_graph() (openanaly-

sis.data_structures.DataStructureBase method),
103

get_root() (openanaly-
sis.data_structures.DataStructureBase method),
103

I
insert() (openanalysis.data_structures.DataStructureBase

method), 103

O
on_stage_destroy() (openanaly-

sis.data_structures.DataStructureVisualization
method), 103

openanalysis.base_data_structures (module), 101
openanalysis.data_structures (module), 103

P
PriorityQueue (class in

openanalysis.base_data_structures), 101

R
remove() (openanaly-

sis.base_data_structures.PriorityQueue
method), 101

remove_min() (openanaly-
sis.base_data_structures.PriorityQueue
method), 101

run() (openanaly-
sis.data_structures.DataStructureVisualization
method), 103

U
union() (openanalysis.base_data_structures.UnionFind

method), 101
UnionFind (class in openanalysis.base_data_structures),

101
update_task() (openanaly-

sis.base_data_structures.PriorityQueue
method), 101

110

	I The Python Language
	Introduction to Python
	What is Python?
	Prerequisites
	Your First Program

	Formatting Output
	Arithmetic and Logical Operators
	Arithmetic Operators
	Logical Operators - and, or and not

	Control Structures
	if statement
	if-else statement
	Single Line if-else
	if-else ladder
	while loop
	for loop

	Functions
	Defining a function

	Inbuilt Data Structures
	Lists
	Creating Lists
	Accessing List elements
	Obtaining Partitions of the List - Slicing
	Deleting List elements by index - del
	Using Operators on List
	Operations on List
	Obtaining length of list - len
	Membership Operator in
	Converting an iterator to list

	Tuples
	Creating Tuples
	Operations on Tuples

	Sets
	Creating Set
	Accessing Set Elements
	Operations on Set
	Set of Sets

	Dictionaries
	Creating Dictionaries
	Dictionary Methods

	Strings
	Creating Strings
	Accessing the elements of Strings
	Operators on Strings
	Operations on Strings

	Comprehensions
	Problem 1
	Problem 2
	Comprehension based approach
	Problem 3
	Problem 4
	Zen revisited
	Fibonacci Again

	Filtering Lists - Need for lambdas
	Problem : Find even numbers in a given sequence
	Solution 3: Use s

	Modules
	What is a module?
	An Example
	More ways to import methods from a module
	Executing modules as scripts
	The Module Search Path
	Packages

	Object Oriented Programming
	Defining Classes
	Special Methods inside the class
	Static members and methods
	A note on private members
	A sample class, Student
	Duck Typing and Interfaces
	type() - Obtaining the data type of a variable

	Inheritance
	Syntax

	Exceptions
	Facing a first exception
	try-except-finally
	div with exception handling
	Cleaning the things up
	Raising Exceptions
	User-defined Exceptions

	File Handling
	Opening Files
	Methods of File Objects

	Going Further

	II Essential Libraries
	Need for a faster array
	Importing numpy
	Creating ndarray from Lists
	Accessing array elements and random shuffling
	Functions that operates on ndarrays

	Data Visualization
	Standard Import statement
	Our First Graph - A Parabola
	Customizing the Graph - Changing its type and color
	Plotting multiple graphs on same axis
	An All-in-One example
	Subplots
	Adding Title
	An example
	Plotting irregular data - Scatter and Bar Plots
	Visualizing 2D Data - Matrix
	Going Further

	Introduction to Graph Analysis with networkx
	Standard import statement
	Creating Graphs
	Nodes
	Edges
	Accessing edges
	Adding attributes to graphs, nodes, and edges
	Converting Graph to Adjacency matrix
	Drawing graphs
	Going Further

	III Exploring openanalysis
	Introduction to openanalysis
	Types of supported algorithms
	Setting up openanalysis
	Inside the package
	importing the modules
	Key factor for analysis

	Sorting Analysis
	sorted(collection,reverse = False[,key])
	Standard import statement
	SortingAlgorithm class
	An example …. Bubble Sort
	SortAnalyzer class
	compare(algs)
	Why use a class if sorting could be done using a function
	Example File

	Searching Analysis
	The in operator and list.index()
	Standard import statement
	SearchingAlgorithm class
	An example …. Binary Search
	SearchAnalyzer class
	compare(algs)
	Example File

	String Matching Analysis
	The in operator and str.index()
	Standard import statement
	StringMatchingAlgorithm class
	An example …. Horspool String Matching Algorithm
	StringMatchingAnalyzer class
	Example File

	Data Structures
	Standard import statement
	DataStructureBase class
	DataStructureVisualization class
	An example ….. Binary Search Tree
	Example File

	Tree Growth based Graph Algorithms
	Standard import statement
	Implementation Notes
	Example - Dijkstra’s Algorithm
	Implementation
	Visualizing the Algorithm
	Random Geometric Graph
	Example File

	Dynamic Programming based Graph Algorithms
	Standard import statement
	Implementation Notes
	Example Warshall- Floyd Algorithm
	Visualizing the Algorithm - MatrixAnimator class
	Example File

	IV API Referance
	openanalysis.base_data_structures module
	openanalysis.data_structures module
	openanalysis.matrix_animator module
	openanalysis.searching module
	openanalysis.sorting module
	openanalysis.string_matching module
	openanalysis.tree_growth module
	Python Module Index

