

OPAL an Open Source Automation Framework

Contents:

	Concepts
	Introduction

	User Guide
	Terms

	Opal Nodes
	opal-node-control-flow

	opal-node-database

	opal-node-email

	opal-node-ftp

	opal-node-msexcel

	opal-node-pdfreader

	opal-node-soap

	opal-node-ui-web-browser

Automation Framework

Here is a quick introduction and few steps to get you started! Are you ready?

Introduction

OPAL is an Automation Framework for process and application automation.
Guess what? It is an open source framework and free to use.
Yippe! Now there is nothing stopping you from implementing all those
creative process improvements projects you had in your mind.

OPAL is based on the Node-RED [https://nodered.org/] project by IBM. Node-RED was primarily for Internet of Things.
OPAL has extended the capability of automation to almost any other application in your daily use.

Getting Started

Let us get the tool installed. You can refer to the steps provided in the Setting up OPAL

Terms

Node- A action that is performed. Nodes are available in the palette. Read the opalnodes documentation to view all nodes.

Properties - The properties of a node are the list of attributes or values that is required for executing a node. They are configured through the editor and passed to the run-time as part of the generated json configuration.

Module - A collection of related nodes that are published together to the repository. They are installed and managed as a collection and they mostly have their own palette category.

Flow - A sequence of nodes that represent tasks performed on various resources. The resources maybe UI based like TextField, Button etc or Non-UI resources like File, Webservice, Email.

Context - Refers to the state that is available to a node. This could be any valid JS types. There are 3 types of context namely; Global, Flow and Node.

Project - A collection of flows that contains a deployed unit. Typically a process to be automated

Editor - The user interface that is used to compose flows. Editor has sections to define flows and resources. It shows debug messages, help associated with various nodes and managing projects.Flows are composed by configuring nodes and connecting them together as the process dictates.

Runtime - The engine that executes the flow once it is deployed from the Editor

Object Finder - The component integrated with studio that allows finding UI objects on various types of application.

Opal Nodes

	opal-node-control-flow

	opal-node-database

	opal-node-email

	opal-node-ftp

	opal-node-msexcel

	opal-node-pdfreader

	opal-node-soap

	opal-node-ui-web-browser

 [image: opal-node-control-flow build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-control-flow]
opal-node-control-flow ———————- This module is part of the OPAL
framework

opal-node-control-flow

Nodes: * opal loops

Loops * Provides for-loop, foreach-loop, while-loop
functionality. THe loop node provides 2 output ports. The next item
output and the done output port. Connect the nodes that are to
be in the loop body to the next output port. At the end of the loop
connect the last action to the input port of the loop node. Connect the
done output port to the nodes that are to be executed after the
loops ends.

Inputs:

	Name: A Name for this instance

	Type: choose from for-loop, foreach-loopand
while-loop

	for-loop: Takes start, end and step as parameters

	start: A number that represents the starting value for the
loop

	end: A number that represents the ending value of the loop.
This must be greater than the start value

	step: A number y which the loop counter is incremented for
each iteration

	foreach-loop: Takes a collection to be iterated as input.

	collection: The collection to be iterated. Expects a JSON
array or variable containing a json array.

	while-loop: Takes start, end and step as parameters

	property: The value to be used in the comparison for while
condition

	rules: A collection of rules that can be applied to the
property. The rules when applied to the property forms the
condition for the loop

Outputs: msg.error When an error happens contains the error
message from the read operation msg.payload contains the data read
from spreadsheet

 [image: opal-node-database build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-database]

opal-node-database

This module is part of the OPAL framework

Nodes: * querydb-read

Querydb Read Connects to mysql database based on the connections
details provided and executes the specified query. Query results are
returned as the output of the node.

Inputs:

	DB Type: Specify the type of database to connect (e.g. mysql,
oracle, db2, etc.)

	Server: Specify the database server details (IP address or
hostname)

	Database: Specify the database instance name

	Port: Specify the port number to be used for connection

	Connection String: Specify the connection string for the
database.

	Username: Specify the username for connecting to the database.

	Password: Specify the password for connecting to the database

	Query: Specify the query to be executed on the database

	Timeout: specify the timeout during lookup for the title
operation

Outputs: msg.error When an error happens contains the error
message from underlying database connection msg.payload contains the
data read from database query

 [image: opal-node-email build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-email]

opal-node-email

This module is part of the OPAL framework

Nodes: * email send * email listen

Email Send Sends the msg.payload as an email, with a subject of
msg.topic.

The default message recipient can be configured in the node, if it is
left blank it should be set using the msg.to property of the incoming
message. If left blank you can also specify msg.cc and/or
msg.bcc properties.

You may optionally set msg.from in the payload which will override
the userid default value.

The payload can be html format.

If the payload is a binary buffer then it will be converted to an
attachment. The filename should be set using msg.filename.
Optionally msg.description can be added for the body text.

Alternatively you may provide msg.attachments which should contain
an array of one or more attachments in nodemailer format.

If required by your recipient you may also pass in a msg.envelope
object, typically containing extra from and to properties.

Note: uses SMTP with SSL to port 465.

Email Listen Repeatedly gets a single email from an IMAP server and
forwards on as a msg if not already seen.

The subject is loaded into msg.topic and msg.payload is the
plain text body. If there is text/html then that is returned in
msg.html. msg.from and msg.date are also set if you need
them.

Additionally msg.header contains the complete header object
including to, cc and other potentially useful properties.

Uses the imap module.

Note: this node only gets the most recent single email from the
inbox, so set the repeat (polling) time appropriately.

Note: uses IMAP with SSL to port 993.

Any attachments supplied in the incoming email can be found in the
msg.attachments property. This will be an array of objects where
each object represents a specific attachments. The format of the object
is:

{
 contentType: // The MIME content description
 fileName: // A suggested file name associated with this attachment
 transferEncoding: // How was the original email attachment encoded?
 contentDisposition: // Unknown
 generatedFileName: // A suggested file name associated with this attachment
 contentId: // A unique generated ID for this attachment
 checksum: // A checksum against the data
 length: // Size of data in bytes
 content: // The actual content of the data contained in a Node.js Buffer object
 // We can turn this into a base64 data string with content.toString('base64')
}

 [image: opal-node-ftp build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-ftp]

opal-node-ftp

This module is part of the OPAL framework

Nodes: * ftp service

FTP Service Connects to a ftp server and helps to read or write the
specified file.

Inputs: * Name: A Name for this instance * Host: Specify
the port number of FTP server * Port: Specify the port number of
FTP server * Filename: Specify the filename to be transferred *
Mode: Specify the type of operation. READ / WRITE a file *
Location: Specify the location of the file to be uploaded *
Remote Location: Specify the remote location of the file on the FTP
server * Username: Specify the username for connecting to FTP
server * Password: Specify the password for connecting to FTP
server

Outputs: msg.error When an error happens contains the error
message from the read operation msg.payload contains the data read
from spreadsheet

 [image: opal-node-msexcel build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-msexcel]

opal-node-msexcel

This module is part of the OPAL framework

Nodes: * read excel * write excel

Read Excel Opens an *xlsx* or *xls* file spreadsheet from a
specified location and reads the contents. The contents can then be
passed to downstream node or saved to a store variable

Inputs:

	Name: A Name for this read-excel instance

	File Path: choose the location from where the spreadsheet can be
read

	Sheet: specify the name of the sheet to be read (E.g. Sheet 1)

	Read Mode: specify the mode used for reading. This can be Full
Content,Rows,Columns,Region

	Full Contents - Fetches the entire contents of the specified
sheet

	Rows - A comma separated list of Numbers of the Rows that are
to be fetched.

	Columns - A comma separated list of Names(e.g. A, B, AA etc)
of the columns that are to be fetched

	Region - A region notation as defined by this MSDN article
(Range
Notation [https://msdn.microsoft.com/en-us/library/bb211395(v=office.12).aspx]).
Only a single range expression is supported.

Output Formats: The output of the read operation can be a Simple
JSON (Array of Arrays or Column Header indexed objects) with only the
data or a more descriptive format. Details can be found from the xlsx
project

* As Json - Uses the simple JSON format * Use Column Labels
- Use column headers such A,B etc to index the data rather using Array
of Array. Only for JSON mode * Remove Empty Rows - Removes Empty
Rows fromm a JSON output. Only for JSON mode * Timeout: specify
the timeout during lookup for the title operation.

Outputs: msg.error When an error happens contains the error
message from the read operation msg.payload contains the data read
from spreadsheet

Write Excel Creates or Opens an xlsx/xls file spreasheet from the
specified location and write the contents that are provided. The
contents can be from upstream actions, variables (flow/global) or
provided as literal text

Inputs: * Name: A Name for this read-excel instance * File
Path: choose the location where the spreadsheet is to be written *
Sheet: specify the name of the sheet to be updated (E.g. Sheet 1) *
Write Mode: specify the mode used for writing. This can be Full
Content,Rows,Colummns,Region * Full Contents - Updates the entire
contents of the specified sheet - TBD * Rows - A comma separated
list of Numbers of the Rows that are to be updated. * Columns -A
comma separated list of Names(e.g. A, B, AA etc) of the columns that are
to be updated * Region - A region notation as deinfed by this MSDN
article (Range
Notation [https://msdn.microsoft.com/en-us/library/bb211395(v=office.12).aspx]).
Only a single range expression is supported. * Timeout: specify the
timeout during lookup for the title operation.

Input Formats: The input data to be written to the spreadsheet is
always provided as an array of arrays. This is expected to be a valid
json. Use the below guidelines. A JSON formatter will be available in a
later release.

	Number - Uses the simple JSON format

	String - Use column headers such A,B etc to index the data rather
using Array of Array. Only for JSON mode

	Boolean - Removes Empty Rows fromm a JSON output. Only for JSON
mode

	Date - Specified like a string with surrounding quotes. The list
of date formats shown below are support and will be automatically
parsed. Others maybe set as text. The list of supported formats will
be configurable in a later release

Outputs: msg.error When an error happens contains the error
message from update operation

 [image: opal-node-pdfreader build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-pdfreader]

opal-node-pdfreader

This module is part of the OPAL framework

Nodes: * read pdf

Read PDF Opens an pdf from a specified location and reads the
contents. The contents can then be passed to downstream node or saved to
a store variable.

Inputs: * Name: A Name for this instance * File Path:
choose the location from where the pdf can be read * Preprocess:
specify if pdf document needs to be processed, optionally based on rules
specified.

Output Formats: The output of the read operation can be a JSON

Outputs: msg.error When an error happens contains the error
message from the read operation msg.payload contains the data read
from pdf

 [image: opal-node-soap build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-soap]

opal-node-soap

This module is part of the OPAL framework

Nodes: * soap service

Soap Service Connects to a soap service and provides the response.

Inputs:

	Name: A Name for this read-excel instance

	Url: Specify the url for soap request

	Method: Specify the methods to invoke based on the wsdl

	Parameters: Specify the parameters in json format

	Headers: Specify the header for the request

Outputs:

msg.error When an error happens contains the error message from the
read operation msg.payload contains the data read from spreadsheet

 [image: opal-node-ui-web-browser build status] [https://travis-ci.org/telligro/opal-nodes] [image: npm (scoped)] [https://www.npmjs.com/package/opal-node-ui-web-browser] [image: license]

opal-node-ui-web-browser

This module is part of the OPAL framework

Nodes:

	open web

	close web

	find object

	send keys

	click on

	set value

	to file

	identify page

	get value

	get attribute

	get text

	run script

	screenshot

	nav to

	nav back

	nav forward

	nav refresh

Open Web Create an instance of selenium webdriver and connect to the
Selenium Server when an event is triggered.

Inputs: * Name: A Name for this read-excel instance *
Browser: specify the selenium node which support the web browser you
wan tot test such as [Chrome, Firefox etc.,] * Page: the name of
the page to be launched. pages can be defined by editing this
configuration item * Timeout: specify the timeout during lookup for
the title operation.

Outputs: msg.error When an error happens contains the error
message from the read operation.

Close Web Close the web browser which is openned by the open-web
node

Inputs: * Name: a Name for this instance * Wait For: time
in milliseconds to waiit before execution

Outputs: msg.error When an error happens contains the error
message from the read operation

Find Object Finds a target specified in the specified page

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set.

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Send Keys Sends the specified keys to the target

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set.

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Click On Clicks on the target

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set.

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Set Value Sets the value of the target

Inputs: * Name: a Name for this instance * Value: the
value to set * Page: the page where this browser action executes.
Pages can be defined by editing this configuration item * Target:
specify the target to lookup. The msg.target will override the
Target field if set. * Timeout: specify the timeout during lookup
operation. The msg.timeout will override the Timeout field if set.
* Wait For: specify the time to wait before looking up. The
msg.waitfor will override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

To File Save a value to the File location with msg.payload
content as a string.

Inputs: * Name: a Name for this instance * File: specify
the file path to write to. The msg.filename will override the File field
if set * Wait For: specify the time to wait before looking up. The
msg.waitfor will override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Identify Page Identifies the current page. If the page specified is
available in the browser the identified output port is activated. If
the page is not found the not identified output port is activated.

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Timeout: specify the timeout during lookup
operation. The msg.timeout will override the Timeout field if set.
* Wait For: specify the time to wait before looking up. The
msg.waitfor will override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Get Value Gets the value of the target

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set. * Store: the location where the value is stored

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Get Attribute Gets the specified attribute value of the target

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set. * Store: the location where the value is stored

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Get Text Gets the text property of the target

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set. * Store: the location where the value is stored

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Run Script Executes the script in the context of the page

Inputs: * Name: a Name for this instance * Page: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set. * Function: the javascript code that is executed in
the context of the page

Logging and Error Handling To log any information, or report an
error, the following functions are available:

node.log("Log")
node.warn("Warning")
node.error("Error")

The Catch node can also be used to handle errors. To invoke a Catch
node, pass msg as a second argument to node.error:

node.error("Error",msg)

Sending messages The function can either return the messages it wants to
pass on to the next nodes in the flow, or can call node.send(messages).

It can return/send:

a single message object - passed to nodes connected to the first output
an array of message objects - passed to nodes connected to the
corresponding outputs If any element of the array is itself an array of
messages, multiple messages are sent to the corresponding output.

If null is returned, either by itself or as an element of the array, no
message is passed on.

See the online documentation for more help. You can manage your palette
of nodes with ctrl-⇧p

Outputs: msg.error When the object is unexpected or cannot
find element, this node generates the error with detail information

msg.element If the element is found, it will be passed though the
msg object to the next node.

Screenshot Take a screenshot fo the current page and save to a file

Inputs: * Name: a Name for this instance * File: full
filename to store the screenshot * Page: the page where this
browser action executes. Pages can be defined by editing this
configuration item * Target: specify the target to lookup. The
msg.target will override the Target field if set. * Timeout:
specify the timeout during lookup operation. The msg.timeout will
override the Timeout field if set. * Wait For: specify the time to
wait before looking up. The msg.waitfor will override the Wait For
field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Nav To Navigate to the specified URL

Inputs: * Name: a Name for this instance * URL: the page
where this browser action executes. Pages can be defined by editing this
configuration item * Wait For: specify the time to wait before
looking up. The msg.waitfor will override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Nav Back Triggers the back action in browser

Inputs: * Name: a Name for this instance * Wait For:
specify the time to wait before looking up. The msg.waitfor will
override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Nav Forward Triggers the forward action in browser

Inputs: * Name: a Name for this instance * Wait For:
specify the time to wait before looking up. The msg.waitfor will
override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Nav Refresh Refreshes the page in the browser

Inputs: * Name: a Name for this instance * Wait For:
specify the time to wait before looking up. The msg.waitfor will
override the Wait For field if set.

Outputs: msg.error When the object is unexpected or cannot find
element, this node generates the error with detail information

Index

Setting up OPAL

The term node in this documentation refers to single processing block in a node-red Flow. Not to be confused with Node.js, the framework used by this implementation.

Working Environment

	Ensure that nodejs is installed or available in the path variable

	Setup folder structure similar to that shown above

	Checkout the feature/orpa-init branch of the ORPA project to <WorkingDir>ORPA

	Checkout ORPA-Nodes to <WorkingDir>ORPA-Nodes

	Checkout ORPA-Flows to <WorkingDir>ORPA-Flows

	Open Command Prompt & execute the below steps to setup ORPA

Sample flows that use the opal-nodes

How to use

	Copy the sample project (e.g. msexcel) folder to <NODE_RED_HOME>/

	Run git init within the folder

	From Editor menu choose Projects > Open

	Select sample project to open in editor

msexcel

read-excel, write-excel node based flows

About

Contains flows that show the various options available for read-excel
and write-excel nodes.

Note: write-excel only shows a single option, more to be added.

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 OPAL an Open Source Automation Framework

 		
 Concepts

 		
 Introduction

 		
 User Guide

 		
 Terms

 		
 Opal Nodes

 		
 opal-node-control-flow

 		
 opal-node-database

 		
 opal-node-email

 		
 opal-node-ftp

 		
 opal-node-msexcel

 		
 opal-node-pdfreader

 		
 opal-node-soap

 		
 opal-node-ui-web-browser

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

