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CHAPTER

ONE

COPYRIGHT NOTICE

The code that implements Open Shading Language is licensed under the BSD 3-clause (also sometimes known as “new
BSD” or “modified BSD”) license.

Copyright (c) 2009-present Contributors to the Open Shading Language project. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This manual and other text documentation about OSL are licensed under the Creative Commons Attribution 4.0 Inter-
national License.

figures/CC-BY.png

http://creativecommons.org/licenses/by/4.0/
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OSL incorporates code from several other software packages with compatible licenses. Copies of their licenses
are reproduced here: https://github.com/AcademySoftwareFoundation/OpenShadingLanguage/blob/master/THIRD-
PARTY.md

(chap-introduction=)
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CHAPTER

TWO

INTRODUCTION

Welcome to Open Shading Language!

Open Shading Language (OSL) is a small but rich language for programmable shading in advanced renderers and other
applications, ideal for describing materials, lights, displacement, and pattern generation.

OSL was developed by Sony Pictures Imageworks for use in its in-house renderer used for feature film animation and
visual effects. The language specification was developed with input by other visual effects and animation studios who
also wish to use it.

OSL is distributed under the “New BSD” license. In short, you are free to use it in your own applications, whether they
are free or commercial, open or proprietary, as well as to modify the OSL code as you desire, provided that you retain
the original copyright notices as described in the license.

2.1 How OSL is different from other shading languages

OSL has syntax similar to C, as well as other shading languages. However, it is specifically designed for advanced
rendering algorithms and has features such as radiance closures, BSDFs, and deferred ray tracing as first-class concepts.

OSL has several unique characteristics not found in other shading languages (certainly not all together). Here are some
things you will find are different in OSL compared to other languages:

• Surface and volume shaders compute radiance closures, not final colors.

OSL’s surface and volume shaders compute an explicit symbolic description, called a “closure,” of the way a
surface or volume scatters light, in units of radiance. These radiance closures may be evaluated in particular di-
rections, sampled to find important directions, or saved for later evaluation and re-evaluation. This new approach
is ideal for a physically-based renderer that supports ray tracing and global illumination.

In contrast, other shading languages usually compute just a surface color as visible from a particular direction.
These old shaders are “black boxes” that a renderer can do little with but execute to for this once piece of infor-
mation (for example, there is no effective way to discover from them which directions are important to sample).
Furthermore, the physical units of lights and surfaces are often underspecified, making it very difficult to ensure
that shaders are behaving in a physically correct manner.

• Surface and volume shaders do not loop over lights or shoot rays.

There are no “light loops” or explicitly traced rays in OSL surface shaders. Instead, surface shaders compute
a radiance closure describing how the surface scatters light, and a part of the renderer called an “integrator”
evaluates the closures for a particular set of light sources and determines in which directions rays should be
traced. Effects that would ordinarily require explicit ray tracing, such as reflection and refraction, are simply part
of the radiance closure and look like any other BSDF.

Advantages of this approach include that integration and sampling may be batched or re-ordered to increase
ray coherence; a “ray budget” can be allocated to optimally sample the BSDF; the closures may be used by for

5
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bidirectional ray tracing or Metropolis light transport; and the closures may be rapidly re-evaluated with new
lighting without having to re-run the shaders.

• Surface and light shaders are the same thing.

OSL does not have a separate kind of shader for light sources. Lights are simply surfaces that are emissive, and
all lights are area lights.

• Transparency is just another kind of illumination.

You don’t need to explicitly set transparency/opacity variables in the shader. Transparency is just another way
for light to interact with a surface, and is included in the main radiance closure computed by a surface shader.

• Renderer outputs (AOV’s) are specified using “light path expressions.”

Sometimes it is desirable to output images containing individual lighting components such as specular, diffuse,
reflection, individual lights, etc. In other languages, this is usually accomplished by adding a plethora of “output
variables” to the shaders that collect these individual quantities.

OSL shaders need not be cluttered with any code or output variables to accomplish this. Instead, there is a
regular-expression-based notation for describing which light paths should contribute to which outputs. This is
all done on the renderer side (though supported by the OSL implementation). If you desire a new output, there
is no need to modify the shaders at all; you only need to tell the renderer the new light path expression.

• Shaders are organized into networks.

OSL shaders are not monolithic, but rather can be organized into networks of shaders (sometimes called a shader
group, graph, or DAG), with named outputs of some nodes being connected to named inputs of other nodes
within the network. These connections may be done dynamically at render time, and do not affect compilation of
individual shader nodes. Furthermore, the individual nodes are evaluated lazily, only their outputs are “pulled”
from the later nodes that depend on them (shader writers may remain blissfully unaware of these details, and
write shaders as if everything is evaluated normally).

• No “uniform” and “varying” keywords in the language.

OSL shaders are evaluated in SIMD fashion, executing shaders on many points at once, but there is no need to
burden shader writers with declaring which variables need to be uniform or varying.

In the open source OSL implementation, this is done both automatically and dynamically, meaning that a variable
can switch back and forth between uniform and varying, on an instruction-by-instruction basis, depending on
what is assigned to it.

• Arbitrary derivatives without grids or extra shading points.

In OSL, you can take derivatives of any computed quantity in a shader, and use arbitrary quantities as texture
coordinates and expect correct filtering. This does not require that shaded points be arranged in a rectangular
grid, or have any particular connectivity, or that any “extra points” be shaded.

In the open source OSL implementation, this is possible because derivatives are not computed by finite differences
with neighboring points, but rather by “automatic differentiation,” computing partial differentials for the variables
that lead to derivatives, without any intervention required by the shader writer.

6 Chapter 2. Introduction
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CHAPTER

THREE

THE BIG PICTURE

This chapter attempts to lay out the major concepts of OSL, define key nomenclature, and sketch out how individual
shaders fit together in the context of a renderer as a whole.

3.1 A shader is code that performs a discrete task

A shader is a program, with inputs and outputs, that performs a specific task when rendering a scene, such as deter-
mining the appearance behavior of a material or light. The program code is written in OSL, the specification of which
comprises this document.

For example, here is a simple gamma shader that performs simple gamma correction on is Cin input, storing the result
in its output Cout:

The shader’s inputs and outputs are called shader parameters.
Parameters have default values, specified in the shader code, but may also be given new values by the renderer at
runtime.

9
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3.2 Shader instances

A particular shader may be used many times in a scene, on different objects or as different layers in a shader group.
Each separate use of a shader is called a shader instance. Although all instances of a shader are comprised of the same
program code, each instance may override any or all of its default parameter values with its own set of instance values.

Below is a schematic showing a gamma instance with the gam parameter overridden with an instance-specific value of
2.2.

3.3 Shader groups, layers, and connections

A shader group is an ordered sequence of individual shaders called layers that are executed in turn. Output parameters
of an earlier-executed layer may be connected to an input parameter of a later-executed layer. This connected network
of layers is sometimes called a shader network or a shader DAG (directed acyclic graph). Of course, it is fine for the
shader group to consist of a single shader layer.

Below is a schematic showing how several shader instances may be connected to form a shader group.

And here is sample pseudo-code shows how the above network may be assembled using an API in the renderer1:

ShaderGroupBegin ()
Shader ("texturemap", /* shader name */

"tex1", /* layer name */
"string name", "rings.tx") /* instance variable */

Shader ("texturemap", "tex2", "string name", "grain.tx")
Shader ("gamma", "gam1", "float gam", 2.2)
Shader ("gamma", "gam2", "float gam", 1)

(continues on next page)

1 This document does not dictate a specific renderer API for declaring shader instances, groups, and connections; the code above is just an
example of how it might be done.

10 Chapter 3. The Big Picture
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(continued from previous page)

Shader ("wood", "wood1")
ConnectShaders ("tex1", /* layer name A */

"Cout", /* an output parameter of A */
"gam1", /* layer name B */
"Cin") /* Connect this layer of B to A's Cout */

ConnectShaders ("tex2", "Cout", "gam2", "Cin")
ConnectShaders ("gam1", "Cout", "wood1", "rings")
ConnectShaders ("gam2", "Cout", "wood1", "grain")
ShaderGroupEnd ()

Or, expressed as serialized text (as detailed in Chapter Describing shader groups:

param string name "rings.tx" ;
shader "texturemap" "tex1" ;
param string name "grain.tx" ;
shader "texturemap" "tex2" ;
param float gam 2.2 ;
shader "gamma" "gam1" ;
param float gam 1.0 ;
shader "gamma" "gam2" ;
shader "wood" "wood1" ;
connect tex1.Cout gam1.Cin ;
connect tex2.Cout gam2.Cin ;
connect gam1.Cout wood1.rings ;
connect gam2.Cout wood1.grain ;

The rules for which data types may be connected are generally the same as the rules determining which variables may
be assigned to each other in OSL source code:

• source and dest are the same data type.

• source and dest are both triples (color, point, vector, or normal), even if they are not the same kind of
triple.

• source is an int and dest is a float.

• source is a float or int and dest is a triple (the scalar value will be replicated for all three components of
the triple).

• source is a single component of an aggregate type (e.g. one channel of a color) and dest is a float (or vice
versa).

3.4 Geometric primitives

The scene consists of primarily of geometric primitives, light sources, and cameras.

Geometric primitives are shapes such as NURBS, subdivision surfaces, polygons, and curves. The exact set of supported
primitives may vary from renderer to renderer.

Each geometric primitive carries around a set of named primitive variables (also sometimes called interpolated values
or user data). Nearly all shape types will have, among their primitive variables, control point positions that, when
interpolated, actually designate the shape. Some shapes will also allow the specification of normals or other shape-
specific data. Arbitrary user data may also be attached to a shape as primitive variables. Primitive variables may be
interpolated in a variety of ways: one constant value per primitive, one constant value per face, or per-vertex values
that are interpolated across faces in various ways.

3.4. Geometric primitives 11
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If a shader input parameter’s name and type match the name and type of a primitive variable on the object (and that
input parameters is not already explicitly connected to another layer’s output), the interpolated primitive variable will
override the instance value or default.

3.5 Attribute state and shader assignments

Every geometric primitive has a collection of attributes (sometimes called the graphics state) that includes its trans-
formation matrix, the list of which lights illuminate it, whether it is one-sided or two-sided, shader assignments, etc.
There may also be a long list of renderer-specific or user-designated attributes associated with each object. A particular
attribute state may be shared among many geometric primitives.

The attribute state also includes shader assignments — the shaders or shader groups for each of several shader uses,
such as surface shaders that designate how light reflects or emits from each point on a shape, displacement shaders
that can add fine detail to the shape on a point-by-point basis, and volume shaders that describe how light is scattered
within a region of space. A particular renderer may have additional shader types that it supports.

3.6 Shader execution state: parameter binding and global variables

When the body of code of an individual shader is about to execute, all its parameters are bound — that is, take on
specific values (from connections from other layers, interpolated primitive variables, instance values, or defaults, in
that order).

Certain state about the position on the surface where the shading is being run is stored in so-called global variables.
This includes such useful data as the 3D coordinates of the point being shaded, the surface normal and tangents at that
point, etc.

Additionally, the shader may query other information about other elements of the attribute state attached to the primitive,
and information about the renderer as a whole (rendering options, etc.).

3.7 Surface and volume shaders compute closures

Surface shaders (and volume shaders) do not by themselves compute the final color of light emanating from the surface
(or along a volume). Rather, they compute a closure, which is a symbolic representation describing the appearance of
the surface, that may be more fully evaluated later. This is in effect a parameterized formula, in which some inputs
have definite numeric values, but others may depend on quantities not yet known (such as the direction from which the
surface is being viewed, and the amount of light from each source that is arriving at the surface).

For example, a surface shader may compute its result like this:

color paint = texture ("file.tx", u, v);
Ci = paint * diffuse (N);

In this example, the variable paint will take on a specific numeric value (by looking up from a texture map). But the
diffuse() function returns a color closure, not a definite numeric color. The output variable Ci that represents
the appearance of the surface is also a color closure, whose numeric value is not known yet, except that it will be
the product of `paint`` and a Lambertian reflectance.

12 Chapter 3. The Big Picture
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The closures output by surface and volume shaders can do a number of interesting things that a mere number cannot:

• Evaluate: given input and output light directions, compute the proportion of light propagating from input to
output.

• Sample: given just an input (or output) direction, choose a scattering direction with a probability distribution
that is proportional to the amount of light that will end up going in various directions.

• Integrate: given all lights and a view direction, compute the total amount of light leaving the surface in the view
direction.

• Recompute: given changes only to lights (or only to one light), recompute the integrated result without recom-
puting other lights or any of the calculations that went into assembling constants in the closure (such as texture
lookups, noise functions, etc.).

3.8 Integrators

The renderer contains a number of integrators (selectable via the renderer’s API) which will combine the color closures
computed by surfaces and volumes with the light sources and view-dependent information, to yield the amount of light
visible to the camera.

3.9 Units

You can tell the renderer (through a global option) what units the scene is using for distance and time. Then the shader
has a built-in function called transformu() that works a lot like transform(), but instead of converting between
coordinate systems, it converts among units. For example,

displacement bumpy (float bumpdist = 1,
string bumpunits = "cm")

{
// convert bumpdist to common units
float spacing = transformu (bumpunits, "common", bumpdist);
float n = noise (P / spacing);
displace (n);

}

So you can write a shader to achieve some effect in real world units, and that shader is totally reusable on another show
that used different modeling units.

It knows all the standard names like cm, in, km, etc., and can convert among any of those, as well as between named
coordinate systems. For example,

3.8. Integrators 13
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float x = transformu ("object", "mm", 1);

now x is the number of millimeters per unit of “object” space on that primitive.

14 Chapter 3. The Big Picture



CHAPTER

FOUR

LEXICAL STRUCTURE

4.1 Characters

Source code for OSL consists of ASCII or UTF-8 characters.

The characters for space, tab, carriage return, and linefeed are collectively referred to as whitespace. Whitespace
characters delimit identifiers, keywords, or other symbols, but other than that have no syntactic meaning. Multiple
whitespace characters in a row are equivalent to a single whitespace character.

Source code may be split into multiple lines, separated by end-of-line markers (carriage return and/or linefeed). Lines
may be of any length and end-of-line markers carry no significant difference from other whitespace, except that they
terminate // comments and delimit preprocessor directives.

4.2 Identifiers

Identifiers are the names of variables, parameters, functions, and shaders. In OSL, identifiers consist of one or more
characters. The first character may be a letter (A-Z or a-z) or underscore (_), and subsequent characters may be letters,
underscore, or numerals (0-9). Examples of valid and invalid identifiers are:

opacity // valid
Long_name42 // valid - letters, underscores, numbers are ok
_foo // valid - ok to start with an underscore

2smart // invalid - starts with a numeral
bigbuck$ // invalid - $ is an illegal character

4.3 Comments

Comments are text that are for the human reader of programs, and are ignored entirely by the OSL compiler. Just like
in C++, there are two ways to designate comments in OSL:

1. Any text enclosed by /* and */ will be considered a comment, even if the comment spans several lines.

/* this is a comment */

/* this is also
a comment, spanning
several lines */

15
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2. Any text following //, up to the end of the current line, will be considered a comment.

// This is a comment
a = 3; // another comment

4.4 Keywords and reserved words

There are two sets of names that you may not use as identifiers: keywords and reserved words.

The following are keywords that have special meaning in OSL:

and break closure color continue do else emit float for if illuminance
illuminate int matrix normal not or output point public return string
struct vector void while

The following are reserved words that currently have no special meaning in OSL, but we reserve them for possible
future use, or because they are confusingly similar to keywords in related programming languages:

bool case catch char class const delete default double
enum extern false friend
goto inline long new operator private protected
short signed sizeof static
switch template this throw true try typedef
uniform union unsigned varying virtual volatile

4.5 Preprocessor

Shader source code is passed through a standard C preprocessor as a first step in parsing.

Preprocessor directives are designated by a hash mark # as the first character on a line, followed by a preprocessor
directive name. Whitespace may optionally appear between the hash and the directive name.

OSL compilers support the full complement of C/C++ preprocessing directives, including:

#define
#undef
#if
#ifdef
#ifndef
#elif
#else
#endif
#include
#pragma error "message"
#pragma once
#pragma osl ...
#pragma warning "message"

Additionally, the following preprocessor symbols will already be defined by the compiler:

16 Chapter 4. Lexical structure



Open Shading Language, Release 1.14.0

OSL_VERSION_MAJOR Major version (e.g., 1)
OSL_VERSION_MINOR Minor version (e.g., 9)
OSL_VERSION_PATCH Patch version (e.g., 3)
OSL_VERSION Combined version number = 10000*major + 100*minor + patch (e.g., 10903 for ver-

sion 1.9.3)

4.5. Preprocessor 17
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CHAPTER

FIVE

GROSS SYNTAX, SHADER TYPES, PARAMETERS

The overall structure of a shader is as follows:

optional-function-or-struct-declarations

shader-type shader-name ( optional-parameters )
{
statements
}

Note that statements may include function or structure definitions, local variable declarations, or public methods, as
well as ordinary execution instructions (such as assignments, etc.).

5.1 Shader types

Shader types include the following: surface, displacement, light, volume, and generic shader. Some operations
may only be performed from within certain types of shaders (e.g., one may only call displace() or alter P in a
displacement shader), and some global variables may only be accessed from within certain types of shaders (e.g., dPdu
is not defined inside a volume shader).

Following are brief descriptions of the basic types of shaders:

surface shaders
Surface shaders determine the basic material properties of a surface and how it reacts to light. They are responsi-
ble for computing a color closure that describes the material, and optionally setting other user-defined output
variables. They may not alter the position of the surface.

Surface shaders are written as if they describe the behavior of a single point on the primitive, and the renderer
will choose the positions surface at which the shader must be evaluated.

Surface shaders also are used to describe emissive objects, i.e., light sources. OSL does not need a separate
shader type to describe lights.

displacement shaders
Displacement shaders alter the position and shading normal (or, optionally, just the shading normal) to make a
piece of geometry appear deformed, wrinkled, or bumpy. They are the only kind of shader that is allowed to alter
a primitive’s position.

volume shaders
Volume shaders describe how a participating medium (air, smoke, glass, etc.) reacts to light and affects the
appearance of objects on the other side of the medium. They are similar to surface shaders, except that they
may be called from positions that do not lie upon (and are not necessarily associated with) any particular primitive.

shader generic shaders
Generic shaders are used for utility code, generic routines that may be called as individual layers in a shader group.
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Generic shaders need not specify a shader type, and therefore may be reused from inside surface, displacement,
or volume shader groups. But as a result, they may not contain any functionality that cannot be performed from
inside all shader types (for example, they may not alter P, which can only be done from within a displacement
shader).

5.2 Shader parameters

An individual shader has (optionally) many parameters whose values may be set in a number of ways so that a single
shader may have different behaviors or appearances when used on different objects.

5.2.1 Shader parameter syntax

Shader parameters are specified in the shader declaration, in parentheses after the shader’s name. This is much like
the parameters to an OSL function (or a function in C or similar languages), except that shader parameters must have
an initializer, giving a default value for the parameter. Shader parameter default initializers may be expressions (i.e.,
may be computed rather than restricted to numeric constants), and are evaluated in the order that the parameters are
declared, and may include references to previously-declared parameters. Formally, the grammar for a simple parameter
declaration looks like this:

type parametername = default-expression

where type is one of the data types described in Chapter Data types, parametername is the name of the parameter,
and default-expression is a valid expression (see Section Expressions). Multiple parameters are simply separated by
commas:

type1 parameter1 = expr1 , type2 parameter2 = expr2 , . . .

Fixed-length, one-dimensional array parameters are declared as follows:

type parametername [ array-length ] = { expr0 , expr1 . . . }

where array-length is a positive integer constant giving the length of the array, and the initializer is a series of initializing
expressions listed between curly braces. The first initializing expression provides the initializer for the first element of
the array, the second expression provides the initializer for the second element of the array, and so on. If the number
of initializing expressions is less than the length of the array, any additional array elements will have undefined values.

Arrays may also be declared without a set length:

type parametername [ ] = { expr0 , expr1 . . . }

where no array length is found between the square brackets. This indicates that the array’s length will be determined
based on whatever is passed in — a connection from the output of another shader in the group (take on the length of that
output), an instance value (take on the length specified by the declaration of the instance value), or a primitive variable
(length determined by its declaration on the primitive). If no instance value, primitive value, or connection is supplied,
then the number of initializing expressions will determine the length, as well as the default values, of the array.

Structure parameters are also straightforward to declare:

structure-type parametername = { expr0 , expr1 . . . }

where structure-type is the name of a previously-declared struct type, and the expr initializers correspond to each
respective field within the structure. An initializer of appropriate type is required for every field of the structure.
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5.2.2 Shader output parameters

Shader parameters are, by default, read-only in the body of the shader. However, special \emph{output parameters}
may be altered by execution of the shader. Parameters may be designated outputs by use of the {\cf output} keyword
immediately prior to the type declaration of the parameter:

output type parametername = expr

(Output parameters may be arrays and structures, but we will omit spelling out the obvious syntax here.)

Output parameters may be connected to inputs of later-run shader layers in the shader group, may be queried by later-
run shaders in the group via message passing (i.e., getmessage() calls), or used by the renderer as an output image
channel (in a manner described through the renderer’s API).

5.2.3 Shader parameter example

Here is an example of a shader declaration, with several parameters:

surface wood (
/* Simple params with constant initializers */

float Kd = 0.5,
color woodcolor = color (.7, .5, .3),
string texturename = "wood.tx",

/* Computed from an earlier parameter */
color ringcolor = 0.25 * woodcolor,

/* Fixed-length array */
color paintcolors[3] = { color(0,.25,0.7), color(1,1,1),

color(0.75,0.5,0.2) },
/* variable-length array */

int pattern[] = { 2, 4, 2, 1 },
/* output parameter */

output color Cunlit = 0
)

{
...

}

5.2.4 How shader parameters get their values

Shader parameters get their values in the following manner, in order of decreasing priority:

1. If the parameter has been designated by the renderer to be connected to an output parameter of a previously-
executed shader layer within the shader group, that is the value it will get.

2. If the parameter matches the name and type of a per-primitive, per-face, or per-vertex primitive variable on the
particular piece of geometry being shaded, the parameter’s value will be computed by interpolating the primitive
variable for each position that must be shaded.

3. If there is no connection or primitive variable, the parameter may will take on an instance value, if that parameter
was given an explicit per-instance value at the time that the renderer referenced the shader (associating it with an
object or set of objects).

4. If none of these overrides is present, the parameter’s value will be determined by executing the parameter initial-
ization code in the shader.
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This triage is performed per parameter, in order of declaration. So, for example, in the code sample above where
the default value for ringcolor1 is a scaled version of woodcolor, this relationship would hold
whether woodcolorwas the default, an instance value, an interpolated primitive value, or
was connected to another layer's output. Unlessringcolor` itself was given an instance, primitive, or
connection value, in which case that’s what would be used.

5.3 Shader metadata

A shader may optionally include metadata (data about the shader, as opposed to data used by the shader). Metadata
may be used to annotate the shader or any of its individual parameters with additional hints or information that will be
compiled into the shader and may be queried by applications. A common use of metadata is to specify user interface
hints about shader parameters — for example, that a particular parameter should only take on integer values, should
have an on/off checkbox, is intended to be a filename, etc.

Metadata is specified inside double brackets [[ and ]] enclosing a comma-separated list of metadata items. Each
metadatum looks like a parameter declaration — having a data type, name, and initializer. However, metadata may
only be simple types or arrays of simple types (not structs or closures) and their value initializers must be numeric or
string constants (not computed expressions).

Metadata about the shader as a whole is placed between the shader name and the parameter list. Metadata about
shader parameters are placed immediately after the parameter’s initializing expression, but before the comma or closing
parentheses that terminates the parameter description.

Below is an example shader declaration showing the use of shader and parameter metadata:

surface wood
[[ string help = "Realistic wood shader" ]]

(
float Kd = 0.5

[[ string help = "Diffuse reflectivity",
float min = 0, float max = 1 ]] ,

color woodcolor = color (.7, .5, .3)
[[ string help = "Base color of the wood" ]],

color ringcolor = 0.25 * woodcolor
[[ string help = "Color of the dark rings" ]],

string texturename = "wood.tx"
[[ string help = "Texture map for the grain",
string widget = "filename" ]],

int pattern = 0
[[ string widget = "mapper",
string options = "oak:0|elm:1|walnut:2" ]]

)
{
...

}

The metadata are not semantically meaningful; that is, the metadata does not affect the actual execution of the shader.
Most metadata exist only to be embedded in the compiled shader and able to be queried by other applications, such as
to construct user interfaces for shader assignment that allow usage tips, appropriate kinds of widgets for setting each
parameter, etc.

The choice of metadata and their meaning is completely up to the shader writer and/or modeling system. However, we
propose some conventions below. These conventions are not intended to be comprehensive, nor to meet all your needs
— merely to establish a common nomenclature for the most common metadata uses.
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The use of metadata is entirely optional on the part of the shader writer, and any application that queries shader metadata
is free to honor or ignore any metadata it finds.

string label
A short label to be displayed in the UI for this parameter. If not present, the parameter name itself should be used
as the widget label.

string help
Help text that describes the purpose and use of the shader or parameter.

string page
Helps to group related widgets by ``page.”

string widget
The type of widget that should be used to adjust this parameter. Suggested widget types:

“number”
Provide a slider and/or numeric input. This is the default widget type for float or int parameters. Numeric
inputs also may be influenced by the following metadata: min, max, sensitivity, digits, slider,
slidermin, slidermax, slidercenter, sliderexponent.

“string”
Provide a text entry widget. This is the default widget type for {\cf string} parameters.

“boolean”
Provide a pop-up menu with “Yes” and “No” options. Works on strings or numbers. With strings, “Yes”
and “No” values are used, with numbers, 0 and 1 are used.

“checkBox”
A boolean widget displayed as a checkbox. Works on strings or numbers. With strings, “Yes” and “No”
values are used, with numbers, 0 and 1 are used.

“popup”
A pop-up menu of literal choices. This widget further requires parameter metadata options (a string listing
the supported menu items, delimited by the | character), and optionally editable (an integer, which if
nonzero means the widget should allow the text field should be directly editable). For example:

string wrap = "default"
[[ string widget = "popup",
string options = "default|black|clamp|periodic|mirror" ]]

“mapper”
A pop-up with associative choices (an enumerated type, if the values are integers). This widget further
requires parameter metadata options, a |-delimited string with “key:value” pairs. For example:

int pattern = 0
[[ string widget = "mapper",
string options = "oak:0|elm:1|walnut:2" ]]

“filename”
A file selection dialog.

“null”
A hidden widget.

float min, float max, int min, int max
The minimum and/or maximum value that the parameter may take on.

float sensitivity, int sensitivity
The precision or step size for incrementing or decrementing the value (within the appropriate min/max range).
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int digits
The number of digits to show (-1 for full precision).

int slider
If nonzero, enables display of a slider sub-widget. This also respects the following additional metadata that
control the slider specifically: slidermin (minimum value for the slider, slidermax (maximum value for the
slider), slidercenter (origin value for the slider), sliderexponent (nonlinear slider options).

string URL
Provides a URL for full documentation of the shader or parameter.

string units
Gives the assumed units, if any, for the parameter (e.g., cm, sec, degrees). The compiler or renderer may issue
a warning if it detects that this assumption is being violated (for example, the compiler can warn if a degrees
variable is passed as the argument to cos).
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CHAPTER

SIX

DATA TYPES

OSL provides several built-in simple data types for performing computations inside your shader:

Type Explanation
int Integer data
float Scalar floating-point data (numbers)
point, vector, normal Three-dimensional positions, directions, and face orientations
color Spectral reflectivities and light energy values
matrix 4× 4 transformation matrices
string Character strings (such as filenames)
void Indicates functions that do not return a value

In addition, you may create arrays and structures (much like C), and OSL has a new type of data structure called a
closure.

The remainder of this chapter will describe the simple and aggregate data types available in OSL.

6.1 int

The basic type for discrete numeric values is int. The size of the int type is renderer-dependent, but is guaranteed to
be at least 32 bits.

Integer constants are constructed the same way as in C. The following are examples of int constants: 1, -2, etc. Integer
constants may be specified as hexadecimal, for example: 0x01cf.

Unlike C, no unsigned, bool, char, short, or long types are supplied. This is to simplify the process of writing shaders
(as well as implementing shading systems).

The following operators may be used with int values (in order of decreasing precedence, with each box holding
operators of the same precedence):

Operation Result Explanation
int ++ int post-increment by 1
int -- int post-decrement by 1

++ int int pre-increment by 1
-- int int pre-decrement by 1
- int int unary negation
~ int int bitwise complement (1 and 0 bits flipped)

continues on next page
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Table 1 – continued from previous page
Operation Result Explanation
! int int boolean `not’ (1 if operand is zero, otherwise 0)

int * int int multiplication
int / int int division
int % int int modulus

int + int int addition
int - int int subtraction

int << int int shift left
int >> int int shift right

int < int int 1 if the first value is less than the second, else 0
int <= int int 1 if the first value is less or equal to the second, else 0
int > int int 1 if the first value is greater than the second, else 0
int >= int int 1 if the first value is greater than or equal to the second, else 0

int == int int 1 if the two values are equal, else 0
int != int int 1 if the two values are different, else 0

int & int int bitwise and

int ^ int int bitwise exclusive or

int | int int bitwise or

int && int int boolean and (1 if both operands are nonzero, otherwise 0)

int || int int boolean or (1 if either operand is nonzero, otherwise 0)

Note that the not, and, and or keywords are synonyms for !, &&, and ||, respectively.
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6.2 float

The basic type for scalar floating-point numeric values is float. The size of the float type is renderer-dependent, but
is guaranteed to be at least IEEE 32-bit float (the standard C float data type). Individual renderer implementations may
choose to implement float with even more precision (such as using the C double as the underlying representation).

Floating-point constants are constructed the same way as in C. The following are examples of float constants: 1.0,
2.48, -4.3e2.

An int may be used in place of a float when used with any valid float operator. In such cases, the int will be
promoted to a float and the resulting expression will be float. An intmay also be passed to a function that expects
a float parameters, with the int automatically promoted to float.

The following operators may be used with float values (in order of decreasing precedence, with each box holding
operators of the same precedence):

Operation Result Explanation
float ++ float post-increment by 1
float -- float post-decrement by 1

++ float float pre-increment by 1
-- float float pre-decrement by 1
- float float unary negation

float * float float multiplication
float / float float division

float + float float addition
float - float float subtraction

float < float int 1 if the first value is less than the second, else 0
float <= float int 1 if the first value is less or equal to the second, else 0
float > float int 1 if the first value is greater than the second, else 0
float >= float int 1 if the first value is greater than or equal to the second, else 0

float == float int 1 if the two values are equal, else 0
float != float int 1 if the two values are different, else 0
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6.3 color

The color type is used to represent 3-component (RGB) spectral reflectivities and light energies. You can assemble a
color out of three floats, either representing an RGB triple or some other color space known to the renderer, as well as
from a single float (replicated for all three channels). Following are some examples:

color (0, 0, 0) // black
color ("rgb", .75, .5, .5) // pinkish
color ("hsv", .2, .5, .63) // specify in "hsv" space
color (0.5) // same as color (0.5, 0.5, 0.5)

All these expressions above return colors in “rgb” space. Even the third example returns a color in “rgb” space —
specifically, the RGB value of the color that is equivalent to hue 0.2, saturation 0.5, and value 0.63. In other words,
when assembling a color from components given relative to a specific color space in this manner, there is an implied
transformation to “rgb” space. The following table lists the built-in color spaces.

"rgb" The coordinate system that all colors start out in, and in which the renderer expects to find colors that are
set by your shader.

"hsv" hue, saturation, and value.
"hsl" hue, saturation, and lightness.
"YIQ" the color space used for the NTSC television standard.
"XYZ" CIE XYZ coordinates.
"xyY" CIE xyY coordinates.

Colors may be assigned another color or a float value (which sets all three components to the value). For example:

color C;
C = color (0, 0.3, 0.3);
C = 0.5; // same as C = color (0.5, 0.5, 0.5)

Colors can have their individual components examined and set using the [] array access notation. For example:

color C;
float g = C[1]; // get the green component
C[0] = 0.5; // set the red component

Components 0, 1, and 2 are red, green, and blue, respectively. It is an error to access a color component with an index
outside the [0...2] range.

Color variables may also have their components referenced using “named components” that look like accessing struc-
ture fields named r, g, and b, as synonyms for [0], [1], and [2], respectively:

float green = C.g; // get the green component
C.r = 0.5; // set the red component

The following operators may be used with color values (in order of decreasing precedence, with each box holding
operators of the same precedence):

28 Chapter 6. Data types



Open Shading Language, Release 1.14.0

Operation Result Explanation
color [ int ] float component access

- color color unary negation

color * color color component-wise multiplication
color * float color scaling
float * color color scaling
color / color color component-wise division
color / float color scaling
float / color color scaling

color + color color component-wise addition
color - color color component-wise subtraction

color == color int 1 if the two values are equal, else 0
color != color int 1 if the two values are different, else 0

All of the binary operators may combine a scalar value (float or int) with a color, treating the scalar if it were a
color with three identical components.

6.4 Point-like types: point, vector, normal

Points, vectors, and normals are similar data types with identical structures but subtly different semantics. We will
frequently refer to them collectively as the “point-like” data types when making statements that apply to all three types.

A point is a position in 3D space. A vector has a length and direction, but does not exist in a particular location. A
normal is a special type of vector that is perpendicular to a surface, and thus describes the surface’s orientation. Such
a perpendicular vector uses different transformation rules than ordinary vectors, as we will describe below.

All of these point-like types are internally represented by three floating-point numbers that uniquely describe a position
or direction relative to the three axes of some coordinate system.

All points, vectors, and normals are described relative to some coordinate system. All data provided to a shader (surface
information, graphics state, parameters, and vertex data) are relative to one particular coordinate system that we call
the "common" coordinate system. The "common" coordinate system is one that is convenient for the renderer’s shading
calculations.

You can “assemble” a point-like type out of three floats using a constructor:
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point (0, 2.3, 1)
vector (a, b, c)
normal (0, 0, 1)

These expressions are interpreted as a point, vector, and normal whose three components are the floats given, relative
to “common” space .

As with colors, you may also specify the coordinates relative to some other coordinate system:

Q = point ("object", 0, 0, 0);

This example assigns to Q the point at the origin of “object” space. However, this statement does not set the components
of Q to (0,0,0)! Rather, Q will contain the “common” space coordinates of the point that is at the same location as
the origin of “object” space. In other words, the point constructor that specifies a space name implicitly specifies a
transformation to “common” space. This type of constructor also can be used for vectors and normals.

The choice of “common” space is renderer-dependent, though will usually be equivalent to either “camera” space or
“world” space.

Some computations may be easier in a coordinate system other than “common” space. For example, it is much more
convenient to apply a “solid texture” to a moving object in its “object” space than in “common” space. For these
reasons, OSL provides a built-in transform() function that allows you to transform points, vectors, and normals
among different coordinate systems (see Section Geometric functions). Note, however, that OSL does not keep track of
which point variables are in which coordinate systems. It is the responsibility of the shader programmer to keep track
of this and ensure that, for example, lighting computations are performed using quantities in “common” space.

Several coordinate systems are predefined by name, listed in the following table. Additionally, a renderer will probably
allow for additional coordinate systems to be named in the scene description, and these names may also be referenced
inside your shader to designate transformations.

"common"
The coordinate system that all spatial values start out in and the one in which all lighting calculations are carried
out. Note that the choice of "common" space may be different on each renderer.

"object"
The local coordinate system of the graphics primitive (sphere, patch, etc.) that we are shading.

"shader"
The local coordinate system active at the time that the shader was instanced.

"world"
The world coordinate system designated in the scene.

"camera"
The coordinate system with its origin at the center of the camera lens, 𝑥-axis pointing right, 𝑦-axis pointing up,
and 𝑧-axis pointing into the screen.

"screen"
The coordinate system of the camera’s image plane (after perspective transformation, if any). Coordinate (0,0)
of "screen" space is looking along the 𝑧-axis of “camera” space.

"raster"
2D pixel coordinates, with (0,0) as the upper-left corner of the image and (xres, yres) as the lower-right corner.

"NDC"
2D Normalized Device Coordinates — like raster space, but normalized so that 𝑥 and 𝑦 both run from 0 to 1
across the whole image, with (0,0) being at the upper left of the image, and (1,1) being at the lower right.

Point types can have their individual components examined and set using the [] array access notation. For example:

30 Chapter 6. Data types



Open Shading Language, Release 1.14.0

point P;
float y = P[1]; // get the y component
P[0] = 0.5; // set the x component

Components 0, 1, and 2 are 𝑥, 𝑦, and 𝑧, respectively. It is an error to access a point component with an index outside
the [0...2] range.

Point-like variables may also have their components referenced using “named components” that look like accessing
structure fields named x, y, and z, as synonyms for [0], [1], and [2], respectively:

float yval = P.y; // get the [1] or y component
P.x = 0.5; // set the [0] or x component

The following operators may be used with point-like values (in order of decreasing precedence, with each box holding
operators of the same precedence):

Operation Result Explanation
ptype [ int ] float component access

- ptype vector component-wise unary negation

ptype * ptype ptype component-wise multiplication
float * ptype ptype scaling of all components
ptype * float ptype scaling of all components
ptype / ptype ptype component-wise division
ptype / float ptype division of all components
float / ptype ptype division by all components

ptype + ptype ptype component-wise addition
ptype - ptype vector component-wise subtraction

ptype == ptype int 1 if the two values are equal, else 0
ptype != ptype int 1 if the two values are different, else 0

The generic ptype is listed in places where any of point, vector, or normal may be used.

All of the binary operators may combine a scalar value (float or int) with a point-like type, treating the scalar if it
were point-like with three identical components.
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6.5 matrix

OSL has a matrix type that represents the transformation matrix required to transform points and vectors between one
coordinate system and another. Matrices are represented internally by 16 floats (a 4× 4 homogeneous transformation
matrix).

A matrix can be constructed from a single float or 16 floats. For example:

matrix zero = 0; // makes a matrix with all 0 components
matrix ident = 1; // makes the identity matrix

// Construct a matrix from 16 floats
matrix m = matrix (m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

Assigning a single floating-point number 𝑥 to a matrix will result in a matrix with diagonal components all being 𝑥
and other components being zero (i.e., 𝑥 times the identity matrix). Constructing a matrix with 16 floats will create the
matrix whose components are those floats, in row-major order.

Similar to point-like types, a matrix may be constructed in reference to a named space:

// Construct matrices relative to something other than "common"
matrix q = matrix ("shader", 1);
matrix m = matrix ("world", m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from “shader” space to “common” space. Transforming points by
this matrix is identical to calling transform("shader", "common", ...). The second form prepends the current-
to-world transformation matrix onto the 4× 4 matrix with components 𝑚0,0...𝑚3,3. Note that although we have used
"shader" and "world" space in our examples, any named space is acceptable.

A matrix may also be constructed from the names of two coordinate systems, yielding the matrix that transforms
coordinates from the first named space to the second named space:

matrix m = matrix ("object", "world");

The example returns the object-to-world transformation matrix.

Matrix variables can be tested for equality and inequality with the == and != boolean operators. Also, the * operator
between matrices denotes matrix multiplication, while m1 / m2 denotes multiplying m1 by the inverse of matrix m2.
Thus, a matrix can be inverted by writing 1/m. In addition, some functions will accept matrix variables as arguments,
as described in Section Standard Library Functions.

Individual components of a matrix variable may be set or accessed using array notation, for example,

matrix M;
float x = M[row][col];
M[row][col] = 1;

Valid component indices are integers on [0...3]. It is an error to access a matrix component with either a row or column
outside this range.

The following operators may be used with matrices (in order of decreasing precedence, with each box holding operators
of the same precedence):
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Operation Result Explanation
matrix [ int ][ int ] float component access (row, column)

- matrix matrix unary negation

matrix * matrix matrix matrix multiplication
matrix * float matrix component-wise scaling
float * matrix matrix component-wise scaling
matrix / matrix matrix multiply the first matrix by the *inverse of the second
matrix / float matrix component-wise division
float / matrix matrix multiply the float by the *inverse of the matrix

matrix == matrix int 1 if the two values are equal, else 0
matrix != matrix int 1 if the two values are different, else 0

6.6 string

The string type may hold character strings. The main application of strings is to provide the names of files where
textures may be found. Strings can be compared using == and !=.

String constants are denoted by surrounding the characters with double quotes, as in "I am a string literal".
As in C programs, string literals may contain escape sequences such as \n (newline), \r (carriage return), \t (tab), \"
(double quote), \\ (backslash).

Two quote-quoted string literals that are separated only by whitespace (spaces, tabs, or newlines) will be automatically
concatenated into a single string literal. In other words,

"foo" "bar"

is exactly equivalent to "foobar".

6.7 void

The void type is used to designate a function that does not return a value. No variable may have type void.
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6.8 Arrays

Arrays of any of the basic types are supported, provided that they are 1D and statically sized, using the usual syntax
for C-like languages:

float d[10]; // Declare an uninitialized array
float c[3] = { 0.1, 0.2, 3.14 }; // Initialize the array

float f = c[1]; // Access one element

The built-in function arraylength() returns the number of elements in an array. For example:

float c[3];
int clen = arraylength(c); // should return 3

There are two circumstances when arrays do not need to have a declared length — an array parameter to a function,
and a shader parameter that is an array. This is indicated by empty array brackets, as shown in the following example:

float sum (float x[])
{

float s = 0;
for (int i = 0; i < arraylength(x); ++i)

s += x[i];
return s;

}

It is allowed in OSL to copy an entire array at once using the = operator, provided that the arrays contain elements of
the same type and that the destination array is at least as long as the source array. For example:

float array[4], anotherarray[4];
...
anotherarray = array;

6.9 Structures

Structures are used to group several fields of potentially different types into a single object that can be referred to by
name. You may then use the structure type name to declare structure variables as you would for any of the built-in
types. Structure elements are accessed using the . (“dot”) operator. The syntax for declaring and using structures is
similar to C or C++:

struct RGBA { // Define a structure type
color rgb;
float alpha;

};

RGBA col; // Declare a structure
r.rgb = color (1, 0, 0); // Assign to one field
color c = r.rgb; // Read from a structure field

RGBA b = { color(.1,.2,.3), 1 }; // Member-by-member initialization
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You can use “constructor expressions” for a your struct types much like you can construct built-in types like color or
point:

struct_name ( first_member_value, . . . }

For example,

RGBA c = RGBA(col,alpha); // Constructor syntax

RGBA add (RGBA a, RGBA b)
{

return RGBA (a.rgb+b.rgb, a.a+b.a); // return expression
}

// pass constructor expression as a parameter:
RGBA d = add (c, RGBA(color(.3,.4,.5), 0));

You may also use the compound initializer list syntax to construct a type when it can be deduced from context which
compound type is required. For example, this is equivalent to the preceding example:

RGBA c = {col,alpha}; // deduce by what is being assigned to

RGBA add (RGBA a, RGBA b)
{

return { a.rgb+b.rgb, a.a+b.a }; // deduce by func return type
}

RGBA d = add (c, {{.3,.4,.5}, 0}); // deduce by expected arg type

It is permitted to have a structure field that is an array, as well as to have an array of structures. But it is not currently
permitted to “nest” arrays (that is, to have an array of structs which contain members that are arrays).

struct A {
color a;
float b[4]; // Ok: struct may contain an array

};

RGBA vals[4]; // Ok: Array of structures
vals[0].a = 0;

A d[5]; // NO: Array of structures that contain arrays

6.10 Closures

A closureis an expression or function call that will be stored, along with necessary contextual information, to be
evaluated at a later time.

In general, the type “closure gentype” behaves exactly like a gentype, except that its numeric values may not be
examined or used for the duration of the shader’s execution. For example, a color closure behaves mostly like a
color — you can multiply it by a scalar, assign it to a color closure variable, etc. — but you may not assign it to an
ordinary color or examine its individual component’s numeric values.

It is legal to assign 0 to a closure, which is understood to mean setting it to a null closure (even though in all other
circumstances, assigning a float to a closurewould not be allowed).
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At present, the only type of closuresupported by OSL is the color closure, and the only allowed operations are
those that let you form a linear combination of color closure’s. Additional closure types and operations are reserved
for future use.

Allowable operations on color closure include:

Operation Result Explanation
- colorclosure color closure unary negation

color * colorclosure color closure component-wise scaling
colorclosure * color color closure component-wise scaling
float * colorclosure color closure scaling
colorclosure * float color closure scaling

colorclosure + colorclosure color closure component-wise addition
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CHAPTER

SEVEN

LANGUAGE SYNTAX

The body of a shader is a sequence of individual statements. This chapter describes the types of statements and control-
flow patterns in OSL.

Statements in OSL include the following types of constructs:

• Scoped statements.

• Variable declarations.

• Expressions.

• Assignments.

• Control flow: if, else, while, do, for, break, continue

• Function declarations.

7.1 Scoping

Any place where it is legal to have a statement, it is legal to have multiple statements enclosed by curly braces { }.
This is called a scope. Any variables or functions declared within a scope are only visible within that scope, and only
may be used after their declaration. Variables or functions that are referenced will always resolve to the matching name
in the innermost scope relative to its use. For example

float a = 1; // Call this the "outer" 'a'
float b = 2;
{

float a = 3; // Call this the "inner" 'a'
float c = 1;
b = a; // b gets 3, because a is resolved to the inner scope

}
b += c; // ERROR -- c was only in the inner scope
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7.2 Variable declarations and assignments

7.2.1 Variable declarations

The syntax for declaring a variable in OSL is:

type name

type name = value

where

• type is one of the basic data types, described earlier.

• name is the name of the variable you are declaring.

• If you wish to initialize your variable an initial value, you may immediately assign it a value, which may be any
valid expression.

You may declare several variables of the same type in a single declaration by separating multiple variable names by
commas:

type name1 , name2 . . .

type name1 [ = value1] , name2 [ = value2 ] . . .

Some examples of variable declarations are

float a; // Declare; current value is undefined
float b = 1; // Declare and assign a constant initializer
float c = a*b; // Computed initializer
float d, e = 2, f; // Declare several variables of the same type

7.2.2 Arrays

Arrays are also supported, declared as follows:

type variablename [ arraylen }

type variablename [ arraylen } = { *init0 , init1 . . . }

Array variables in OSL must have a constant length (though function parameters and shader parameters may have
undetermined length). Some examples of array variable declarations are:

float d[10]; // Declare an uninitialized array
float c[3] = { 0.1, 0.2, 3.14 }; // Initialize the array

7.2.3 Structures

Structures are used to group several fields of potentially different types into a single object that can be referred to by
name. The syntax for declaring a structure type is:

\spc struct structname {\cf {}

\spc\spc type1 fieldname1 ;

\spc\spc . . .

\spc\spc typeN fieldnameN ;
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\spc ) ;

You may then use the structure type name to declare structure variables as you would for any of the built-in types:

\spc structname variablename ;

\spc structname variablename {\cf = { } initializer1 , . . . initializerN ) ;

If initializers are supplied, each field of the structure will be initialized with the initializer in the corresponding position,
which is expected to be of the appropriate type.

Structure elements are accessed in the same way as other C-like languages, using the `dot’ operator:

\spc variablename{\cf .} fieldname

Examples of declaration and use of structures:

struct ray {
point pos;
vector dir;

};

ray r; // Declare a structure
ray s = { point(0,0,0), vector(0,0,1) }; // declare and initialize
r.pos = point (1, 0, 0); // Assign to one field

It is permitted to have a structure field that is an array, as well as to have an array of structures. But it is not permitted
for one structure to have a field that is another structure.

Please refer to Section~\ref{sec:types:struct} for more information on using struct.

7.3 Expressions

The expressions available in OSL include the following:

• Constants: integer (e.g., 1, 42), floating-point (e.g. 1.0, 3, -2.35e4), or string literals (e.g., "hello")

• point, vector, normal, or matrix constructors, for example:

color (1, 0.75, 0.5)
point ("object", 1, 2, 3)

If all the arguments to a constructor are themselves constants, the constructed point is treated like a constant and
has no runtime cost. That is, color(1,2,3) is treated as a single constant entity, not assembled bit by bit at
runtime.

• Variable or parameter references

• An individual element of an array (using [ ])

• An individual component of a color, point, vector, normal (using [ ]), or of a matrix (using [][])

• prefix and postfix increment and decrement operators:

Operator Meaning
varref ++ post-increment
varref -- post-decrement
++ varref pre-increment
-- varref pre-decrement
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The post-increment and post-decrement (e.g., {\cf a++}) returns the old value, then increments or decrements the
variable; the pre-increment and pre-decrement ({\cf ++a}) will first increment or decrement the variable, then
return the new value.

• Unary and binary arithmetic operators on other expressions:

Operator Meaning
- expr negation
~ expr bitwise complement
expr * expr multiplication
expr / expr division
expr + expr addition
expr - expr subtraction
expr % expr integer modulus
expr << expr integer shift left
expr >> expr integer shift right
expr & expr bitwise and
expr | expr bitwise or
expr ^ expr bitwise exclusive or

The operators +, -, *, /, and the unary - (negation) may be used on most of the numeric types. For multi-
component types (color, point, vector, normal, matrix), these operators combine their arguments on a
component-by-component basis. The only operators that may be applied to the matrix type are * and /, which
respectively denote matrix-matrix multiplication and matrix multiplication by the inverse of another matrix.

The integer and bit-wise operators %, <<, >>, &, |, ^, and ~ may only be used with expressions of type int.

For details on which operators are allowed, please consult the operator tables for each individual type in Chapter
Data types.

• Relational operators (all lower precedence than the arithmetic operators):

Operator Meaning
expr == expr equal to
expr != expr not equal to
expr < expr less then
expr <= expr less than or equal to
expr > expr greater than
expr >= expr greater than or equal

The == and != operators may be performed between any two values of equal type, and are performed component-
by-component for multi-component types. The <, <=, >, >=may not be used to compare multi-component types.

An int expression may be compared to a float (and is treated as if they are both float). A float expression
may be compared to a multi-component type (and is treated as a multi-component type as if constructed from a
single float).

Relation comparisons produce Boolean (true/false) values. These are implemented as int values, 0 if false and
1 if true.

• Logical unary and binary operators:

! expr expr1 && expr2 expr1 \|\| expr2

Note that the not, and, and or keywords are synonyms for !, &&, and ||, respectively.
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For the logical operators, numeric expressions (int or float) are considered true if nonzero, false if zero. Multi-
component types (such as color) are considered true any component is nonzero, false all components are zero.
Strings are considered true if they are nonempty, false if they are the empty string ("").

• another expression enclosed in parentheses: ( ). Parentheses may be used to guarantee associativity of opera-
tions.

• Type casts, specified either by having the type name in parentheses in front of the value to cast (C-style typecasts)
or the type name called as a constructor (C++-style type constructors):

(vector) P /* cast a point to a vector */
(point) f /* cast a float to a point */
(color) P /* cast a point to a color! */

vector (P) /* Means the same thing */
point (f)
color (P)

The three-component types (color, point, vector, normal) may be cast to other three-component types. A
float may be cast to any of the three-component types (by placing the float in all three components) or to a
matrix (which makes a matrix with all diagonal components being the float). Obviously, there are some type
casts that are not allowed because they make no sense, like casting a point to a float, or casting a string to
a numerical type.

• function calls

• assignment expressions:

same thing as var = var OP expr :

Operator Meaning
var = expr assign
var += expr add
var -= expr subtract
var *= expr multiply
var /= expr divide
int-var &= int-expr bitwise and
int-var |= int-expr bitwise or
int-var ^= int-expr bitwise exclusive or
int-var <<= int-expr integer shift left
int-var >>= int-expr integer shift right

Note that the integer and bit-wise operators are only allowed with int variables and expressions. In general, var
OP= expr is allowed only if var = var OP expr is allowed, and means exactly the same thing. Please consult
the operator tables for each individual type in Chapter Data types.

• ternary operator, just like C:

condition ? expr1 : expr2

This expression takes on the value of expr1 if condition is true (nonzero), or expr2 if condition is false (zero).

Please refer to Chapter Data types, where the section describing each data type describes the full complement of
operators that may be used with the type. Operator precedence in OSL is identical to that of C.
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7.4 Control flow: if, while, do, for

Conditionals in OSL just like in C or C++:

\begin{tabbing} \hspace{0.5in} = \hspace{0.3in} = \kill > {\cf if (} condition {\cf )} \ > > truestatement
\end{tabbing}

and

\begin{tabbing} \hspace{0.5in} = \hspace{0.3in} = \kill > {\cf if (} condition {\cf )} \ > > truestatement \ > {\cf else}
\ > > falsestatement
\end{tabbing}

The statements can also be entire blocks, surrounded by curly braces. For example,

if (s > 0.5) {
x = s;
y = 1;

} else {
x = s+t;

}

The condition may be any valid expression, including:

• The result of any comparison operator (such as <, ==, etc.).

• Any numeric expression (int, color, point, vector, normal, matrix), which is considered “true” if nonzero
and “false” if zero.

• Any string expression, which is considered “true” if it is a nonempty string, “false” if it is the empty string ("").

• A closure, which is considered “true” if it’s empty (not assigned, or initialized with {\cf =0}), and “false” if
anything else has been assigned to it.

• A logical combination of expressions using the operators ! (not), && (logical “and”), or || (logical “or”). Note
that && and \|\| short circuit as in C, i.e. A && B will only evaluate B if A is true, and A || B will only
evaluate B if A is false.

Repeated execution of statements for as long as a condition is true is possible with a while statement:

while ( condition ) statements

Or the test may happen after the body of the loop, with a do/while loop:

do statement while ( condition )

Also, for loops are also allowed:

for ( initialization-statement ; condition ; iteration-statement )
body-statements

As in C++, a for loop’s initialization may contain variable declarations and initializations, which are scoped locally
to the for loop itself. For example,

for (int i = 0; i < 3; ++i) {
...

}

As with if statements, loop conditions may be relations or numerical quantities (which are considered “true” if nonzero,
“false” if zero), or strings (considered “true” if nonempty, “false” if the empty string "".
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Inside the body of a loop, the break statement terminates the loop altogether, and the continue statement skip to the
end of the body and proceeds to the next iteration of the loop.

7.5 Functions

7.5.1 Function definitions

You may define functions much like in C or C++.

return-type function-name ( optional-parameters )
{
statements
}

Parameters to functions are similar to shader parameters, except that they do not permit initializers. A function call must
pass values for all formal parameters. Function parameters in OSL are all passed by reference, and are read-only within
the body of the function unless they are also designated as output (in the same manner as output shader parameters).

Like for shaders, statements inside functions may be actual executions (assignments, function call, etc.), local variable
declarations (visible only from within the body of the function), or local function declarations (callable only from
within the body of the function).

The return type may be any simple data type, a struct, or a closure. Functions may not return arrays. The return
type may be void, indicating that the function does not return a value (and should not contain a return statement). A
return statement inside the body of the function will halt execution of the function at that point, and designates the
value that will be returned (if not a void function).

Functions may be overloaded. That is, multiple functions may be defined to have the same name, as long as they have
differently-typed parameters, so that when the function is called the list of arguments can select which version of the
function is desired. When there are multiple potential matches, function versions whose argument types match exactly
are favored, followed by those that match with type coercion (for example, passing an int when the function expects a
float, or passing a float when the function expects a color), and finally by trying to match the return value to the
type of variable the result is assigned to.

7.5.2 Function calls

Function calls are very similar to C and related programming languages:

functionname ( arg1 , . . . , argn )

If the function returns a value (not void), you may use its value as an expression. It is fine to completely ignore the
value of even a non-void function.

In OSL, all arguments are passed by reference. This generally will not be noticeably different from C-style “pass
by value” semantics, except if you pass the same variable as two separate arguments to a function that modifies an
argument’s value.

Certain functions allow optional arguments to be passed.
Optional arguments are key-value pairs with the key passed as an argument and the associated value passed as the
subsequent argument:

functionname ( arg1 , . . . , argn , “optionalkey” , optionalvalue , . . . )

7.5. Functions 43



Open Shading Language, Release 1.14.0

7.5.3 Operator overloading

OSL permits \emph{operator overloading}, which is the practice of providing a function that will be called when you
use an operator like + or *. This is especially handy when you use struct to define mathematical types and wish for
the usual math operators to work with them. Here is a typical example, which also shows the special naming convention
that allows operator overloading:

struct vector4 {
float x, y, z, w;

};

vector4 __operator__add__ (vector4 a, vector4 b) {
return vector4 (a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);

}

shader test ()
{

vector4 a = vector4 (.2, .3, .4, .5);
vector4 b = vector4 (1, 2, 3, 4);

vector4 c = a + b; // Will call __operator__add__(vector4,vector4)
printf ("a+b = %g %g %g %g\n", c.x, c.y, c.z, c.w);

}

The full list of these special function names is as follows (in order of decreasing operator precedence):
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Operator Overload function name notes
- __operator__neg__ unary negation
~ __operator__compl__ unary bitwise
! __operator__not__ unary boolean ‘not’
* __operator__mul__

/ __operator__div__

\% __operator__mod__

+ __operator__add__

- __operator__sub__

<< __operator__shl__

>> __operator__shr__

< __operator__lt__

<= __operator__le__

> __operator__gt__

>= __operator__ge__

== __operator__eq__

!= __operator__ne__

\& __operator__bitand__

^ __operator__xor__

| __operator__bitor__

7.6 Global variables

Global variables (sometimes called graphics state variables) contain the basic information that the renderer knows
about the point being shaded, such as position, surface orientation, and default surface color. You need not declare
these variables; they are simply available by default in your shader. Global variables available in shaders are listed in
the following table:
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Variable Description
point P Position of the point you are shading. In a displacement shader, changing this variable displaces the

surface.
vector
I

The incident ray direction, pointing from the viewing position to the shading position P.

normal
N

The surface “Shading” “normal of the surface at P. Changing N yields bump mapping.

normal
Ng

The true surface normal at P. This can differ from N; N can be overridden in various ways including
bump mapping and user-provided vertex normals, but Ng is always the true surface geometric normal
of the surface at P.

float
u, v

The 2D parametric coordinates of \P (on the particular geometric primitive you are shading).

vector
dPdu,
dPdv

Partial derivatives 𝜕𝑃/𝜕𝑢 and 𝜕𝑃/𝜕𝑣 tangent to the surface at P.

point
Ps

Position at which the light is being queried (currently only used for light attenuation shaders)

float
time

Current shutter time for the point being shaded.

float
dtime

The amount of time covered by this shading sample.

vector
dPdtime

How the surface position \P is moving per unit time

closure
color
Ci

Incident radiance — a closure representing the color of the light leaving the surface from P in the
direction -I.

Accessibility of variables by shader type:

Variable surface displacement volume
P R RW R
I R R

N RW RW

Ng R R

dPdu R R

dPdv R R

Ps R

u, v R R R
time R R R
dtime R R R
dPdtime R R R
Ci RW RW
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EIGHT

STANDARD LIBRARY FUNCTIONS

8.1 Basic math functions

8.1.1 Mathematical constants

OSL defines several mathematical constants:

Constant Value
M_PI 𝜋
M_PI_2 𝜋/2
M_PI_4 𝜋/4
M_2_PI 2/𝜋
M_2PI 2𝜋
M_4PI 4𝜋
M_2_SQRTPI 2/

√
𝜋

M_E 𝑒
M_LN2 ln 2
M_LN10 ln 10
M_LOG2E log2 𝑒
M_LOG10E log10 𝑒

M_SQRT2
√
2

M_SQRT1_2
√︀
1/2

8.1.2 Mathematical functions

Most of these functions operate on a generic type that my be any of float, color, point, vector, or normal. For
color and point-like types, the computations are performed component-by-component (separately for x, y, and z).

type radians (type deg) type degrees (type rad)
Convert degrees to radians or radians to degrees.

type cos (type x) type sin (type x) type tan (type x)
Computes the cosine, sine, or tangent of x (measured in radians).

void sincos (type x, output type sinval, output type cosval)
Computes both the sine and cosine of 𝑥 (measured in radians). If both are needed, this function is less expensive
than calling sin() and cos() separately.

type acos (type x) type asin (type y) type atan (type y_over_x) type atan2 (type y, type x)
Compute the principal value of the arc cosine, arc sine, and arc For acos() and asin(), the value of the argument
will first be clamped to [−1, 1] to avoid invalid domain.
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For acos(), the result will always be in the range of [0, 𝜋], and for asin() and atan(), the result will always
be in the range of [−𝜋/2, 𝜋/2]. For atan2(), the signs of both arguments are used to determine the quadrant of
the return value.

type cosh (type x) type sinh (type x) type tanh (type x)
Computes the hyperbolic cosine, sine, and tangent of 𝑥 (measured in radians).

type pow (type x, type y) type pow (type x, float y)
Computes 𝑥𝑦 . This function will return 0 for “undefined” operations, such as pow(-1,0.5).

type exp (type x) type exp2 (type x) type expm1 (type x)
Computes 𝑒𝑥, 2𝑥, and 𝑒𝑥 − 1, respectively. Note that expm1(x) is accurate even for very small values of 𝑥.

type log (type x) type log2 (type x) type log10 (type x) type log (type x, float b)
Computes the logarithm of 𝑥 in base 𝑒, 2, 10, or arbitrary base 𝑏, respectively.

type logb (type x)
Returns the exponent of x, as a floating-point number.

type sqrt (type x) type inversesqrt (type x)
Computes

√
𝑥 and 1/

√
𝑥. Returns 0 if 𝑥 < 0.

type cbrt (type x)
Computes 3

√
𝑥. The sign of the return value will match 𝑥.

float hypot (float x, float y) float hypot (float x, float y, float z)

Computes
√︀
𝑥2 + 𝑦2 and

√︀
𝑥2 + 𝑦2 + 𝑧𝑧 , respectively.

type abs (type x) type fabs (type x)
Absolute value of 𝑥. (The two functions are synonyms.)

type sign (type x)
Returns 1 if 𝑥 > 0, -1 if 𝑥 < 0, 0 if 𝑥 = 0.

type floor (type x) type ceil (type x) type round (type x) type trunc (type x)
Various rounding methods: floor returns the largest integer less than or equal to 𝑥; ceil returns the smallest
integer greater than or equal to 𝑥; round returns the closest integer to 𝑥, in either direction; and trunc returns
the integral part of 𝑥 (equivalent to floor if 𝑥 > 0 and ceil if 𝑥 < 0).

type fmod (type a, type b) type mod (type a, type b)
The fmod() function returns the floating-point remainder of 𝑎/𝑏, i.e., is the floating-point equivalent of the
integer % operator. It is nearly identical to the C or C++ fmod function, except that in OSL, fmod(a,0) returns
0, rather than NaN. Note that if 𝑎 < 0, the return value will be negative.

The mod() function returns 𝑎− 𝑏 * floor(𝑎/𝑏), which will always be a positive number or zero.

As an example, fmod(-0.25,1.0) = -0.25, but mod(-0.25,1.0) = 0.75. For positive a they return the
same value.

For both functions, the type may be any of float, point, vector, normal, or color.

type min (type a, type b) type max (type a, type b) type clamp (type x, type minval, type maxval)
The min() and max() functions return the minimum or maximum, respectively, of a list of two or more values.
The clamp function returns

min(max(x,minval),maxval)

that is, the value 𝑥 clamped to the specified range.

type mix (type x, type y, type alpha) type mix (type x, type y, float alpha)
The mix function returns a linear blending: 𝑥 * (1− 𝛼) + 𝑦 * (𝛼)
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type select (type x, type y, type cond) type select (type x, type y, float cond) type select (type x,
type y, int cond)

The select function returns x if cond is zero, or y if cond is nonzero. This is roughly equivalent to (cond ? y
: x), except that if cond is a component-based type (such as color), the selection happens on a component-
by-component basis. It is presumed that the underlying implementation is not a true conditional and will not
incur any branching penalty.

int isnan (float x) int isinf (float x) int isfinite (float x)
The isnan() function returns 1 if 𝑥 is a not-a-number (NaN) value, 0 otherwise. The isinf() function returns
1 if 𝑥 is an infinite (Inf or -Inf) value, 0 otherwise. The isfinite() function returns 1 if 𝑥 is an ordinary
number (neither infinite nor NaN), 0 otherwise.

float erf (float x) float erfc (float x)

The erf() function returns the error function erf(𝑥) = 2√
𝜋

∫︀ 𝑥

0
𝑒−𝑡2𝑑𝑡. The erfc returns the complementary

error function 1-erf(x) (useful in maintaining precision for large values of 𝑥).

8.2 Geometric functions

ptype ptype (float f) ptype ptype (float x, float y, float z)
Constructs a point-like value (ptype may be any of point, vector, or normal) from individual float values.
If constructed from a single float, the value will be replicated for 𝑥, 𝑦, and 𝑧.

ptype ptype (string space, f) ptype ptype (string space, float x, float y, float z)
Constructs a point-like value (ptype may be any of point, vector, or normal) from individual float coor-
dinates, relative to the named coordinate system. In other words,

point (space, x, y, z)

is equivalent to

transform (space, "common", point(x,y,z))

(And similarly for vector/normal.)

float dot (vector A, vector B)
Returns the inner product of the two vectors (or normals), i.e., 𝐴 ·𝐵 = 𝐴𝑥𝐵𝑥 +𝐴𝑦𝐵𝑦 +𝐴𝑧𝐵𝑧 .

vector cross (vector A, vector B)
Returns the cross product of two vectors (or normals), i.e., 𝐴×𝐵.

float length (vector V) float length (normal V)
Returns the length of a vector or normal.

float distance (point P0, point P1)
Returns the distance between two points.

float distance (point P0, point P1, point Q)
Returns the distance from Q to the closest point on the line segment joining P0 and P1.

vector normalize (vector V) normal normalize (normal V)
Return a vector in the same direction as 𝑉 but with length 1, that is, V / length(V).

vector faceforward (vector N, vector I, vector Nref) vector faceforward (vector N, vector I)
If dot (Nref, I) < 0, returns N, otherwise returns -N. For the version with only two arguments, Nref is
implicitly Ng, the true surface normal. The point of these routines is to return a version of N that faces towards
the camera — in the direction “opposite” of I.

To further clarify the situation, here is the implementation of faceforward expressed in OSL:
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vector faceforward (vector N, vector I, vector Nref)
{

return (I.Nref > 0) ? -N : N;
}

vector faceforward (vector N, vector I)
{

return faceforward (N, I, Ng);
}

vector reflect (vector I, vector N)
For incident vector I and surface orientation N, returns the reflection direction R = I - 2*(N.I)*N. Note that
N must be normalized (unit length) for this formula to work properly.

vector refract (vector I, vector N, float eta)
For incident vector I and surface orientation N, returns the refraction direction using Snell’s law. The eta
parameter is the ratio of the index of refraction of the volume containing I divided by the index of refraction of
the volume being entered. The result is not necessarily normalized and a zero-length vector is returned in the
case of total internal reflection. For reference, here is the equivalent OSL of the implementation:

vector refract (vector I, vector N, float eta)
{

float IdotN = dot (I, N);
float k = 1 - eta*eta * (1 - IdotN*IdotN);
return (k < 0) ? vector(0,0,0) : (eta*I - N * (eta*IdotN + sqrt(k)));

}

void fresnel (vector I, normal N, float eta, output float Kr, output float Kt, output
vector R, output vector T)

According to Snell’s law and the Fresnel equations, fresnel computes the reflection and transmission direction
vectors R and T, respectively, as well as the scaling factors for reflected and transmitted light, Kr and Kt. The I
parameter is the normalized incident ray, N is the normalized surface normal, and eta is the ratio of refractive
index of the medium containing I to that on the opposite side of the surface.

point rotate (point Q, float angle, point P0, point P1) point rotate (point Q, float angle,
vector axis)

Returns the point computed by rotating point Q by angle radians about the axis that passes from point P0 to P1,
or about the axis vector centered on the origin.

ptype transform (string tospace, ptype p) ptype transform (string fromspace, string tospace,
ptype p) ptype transform (matrix Mto, ptype p)

Transform a point, vector, or normal (depending on the type of the ptype p argument) from the coordinate
system named by fromspace to the one named by tospace. If fromspace is not supplied, p is assumed to
be in “common” space coordinates, so the transformation will be from “common” space to tospace. A 4 × 4
matrix may be passed directly rather than specifying coordinate systems by name.

Depending on the type of the passed point p, different transformation semantics will be used. A point will
transform as a position, a vector as a direction without regard to positioning, and a normal will transform
subtly differently than a vector in order to preserve orthogonality to the surface under nonlinear scaling.

Technically, what happens is this: The from and to spaces determine a 4 × 4 matrix. A point (𝑥, 𝑦, 𝑧) will
transform the 4-vector (𝑥, 𝑦, 𝑧, 1) by the matrix; a vector will transform (𝑥, 𝑦, 𝑧, 0) by the matrix; a normal
will transform (𝑥, 𝑦, 𝑧, 0) by the inverse of the transpose of the matrix.

float transformu (string tounits, float x) float transformu (string fromunits, string
tounits, float x)

Transform a measurement from fromunits to tounits. If fromunits is not supplied, 𝑥 will be assumed to
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be in “common” space units.

For length conversions, unit names may be any of: "mm", "cm", "m", "km", "in", "ft", "mi", or the name of
any coordinate system, including "common", "world", "shader", or any other named coordinate system that
the renderer knows about.

For time conversions, units may be any of: "s", "frames", or "common" (which indicates whatever timing units
the renderer is using).

It is only valid to convert length units to other length units, or time units to other time units. Attempts to convert
length to time or vice versa will result in an error. Don’t even think about trying to convert monetary units to
time.

8.3 Color functions

color color (float f) color color (float r, float g, float b)
Constructs a color from individual float values. If constructed from a single float, the value will be repli-
cated for r, 𝑔, and 𝑏.

color color (string colorspace, f) color color (string colorspace, float r, float g, float
b)

Constructs an RGB color that is equivalent to the individual float values in a named color space. In other
words,

color (colorspace, r, g, b)

is equivalent to

transformc (colorspace, "rgb", color(r, g, b))

float luminance (color rgb)
Returns the linear luminance of the color rgb, which is implemented per the ITU-R standard as 0.2126𝑅 +
0.7152𝐺+ 0.0722𝐵.

color blackbody (float temperatureK)
The blackbody() function returns the blackbody emission (the incandescent glow of warm bodies) expected
from a material of the given temperature in Kelvin, in units of 𝑊/𝑚2. Note that emission() has units of
radiance, so will require a scaling factor of 1/𝜋 on surfaces, and 1/4𝜋 on volumes to convert to 𝑊/𝑚2/𝑠𝑟.

color wavelength_color (float wavelength_nm)
Returns an RGB color corresponding as closely as possible to the perceived color of a pure spectral color of the
given wavelength (in nm).

color transformc (string fromspace, string tospace, color Cfrom) color transformc (string
tospace, color Cfrom)

Transforms color Cfrom from color space fromspace to color space tospace. If fromspace is not supplied,
it is assumed to be transforming from “RGB” space.
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8.4 Matrix functions

matrix matrix (float m00, float m01, float m02, float m03, float m10, float m11,
float m12, float m13, float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)

Constructs a matrix from 16 individual float values, in row-major order.

matrix matrix (float f)
Constructs a matrix with f in all diagonal components, 0 in all other components. In other words, matrix(1)
is the identity matrix, and matrix(f) is f*matrix(1).

matrix matrix (string fromspace, float m00, ..., float m33) matrix matrix (string fromspace,
float f)

Constructs a matrix relative to the named space, multiplying it by the space-to-common transformation matrix.
If the coordinate system name is unknown, it will be assumed to be the identity matrix.

Note that matrix (space, 1) returns the space-to-common transformation matrix. If the coordinate system
name is unknown, it will be assumed to be the identity matrix.

matrix matrix (string fromspace, string tospace)
Constructs a matrix that can be used to transform coordinates from fromspace to tospace. If either of the
coordinate system names are unknown, they will be assumed to be the identity matrix.

int getmatrix (string fromspace, string tospace, output matrix M)
Sets M to the matrix that transforms coordinates from fromspace to tospace. Return 1 upon success, or 0 if
either of the coordinate system names are unknown (in which case Mwill not be modified). This is very similar to
the matrix(from,to) constructor, except that getmatrix() allows the shader to gracefully handle unknown
coordinate system names.

float determinant (matrix M)
Computes the determinant of matrix M.

matrix transpose (matrix M)
Computes the transpose of matrix M.

8.5 Pattern generation

float step (float edge, float x) type step (type edge, type x)
Returns 0 if 𝑥 < e𝑑𝑔𝑒 and 1 if 𝑥 ≥ e𝑑𝑔𝑒.

The type may be any of of float, color, point, vector, or normal. For color and point-like types, the
computations are performed component-by-component (separately for 𝑥, 𝑦, and 𝑧).

float linearstep (float edge0, float edge1, float x) type linearstep (type edge0, type edge1,
type x)

Returns 0 if x≤ edge0, and 1 if x≥ edge1, and performs a linear interpolation between 0 and 1 when edge0<
x < edge1. This is equivalent to step(edge0, x) when edge0 == edge1. For color and point-like types,
the computations are performed component-by-component (separately for 𝑥, 𝑦, and 𝑧).

float smoothstep (float edge0, float edge1, float x) type smoothstep (type edge0, type edge1,
type x)

Returns 0 if x ≤ edge0, and 1 if x ≥ edge1, and performs a smooth Hermite interpolation between 0 and 1
when edge0< x< edge1. This is useful in cases where you would want a thresholding function with a smooth
transition.

The type may be any of of float, color, point, vector, or normal. For color and point-like types, the
computations are performed component-by-component.
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float smooth_linearstep (float edge0, float edge1, float x, float eps) type
smooth_linearstep (type edge0, type edge1, type x, type eps)

This function is strictly linear between edge0 + eps and edge1 - eps but smoothly ramps to 0 between edge0
- eps and edge0 + eps and smoothly ramps to 1 between edge1 - eps and edge1 + eps. It is 0 when x
≤ edge0-eps, and 1 if x ≥ edge1 + eps, and performs a linear interpolation between 0 and 1 when edge0 <
x < edge1. For color and point-like types, the computations are performed component-by-component.

type noise (string noisetype, float u, ...) type noise (string noisetype, float u, float v,
...) type noise (string noisetype, point p, ...) type noise (string noisetype, point p,
float t, ...)

Returns a continuous, pseudo-random (but repeatable) scalar field defined on a domain of dimension 1 (float),
2 (2 float’s), 3 (point), or 4 (point and float), with a return value of either 1D (float) or 3D (color,
point, vector, or normal).

The noisename specifies which of a variety of possible noise functions will be used:

"perlin", "snoise"
A signed Perlin-like gradient noise with an output range of [−1, 1], approximate average value of 0, and is
exactly 0 at integer lattice points. This is equivalent to the snoise() function.

"uperlin", "noise"
An unsigned Perlin-like gradient noise with an output range of (0, 1), approximate average value of 0.5,
and is exactly 0.5 at integer lattice points. This is equivalent to the noise() function (the one that doesn’t
take a name string).

"cell"
A discrete function that is constant on [𝑖, 𝑖 + 1) for all integers 𝑖 (i.e., cellnoise(x) ==
cellnoise(floor(x))), but has a different and uncorrelated value at every integer. The range is [0, 1],
its large-scale average is 0.5, and its values are evenly distributed over [0, 1].

"hash"
A function that returns a different, uncorrelated (but deterministic and repeatable) value at every real input
coordinate. The range is [0, 1] its large-scale average is 0.5, and its values are evenly distributed over [0, 1].

"simplex"
A signed simplex noise with an output range of [−1, 1], approximate average value of 0.

"usimplex"
An unsigned simplex noise with an output range of [0, 1], approximate average value of 0.5.

"gabor"
A band-limited, filtered, sparse convolution noise based on the Gabor impulse function (see Lagae et al.,
SIGGRAPH 2012). Our Gabor noise is designed to have somewhat similar frequency content and range as
Perlin noise (range [−1, 1], approximately large-scale average of 0). It is significantly more expensive than
Perlin noise, but its advantage is that it correctly filters automatically based on the input derivatives. Gabor
noise allows several optional parameters to the noise() call:

"anisotropic", int "direction", vector
If anisotropic is 0 (the default), Gabor noise will be isotropic. If anisotropic is 1, the Gabor noise
will be anisotropic with the 3D frequency given by the direction vector (which defaults to (1,0,0)).
If anisotropic is 2, a hybrid mode will be used which is anisotropic along the direction vector,
but radially isotropic perpendicular to that vector. The direction vector is not used if anisotropic
is 0.

"bandwidth", float
Controls the bandwidth for Gabor noise. The default is 1.0.

"impulses", float
Controls the number of impulses per cell for Gabor noise. The default is 16.
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"do_filter", int
If do_filter is 0, no filtering/antialiasing will be performed. The default is 1 (yes, do filtering).
There is probably no good reason to ever turn off the filtering, it is primarily to test that the filtering is
working properly.

Note that some of the noise varieties have an output range of [−1, 1] but others have range [0, 1]; some may
automatically antialias their output (based on the derivatives of the lookup coordinates) and others may not, and
various other properties may differ. The user should be aware of which noise varieties are useful in various
circumstances.

A particular renderer’s implementation of OSL may supply additional noise varieties not described here.

The noise() functions take optional arguments after their coordinates, passed as token/value pairs (similarly
to optional texture arguments). Generally, such arguments are specific to the type of noise, and are ignored for
noise types that don’t understand them.

type pnoise (string noisetype, float u, float uperiod) type pnoise (string noisetype, float u, float v, float
uperiod, float vperiod) type pnoise (string noisetype, point p, point pperiod) type pnoise (string noisetype,
point p, float t, point pperiod, float tperiod)

Periodic version of noise(), in which the domain wraps with the given period(s). Generally, only integer-valued
periods are supported.

type noise (float u) type noise (float u, float v) type noise (point p) type noise (point p, float t)

type snoise (float u) type snoise (float u, float v) type snoise (point p) type snoise (point p, float t)
The old noise(...coords...) function is equivalent to noise("uperlin",...coords...) and snoise(.
..coords...) is equivalent to noise("perlin",...coords...).

type pnoise (float u, float uperiod) type pnoise (float u, float v, float uperiod, float vperiod) type pnoise (point p,
point pperiod) type pnoise (point p, float t, point pperiod, float tperiod)

type psnoise (float u, float uperiod) type psnoise (float u, float v, float uperiod, float vperiod) type psnoise
(point p, point pperiod) type psnoise (point p, float t, point pperiod, float tperiod)

The old pnoise(...coords...) function is equivalent to pnoise("uperlin",...coords...) and
psnoise(...coords...) is equivalent to pnoise("perlin",...coords...).

type cellnoise (float u) type cellnoise (float u, float v) type cellnoise (point p) type
cellnoise (point p, float t)

: The old cellnoise(...coords...) function is equivalent to noise("cell",...coords...).

type hashnoise (float u) type hashnoise (float u, float v) type hashnoise (point p) type
hashnoise (point p, float t)

Returns a deterministic, repeatable hash of the 1-, 2-, 3-, or 4-D coordinates. The return values will be evenly dis-
tributed on [0, 1] and be completely repeatable when passed the same coordinates again, yet will be uncorrellated
to hashes of any other positions (including nearby points). This is like having a random value indexed spatially,
but that will be repeatable from frame to frame of an animation (provided its input is precisely identical).

int hash (float u) int hash (float u, float v) int hash (point p) int hash (point p, float t)
int hash (int i)

Returns a deterministic, repeatable integer hash of the 1-, 2-, 3-, or 4-D coordinates.

type spline (string basis, float x, type y0, type y1, . . . type y𝑛−1) type spline (string basis,
float x, type y[]) type spline (string basis, float x, int nknots, type y[])

As 𝑥 varies from 0 to 1, spline returns the value of a cubic interpolation of uniformly-spaced knots 𝑦0. . .𝑦𝑛−1,
or 𝑦[0]. . .𝑦[𝑛−1] for the array version of the call (where 𝑛 is the length of the array), or 𝑦[0]. . .𝑦[𝑛𝑘𝑛𝑜𝑡𝑠−1] for
the version that explicitly specifies the number of knots (which may be less than the full array length). The input
value 𝑥 will be clamped to lie on [0, 1]. The type may be any of float, color, point, vector, or normal;
for multi-component types (e.g. color), each component will be interpolated separately.

The type of interpolation is specified by the basis parameter, which may be any of: "catmull-rom", "bezier",
"bspline", "hermite", "linear", or "constant". Some basis types require particular numbers of knot
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values – Bezier splines require 3𝑛 + 1 values, Hermite splines require 2𝑛 + 2 values, and all of Catmull-Rom,
linear, and constant requires 3 + 𝑛, where in all cases, 𝑛 ≥ 1 is the number of spline segments.

To maintain consistency with the other spline types, "linear" splines will ignore the first and last data value;
interpolating piecewise-linearly between 𝑦1 and 𝑦𝑛−2, and "constant" splines ignore the first and the two last
data values.

float splineinverse (string basis, float v, float y0, ... float yn-1 ) float splineinverse
(string basis, float v, float y[]) float splineinverse (string basis, float v, int nknots,
float y[])

Computes the inverse of the spline() function, i.e., returns the value 𝑥 for which

spline (basis, x, y...)

would return value 𝑣. Results are undefined if the knots do not specify a monotonic (only increasing or only
decreasing) set of values.

Note that the combination of spline() and splineinverse()makes it possible to compute a full spline-with-
nonuniform-abscissae:

float v = splineinverse (basis, x, nknots, abscissa);
result = spline (basis, v, nknots, value);

8.6 Derivatives and area operators

float Dx (float a), Dy (float a), Dz (float a) vector Dx (point a), Dy (point a), Dz (point a)
vector Dx (vector a), Dy (vector a), Dz (vector a) color Dx (color a), Dy (color a), Dz (color a)

Compute an approximation to the partial derivatives of 𝑎 with respect to each of two principal directions, 𝜕𝑎/𝜕𝑥
and 𝜕𝑎/𝜕𝑦. Depending on the renderer implementation, those directions may be aligned to the image plane, on
the surface of the object, or something else.

The Dz function is only meaningful for volumetric shading, and is expected to return 0 in other contexts. It is also
possible that particular OSL implementations may only return “correct” Dz values for particular inputs (such as
P).

float filterwidth (float x) vector filterwidth (point x) vector filterwidth (vector x)
Compute differentials of the argument x, i.e., the approximate change in x between adjacent shading samples.

float area (point p)
Returns the differential area of position p corresponding to this shading sample. If p is the actual surface position
P, then area(P)will return the surface area of the section of the surface that is “covered” by this shading sample.

vector calculatenormal (point p)
Returns a vector perpendicular to the surface that is defined by point p (as p is computed at all points on the
currently-shading surface), taking into account surface orientation.

float aastep (float edge, float s) float aastep (float edge, float s, float ds) float aastep
(float edge, float s, float dedge, float ds)

Computes an antialiased step function, similar to step(edge,s) but filtering the edge to take into account how
rapidly s and edge are changing over the surface. If the differentials ds and/or dedge are not passed explicitly,
they will be automatically computed (using filterwidth()).
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8.7 Displacement functions

void displace (float amp) void displace (string space, float amp) void displace (vector
offset)

Displace the surface in the direction of the shading normal N by amp units as measured in the named space (or
“common” space if none is specified). Alternately, the surface may be moved by a fully general offset, which
does not need to be in the direction of the surface normal.

In either case, this function both displaces the surface and adjusts the shading normal N to be the new surface
normal of the displaced surface (properly handling both continuously smooth surfaces as well as interpolated
normals on faceted geometry, without introducing faceting artifacts).

void bump (float amp) void bump (string space, float amp) void bump (vector offset)
Adjust the shading normal N to be the surface normal as if the surface had been displaced by the given amount
(see the displace() function description), but without actually moving the surface positions.

8.8 String functions

void printf (string fmt, ...)
Much as in C, printf takes a format string fmt and an argument list, and prints the resulting formatted string
to the console.

Where the fmt contains a format string similar to printf in the C language. The %d, %i, %o, and %x arguments
expect an int argument. The %f, %g, and %e expect a float, color, point-like, or matrix argument (for multi-
component types such as color, the format will be applied to each of the components). The %s expects a string
or closure argument.

All of the substitution commands follow the usual C/C++ formatting rules, so format commands such as "%6.
2f", etc., should work as expected.

string format (string fmt, ...)
The format function works similarly to printf, except that instead of printing the results, it returns the formatted
text as a string.

void error (string fmt, ...) void warning (string fmt, ...)
The error() and warning() functions work similarly to printf, but the results will be printed as a renderer
error or warning message, possibly including information about the name of the shader and the object being
shaded, and other diagnostic information.

void fprintf (string filename, string fmt, ...)
The fprintf() function works similarly to printf, but rather than printing to the default text output stream,
the results will be concatenated onto the end of the text file named by filename.

string concat (string s1, ..., string sN)
Concatenates a list of strings, returning the aggregate string.

int strlen (string s)
Return the number of characters in string s.

int startswith (string s, string prefix)
Return 1 if string s begins with the substring prefix, otherwise return 0.

int endswith (string s, string suffix)
Return 1 if string s ends with the substring suffix, otherwise return 0.

int stoi (string str)
Convert/decode the initial part of str to an int representation. Base 10 is assumed. The return value will be 0
if the string doesn’t appear to hold valid representation of the destination type.
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float stof (string str)
Convert/decode the initial part of str to a float representation. The return value will be 0 if the string doesn’t
appear to hold valid representation of the destination type.

string substr (string str, output string results[], string sep, int maxsplit) string substr
(string str, output string results[], string sep) string substr (string str, output string
results[])

Fills the result array with the words in the string str, using sep as the delimiter string. If maxsplit is supplied,
at most maxsplit splits are done. If sep is "" (or if not supplied), any whitespace string is a separator. The
value returned is the number of elements (separated strings) written to the results array.

string substr (string s, int start, int length) string substr (string s, int start)
Return at most length characters from s, starting with the character indexed by start (beginning with 0). If
length is omitted, return the rest of s, starting with start. If start is negative, it counts backwards from the
end of the string (for example, substr(s,-1) returns just the last character of s).

int getchar (string s, int n)
Returns the numeric value of the 𝑛th character of the string, or 0 if N does not index a valid character of the
string.

int hash (string s)
Returns a deterministic, repeatable hash of the string.

int regex_search (string subject, string regex) int regex_search (string subject, int
results[], string regex)

Returns 1 if any substring of subject matches a standard POSIX regular expression regex, 0 if it does not.

In the form that also supplies a results array, when a match is found, the array will be filled in as follows:

results[0]
the character index of the start of the sequence that matched the regular expression.

results[1]
the character index of the end (i.e., one past the last matching character) of the sequence that matched the
regular expression.

results[ 2𝑖 ]
the character index of the start of the sequence that matched sub-expression 𝑖 of the regular expression.

results[ 2𝑖+ 1 ]
the character index of the end (i.e., one past the last matching character) of the sequence that matched
sub-expression 𝑖 of the regular expression.

Sub-expressions are denoted by surrounding them in parentheses in the regular expression.

A few examples illustrate regular expression searching:

r = regex_search ("foobar.baz", "bar"); // = 1
r = regex_search ("foobar.baz", "bark"); // = 0

int match[2];
regex_search ("foobar.baz", match, "[Oo]{2}") = 1

(match[0] == 1, match[1] == 3)
substr ("foobar.baz", match[0], match[1]-match[0]) = "oo"

int match[6];
regex_search ("foobar.baz", match, "(f[Oo]{2}).*(.az)") = 1
substr ("foobar.baz", match[0], match[1]-match[0]) = "foobar.baz"
substr ("foobar.baz", match[2], match[3]-match[2]) = "foo"
substr ("foobar.baz", match[4], match[5]-match[4]) = "baz"
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int regex_match (string subject, string regex) int regex_match (string subject, int
results[], string regex)

Identical to regex_search, except that it must match the whole subject string, not merely a substring.

8.9 Texture

type texture (string filename, float s, float t, ...params... ) type texture (string
filename, float s, float t, float dsdx, float dtdx, float dsdy, float dtdy,
...params... )

Perform a texture lookup of an image file, indexed by 2D coordinates (s,t), antialiased over a region defined by
the differentials dsdx, dtdx, dsdy and dtdy (which are computed automatically from s and t, if not supplied).
Whether the results are assigned to a float or a color (or type cast to one of those) determines whether the
texture lookup is a single channel or three channels.

The 2D lookup coordinate(s) may be followed by optional key-value arguments (see Section Function calls) that
control the behavior of texture():

"blur", float
Additional blur when looking up the texture value (default: 0). The blur amount is relative to the size of
the texture (i.e., 0.1 blurs by a kernel that is 10% of the full width and height of the texture).

The blur may be specified separately in the s and t directions by using the "sblur" and "tblur" param-
eters, respectively.

"width", float
Scale (multiply) the size of the filter as defined by the differentials (or implicitly by the differentials of s
and t). The default is 1, meaning that no special scaling is performed. A width of 0 would effectively turn
off texture filtering entirely.

The width value may be specified separately in the s and t directions by using the "swidth" and "twidth"
parameters, respectively.

"wrap", string
Specifies how the texture wraps coordinates outside the [0, 1] range. Supported wrap modes include:
"black", "periodic", "clamp", "mirror", and "default" (which is the default). A value of
"default" indicates that the renderer should use any wrap modes specified in the texture file itself (a
non-"default" value overrides any wrap mode specified by the file).

The wrap modes may be specified separately in the s and t directions by using the "swrap" and "twrap"
parameters, respectively.

"firstchannel", int
The first channel to look up from the texture map (default: 0).

"subimage", int “subimage", string
Specify the subimage (by numerical index, or name) of the subimage within a multi-image texture file
(default: subimage 0).

"fill", float
The value to return for any channels that are requested, but not present in the texture file (default: 0).

"missingcolor", color, "missingalpha", float
If present, supplies a missing color (and alpha value) that will be used for missing or broken textures –
instead of treating it as an error. If you want a missing or broken texture to be reported as an error, you
must not supply the optional "missingcolor" parameter.

"alpha", floatvariable
The alpha channel (presumed to be the next channel following the channels returned by the texture()
call) will be stored in the variable specified. This allows for RGBA lookups in a single call to texture().
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"errormessage", stringvariable
If this option is supplied, any error messages generated by the texture system will be stored in the specified
variable rather than issuing error calls to the renderer, thus leaving it up to the shader to handle any errors.
The error message stored will be "" if no error occurred.

"interp", string
Overrides the texture interpolation method: "smartcubic" (the default), "cubic", "linear", or
"closest".

type texture3d (string filename, point p, ...params... ) type texture3d (string filename,
point p, vector dpdx, vector dpdy, vector dpdz, ...params... )

Perform a 3D lookup of a volume texture, indexed by 3D coordinate p, antialiased over a region defined by the
differentials dpdx, dpdy, and dpdz (which are computed automatically from p, if not supplied). Whether the
results are assigned to a float or a color (or type cast to one of those) determines whether the texture lookup
is a single channel or three channels.

The p coordinate (and dpdx, dpdy, and dpdz derivatives, if supplied) are assumed to be in “common” space
and will be automatically transformed into volume local coordinates, if such a transormation is specified in the
volume file itself.

The 3D lookup coordinate may be followed by optional token/value arguments that control the behavior of
texture3d():

"blur", float
Additional blur when looking up the texture value (default: 0). The blur amount is relative to the size of
the texture (i.e., 0.1 blurs by a kernel that is 10% of the full width, height, and depth of the texture).

The blur may be specified separately in the s, t, and r directions by using the "sblur", "tblur", and
"rblur" parameters, respectively.

"width", float
Scale (multiply) the size of the filter as defined by the differentials (or implicitly by the differentials of s,
t, and r). The default is 1, meaning that no special scaling is performed. A width of 0 would effectively
turn off texture filtering entirely.

The width value may be specified separately in the s, t, and r directions by using the "swidth", "twidth",
and "rwidth" parameters, respectively.

"wrap", string
Specifies how the texture wraps coordinates outside the [0, 1] range. Supported wrap modes include:
"black", "periodic", "clamp", "mirror", and "default" (which is the default). A value of
"default" indicates that the renderer should use any wrap modes specified in the texture file itself (a
non-"default" value overrides any wrap mode specified by the file).

The wrap modes may be specified separately in the s, t, and r directions by using the "swrap", "twrap",
and "rwrap" parameters, respectively.

"firstchannel", int
The first channel to look up from the texture map (default: 0).

"subimage", int "subimage", string
Specify the subimage (by numerical index, or name) of the subimage within a multi-image texture file
(default: subimage 0).

"fill", float
The value to return for any channels that are requested, but not present in the texture file (default: 0).

"missingcolor", color, "missingalpha", float
If present, supplies a missing color (and alpha value) that will be used for missing or broken textures –
instead of treating it as an error. If you want a missing or broken texture to be reported as an error, you
must not supply the optional "missingcolor" parameter.
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"time", float
A time value to use if the volume texture specifies a time-varying local transformation (default: 0).

"alpha", floatvariable
The alpha channel (presumed to be the next channel following the channels returned by the texture3d()
call) will be stored in the variable specified. This allows for RGBA lookups in a single call to texture3d().

"errormessage", ‘stringvariable’
If this option is supplied, any error messages generated by the texture system will be stored in the specified
variable rather than issuing error calls to the renderer, thus leaving it up to the shader to handle any errors.
The error message stored will be "" if no error occurred.

type environment (string filename, vector R, ...params... ) type environment (string
filename, vector R, vector dRdx, vector dRdy, ...params... )

Perform an environment map lookup of an image file, indexed by direction R, antialiased over a region defined
by the differentials dRdx, dRdy (which are computed automatically from R, if not supplied). Whether the results
are assigned to a float or a color (or type cast to one of those) determines whether the texture lookup is a
single channel or three channels.

The lookup direction (and optional derivatives) may be followed by optional token/value arguments that control
the behavior of environment():

“blur”, float
Additional blur when looking up the texture value (default: 0). The blur amount is relative to the size of
the texture (i.e., 0.1 blurs by a kernel that is 10% of the full width and height of the texture).

The blur may be specified separately in the s and t directions by using the "sblur" and "tblur" param-
eters, respectively.

“width”, float
Scale (multiply) the size of the filter as defined by the differentials (or implicitly by the differentials of s
and t). The default is 1, meaning that no special scaling is performed. A width of 0 would effectively turn
off texture filtering entirely.

The width value may be specified separately in the s and t directions by using the "swidth" and "twidth"
parameters, respectively.

“firstchannel”, int
The first channel to look up from the texture map (default: 0).

“fill”, float
The value to return for any channels that are requested, but not present in the texture file (default: 0).

“missingcolor”, color, “missingalpha”, float
If present, supplies a missing color (and alpha value) that will be used for missing or broken textures –
instead of treating it as an error. If you want a missing or broken texture to be reported as an error, you
must not supply the optional "missingcolor" parameter.

“alpha”, floatvariable
The alpha channel (presumed to be the next channel following the channels returned by the environment()
call) will be stored in the variable specified. This allows for RGBA lookups in a single call to
environment().

“errormessage”, stringvariable
If this option is supplied, any error messages generated by the texture system will be stored in the specified
variable rather than issuing error calls to the renderer, thus leaving it up to the shader to handle any errors.
The error message stored will be "" if no error occurred.

int gettextureinfo (string texturename, string paramname, output type destination) int
gettextureinfo (string texturename, float s, float t, string paramname, output type
destination)
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Retrieves a parameter from a named texture file. If the file is found, and has a parameter that matches the name
and type specified, its value will be stored in destination and gettextureinfo() will return 1. If the file is
not found, or doesn’t have a matching parameter (including if the type does not match), destination will not
be modified and gettextureinfo() will return 0.

The version of gettextureinfo() that takes s and t parameters retrieves information about the texture file that
will be used for those texture coordinates. This can be useful for UDIM textures that may use different texture
files for different regions, based on the corodinates. For regular, non-UDIM textures, the coordinates, if supplied,
will be ignored. When UDIM textures are queried without coordinates supplied, it will succeed and return the
texture info only if that parameter is found and has the same value in all files comprising the UDIM set. (Note:
the version with coordinates was added in OSL 1.12.)

Valid parameters recognized are listed below:

Name Type Description
"exists"int Result is 1 if the file exists and is an texture format that OSL can read, or 0 if the file does not

exist, or could not be properly read as a texture. Note that unlike all other queries, this query
will “succeed” (return 1) if the file does not exist.

"resolution"int[2]The resolution (𝑥 and 𝑦) of the highest MIPmap level stored in the texture map.
"resolution"int[3]The resolution (𝑥, 𝑦, and 𝑧) of the highest MIPmap level stored in the 3D texture map. If it

isn’t a volumetric texture, the third component (z resolution) will be 1.
"channels"int The number of channels in the texture map.
"type" stringReturns the semantic type of the texture, one of: "Plain Texture", "Shadow",

"Environment", Volume Texture".
"subimages"int Returns the number of subimages in the texture file.
"textureformat"stringReturns the texture format, one of: “Plain Texture”, “Shadow”, “CubeFace Shadow”,

“Volume Shadow”, “CubeFace Environment”, “LatLong Environment”, “Volume
Texture”. Note that this differs from "type" in that it specifically distinguishes between
the different types of shadows and environment maps.

"datawindow"int[]Returns the pixel data window of the image. The argument is an int array either of length
4 or 6, in which will be placed the (xmin, ymin, xmax, ymax) or (xmin, ymin, zmin, xmax,
ymax, zmax), respectively. (N.B. the z values may be useful for 3D/volumetric images; for
2D images they will be 0).

"displaywindow"int[]Returns the display (a.k.a. full) window of the image. The argument is an int array either of
length 4 or 6, in which will be placed the (xmin, ymin, xmax, ymax) or (xmin, ymin, zmin,
xmax, ymax, zmax), respectively. (N.B. the z values may be useful for 3D/volumetric images;
for 2D images they will be 0).

"worldtocamera"matrixIf the texture is a rendered image, retrieves the world-to-camera 3D transformation matrix that
was used when it was created.

"worldtoscreen"matrixIf the texture is a rendered image, retrieves the matrix that projected points from world space
into a 2D screen coordinate system where 𝑥 and 𝑦 range from −1 to +1.

"averagecolor"colorRetrieves the average color (first three channels) of the texture.
"averagealpha"floatRetrieves the average alpha (the channel with "A" name) of the texture.
any-
thing
else

any Searches for matching name and type in the metadata or other header information of the texture
file.

int pointcloud_search (string ptcname, point pos, float radius, int maxpoints, [int sort,]
string attr, Type data[], ..., string attrN, Type dataN[] )

Search the named point cloud for the maxpoints closest points to pos within the given radius, returning the
values of any named attributes of those points in the the given data arrays. If the optional sort parameter is
present and is nonzero, the ordering of the points found will be sorted by distance from pos, from closest to
farthest; otherwise, the results are guaranteed to be the maxpoints closest to pos, but not necessarily sorted by
distance (this may be faster for some implementations than when sorted results are required). The return value is
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the number of points returned, ranging from 0 (nothing found in the neighborhood) to the lesser of maxpoints
and the actual lengths of the arrays (the arrays will never be written beyond their actual length).

These attribute names are reserved:

Name Type Description
“position” point The position of each point
“distance” float The distance between the point and pos
“index” int The point’s unique index within the cloud

Note that the named point cloud will be created, if it does not yet exist in memory, and that it will be initialized
by reading a point cloud from disk, if there is one matching the name.

Generally, the element type of the data arrays must match exactly the type of the point data attribute, or else
you will get a runtime error. But there are two exceptions: (1) “triple” types (color, point, vector, normal)
are considered interchangeable; and (2) it is legal to retrieve float arrays (e.g., a point cloud attribute that is
float[4]) into a regular array of float, and the results will simply be concatenated into the larger array (which
must still be big enough, in total, to hold maxpoints of the data type in the file).

Example:

float r = 3.0;
point pos[10];
color col[10];
int n = pointcloud_search ("particles.ptc", P, r, 10,

"position", pos, "color", col);
printf ("Found %d particles within radius %f of (%p)\n", r, P);
for (int i = 0; i < n; ++i)

printf (" position (%f) -> color (%g)\n", pos[i], col[i]);

int pointcloud_get (string ptcname, int indices[], int count, string attr, type data[])
Given a point cloud and a list of points indices[0..count-1], store the attribute named by attr for each point,
respectively, in data[0..count-1]. Return 1 if successful, 0 for failure, which could include the attribute not
matching the type of data, invalid indices, or an unknown point cloud file.

This can be used in conjunction with pointcloud_search(), as in the following example:

float r = 3.0;
int indices[10];
int n = pointcloud_search ("particles.ptc", P, r, 10,

"index", indices);
float temp[10]; // presumed to be "float" attribute
float quaternions[40]; // presumed to be "float[4]" attribute
int ok = pointcloud_get ("particles.ptc", indices, n,

"temperature", temp,
"quat", quaternions);

As with pointcloud_search, the element type of the data array must either be equivalent to the point cloud
attribute being retrieved, or else when retrieving float arrays (e.g., a point cloud attribute that is float[4])
into a regular array of float, and the results will simply be concatenated into the larger array (which must still
be big enough, in total, to hold maxpoints of the data type in the file).

int pointcloud_write (string ptcname, point pos, string attr1, type data1, ...)
Save the tuple (attr1, data1, . . . , attrN, dataN) at position pos in a named point cloud. The point cloud will
be saved when the frame is finished computing. Return 1 if successful, 0 for failure, which could include the
attributes not matching names or types at different positions in the point cloud.
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Example:

color C = ...;
int ok = pointcloud_write ("particles.ptc", P, "normal", N, "color", C);

8.10 Material Closures

For closure color functions, the return “value” is symbolic and may be passed to an output variable or assigned to
Ci, to be evaluated at a later time convenient to the renderer in order to compute the exitant radiance in the direction
-I. But the shader itself cannot examine the numeric values of the closure color.

The intent of this specification is to give a minimal but useful set of material closures that you can expect any renderer
implementation to provide. Individual renderers may supply additional closures that are specific to the workings of
that renderer. Additionally, individual renderers may allow additional parameters or controls on the standard closures,
passed as token/value pairs following the required arguments (much like the optional arguments to the texture()
function). Consult the documentation for your specific renderer for details.

OSL’s standard material closures are by synchronized to match the names and properties of the physically-based shading
nodes of MaterialX v1.38 (https://www.materialx.org/).

8.10.1 Surface BSDF closures

closure color oren_nayar_diffuse_bsdf (normal N, color albedo, float roughness)
Constructs a diffuse reflection BSDF based on the Oren-Nayar reflectance model.

Parameters include:

N
Normal vector of the surface point being shaded.

albedo
Surface albedo.

roughness
Surface roughness [0,1]. A value of 0.0 gives Lambertian reflectance.

The Oren-Nayar reflection model is described in M. Oren and S. K. Nayar, “Generalization of Lambert’s Re-
flectance Model,” Proceedings of SIGGRAPH 1994, pp.239-246 (July, 1994).

closure color burley_diffuse_bsdf (normal N, color albedo, float roughness)
Constructs a diffuse reflection BSDF based on the corresponding component of the Disney Principled shading
model.

Parameters include:

N
Normal vector of the surface point being shaded.

albedo
Surface albedo.

roughness
Surface roughness [0,1]. A value of 0.0 gives Lambertian reflectance.

closure color dielectric_bsdf (normal N, vector U, color reflection_tint, color
transmission_tint, float roughness_x, float roughness_y, float ior, string distribution)

Constructs a reflection and/or transmission BSDF based on a microfacet reflectance model and a Fresnel curve
for dielectrics. The two tint parameters control the contribution of each reflection/transmission lobe. The tints
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should remain 100% white for a physically correct dielectric, but can be tweaked for artistic control or set to 0.0
for disabling a lobe.

The closure may be vertically layered over a base BSDF for the surface beneath the dielectric layer. This is done
using the layer() closure. By chaining multiple dielectric_bsdf closures you can describe a surface with
multiple specular lobes. If transmission is enabled (transmission_tint > 0.0) the closure may be layered
over a VDF closure describing the surface interior to handle absorption and scattering inside the medium.

Parameters include:

N
Normal vector of the surface point being shaded.

U
Tangent vector of the surface point being shaded.

reflection_tint
Weight per color channel for the reflection lobe. Should be (1,1,1) for a physically-correct dielectric surface,
but can be tweaked for artistic control. Set to (0,0,0) to disable reflection.

transmission_tint
Weight per color channel for the transmission lobe. Should be (1,1,1) for a physically-correct dielectric
surface, but can be tweaked for artistic control. Set to (0,0,0) to disable transmission.

roughness_x
Surface roughness in the U direction with a perceptually linear response over its range.

roughness_y
Surface roughness in the V direction with a perceptually linear response over its range.

ior
Refraction index.

distribution
Microfacet distribution. An implementation is expected to support the following distributions: "ggx"

thinfilm_thickness
Optional float parameter for thickness of an iridescent thin film layer on top of this BSDF. Given in nanome-
ters.

thinfilm_ior
Optional float parameter for refraction index of the thin film layer.

closure color conductor_bsdf (normal N, vector U, float roughness_x, float roughness_y,
color ior, color extinction, string distribution)

Constructs a reflection BSDF based on a microfacet reflectance model. Uses a Fresnel curve with complex
refraction index for conductors/metals. If an artistic parametrization is preferred the artistic_ior() utility
function can be used to convert from artistic to physical parameters.

Parameters include:

N
Normal vector of the surface point being shaded.

U
Tangent vector of the surface point being shaded.

roughness_x
Surface roughness in the U direction with a perceptually linear response over its range.

roughness_y
Surface roughness in the V direction with a perceptually linear response over its range.
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ior
Refraction index.

extinction
Extinction coefficient.

distribution
Microfacet distribution. An implementation is expected to support the following distributions: "ggx"

thinfilm_thickness
Optional float parameter for thickness of an iridescent thin film layer on top of this BSDF. Given in nanome-
ters.

thinfilm_ior
Optional float parameter for refraction index of the thin film layer.

closure color generalized_schlick_bsdf (normal N, vector U, color reflection_tint, color
transmission_tint, float roughness_x, float roughness_y, color f0, color f90, float
exponent, string distribution)

Constructs a reflection and/or transmission BSDF based on a microfacet reflectance model and a generalized
Schlick Fresnel curve. The two tint parameters control the contribution of each reflection/transmission lobe.

The closure may be vertically layered over a base BSDF for the surface beneath the dielectric layer. This is done
using the layer() closure. By chaining multiple dielectric_bsdf closures you can describe a surface with
multiple specular lobes. If transmission is enabled (transmission_tint > 0.0) the closure may be layered
over a VDF closure describing the surface interior to handle absorption and scattering inside the medium.

Parameters include:

N
Normal vector of the surface point being shaded.

U
Tangent vector of the surface point being shaded.

reflection_tint
Weight per color channel for the reflection lobe. Set to (0,0,0) to disable reflection.

transmission_tint
Weight per color channel for the transmission lobe. Set to (0,0,0) to disable transmission.

roughness_x
Surface roughness in the U direction with a perceptually linear response over its range.

roughness_y
Surface roughness in the V direction with a perceptually linear response over its range.

f0
Reflectivity per color channel at facing angles.

f90
Reflectivity per color channel at grazing angles.

exponent
Variable exponent for the Schlick Fresnel curve, the default value should be 5.

distribution
Microfacet distribution. An implementation is expected to support the following distributions: "ggx"

thinfilm_thickness
Optional float parameter for thickness of an iridescent thin film layer on top of this BSDF. Given in nanome-
ters.
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thinfilm_ior
Optional float parameter for refraction index of the thin film layer.

closure color translucent_bsdf (normal N, color albedo)
Constructs a translucent (diffuse transmission) BSDF based on the Lambert reflectance model.

Parameters include:

N
Normal vector of the surface point being shaded.

albedo
Surface albedo.

roughness
Surface roughness [0,1]. A value of 0.0 gives Lambertian reflectance.

closure color transparent_bsdf ( )
Constructs a closure that represents straight transmission through a surface.

closure color subsurface_bssrdf ( )
Constructs a BSSRDF for subsurface scattering within a homogeneous medium.

Parameters include:

N
Normal vector of the surface point being shaded.

albedo
Single-scattering albedo of the medium.

transmission_depth
Distance travelled inside the medium by white light before its color becomes transmission_color by Beer’s
law. Given in scene length units, range [0,infinity). Together with transmission_color this determines the
extinction coefficient of the medium.

transmission_color
Desired color resulting from white light transmitted a distance of ‘transmission_depth’ through the medium.
Together with transmission_depth this determines the extinction coefficient of the medium.

anisotropy
Scattering anisotropy [-1,1]. Negative values give backwards scattering, positive values give forward scat-
tering, and 0.0 gives uniform scattering.

closure color sheen_bsdf (normal N, color albedo, float roughness)
Constructs a microfacet BSDF for the back-scattering properties of cloth-like materials. This closure may be
vertically layered over a base BSDF, where energy that is not reflected will be transmitted to the base closure.

Parameters include:

N
Normal vector of the surface point being shaded.

albedo
Surface albedo.

roughness
Surface roughness [0,1].
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8.10.2 Volumetric material closures

closure color anisotropic_vdf (color albedo, color extinction, float anisotropy)
Constructs a VDF scattering light for a general participating medium, based on the Henyey-Greenstein phase
function. Forward, backward and uniform scattering is supported and controlled by the anisotropy input.

Parameters include:

albedo
Single-scattering albedo of the medium.

extinction
Volume extinction coefficient.

anisotropy
Scattering anisotropy [-1,1]. Negative values give backwards scattering, positive values give forward scat-
tering, and 0.0 gives uniform scattering.

closure color medium_vdf (color albedo, float transmission_depth, color
transmission_color, float anisotropy, float ior, int priority)

Constructs a VDF for light passing through a dielectric homogeneous medium, such as glass or liquids. The
parameters transmission_depth and transmission_color control the extinction coefficient of the medium
in an artist-friendly way. A priority can be set to determine the ordering of overlapping media.

Parameters include:

albedo
Single-scattering albedo of the medium.

transmission_depth
Distance travelled inside the medium by white light before its color becomes transmission_color by Beer’s
law. Given in scene length units, range [0,infinity). Together with transmission_color this determines the
extinction coefficient of the medium.

transmission_color
Desired color resulting from white light transmitted a distance of ‘transmission_depth’ through the medium.
Together with transmission_depth this determines the extinction coefficient of the medium.

anisotropy
Scattering anisotropy [-1,1]. Negative values give backwards scattering, positive values give forward scat-
tering, and 0.0 gives uniform scattering.

ior
Refraction index of the medium.

priority
Priority of this medium (for nested dielectrics).

8.10.3 Light emission closures

closure color uniform_edf (color emittance)
Constructs an EDF emitting light uniformly in all directions. This is used to represent a glowing/emissive ma-
terial. When called in the context of a surface shader group, it implies that light is emitted in a full hemisphere
centered around the surface normal. When called in the context of a volume shader group, it implies that light is
emitted evenly in all directions around the point being shaded.

The emittance parameter is the amount of emission and has units of radiance (e.g., W ·sr−1 ·m−2). This means
that a surface directly seen by the camera will directly reproduce the closure weight in the final pixel, regardless
of being a surface or a volume.
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For an emissive surface, if you divide the return value of uniform_edf() by surfacearea() * M_PI, then
you can easily specify the total emissive power of the light (e.g., W), regardless of its physical size.

8.10.4 Layering and Signaling closures

closure color layer (closure color top, closure color base)
Vertically layer a layerable BSDF such as dielectric_bsdf, generalized_schlick_bsdf or sheen_bsdf
over a BSDF or VDF. The implementation is target specific, but a standard way of handling this is by albedo scal-
ing, using base*(1-reflectance(top)) + top, where reflectance() calculates the directional albedo of
a given top BSDF.

closure color holdout ( )
Returns a closure color that does not represent any additional light reflection from the surface, but does signal
to the renderer that the surface is a holdout object (appears transparent in the final output yet hides objects behind
it). “Partial holdouts” may be designated by weighting the holdout() closure by a weight that is less than 1.0.

closure color debug (string outputname)
Returns a closure color that does not represent any additional light reflection from the surface, but does signal
to the renderer to add the weight of the closure (which may be a float or a color) to the named output (i.e.,
AOV).

8.10.5 Material utility functions

void artistic_ior (color reflectivity, color edge_tint, output color ior, output color
extinction)

Converts the artistic parameterization reflectivity and edge_tint to complex IOR values. To be used with the
conductor_bsdf() closure.

Parameters include:

reflectivity
Reflectivity per color channel at facing angles (𝑟 parameter in [OG14])

edge_tint
Color bias for grazing angles (𝑔 parameter in [OG14]). NOTE: This is not equal to ‘f90’ in a Schlick Fresnel
parameterization.

ior
Output refraction index.

extinction
Output extinction coefficient.

Reference: [OG14] Ole Gulbrandsen, “Artist Friendly Metallic Fresnel”, Journal of Computer Graphics Tools
3(4), 2014. http://jcgt.org/published/0003/04/03/paper.pdf
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8.10.6 Deprecated closures

These were described in the original OSL language specification, but beginning with OSL 1.12, these are considered
deprecated. Support for them will be removed entirely in OSL 2.0.

Deprecated Surface closures

closure color diffuse (normal N)
Returns a closure color that represents the Lambertian diffuse reflectance of a smooth surface,∫︁

Ω

1

𝜋
max(0, 𝑁 · 𝜔)𝐶𝑙(𝑃, 𝜔)𝑑𝜔

where 𝑁 is the unit-length forward-facing surface normal at P, Ω is the set of all outgoing directions in the
hemisphere surrounding 𝑁 , and 𝐶𝑙(𝑃, 𝜔) is the incident radiance at P coming from the direction −𝜔.

closure color phong (normal N, float exponent)
Returns a closure color that represents specular reflectance of the surface using the Phong BRDF. The
exponent parameter indicates how smooth or rough the material is (higher exponent values indicate a smoother
surface).

closure color oren_nayar (normal N, float sigma)
Returns a closure color that represents the diffuse reflectance of a rough surface, implementing the Oren-
Nayar reflectance formula. The sigma parameter indicates how smooth or rough the microstructure of the ma-
terial is, with 0 being perfectly smooth and giving an appearance identical to diffuse().

The Oren-Nayar reflection model is described in M. Oren and S. K. Nayar, “Generalization of Lambert’s Re-
flectance Model,” Proceedings of SIGGRAPH 1994, pp.239-246 (July, 1994).

closure color ward (normal N, vector T, float xrough, float yrough)
Returns a closure color that represents the anisotropic specular reflectance of the surface at P. The N and T
vectors, both presumed to be unit-length, are the surface normal and tangent, used to establish a local coordinate
system for the anisotropic effects. The xrough and yrough specify the amount of roughness in the tangent (T)
and bitangent (N × T) directions, respectively.

The Ward BRDF is described in Ward, G., “Measuring and Modeling Anisotropic Reflection,” Proceedings of
SIGGRAPH 1992.

closure color microfacet (string distribution, normal N, float alpha, float eta, int
refract)

Returns a closure color that represents scattering on the surface using some microfacet distribution. A sim-
plified isotropic version of the previous function.

closure color reflection (normal N, float eta)
Returns a closure color that represents sharp mirror-like reflection from the surface. The reflection direction
will be automatically computed based on the incident angle. The eta parameter is the index of refraction of the
material. The reflection() closure behaves as if it were implemented as follows:

vector R = reflect (I, N);
return raytrace (R);

closure color refraction (normal N, float eta)
Returns a closure color that represents sharp glass-like refraction of objects “behind” the surface. The eta
parameter is the ratio of the index of refraction of the medium on the “inside” of the surface divided by the index
of refration of the medium on the “outside” of the surface. The “outside” direction is the one specified by N.

The refraction direction will be automatically computed based on the incident angle and eta, and the radiance
returned will be automatically scaled by the Fresnel factor for dielectrics. The refraction() closure behaves
as if it were implemented as follows:
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float Kr, Kt;
vector R, T;
fresnel (I, N, eta, Kr, Kt, R, T);
return Kt * raytrace (T);

closure color transparent ( )
Returns a closure color that shows the light behind the surface without any refractive bending of the light
directions. The transparent() closure behaves as if it were implemented as follows:

return raytrace (I);

closure color translucent ( )
Returns a closure color that represents the Lambertian diffuse translucence of a smooth surface, which is
much like diffuse() except that it gathers light from the far side of the surface. The translucent() closure
behaves as if it were implemented as follows:

return diffuse (-N);

Deprecated Volumetric closures

closure color isotropic ( )
Returns a closure color that represents the scattering of an isotropic volumetric material, scattering light
evenly in all directions, regardless of its original direction.

closure color henyey_greenstein (float g)
Returns a closure color that represents the directional volumetric scattering by small suspended particles.
The g parameter is the anisotropy factor, in the range (−1, 1), with positive values indicating predominantly
forward-scattering, negative values indicating predominantly back-scattering, and value of 𝑔 = 0 resulting in
isotropic scattering.

closure color absorption ( )
Returns a closure color that does not represent any additional light scattering, but rather signals to the ren-
derer the absorption represents the scattering of an isotropic volumetric material, scattering light evenly in all
directions, regardless of its original direction.

Deprecated Emission closures

closure color emission ( )
Returns a closure color that represents a glowing/emissive material. When called in the context of a surface
shader group, it implies that light is emitted in a full hemisphere centered around the surface normal. When
called in the context of a volume shader group, it implies that light is emitted evenly in all directions around the
point being shaded.

The weight of the emission closure has units of radiance (e.g., W ·sr−1 ·m−2). This means that a surface directly
seen by the camera will directly reproduce the closure weight in the final pixel, regardless of being a surface or
a volume.

For an emissive surface, if you divide the return value of emission() by surfacearea() * M_PI, then you
can easily specify the total emissive power of the light (e.g., W), regardless of its physical size.

closure color background ( )
Returns a closure color that represents the radiance of the “background” infinitely far away in the view di-
rection. The implementation is renderer-specific, but often involves looking up from an HDRI environment map.
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8.11 Renderer state and message passing

int getattribute (string name, output type destination) int getattribute (string name, int
arrayindex, output type destination) int getattribute (string object, string name, output
type destination) int getattribute (string object, string name, int arrayindex, output type
destination)

Retrieves a named renderer attribute or the value of an interpolated geometric variable. If an object is explicitly
named, that is the only place that will be searched ("global" means the global scene-wide attributes). For the
forms of the function with no object name, or if the object name is the empty string "", the renderer will first
search per-object attributes on the current object (or interpolated variables with that name attached to the object),
then if not found it will search global scene-wide attributes.

If the attribute is found and can be converted to the type of destination, the attribute’s value will be stored in
destination and getattribute will return 1. If not found, or the type cannot be converted, destination
will not be modified and getattribute will return 0.

The automatic type conversions include those that are allowed by assignment in OSL source code: int to float,
float to int (truncation), float (or int) to triple (replicating the value), any triple to any other triple. Ad-
ditionally, the following conversions which are not allowed by assignment in OSL source code will also be
performed by this call: float (or int) to float[2] (replication into both array elements), float[2] to triple
(setting the third component to 0).

The forms of this function that have the the arrayindex parameter will retrieve the individual indexed element
of the named array. In this case, name must be an array attribute, the type of destination must be the type of
the array element (not the type of the whole array), and the value of arrayindex must be a valid index given
the array’s size.

Tables giving “standardized” names for different kinds of attributes may be found below. All renderers are
expected to use the same names for these attributes, but are free to choose any names for additional attributes
they wish to make queryable.

Names of standard attributes that may be retrieved:

Name Type Description
"osl:version" int Major x 10000 + Minor x 100 + patch.
"shader:shadername" string Name of the shader master.
"shader:layername" string Name of the layer instance.
"shader:groupname" string Name of the shader group.

Names of standard camera attributes that may be retrieved are in the table below. If the getattribute()
function specifies an objectname parameter and it is the name of a valid camera, the value specific to that
camera is retrieved. If no specific camera is named, the global or default camera is implied.
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Name Type Description
"camera:resolution" int[2] Image resolution.
"camera:pixelaspect" float Pixel aspect ratio.
"camera:projection" string Projection type (e.g., "perspective", "orthographic",

etc.)
"camera:fov" float Field of fiew.
"camera:clip_near" float Near clip distance.
"camera:clip_far" float Far clip distance.
"camera:clip" float[2] Near and far clip distances.
"camera:shutter_open" float Shutter open time.
"camera:shutter_close" float Shutter close time.
"camera:shutter" float[2] Shutter open and close times.
"camera:screen_window" float[4] Screen window (xmin, ymin, xmax, ymax).

void setmessage (string name, output type value)
Store a name/value pair in an area where it can later be retrieved by other shaders attached to the same object. If
there is already a message with the same name attached to this shader invocation, it will be replaced by the new
value. The message value may be any basic scalar type, array, or closure, but may not be a struct.

int getmessage (string name, output type destination) int getmessage (string source, string
name, output type destination)

Retrieve a message from another shader attached to the same object. If a message is found with the given name,
and whose type matches that of destination, the value will be stored in destination and getmessage()
will return 1. If no message is found that matches both the name and type, destination will be unchanged and
getmessage() will return 0.

The source, if supplied, designates from where the message should be retrieved, and may have any of the
following values:

"trace"
Retrieves data about the object hit by the last trace call made. Data recognized include:

Name Type Description
"hit" int Zero if the ray hit nothing, 1 if it hit.
"hitdist" float The distance to the hit.
"geom:name"stringThe name of the object hit.
other Retrieves the named global (P, N, etc.), shader parameter, or set message of the

closest object hit (only if it was a shaded ray).

Note that which information may be retrieved depends on whether the ray was traced with the optional "shade"
parameter indicating whether or not the shader ought to execute on the traced ray. If "shade" was 0, you may
retrieve “globals” (P, N, etc.), interpolated vertex variables, shader instance values, or graphics state attributes
(object name, etc.). But "shade" must be nonzero to correctly retrieve shader output variables or messages that
are set by the shader (via setmessage()).

float surfacearea ( )
Returns the surface area of the area light geometry being shaded. This is meant to be used in conjunction with
emission() in order to produce the correct emissive radiance given a user preference for a total wattage for the
area light source. The value of this function is not expected to be meaningful for non-light shaders.

int raytype (string name)
Returns 1 if ray being shaded is of the given type, or 0 if the ray is not of that type or if the ray type name is not
recognized by the renderer.
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The set of ray type names is customizeable for renderers supporting OSL, but is expected to include at a mini-
mum "camera", "shadow", "diffuse", "glossy", "reflection", "refraction". They are not necessarily
mutually exclusive, with the exception that camera rays should be of class "camera" and no other.

int backfacing ( )
Returns 1 if the surface is being sampled as if “seen” from the back of the surface (or the “inside” of a closed
object). Returns 0 if seen from the “front” or the “outside” of a closed object.

int isconnected (type parameter)
Returns 1 if the argument is a shader parameter and is connected to an earlier layer in the shader group, 2 if the
argument is a shader output parameter connected to a later layer in the shader group, 3 if connected to both earlier
and later layers, otherwise returns 0. Remember that function arguments in OSL are always pass-by-reference,
so isconnected() applied to a function parameter will depend on what was passed in as the actual parameter.

int isconstant (type expr)
Returns 1 if the expression can, at runtime (knowing the values of all the shader group’s parameter values and
connections), be discerned to be reducible to a constant value, otherwise returns 0.

This is primarily a debugging aid for advanced shader writers to verify their assumptions about what expressions
can end up being constant-folded by the runtime optimizer.

8.12 Dictionary Lookups

int dict_find (string dictionary, string query) int dict_find (int nodeID, string query)
Find a node in the dictionary by a query. The dictionary is either a string containing the actual dictionary text,
or the name of a file containing the dictionary. (The system can easily distinguish between them.) XML dictio-
naries are currently supported, and additional formats may be supported in the future. The query is expressed in
“XPath 1.0” syntax (or a reasonable subset therof).

The return value is a Node ID, an opaque integer identifier that is the handle of a node within the dictionary data.
The value 0 is reserved to mean “query not found” and the value -1 indicates that the dictionary was not a valid
syntax (or, if a file, could not be read). If more than one node within the dictionary matched the query, the node
ID of the first match is returned, and dict_next() may be used to step to the next matching node.

The version that takes a nodeID rather than a dictionary string simply interprets the query as being relative to the
node specified by nodeID, as opposed to relative to the root of the dictionary.

All expensive operations (such as reading the dictionary from a file and the initial parsing of the dictionary) are
performed only once, and subsequent lookups merely copy data and are thus inexpensive. The dictionary
string is, therefore, used as a hash into a cached data structure holding the parsed dictionary database. Imple-
mentations may also cache individual node lookups or type conversions behind the scenes.

int dict_next (int nodeID)
Return the node ID of the next node that matched the query that returned nodeID, or 0 if nodeID was the last
matching node for its query.

int dict_value (int nodeID, string attribname, output type value)
Retrieves the named attribute of the given dictionary node, or the value of the node itself if attribname is the
empty string "". If the attribute is found, its value will be stored in value and 1 will be returned. If the requested
attribute is not found on the node, or if the type of value does not appear to match that of the named node, value
will be unmodified and 0 will be returned.

Type conversions are straightforward: anything may be retrieved as a string; to retrieve as an int or float, the
value must parse as a single integer or floating point value; to retrieve as a point, vector, normal, color, or matrix
(or any array), the value must parse as the correct number of values, separated by spaces and/or commas.

int trace (point pos, vector dir, ...)
Trace a ray from pos in the direction dir. The ray is traced immediately, and may incur significant expense
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compared to rays that might be traced incidentally to evaluating the Ci closure. Also, beware that this can be
easily abused in such a way as to introduce view-dependence into shaders. The return value is 0 if the ray missed
all geometry, 1 if it hit anything within the distance range.

The following optional key-value arguments (see Section Function calls) can be passed:

"mindist", float
The minimum hit distance (default: 0).

The units of the "mindist" and "maxdist" are determined by the renderer and are sometimes defined by
the dir vector, which can lead to unexpected behavior. So, generally, clearly written and portable shaders
should pass a unit length (see Section Geometric functions) dir vector.

"mindist", float
The maximum hit distance (default: infinite).

"shade", int
Defines whether objects hit will be shaded (default: 0).

"traceset", string
An optional named set of objects to ray trace (if preceded by a - character, it means to exclude that set).

Information about the closest object hit by the ray may be retrieved using

getmessage("trace",...)

(see Section Renderer state and message passing).

The main purpose of this function is to allow shaders to “probe” nearby geometry, for example to apply a
projected texture that can be blocked by geometry, apply more “wear” to exposed geometry, or make other
ambient occlusion-like effects.

8.13 Miscellaneous

int arraylength (type A[])
Returns the length of the referenced array, which may be of any type.

void exit ()
Exits the shader without further execution. Within the main body of a shader, this is equivalent to calling return,
but inside a function, exit()will exit the entire shader, whereas returnwould only exit the enclosing function.
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CHAPTER

NINE

FORMAL LANGUAGE GRAMMAR

This section gives the complete syntax of OSL. Syntactic structures that have a name ending in -opt are optional.
Structures surrounded by curly braces { }may be repeated 0 or more times. Text in typewriter face indicates literal
text. The 𝜖 character is used to indicate that it is acceptable for there to be nothing (empty, no token).

9.1 Lexical elements

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

<digit-sequence> ::= <digit> { <digit> }

<hexdigit> ::= <digit> | “a” | “A” | “b” | “B” | “c” | “C” | “d” | “D” | “e” | “E” | “f” | “F”

<hexdigit-sequence> ::= <hexdigit> { <hexdigit> }

<integer> ::= <sign> <digit-sequence> | <sign> “0x” <hexdigit-sequence>

<floating-point> ::= <digit-sequence> <decimal-part-opt> <exponent-opt> | <decimal-part> <exponent-opt>

<decimal-part> ::= ‘.’ { <digit> }

<exponent> ::= ‘e’ <sign> <digit-sequence>

<sign> ::= ‘-’ | ‘+’ | 𝜖

<number> ::= <integer> | <floating-point>

<char-sequence> ::= { <any-char> }

<stringliteral> ::= " <char-sequence> "

<identifier> ::= <letter-or-underscore> { <letter-or-underscore-or-digit> }

9.2 Overall structure

<shader-file> ::= { <global-declaration> }

<global-declaration> ::= <function-declaration> | <struct-declaration> | <shader-declaration>

<shader-declaration> ::= <shadertype> <identifier> <metadata-block-opt> “(” <shader-formal-params-opt>
“)” “{” <statement-list> “}”

<shadertype> ::= “displacement” | “shader” | “surface” | “volume”

<shader-formal-params> ::= <shader-formal-param> { “,” <shader-formal-param> }
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<shader-formal-param> ::= <outputspec> <typespec> <identifier> <initializer> <metadata-block-opt> | <out-
putspec> <typespec> <identifier> <arrayspec> <initializer-list> <metadata-block-opt>

<metadata-block> ::= “[[” <metadata> { “,” <metadata> } “]]”

<metadata> ::= <simple-typespec> <identifier> <initializer>

9.3 Declarations

<function-declaration> ::= <typespec> <identifier> “(” <function-formal-params-opt> “)” “{” <statement-list>
“}”

<function-formal-params> ::= <function-formal-param> { “,” <function-formal-param> }

<function-formal-param> ::= <outputspec> <typespec> <identifier> <arrayspec-opt>

<outputspec> ::= “output” | 𝜖

<struct-declaration> ::= “struct” <identifier> “{” <field-declarations> “}” “;”

<field-declarations> ::= <field-declaration> { <field-declaration> }

<field-declaration> ::= <typespec> <typed-field-list> “;”

<typed-field-list> ::= <typed-field> { “,” <typed-field> }

<typed-field> ::= <identifier> <arrayspec-opt>

<local-declaration> ::= <function-declaration> | <variable-declaration>

<arrayspec> ::= “[” <integer> “]” | “[” “]”

<variable-declaration> ::= <typespec> <def-expressions> “;”

<def-expressions> ::= <def-expression> { “,” <def-expression> }

<def-expression> ::= <identifier> <initializer-opt> | <identifier> <arrayspec> <initializer-list-opt>

<initializer> ::= “=” <expression>

<initializer-list> ::= “=” <compound-initializer>

<compound-initializer> ::= “{” <init-expression-list> “}”

<init-expression-list> ::= <init-expression> { “,” <init-expression> }

<init-expression> ::= <expression> | <compound-initializer>

<typespec> ::= <simple-typename> | “closure” <simple-typename> | <identifier-structname>

<simple-typename> ::= “color” | “float” | “matrix” | “normal” | “point” | “string” | “vector” | “void”

9.4 Statements

<statement-list> ::= <statement> { <statement> }

<statement> ::= <compound-expression-opt> “;” | <scoped-statements> | <local-declaration> |
<conditional-statement> | <loop-statement> | <loopmod-statement> | <return-statement>

<scoped-statements> ::= “{” <statement-list-opt> “}”

<conditional-statement> ::= “if” “(” <compound-expression> “)” <statement> | “if” “(” <compound-
expression> “)” <statement> “else” <statement>
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<loop-statement> ::= “while” “(” <compound-expression> “)” <statement> | “do” <statement>
“while” “(” <compound-expression> “)” “;” | “for” “(” <for-init-statement-opt> <compound-expression-opt>
“;” <compound-expression-opt> “)” <statement>

<for-init-statement> ::= <expression-opt> “;” | <variable-declaration>

<loopmod-statement> ::= “break” “;” | “continue” “;”

<return-statement> ::= “return” <expression-opt> “;”

9.5 Expressions

<expression-list> ::= <expression> { “,” <expression> }

<expression> ::= <number> | <stringliteral> | <type-constructor> | <incdec-op> <variable-ref>
| <expression> <binary-op> <expression> | <unary-op> <expression> | “(” <compound-expression> “)”
| <function-call> | <assign-expression> | <ternary-expression> | <typecast-expression> |
<variable-ref> | <compound-initializer>

<compound-expression> ::= <expression> { “,” <expression> }

<variable-lvalue> ::= <identifier> <array-deref-opt> <component-deref-opt> | <variable_lvalue> “[” <expression>
“]” | <variable_lvalue> “.” <identifier>

<variable-ref> ::= <identifier> <array-deref-opt>

<array-deref> ::= “[” <expression> “]”

<component-deref> ::= “[” <expression> “]” | “.” <component-field>

<component-field> ::= “x” | “y” | “z” | “r” | “g” | “b”

<binary-op> ::= “*” | “/” | “%” | “+” | “-” | “<<” | “>>” | “<” | “<=” | “>” | “>=” | “==” | “!=”
| “&” | “^” | “|” | “&&” | “and” | “||” | “or”

<unary-op> ::= “-” | “~” | “!” | “not”

<incdec-op> ::= “++” | “–”

<type-constructor> ::= <typespec> “(” <expression-list> “)”

<function-call> ::= <identifier> “(” <function-args-opt> “)”

<function-args> ::= <expression> { “,” <expression> }

<assign-expression> ::= <variable-lvalue> <assign-op> <expression>

<assign-op> ::= “=” | “*=” | “/=” | “+=” | “-=” | “&=” | “|=” | “^=” | “<<=” | “>>=”

<ternary-expression> ::= <expression> “?” <expression> “:” <expression>

<typecast-expression> ::= “(” <simple-typename> “)” <expression>
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CHAPTER

TEN

DESCRIBING SHADER GROUPS

Below, we propose a simple grammar giving a standard way to serialize (i.e., express as text) a full shader group,
including instance values and connectivity of the shader layers. There are only three statements/operations: set an
instance value, make a shader instance, and connect two instances.

param type paramname value. . . ; param type paramname value. . . [[ metadata . . . ]] ;
Declare an instance value of a shader parameter to be applied to the next shader statement. We refer to the
parameter values set, which have not yet had their shader declared, as pending parameters.

The paramname is the name of the parameter whose instance values are being specified.

The type is one of the basic numeric or string data types described in Chapter Data types (int, float,color,
point, vector, normal, matrix, or string), or an array thereof (indicated by the usual notation of [size]).
The type must match the declared type of the parameter in the shader.

The actual values are listed individually, with multiple values (in the case of an array or an aggregate such as
a color) simply separated by whitespace. If fewer values are supplied than the total number of array elements
or aggregate components, the remainder will be understood to be filled with 0 values. String values must be
enclosed in double quotes ("like this").

The param statement is terminated by a semicolon (;).

Optionally, metadata hints may be supplied enclosed by double brackets, immediately before the semicolon.

shader shadername layername ;
Declares a shader instance, which will receive any pending parameters that were declared since the previous
shader statement (and in the process, clear the list of pending parameters).

The shadername is an identifier that specifies the name of the shader to use as the master for this instance. The
layername is an identifier that names the layer (e.g., to subsequently specify it as a source or destination for
connections).

The shader statement is terminated by a semicolon (;).

connect source_layername . paramname destination_layername . paramname ;
Establish a connection between an output parameter of a source layer and an input parameter of a destination
layer, both of which have been previously declared within this group. The source layer must have preceded the
destination layer when they were declared, and the parameters must exist and be of a compatible type so that it
is meaningful to establish a connection (for example, you may connect a color to a color, but you may not
connect a color to a matrix).

If the named parameters are structures, the two structures must have identical data layout, and establishing the
connection will connect each corresponding data member. It is also possible to make a connection of just a single
member of a structure by using the usual ``dot” syntax, for example, for layers A and B, connect A.c.x B.y
might connect A’s parameter c, member x, to B’s parameter y (the types of c.x in A and y in B must match).

The connect statement is terminated by a semicolon (;).
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Example

param string name "rings.tx" ; # set pending `name'
param float scale 3.5 ; # set pending `scale'
shader "texturemap" "tex1" ; # tex1 layer, picks up `name', `scale'
param string name "grain.tx" ;
shader "texturemap" "tex2" ;
param float gam 2.2 ;
shader "gamma" "gam1" ;
param float gam 1.0 ;
shader "gamma" "gam2" ;
param color woodcolor 0.42 0.38 0.22 ; # example of a color param
shader "wood" "wood1" ;
connect tex1.Cout gam1.Cin ; # connect tex1's Cout to gam1's Cin
connect tex2.Cout gam2.Cin ;
connect gam1.Cout wood1.rings ;
connect gam2.Cout wood1.grain ;
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CHAPTER

ELEVEN

GLOSSARY

Attribute state
The set of variables that determines all the properties (other than shape) of a geometric primitive — such as
its local transformation matrix, the surface, displacement, and volume shaders to be used, which light sources
illuminate objects that share the attribute state, whether surfaces are one-sided or two-sided, etc. Basically all of
the options that determine the behavior and appearance of the primitives, that are not determined by the shape
itself or the code of the shaders. A single attribute state may be shared among multiple geometric primitives.
Also sometimes called graphics state.

BSDF
Bidirectional scattering distribution function, a function that describes light scattering properties of a surface.

Built-in function
A function callable from within a shader, where the implementation of the function is provided by the renderer
(as opposed to a function that the shader author writes in OSL itself).

Closure
A symbolic representation of a function to be called, and values for its parameters, that are packaged up to be
evaluated at a later time to yield a final numeric value.

Connection
A routing of the value of an output parameter of one shader layer to an input parameter of another shader layer
within the same shader group.

Default parameter value
The initial value of a shader parameter, if the renderer does not override it with an instance value, an interpolated
primitive variable, or a connection to an output parameter of another layer within the group. The default value
of a shader parameter is explicitly given in the code for that shader, and may either be a constant or a computed
expression.

EDF
Emission distribution function, a function that describes the distribution of light emitted by a light source.

Geometric primitive
A single shape, such as a NURBS patch, a polygon or subdivision mesh, a hair primitive, etc.

Global variables
The set of “built-in” variables describing the common renderer inputs to all shaders (as opposed to shader-specific
parameters). These include position (P), surface normal (N), surface tangents (dPdu, dPdv), as well as standard
radiance output (Ci). Different shader types support different subsets of the global variables.

Graphics state
See attribute state.

Group
See shader group.
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Input parameter
A read-only shader parameter that provides a value to control a shader’s behavior. Can also refer to a read-only
parameter to a shader function.

Instance value
A constant value that overrides a default parameter value for a particular shader instance. Each instance of a
shader may have a completely different set of instance values for its parameters.

Layer
See shader layer.

Output parameter
A read/write shader parameter allows a shader to provide outputs beyond the global variables such as Ci. Can
also refer to a read/write parameter to a shader function, allowing a function to provide more outputs than a
simple return value.

Primitive
Usually refers to a geometric primitive.

Primitive variable
A named variable, and values, attached to an individual geometric primitive. Primitive variables may have one
of several interpolation methods — such as a single value for the whole primitive, a value for each piece or face
of the primitive, or per-vertex values that are smoothly interpolated across the surface.

Shader
A small self-contained program written in OSL, used to extend the functionality of a renderer with custom
behavior of materials and lights. A particular shader may have multiple shader instances within a scene, each of
which has its unique instance parameters, transformation, etc.

Shader function
A function written in OSL that may be called from within a shader.

Shader group
An ordered collection of shader instances (individually called the layers of a group) that are executed to col-
lectively determine material properties or displacement of a geometric primitive, emission of a light source, or
scattering properties of a volume. In addition to executing sequentially, layers within a group may optionally
have any of their input parameters explicitly connected to output parameters of other layers within the group in
an acyclic manner (thus, sometimes being referred to as a shader network).

Shader instance
A particular reference to a shader, with a unique set of instance values, transformation, and potentially other
attributes. Each shader instance is a separate entity, despite their sharing executable code.

Shader network
See shader group.

Shader layer
An individual shader instance within a shader group.

Shader parameter
A named input or output variable of a shader. Input parameters provide “knobs” that control the behavior of a
shader; output parameters additional provide a way for shaders to produce additional output beyond the usual
global variables.

Shading
The computations within a renderer that implement the behavior and visual appearance of materials and lights.

VDF
Volumetric distribution function, a function that describes the scattering properties of a volume.
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