OntoUML specification Documentation

Marek Suchanek

Sep 11, 2022

1.1 OntoUML
1.2 UFO e

22 Identity
23 Rigidity

Introduction

Theory

2.1 Types and Individuals
Class stereotypes

31 Kind
32 Subkind.
33 Phase e
34 Role.
35 Collective e
3.6 Quantity o
377 Relator
3.8 Category e e
39 PhaseMixin
3.10 RoleMixin
311 Mixin e
312 Mode e
313 Quality

Relationship stereotypes

4.1 Introduction

42 Formal
43 Material
44 Mediation.

4.5 Characterization

4.6 Derivation

4.7 Structuration

48 Part-Whole

4.9 ComponentOf
4.10 Containment

411 MemberOf
4.12 SubCollectionOf
4.13 SubQuantityOf

OntoUML Anti-Patern Catalogue

CONTENTS

5.1 BinOver anti-pattern L i e e e e e e e e e e e e e
5.2 DecIntanti-pattern o L e
5.3 DepPhase anti-patterno e e e e e e e e e e e e e e e
54 FreeRole anti-pattern L e
5.5 GSRiganti-pattern L e e e e e e e e e e e e e e e e
5.6 HetColl anti-pattern i e e e e e e e
5.7 HomoFunc anti-pattern. i it e e e e e e e e e e e e e e
5.8 ImpAbsanti-patterno e e e e e e e e e e e e e e
59 Mixlden anti-pattern L. L e e e e e
5.10 MixRiganti-pattern L. L e e e e e e e e e e e e e
5.11 MultDep anti-pattern 0L e e e e e e e e e e e e
5.12 PartOver anti-pattern v v i i e
5.13 RelComp anti-pattern o v i i e
5.14 RelOver anti-pattern o i e e e e e e e e e e e e
5.15 RelRiganti-pattern Lo e e e e e e e e e e e e e e e
5.16 RelSpec anti-pattern e e e e e e e e e
5.17 RepRelanti-pattern 0 e e e e e e e e e e e e e
5.18 UndefFormal anti-pattern 0 0 i e e e e e e e e e e e
5.19 UndefPhase anti-pattern i it i e e e e e e e e e e e e e e e
5.20 WholeOver anti-pattern e e e e e e e e
OntoUML Pattern Catalogue

6.1 Phase Partition pattern e e
6.2 Relator pattern e e e e e e e e e e e e e e
6.3 RoleMixin pattern o e e e e e e e e e e e e e e
6.4 RoleMixin Alternative pattern e e e e e e e
Contributing

7.1 Reporting iSSUES o v v it e e e e e e e e e e e e e e e e e e
7.2 SOIVINGISSUES . . . v v o o e
7.3 Documentation guidelines e e e e e e e e e e

8 Indices and tables

113
113
114
115
116

117
117
117
117

119

OntoUML specification Documentation

Welcome to the documentation of OntoUML ontology-driven conceptual modelling language based on upper ontology
UFO. We welcome any form of contribution and questions that will make this documentation better as it is community-

driven hosted on github.com. For more information about OntoUML, tooling, references, and the community, visit
OntoUML Community Portal.

CONTENTS

https://github.com/OntoUML/OntoUML
https://ontouml.org

OntoUML specification Documentation

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 OntoUML

OntoUML is an ontologically well-founded language for Ontology-driven Conceptual Modeling. OntoUML is built
as a UML extension based on the Unified Foundational Ontology (UFO). The foundations of UFO and OntoUML can
be traced back to Giancarlo Guizzardi’s Ph.D. thesis “Ontological Foundations for Structural Conceptual Models”. In
his work, he proposed a novel foundational ontology for conceptual modeling (UFO) and employed it to evaluate and
re-design a fragment of the UML 2.0 metamodel for the purposes of conceptual modeling and domain ontology engi-
neering. OntoUML has been adopted by many academic, corporate and governmental institutions worldwide for the
development of conceptual models in a variety of domains. It has also been considered as a candidate for addressing the
OMG SIMF (Semantic Information Model Federation) Request for Proposal, as is explicitly recognized as the founda-
tions for the “Data Modeling Guide (DMG) For An Enterprise Logical Data Model (ELDM)” initiative. Finally, some
of the foundational theories underlying OntoUML have also influenced other popular conceptual modeling languages
such as ORM 2.0.

Source: wikipedia.org

1.2 UFO

The Unified Foundational Ontology (UFO), developed by Giancarlo Guizzardi and associates, incorporating devel-
opments from GFO, DOLCE and the Ontology of Universals underlying OntoClean in a single coherent foundational
ontology. The core categories of UFO (UFO-A) have been completely formally characterized in Giancarlo Guizzardi’s
Ph.D. thesis and further extended at the Ontology and Conceptual Modelling Research Group (NEMO) in Brazil with
cooperators from Brandenburg University of Technology (Gerd Wagner) and Laboratory for Applied Ontology (LOA).
UFO-A has been employed to analyze structural conceptual modeling constructs such as object types and taxonomic
relations, associations and relations between associations, roles, properties, datatypes and weak entities, and parthood
relations among objects. More recent developments incorporate an ontology of events in UFO (UFO-B), as well as an
ontology of social and intentional aspects (UFO-C). The combination of UFO-A, B and C has been used to analyze,
redesign and integrate reference conceptual models in a number of complex domains such as, for instance, Enterprise
Modeling, Software Engineering, Service Science, Petroleum and Gas, Telecommunications, and Bioinformatics. An-
other recent development aimed towards a clear account of services and service-related concepts, and provided for
a commitment-based account of the notion of service (UFO-S), UFO is the foundational ontology for OntoUML, an
ontology modeling language.

Source: wikipedia.org

https://www.researchgate.net/publication/215697579_Ontological_Foundations_for_Structural_Conceptual_Models
http://www.uml.org
https://en.wikipedia.org/wiki/OntoUML
https://en.wikipedia.org/wiki/Upper_ontology#UFO_.28Unified_Foundational_Ontology.29

OntoUML specification Documentation

(O |

4

FOLOCICA
T '- [)

CON

)

i

Chapter 1. Introduction

CHAPTER
TWO

THEORY

2.1 Types and Individuals

OntoUML is built upon the fundamental distinction between Types and Individuals. And that is because we like
classifying things.

Types are abstract things we create to help us perceive and classify the world around us. These things work as bundles

of characteristics we can expect to encounter in other particular things - the individuals.

Let’s consider the type Person. Which characteristics does every Person have? We could say a head, a heart, arms,
hands, legs, feet, eyes... Every person also has a weight, a height, an age. Maybe a name, place of birth, birthdate.

Now let’s consider you and me. I am individual. And so are you. If you are reading this, I am confident to say that we
are both people. We both have a heart, we both have a particular height and weight. We exemplify what it is to be a
Person. The relation that holds between us and the type Person is called instantiation.

In OntoUML, we represent classes as boxes, just like in UML. Every class must have a name and a stereotype, as
depicted in the figure below:

aKind» «Roles aKind» akind wKind»
Person Football Player Company City Operating System

Now, let’s see some other examples of types and individuals them:

* Person: Bill Gates, Linus Torvalds, Barack Obama, Steve Jobs, Alan Turing, Messi

Football Player: Neymar, Messi, Cristiano Ronaldo, Pel¢, Maradona

¢ City: Rio de Janeiro, Milano, Barcelona, New York City, London, Lisbon
¢ Operating System: Windows, OS X, Ubuntu

e Company: Apple, Samsung, Microsoft, Facebook, Nokia

If you pay close attention to the list, you will see that we’ve included Messi’s name as an instance of Person and Football
Player. And that is fine! In fact, it very common that an individual simultaneously instantiates many types. Me, for
example, besides being a Person, I'm a Software Developer, a Brazilian, an Adult and a Man.

Whenever we refer to the term extension of a type, we mean every individual that instantiates that type in a particular
instant of time. As an example, let’s assume that the type Web Browser. Last year, we could say that its extension
contained 5 individuals: Chrome, Internet Explorer, Safari, Firefox, Opera. This year, however, after Microsoft Edge’s
release, the extension of Browser grew by 1.

Whenever the extension of a type is always included in the extension of another type, we say that the former is a
subtype of the latter. To represent this constraint in OntoUML models, we use the generalization (some people call it
specialization instead) relation. We find countless examples of type specializations:

OntoUML specification Documentation

* Doctor, Student and Child are subtypes of Person
 Table, Mouse and Ball are subtypes of Object
* Fridge, Stove and Microwave are subtypes of Appliance

We represent generalizations are lines with arrow heads on the end connected to the super-type, as shown in the figure
below:

wKinds wkinds aKinds
Person Person Person
wRoles #«Phases #Roles
Doctor Adult Student

When we build a model in OntoUML we are formally defining types by specifying the characteristics they impose on
their instances.

Warning: OntoUML ONLY supports the specification of TYPES. Therefore, you CANNOT specity an INDIVID-
UAL in an OntoUML model. Making an analogy to regular UML, you can create Class Diagrams, but there is no
Object diagram.

2.2 ldentity

Another fundamental ontological notion you need to grasp before you start modelling is the ontological notion of
identity. To start the discussion, let’s take a look at the picture below:

6 Chapter 2. Theory

OntoUML specification Documentation

Venus with arms, as they are believed

\F;ZﬁzossgZpM?sconstructlon of » Saber 32 oint — to have existed - the right holding up the
\ slipping tunic, the left an apple.

As you might know, that is Aphrodite of Milos, better known as the Venus de Milo, an ancient Greek statue and one of
the most famous works of ancient Greek sculpture (Wikipedia). On the left side, it’s the statue’s current state, and on
the right, it’s how it was supposably built. My question for you is: Do these pictures portrait the same individuals or
different ones?. Is it the same statue that went through some changes or these changes destroyed the first individual (the
statue with arms) and created a new one (the statue without arms)? If you think like most people, your answer would
be: “Yes, they are the same individual.”. Now, what if the statue was broken into very little pieces, like in the picture
below:

Would you say that these marble debris are still the statue? Somehow our intuition says no, right? These debris cannot
be Venus anymore. But why do we say “Yes” to the first question and “No” to the second one? Because of our common
sense identity principle for statue. An identity principle is a sort of function we use to distinguish two individuals.
Let’s use the simplest example of all: the identity principle of sets. Two sets, A and B, are the same if, and only if,
they have the same elements. Therefore, if A = {1,2} and B = {2,3} then A != B. So the identity of a set is defined by
its members. Changing a member of a set changes the identity of the set. Now, let’s think about a more complicated
example. Let’s say, the identity principle we adopt for people. Could we say that someone’s identity depends on their
name? Or some sort of identification code, like the American ‘social security’, the Brazilian ‘CPF’ or the Italian ‘codice

2.2. ldentity 7

https://en.wikipedia.org/wiki/Venus_de_Milo

OntoUML specification Documentation

fiscale’? The answer is NO! These can’t be used as our identification function. And Il tell you why...

Let’s start with a Person’s name. Did you ever meet two folks with the very same name? I have. If you don’t believe, just
go on Facebook and experiment search for common names of your country. I just searched for “Jodao Carlos da Silva”,
a fairly common Brazilian name, and I found at least 5 guys with that exact name. If name was our identity function,
we would not be able to distinguish between them. Another problem with using name as identity is that often, people
change their names. Our function needs to be not only able to distinguish two individuals in the same moment in time,
but also through time. How else would we be able to meet someone today and recognize that same person tomorrow?
So, our function needs to always return the same individual for a given input. Now, let’s analyze the reason why the
social security number (SSN), the codice fiscale and the CPF are not very good identity principles for people. The
answer is quite simple, our function needs to apply to everybody. If you are not American or never worked in the USA,
you probably don’t have a SSN, right? Even young children born in the USA might not have. The last important fact
about identity principle is that every individual must have exactly one. So, what is the identity principle for a person?
One’s fingerprint, iris pattern, DNA? Well, it is really hard to define it, even though we know it is there.

What we can “touch” are what’s called the identity conditions. These are “parts” of the identity function, necessary
conditions for identity but not sufficient by themselves. In order for me to consider A and B as the same Person they need
to have the same birth date. And the statue need to be made of the same material. Why identity principles and conditions
are important for us? Because by thinking about them we are guided in the construction of our types hierarchy. They
impose constraints on how we can combine the different OntoUML constructs to design our conceptual models. Will
talk about these constraints when we present the stereotypes usage. For now, just keep in mind that: Some types have
the characteristic of providing identity principles for their instances. They are stereotype as: «Kind», «Collective»,
«Quantity», «Relator», «Mode» and «Quantity». Here are some examples:

aKinds aCollectives wQuantitys a«Relators «Modes
Person Fleet Sand Marriage Intention

Some other types don’t provide identity principle for their instances, but they all share a common one. They are
stereotyped as: «Subkind», «Role» and «Phase». Here are some examples:

«Roles «Phases wSubKind»
Musician Broken Bulldeg

Some other types don’t provide identity and their instances follow different identity principles. They are stereotyped
as: «RoleMixin», «Mixin» and «Category». Here are some examples:

aCategorys wlixing uRoleMixing
Agent Insurable Customer

2.3 Rigidity

Now that you are already familiar with the notion of type, individual and instantiation, let’s go through a fundamental
ontological meta-property of types - rigidity. To start, let’s take a look at the following pictures:

8 Chapter 2. Theory

OntoUML specification Documentation

£ A

(‘ /~‘£ -

o, \

They show a dog’s development through the years (let’s call him Rex for now). In the first frame (and maybe also in
the second) Rex is a Puppy. In the third one he is not a Puppy anymore, but an Adult. However, in all three frames Rex
is a Dog and a French Bulldog. Let’s focus on the types Dog and French Bulldog. Can you imagine any other point in
time, besides the three shown in the pictures, in which Rex ceased to be either a Dog or a Bulldog? I guess not. Let’s
expand our imagination a little. Can you imagine any individual that used to be a Dog but is not anymore? I bet the
answer is also no.

If an individual must instantiate a given type in all possible scenarios in which the individual exists, we call that type
RIGID. In other words, rigid types are the ones who define essential characteristics to their instances. Other examples of
rigid types are: Person, Car, Band, Apple, Country and Company. List of rigid stereotypes: «Category», «Collective»,
«Kind», «Mode», «Quality», «Quantity», «Relator», and «Subkind>».

alind» uCollectives wSUbKinds» wCiuantitys «Categorys «Relators
Person Band Man Wine Object Marriage

Now, let’s focus solely on the type Puppy. By looking at the pictures, we can see that Rex used to be a puppy, but stopped
being one after he grew older. Just like Rex, every other dog was once a puppy or will cease to be one someday. If
every individual that instantiate a given type in a particular time can cease to do so and still exists, then we call that
type ANTI-RIGID. Examples of anti-rigid types are: Student, Employee, Spouse, Elder, Living Person and Healthy
Person. List of anti-rigid stereotypes: «Role», «Phase» and «RoleMixin»

«Phases 4«Raoles aRoleMixing «Phases aRoles
Elder Employee Customer Living Person Student

2.3. Rigidity 9

OntoUML specification Documentation

10 Chapter 2. Theory

CHAPTER
THREE

CLASS STEREOTYPES

3.1 Kind

Category RigidSortal
Provides identity
yes
Identity principle
simple
Rigidity
rigid
Dependency
optional
Allowed supertypes
Category, Mixin
Allowed subtypes
Subkind, Phase, Role
Forbidden associations
Derivation, Structuration, SubCollectionOf , SubQuantityOf

Abstract undefined

3.1.1 Definition

A «Kind» is construct you are going to use in most of your models. It is used to represent rigid concepts that provide
an identity principle for their instances and do not require a relational dependency. A «Kind» represent a Functional
Compley, i.e., a whole that has parts contributing in different ways for its functionality (see the ComponentOf relation
for more details about functional parts). Let’s see some examples:

uKinds» aKind» aKind» akind» akind» aKind»
Human Body Forest Computer Key Car Organization

11

OntoUML specification Documentation

3.1.2 Constraints

C1: A «Kind» cannot have an identity provider («Kind», «Collective», «Quality», «Relator», «Mode» and «Quantity»)
as its direct or indirect super-type.

wkindm
Living Bei

akinds
Thing

uCategorys
Living Being

T

wKind»
Person

wKinds»
Person

C2: A «Kind» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-

type.

«3UbKind»

Man \,f

‘T/\

wkinds
Person

«Role b
Custom
A“_\ 7\
[|
wkinds wKinds»
Person Company

C3: A «Kind» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin»
and «Mixin») as its direct or indirect subtypes.

C4: As a rigid type, a «Kind» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or
indirect super-type.

12

Chapter 3. Class stereotypes

OntoUML specification Documentation

3.1.3 Common questions

Q1: If a «Kind» is relationally independent, does that mean we cannot define relations for theses types?

Al: No! When we say that a «Kind» is relationally independent, we mean that it does not necessarily require a relation
to be defined, like a «Role» does. Here is an example in which a «Kind» has a dependency.

«Kind» «Category»
Project <& producedin Artifact
0.1 0.7
0.* 0.7
«Kind»
conflicfsWith Requirement dependsOn
0.* 0.7
«SubKind» «SubKind» «SubKind»
FunctionalRequirement NonFunctionalRequirement BusinessRule

This example was extracted from the Software Requirements Reference Ontology (SRRO). Click here to take a look at

it.

3.1.4 Examples

EX1: Fragment from the Configuration Management Task Ontology (see more):

3.1. Kind

13

http://web.archive.org/web/20171008152212/http://www.menthor.net/srro.html
http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html

OntoUML specification Documentation

«Kind»
Person

A

«Role»
Requester

«Role»
Configuration
Manager

«Kind» «Kind» «Kind»
Diagram Document Source Code
«Kind» «Category»
Software Tool Artifact
«Roley «Category»
Developer ftem

«Role»
Verifyer

«Role»
Evaluator

EX2: Fragment from the OntoUML Org Ontology (O3) (see more):

14

Chapter 3. Class stereotypes

http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html

OntoUML specification Documentation

«Rolex
Formal Organization
Member «Category»
¢ Organization
«Roles 1 head of m=
Organization Head «Formaly (dlisjaint}
1
«Kind»
wKind» <4 located at Formal
Location 1 «Formals g _+| Organization
{disjoint,complete}
«Rolen head of = «SubKind» | +part «Rolen headof | <Subiinds | *Part
Mieei Missi Functional F .
Headquarters |1 “Fo™a" 1| Organization | 2* Headquarters |1 “O™3” 1| Organization |
«CompgnentOfs «CompdnentOfy
{disjoint,complete} i {disjoint,complete}
V| ¢ [¢
aSubKinds aSubkKinds «SUbKinds» aSubKind»
Standalone Missionary Composed Missionary Standalone Functional Multi-Functional
Organization Organization Organizati Organization
{disjoint,complete} {disjoint,complete}
«SubKinds» «SubKind» «SubkKind» «SubKind» 0.1 2. «Kind»
Simple Standalone Complex Standalone Simple Standalone Functional Complex F i .W Organizational Unit
Missionary Organization Missionary Organization Organization Organization e
2.
?O,J
«ComponentOfs
3.2 Subkind
Category RigidSortal
Provides identity
no
Identity principle
simple
Rigidity
rigid
Dependency
optional
Allowed supertypes
Kind, Subkind, Collective, Quantity, Relator, Category, Mixin, Mode, Quality
Allowed subtypes
Subkind, Phase, Role
Forbidden associations
3.2. Subkind 15

OntoUML specification Documentation

Structuration

Abstract undefined

3.2.1 Definition

A «Subkind» is a construct used to represent rigid specializations of identity providers («Kind», «Collectivex», «Quan-
tity», «Relator», «Mode» and «Quantity»). By default, its usage do not require a relational dependency. Let’s see some
examples:

aSubKind» wSubKinds aSubKind» «SubKinds
Man Brazilian Marriage Red Wine Wolf Pack

3.2.2 Constraints

C1: A «Subkind» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator»,
«Mode», «Quantity») as an ancestor (a direct or indirect super-type). Therefore, our examples in the first figure should
be modelled as:

wKinds» «Relators wuantitys wCollectives
Person Marriage Wine Animal Group
aSubKinds s« Subkinds w«SubKinds #Subkind»
Man Brazillian Marriage Red Wine Wolf Pack

C2: Because it is a rigid type, a «Subkind» cannot have an anti-rigid type («Role», «Phase», «RoleMixin») as an
ancestor. Therefore, the following fragments would not be allowed:

«Roles «Phases a RaoleMixing
Bachelor >< Old Car X Owner
aSubKinds aSubKind» aSubKinds

Man sSuUvV Woman

C3: Since every instance of a «Subkind» follows the same identity principle, a «Subkind» cannot have an mixin type
(«Category», «Mixin», «RoleMixin») as a descendant, i.e., a direct or indirect subtype. Fragments like the ones below
are not allowed:

16 Chapter 3. Class stereotypes

OntoUML specification Documentation

w3ubKinds wSubkinds a3Subkinds
Chair Man

«Categorys alixing «RoleMixing

Animal Seatable Customer

3.2.3 Common questions

Q1: Are subkinds only used to specialize kinds?

Al: No! Even though the name might be a little misleading, a «Subkind» may be used to specialize any identity

provider, which includes «Collective», «Quantity» and «Relator».

3.2.4 Examples

EX1: Usually, subkinds come in groups, like in the examples below:

a3ubKinds w3ubKinds
Italian Wine French Wine

aKind»
Person

wkind»
Car

TR

uCuantitys «3ubKinds» «SUbKinds»
Wine Ferrari Renault
wSubKinds wSubKinda»
Man Woman
«SUbKind» «SubKinds «SubKindx» w3SubKind»
Red Wine White Wine Ferrari Enzo Ferrari F50

EX2: Fragment from the Normative Acts Ontology (see more):

3.2. Subkind

17

http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

«Kind»
Normative Act

- duration :Date

- hierarchy :int

- number :int

- publication date :Date

{disjoint, complete}

«SubKind» «SubKind» «SubKind» «SubKind» «SubKind» «SubKind»
Constitution Constitution Complementary Delegated Law Ordinary Law Provisional
Amendment Law Measure
«SubKind» «SubKind» «SubKind» «SubKind» «SubKind»
Legislative Decree Decree Resolution Ordinance Handout

N

{disjoint, complete}

«SubKind» «SubKind» «SubKind»
Autonomous Regulatory Decree| Singular Decree
Decree

EX3: Fragment of a conceptual model about Brazilian Universities (see more):

18 Chapter 3. Class stereotypes

http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html

OntoUML specification Documentation

«Kinds
Organization
«Qualitys «Phasen
Field InactiveProfessor|
«Phases
ActiveProfessor
i «Subiinds «Sublinds Ralen Person
Higher Education | «ComponentOfs Center =CompanentOfs DepartmentChief Role:
- - L — = «Roles
Professor «Mediations
1
1.
«Phasen 4 boundTo
InactiveCurriculum
Maferials «Relator»
1.0 y
compdbaga ———===——=
\B «Kinds aKinds - manages aRelen 3 OmMpoFBaBT
Curriculum organizes = Course 1 1
1.* 1
«Mediations
«Phases 1
ActiveCurriculum 1 i
0.
«Roles —
T 7 1 cotegiode «Mediations
«Relators
«Matgrials Enroliment
hasStpdent i
0. «Ma \!i\-
Persan \\
fulflecBy «Rolen EMsiislins s “Medtions
Y 0| Student \
sfRelators
StudentMandate
hhediations —
«Phases «Phases «Phases
p RegularStudent

3.3 Phase

Category AntiRigidSortal
Provides identity

no
Identity principle

simple
Rigidity

antirigid
Dependency

optional
Allowed supertypes

Kind, Subkind, Collective, Quantity, Relator, Phase, Mixin, PhaseMixin, Mode, Quality, Category
Allowed subtypes

Phase, Role

3.3. Phase 19

OntoUML specification Documentation

Forbidden associations

Structuration

Abstract undefined

3.3.1 Definition

The «Phase» stereotype is used to represent anti-rigid subtypes of identity providers («Kind», «Collective», «Quan-
tity», «Relator», «Mode» and «Quantity») that are instantiated by changes in intrinsic properties (e.g. the age of a
person, the color of an object, the condition of a car). All instances of a particular «Phase» must follow the same

identity principle. Phases always come in partitions.

Note:

for Person, you should include an age property for the type Person.

Tip: When defining a phase partition, think about which property (or properties) variation is causing the
instantiation of the phases and include it in your model. For instance, when defining the phases Child, Adult and Elder

Here are some examples of phases:

«Phasex»
Healthy

#«Phasex»
Adult

«Phasex»
Living

«Phase»
Broken

«Phasex»
Fat

3.3.2 Constraints

C1: A «Phase» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator»,
«Mode», «Quantity») as an ancestor (a direct or indirect super-type). Our examples above should be modelled as:

#Phasex» #Phasex»
Fat Thin
| I
ﬁPhESE}? «Phasea»
Living Broken
aKind»
«Phase» E Person] «Phases
Deceased ? Intact
age ade age
#Phasex» #Phasex» #«Phasex»
Child Adult Elder

C2: A «Phase» must always be part of a partition (a generalization set disjoint and complete). Modeling a «Phase» as

in example below is forbidden:

20

Chapter 3. Class stereotypes

OntoUML specification Documentation

wKind»
Person

[y

«Phase
Healthy

«Categorys a«RoleMixins
Living Thi Custom
‘T‘ 7N ‘T‘ 7
«Phases «Phases
Child Child

C3: A «Phase» cannot be a direct subtype of a «RoleMixin» or «Category».

C4: A «Phase» cannot be a super-type of a rigid type («Kind», «Collective», «Quantity», «Relator», «Mode», «Quan-
tity», «Subkind», «Category»).

«Phases

Adult V

«Phases

«Phases

Full Fleewf

«Phases

ﬁ“:.f\

Boy \ /
£|3 TAN

ﬁ‘lf\

Legal Harriav
'\

T

wKinds
Person

aSubKinds
Man

aCollectives
Fleet

«Relators
Marriage

u«Phases
Phase
«Categoryp | | «RoleMixig» | whixing
Category Category Mixin x
L T \' r

CS: A «Phase» cannot be a super-type of a mixin type («Category», «RoleMixin», «Mixin»).

3.3. Phase

21

OntoUML specification Documentation

3.3.3 Common questions

Q1: Do I have to represent the intrinsic property which is affecting the instantiation of the phase?

A1l: No, OntoUML does not require you to do that. However, whenever it is possible, you should represent everything
needed to define the phase. On one hand, if you want to represent the Living and Deceased phases of a Person, it is
ok. On the other hand, if representing Adult and Child, your model would be a lot more precise if you include the age
property on your model and the OCL constraint defining the instantiation of the two phases.

Q2: Can I define phases using modes?

A2: Yes. The fragment below is an example of how to do that.

wkinds
Person

T

#Phases
Healthy

«Phases
Sick

3.3.4 Examples

EX1: Conceptual model about Brazilian Universities (see more):

! «Charaﬂterization1n)

aModes
Disease

22

Chapter 3. Class stereotypes

http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html

OntoUML specification Documentation

Qrganization

«SubKinds

offars e

«Qualitys
Field

aCharactgrizations

Department

akind»
Curriculum

alindn
Person

e

aRakes
Student

afediglicnn

«Kind»
Discipline
«Rolen
Professor
1
provided trough
- teadghes
o
sPhases 0. «Roles
InactiveClass Class roups e
— T
ik |
|
1
0.* 1 1
I
aMedigtions aRelator
ClassEnroliment
aPhases
ActiveClass L
«Ch 1
1
cdataTypes #Qualitys sdataTypes
Year Semester Parity
stags at endf at
1
sdataTypes
Date

Errata: Phase as subtype of Role (Class), no multiplicity on part-whole, not marked as material and multiplicity
does not correspond with mediations, Role (Professor) has optional relation, no multiplicity on <<characterization>>

relation with Field Quality, (Department gets identity from kind in different diagram), Class has no identity

3.4 Role

Category AntiRigidSortal

Provides identity
no

Identity principle
simple

Rigidity

antirigid

3.4. Role

23

OntoUML specification Documentation

Dependency
mandatory
Allowed supertypes

Kind, Subkind, Collective, Phase, Quantity, Relator, Role, RoleMixin, Mixin, Mode, Quality, Category,
PhaseMixin

Allowed subtypes
Role

Forbidden associations
Structuration

Abstract undefined

3.4.1 Definition

A «Role» is a construct used to represent anti-rigid specializations of identity providers («Kind», «Collective», «Quan-
tity», «Relator», «Mode» and «Quantity») that are instantiated in relational contexts. All instances of a particular
«Role» must follow the same identity principle. Here are some examples of roles:

#Roles wRoles «Roles wRoles «Roles «Roles
Student Married Band Member Pet Patient Traveller

3.4.2 Constraints

C1: A «Role» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator», «Mode»,
«Quantity») as an ancestor (a direct or indirect super-type). To model our list of roles presented above, we should given
them identity providers:

wKind» aKind»
Person Animal
| |
«Holes «Rolen «Rolen
Student Patient Pet

C2: Every «Role» must be connected, directly or indirectly, to a «Mediation» relation, since it is a relationally dependent
construct. Continuing our example above, we should do the following:

24 Chapter 3. Class stereotypes

OntoUML specification Documentation

«kind» «kind»

Person Animal

«Rolen «Relators «Role» «Relators
Patient ; «Mediation» | Treatment Pet ; «Mediations 1 Ownership

Remember that you can’t defined a relational dependency with a minimum cardinality of zero. Therefore, the fragment
below is wrong!

akKind»
Person

«Role» V' «Relators
Patient] «Mediation» O Treatment

C3: A «Role» cannot be a supertype of a rigid type («Kind», «Subkind», «Collective», «Quantity», «Relator», «Cat-
egory»).

4Roles «Rolex
Custome Pet \ ;’

NS
‘f‘ /\ /N
 Kinds «SubKind»
Person Dog

C4: A «Role» cannot be a supertype of a mixin types («Category», «RoleMixin», «Mixin»).

«Rolen «Rolex «Role»

Authorized A Corporate Custorge Insured lte

«Category» «RoleMixing «Mixin»
Agent Customer Insurable tem

3.4. Role 25

OntoUML specification Documentation

3.4.3 Common questions

Q1: Can I define multiples dependencies for a «Role»?

Al: Yes, there is no restriction in the number of dependencies one can define for a «Role». However, think carefully
before doing so. You might be adding some unwanted instantiations to your ontology. This is an Ontological Anti-

Pattern, called Multiple Dependency (read more about it here)

Q2:
A2:

Can a «Role» be used to specialize another «Role»?

one indirect dependency for a «Role», you might forget to define additional dependencies for the sub-types.

3.4.4 Examples

EX1: Conceptual model about roles in the Catholic clergy (see more):

“Cobestves
clorgy of = Clargy = clergy of
esubCotftenOts [1 <SubCotechenOts
1 1
«Collectven Cotecines
Secular Clergy Regular Clergy
akinds
Persen
1
1 In a Rebig 0
5 E s n jjous Profession “x", a Clergyman may
“MemberOt Mamite ot be the Withess of Profession.
& i L
Roler «Roies Aok
Secular Clergy [——————————{=>{ Clergy Member f<}— | Regular Clergy «Rsies
M bapizes = Member Witneas of wiinesess =
T TT—— L “Medatons
Y .
'
' 1
! hechtons i, compiete) e} vows wilh e o
Fela L o
<Relatars <Reators
Baplism b i I —— Religous
Layman Clergyman == Profession
1 parforms B
1 <Mediation; 1
' | |
- b &R;'l'; aRoles o i «Cobectves
received by i “Roles s College of
[eiedabons; | Bishop Priest . Cardinal Lo ool o
1 «MemberOfs
1 Mefiatee: N i
1 el il Relatoes
! ér . " “Modhatcns : Ehection
«Relators whlecations
Ntion of e L aMediafions 1 m“
Disacion _ ordnafed by oedinaled by Ordination of - nompnates
1 | Prest Ralators 1 ! !
fia
Matgrial Homination | momiates «Rolen ' «Collectven
N Matgrists Pope Gmwg.,'pe Papa Electorate of the
1
4 4 = T | Gardinal School
== — «Medationr :
& sRales R sRoles bkt y - performed
periqrmed by Ordnatos of Ordained Bishop crnated by - Ordinator of Ordinator of Priest| = P B
e | Deacen T — Bishop 2 aMecidsons 1
¥ perforped by
! Roen
1 i e
1
- receed by Relatcr Partorped by b
aMedigions Bishop Ordination *Medptions

may nat ko be one of the Ordinators of Bishop.

In a gven Bishop Ordination ", the Ordained B»huﬁ

EX2: Fragment from an ontological analysis of a Human Genome scheme (see more):

Yes, there is no restriction regarding it. Again, take care when doing so. Since the language only require at least

par of

of m= sSubColettionOle

26

Chapter 3. Class stereotypes

https://www.researchgate.net/publication/268220197_Ontology_Validation_for_Managers
http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html
http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

«MemberQOf»
L «Formal» precedes
{subsets nucleotide} 1
«Role» «Kind» 1
DeletedNucleotide Nucleotide
™
Taa® +nucleotide 2>
formtd by
«Meml qrr:}f»
«Collective»
Alelle
A
constityted by
«Mediation» 1

| K ,

«Role» «Rolen
AllelicVariant AllelicReference

1.* «Material» 1

«Mediation» «Mediation»
«Relators
Deletion

Errata: No material derivation, bad material multiplicity, bad memberOf multiplicity EX3: Fragment of the On-
toUML Org Ontology (O3) (see more):

3.4. Role 27

http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html

OntoUML specification Documentation

«Category»
Physical Agent

1

«Kind»
Natural Person
% +membership +organization
«Role» & formalizes o «Re_lat::_r» I membership to B | «Category»
Organizational — rganizationa — Py
gMember 1 «Mediation» 1 _* Membership | 0-* «Mediation» 1 Organization
+organizational member +membership

{disjoint,complete}

«Relator» «Relator»
Admission Assignment

Errata: Relator cannot be subtype of Relator, Category not abstract and no subtypes (or just one), no material relation

3.5 Collective

Category RigidSortal
Provides identity
yes
Identity principle
simple
Rigidity
rigid
Dependency
optional
Allowed supertypes
Category, Mixin
Allowed subtypes
Subkind, Phase, Role
Forbidden associations

ComponentOf , Derivation, Structuration, SubQuantityOf

28 Chapter 3. Class stereotypes

OntoUML specification Documentation

Abstract undefined

3.5.1 Definition

The «Collective» construct is used to represent rigid concepts that provide an identity principle for their instances. The
main characteristic of a «Collective» is that it has an homogenous internal structure, i.e., all parts are perceived in the
same way by the whole (see the «MemberOf » relation for more details about members of collections).

aCollectives aCollectives aCollectives aCollectives aCollectives
Band Family Committee Deck Forest

To decide whether or not to classify a concept as a collective, think about the relation between it has towards its parts
(or members). Do all members are “equally perceived” by the whole (the collective)? In other words, do all members
contribute in the same way to the functionality of the whole? If the answers are yes, you have a collective. It is important
to keep in mind that some concepts, like Family or Fleet could be classified as both collectives and functional complexes.
For instance, if we understand a family as a group of people with equal roles and responsibilities towards the family,
we would say it is a collective. However, if we distinguish a person as the head of the family, and another as being
responsible for the family’s income, we would say that a family is a functional complex.

As the other identity provider stereotypes («Kind», «Quality», «Relator» and «Mode»), a «Collective» can be special-
ized by subkinds, phases and roles, as well as generalized by mixins and categories.

3.5. Collective 29

OntoUML specification Documentation

«Phases «Phases
Active Suspended

<

«Relatars
Enrollment

T

aSubKind» aSubKind»
Undergraduate Enrollment Graduate Enroliment

3.5.2 Constraints

C1: A «Collective» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and
«Quantity») as its direct or indirect super-type.

whinds aQuantityy aCollectivgs «Relatory | wModgs
Kind \(Quantity Collectiv Relator M
[l‘_u_ FA ‘J_fl‘_\‘ P £|}‘ A ‘{F‘ P ‘{F‘ F Y
«Collectives «Collectivex aCollectives wCollectives wCollectives
Band Fleet Group Forest Wolf Pack

C2: A «Collective» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect
super-types.

aSubkinds «Raole «Phas
SubKi Role Phase
— e e e A
uCollectiven uCollectives uCollectives
Committee Deck Pack

C3: A «Collective» cannot have types that aggregate individuals with different identity principles («Category»,
«RoleMixin» and «Mixin») as its direct or indirect subtypes.

aCollectives aCollectives aCollectives
Club Association of Clubs Family

T v Ty Ty

4
wCatego r‘:,":-})'\ alixing)'(wRolelMixi
Category Mixin * [* RoleMixin |

C4: As a rigid type, a «Collective» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct
or indirect super-type.

30 Chapter 3. Class stereotypes

OntoUML specification Documentation

«Phase ’ «RoleMixing «Roles
Pha se"y RoleMixim, / Role
ﬁl}. £ ﬁl}. AN ﬁl}. Y
wCollectives wCollectives wCollectives
Qil Group of Visitors Research Group

3.5.3 Common questions

Ask us some question if something is not clear ...

3.5.4 Examples

EX1: Fragment from the a conceptual model about the human genome (see more):

«Role»

AllelicVariant

*

constituted by P

1

«Mediation»

EX2: Fragment from the Normative Acts Ontology (see more):

1.

*

«Formal»
Ipreceeds
1
«Collectiver «Role»
formed by P "
Allele ‘¢1 <MembarOh 7 Nucleotide
Jay
) «Role»
_ «Mat\lenal» - AllelicReference
|
|
|
1 l 1 Y
|
| «MemberOf»
|
Mediat «Relators «Mediation» {subdsets nucleotide} «Role»
«Wediatiom Deletion - - DeletedNucleotide

3.5. Collective

31

http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html
http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

aSubiinds
Gararsl Furt
S alubiinds
i | cownpletes | Dby Parl Mutige Part
=
- roms rumber
BT)
Bpcisl Parl
g, pomplei|
T
ACalecivee
Pari
| el
irpanable|
sl Clep boalis
z-
T Eippd « Subsirads
sColectme &
ok e —
roman rumie: it

1 L
s
B il
3=
afkirdn Grouping Elmet
Compomert {hatler Al e
e
[l .}
i st
1 iwrpanable)
4 Skids
@ Saki et tomlie ket o eirte] Chapier composad by
Artich -
- 1
+ Bakiinds Ginagn) Edemuprr
Camporann e —
Chupasr Chapher
= romisn susbi ol 4 lbdrds
Chapler compoaad by
Sectin
L
g b
& SubCalabtand

i

akimds Grouping Element Bk
Articis Colict [

rumbar Bt e —— Fectn

roiTan et ex
. Bisjroiel, ormpirte] o e
aBubdrd s 2 Bl s = Sabirads alatErda
Articin composent Articie component Bampis Sechion Comprand Entlon
Chapter Becton I = e
3w
1
I abie]
w Bl
Faplria e
1 aScbColacbanlde
32 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.6 Quantity

Category RigidSortal
Provides identity
yes
Identity principle
simple
Rigidity
rigid
Dependency
optional
Allowed supertypes
Category, Mixin

Allowed subtypes

Subkind, Phase, Role

Forbidden associations

ComponentOf , Derivation, Structuration, SubCollectionOf

Abstract undefined

3.6.1 Definition

The «Quantity» construct is used to represent rigid concepts that provide an identity principle for their instances. A
«Quantity» represent uncountable things, like Water, Clay, or Beer. It represents a maximally topologically connected
amount of matter. Quantities only have other quantities as parts (see the «SubQuantityOf » relation for more details
about members of collections). Here are some examples:

wCluantitys «Cuantitys
Sand Petroleum

wCuantitys
Wine

wCluantitys
Marble

wCuantitys
Aluminum

An easy way to decide whether a concept is a quantity or not, as yourself this: if you physically divide an instance of
‘X’ in two parts, are the resulting individuals two new instances of x? What if you divide another 5 or 10 times? If the
answer is always yes, ‘X’ is a Quantity. To exemplify, let’s think about an pile of sand. If you divide the pile in two,
you now have to new piles of sand, right? What if you do that again for each remaining part? We would have 4 piles

of sand.

3.6. Quantity

33

OntoUML specification Documentation

As the other identity provider stereotypes («Kind», «Collective», «Relator», «Quality» and «Mode»), a Quantity can
be specialized by subkinds, phases and roles, as well as generalized by mixins and categories.

«Phases «Phases
Young Wine Old Wine

wCluantitys
Wine

aSubkinds a3ubkinds
Red Wine White Wine

Be careful not to confuse «Quantity» and «Quality».

34 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.6.2 Constraints

C1: A «Quantity» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quan-
tity») as its direct or indirect super-type.

alinds wCuantitys uCollectives «Relators «Modes
Kind Qua ntinX Collectiv Relator Mode X
wCuantitys s Cuantitys wQuantitys wCQuantitys wCQuantitys
Clay Water Sand Wine Flour

C2: A «Quantity» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect

super-types.

wSubKinds
SubKind

Y

uRoles

«Phases
Phase \‘,r

LT.\!\

Rnb\/
ﬁl/\

/il}./\

aCuantitys
Sugar

aCuantitys
Whisky

s Quantitys
Air

C3: A «Quantity» cannot have types that aggregate individuals with different identity principles («Category»,
«RoleMixin» and «Mixin») as its direct or indirect subtypes.

aCiuantitys aCuantitys wQuantitys
Marble Granite Lava
o Categor:,rn\)‘f aMixins " leer-.ﬂi:-'.in%}(|
Category Mixin RoleMixi
7\ 7 7\

«Phases | wRoleMixing wRoles i
Phase RaoleMixil Role
‘{l}‘ 7 A\ ‘{'}‘ 7\ ‘{'_\ 7\
aCuantitys aChuantitys a Cuantitys
Qil Diesel Wood

C4: As arigid type, a «Quantity» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or
indirect super-type.

3.6. Quantity

35

OntoUML specification Documentation

3.6.3 Common questions

Ask us some question if something is not clear ...

3.6.4 Examples

No examples yet. ..

3.7 Relator

Category RigidSortal
Provides identity
yes
Identity principle
simple
Rigidity
rigid
Dependency
mandatory
Allowed supertypes
Category, Mixin
Allowed subtypes
Subkind, Phase, Role
Forbidden associations
ComponentOf, Structuration, SubCollectionOf , SubQuantityOf
Abstract undefined

3.7.1 Definition

The «Relator» construct is used to represent truth-makers of material relations, i.e., the “things” that must exist in
order for two or more individuals to be connected by material relations. Because of this nature, relators are always
dependent on other individuals to exist. Here are some examples of concepts classified as relators:

«Relators «Relators «Relators «Relators «Relators
Marriage Investigation Enroliment | | Employment | | Subscription

Note that the «Relator» meta-class is analogous to the «Kind», «Collective» and «Quantity» meta-classes, in the sense
that it is rigid and provides an identity principle for its instances. The difference is that, instead of representing func-
tional complexes, quantities or collections, a «Relator» represents the objectification of relational properties. The direct
consequence is that relators can also be specialised by subkinds, phases and roles, and generalised by categories and
mixins.

36 Chapter 3. Class stereotypes

OntoUML specification Documentation

«Phases «Phases
Active Suspended

<

«Relatars
Enrollment

T

aSubKind»
Undergraduate Enrollment

Graduate Enrollment

w3UbKinds

3.7.2 Constraints

C1: A «Relator» must always be connected (directly or indirectly) to at least one relation stereotyped as «Mediation»

«Relators
Enrollme

«Relators
Enroliment 1« Mediations

«Roles

«Categorys
Social Agreement

Student

. iMediations

|

«Relators
Marriage

u«Roles
Person in Agreement

C2: The sum of the minimum cardinalities of the opposite ends of the mediations connected (directly or indirectly) to
the «Relator» must be greater or equal to 2.

3.7. Relator

37

OntoUML specification Documentation

wKind» «Kind»
Person Person
T FAY
«Relators «Rolen «Kind» «Relators «Rolen
Marriage 1 «Mediations 4 Spouse School 1:: Mediationn_ Enroliment I n:_Mediatiom} 1 Student
«Relators wKind» wKind»
Employment . «Mediafion» 1 Company Person
I
«Rolew
«Roles Witness «Roles
Investigator Suspect
#SubKinds «Rolen 1.4
Temporary Employment . «Mediation» 3 Temporary Employee 1.* = 1.

«Mediation»

«Relators
« Mediatio1 ny | Investigation ! Wediafion»

C3: A «Relator» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quan-
tity») as its direct or indirect super-type.

wkinds wCuantitys uCollectives u«Relators «Modex»
Kind X Qua ntiX Collecti Relator Mode
«Relators «Relators «Relators «Relators «Relators
Internship Agreement Members hip Warranty Ownership

C4: A «Relator» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect
super-type.

w3uUbKinds wRoles «Phasen
SubKi r Role y Phase
‘%‘ i % F ‘%‘ F
«Relators «Relatars wRelators
Assignment Enroliment Admission

C5: A «Relator» cannot have types that aggregate individuals with different identity principles («Category»,
«RoleMixin» and «Mixin») as its direct or indirect subtypes.

«Relators «Relators dRelators
Subscription Employment Marriage
a«Categorys whdixing wRoleMixing
Category Mixin S RoleMixii
r 4 r 4 7 A\

38 Chapter 3. Class stereotypes

OntoUML specification Documentation

C6: As a rigid type, a «Relator» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or
indirect super-type.

«Phases «RoleMixiny «Roles
Phase

=

u«Relators «Relatars «Relators
Offering Mandate Nomination

A

=]

o
%

3.7.3 Common questions

Ask us some question if something is not clear ...

3.7.4 Examples

EX1: Conceptual model about the Catholic Clergy (see more):

“Cobetves
clorgy of = Clargy = clergy of
«SubC 101 1 1 eSubColec! s
1 1
e Cotectives
Secular Elergy Regular Clergy
akinds
Persen
1
1
Memfercts ehlamigerdts
" 5
Roler «Roles Roles
Secular Clergy [—————————{> Clergy Member e }— | Regular Clergy <Reis
M bapizes = Member Witneas of wiinesess =
s Frofession [Tadaron
1
1
Machiton: Eekien, compbetel ke vows with e 1
L o
Rk — =Relators
Lf,:;n c;:“’"' 1 eMaterals -~ === ~———— Religious
- pyman - - Profession
1 <Mediation; 1
: | |
«Roles s «Collctver
- recewed by Deacon Bishop -:;fl- N c'::f:'.l ke of College of
[Medatons, | o 2
Mediabons, receted by = T - Cardinals =
1 Mefiiations 1
f Gl il Relalers
1 [r . b “Modhatcns 1 Election
<Reiators ” T 1 ahdectations parf of
i abeciafions
Ordination of aRelators . =
Deacon — ardnaged by codinaled by Ordination of d - nominates woser of e sSubColebtionDr
1 | Prest Ralators 1 ! !
<Matefials
Hatgral Hominatien | poriates fone I «Colectven
= «Maifriate Pope Grupo Elege Paga Electorate of the
1
! ! [«Materials - i
== = «Mediafion :
aRoler <P =Rl o pertormbd by
perfgrmed by Ordinator of Ordained Bishop crnated by - Ordinator of Ordinator of Prisst| P Y
aedmioms | Deacon T ol 3| P 1 “Meckpons '
¥ perforped by
! “Rokn
' ' [
1
- resed by Rlators parfored by e
aMedigions Bishop Ordination *Medptions

In a given Bzhop Ordination “x”, the Orwdained Bahop
may nat ko be one of the Ordinators of Bishop.

EX2: Fragment of a conceptual model representing the worldview of a possible parking lot management system (see
more):

3.7. Relator 39

http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html
http://web.archive.org/web/20171008152130/http://www.menthor.net/parking-lot.html
http://web.archive.org/web/20171008152130/http://www.menthor.net/parking-lot.html

OntoUML specification Documentation

. «Roles
sMediations Used Price Table
1
. aKind=
«Collecthen Price Table
Parking Lot
1 sFarmals j.+|- dailyRate -double
= initialValidityDate :Date
i - maonthlyRate double
L 1 1
aBinds wSubkinds «Membehelf»
Payment «Formals | Income Generator ;
Usage aRole» 2.0 whinds appiidable to
1 1 Parking Spot Parking Spot Y
Provider o #Formals
aFormals
1 1
1
wSubkind») apowertypes
Usage Without «Medigtions Parking Spot Type
Reservation 1.*
o w«Relators «Roles
{disjcint, complete} Parking Spot Usage Used Parking Spot 3
= Subkind»
Usage of - entryTime :DateTime
Reservation
1.* g
{disjoint, complete} eMedations sMedigtions
| | 1 L
aPhases aPhases wSubkinds «Fortnals
hctive Parking Terminated Parking Spot «Raoles Specific Spot
Spot Usage Usage Parked Vehicle Usage
- exitTime :DateTime - license plate String
%? +supportedvehicleType 1.~
aKinds «“powertypes
Vehicle Vehicle Type
1.* aFormale 1

{disjoint, complete}

wSubKind» «SubKind» «SubKind»
Motoreycle Light/SUv Bus/Truck

EX3: UFO-S fragment focused on service offering (see more):

40 Chapter 3. Class stereotypes

http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html

OntoUML specification Documentation

«Category»
Agent
«RoleMixins
Target Customer
«Events «Category»
Service Offer Service Offering
Description
1.*
0.+ «MemBerOfs
«RoleMiginn 1 . 1.
Service Provider
«Formal» «Mediation»
creates :
desgribes «Collectiver
Target Customer Community
1 1 1 1 1
«Relator»
«Mediation» Service Offering 1 1 1
provides e 1.* «Mediation»
1.* offered to m=
1 1
| A «CompofentOfs
inhgres in 1 «CompohentOfs
«Chgracterization»
«Mode»
. . externally dependent on s
Service Offering (inheres in
1.+| Commitment [1.. «Farmal»
- 1 «Charactgrizations
«Fgrmal»
aModer
externally dgpendent on Service Offering
1 Claim 1

EX4: Fragment of a conceptual model about the human genome (see more):

3.7. Relator

41

http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html

OntoUML specification Documentation

«Collective»
Alelle
«Role» «Collective»
AllelicReference RefSeq
2" «Meml{;erof»
|
I
1 1 1
«Relator»
ENIBERBANE Record «Medigtion»
1
2- -t
{disjoint, complete}
«Phasex» «Phase» «Ft'!a_se»
Validated Inferred Provisional
«Phase» «Phasex» «Phase»
Predicted Reviewed Model

42

Chapter 3. Class stereotypes

OntoUML specification Documentation

3.8 Category

Category RigidNonSortal
Provides identity

no
Identity principle

multiple
Rigidity

rigid
Dependency

optional
Allowed supertypes

Category, Mixin
Allowed subtypes

Kind, Subkind, Collective, Quantity, Relator, Category, Mode, Quality, Role, Phase, RoleMixin, PhaseMixin,
Mixin

Forbidden associations
Structuration

Abstract True

3.8.1 Definition

A «Category» is a rigid mixin that does not require a dependency to be specified. It is used to aggregate essential
properties to individuals which following different identity principles. Let’s see some examples:

a«Categorys «Categorys «Categorys wCategorys a«Categorys
Living Thing Agent Object Device Appliance

Categories are usually used in a refactoring process. For example, let’s suppose that you defined two classes in your
model, Person and Animal. Now you want to state that either people and animals have a weight. You than create a
«Category», which has weight, and generalize the existing classes into it.

3.8.2 Constraints

C1: A «Category» is always abstract. Notice that abstract classes are represented with an italic label.

3.8. Category 43

OntoUML specification Documentation

«Categorys
Agent

T

aCategornys aCategornys
Individual Agent Collective Agent
akinds
Person

C2: A «Category» aggregate individuals that follow different identity principles, therefore it may not have as ances-
tor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode»,

«Quality».

wkinds
Car
z‘}‘ 7

#3ubkind
Man

«Relators
Marriage
f‘}‘ 7

aCategorys
Object

uCategorys
Agent

«Categorys
Agreement

C3: A «Category» is a rigid construct, therefore it cannot have as ancestor an anti-rigid type, as: «Role», «RoleMixin»,

«Phase».
«Roles «RoleMixing «Phasen
Role RoleMixin | Phase
A /_"‘:. A A
«Categorys
Category
44 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.8.3 Common questions

Ask us some question if something is not clear ...

3.8.4 Examples

EX1: Fragment from the ECG Ontology (see more):

wCategorys
Muscle
akKind» aKindn «Kind» aKindw uKindn «Kind» akKind» wKinda
L i ig L Heart RightAtrium Leftatrium Peripherals Lungs HumanBody

«Category»
Chamber

EX2: Fragment from UFO-S, a commitment-based service ontology (see more):

3.8. Category 45

http://web.archive.org/web/20171008151934/http://www.menthor.net/ecg.html
http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html

OntoUML specification Documentation

«Category»
Agent
«RoleMixins
Target Customer
«Events «Category»
Service Offer Service Offering
Description
1.*
0.+ «MemBerOfs
«RoleMiginn 1 . 1.
Service Provider
«Formal» «Mediation»
creates :
desgribes «Collectiver
Target Customer Community
1 1 1 1 1
«Relator»
«Mediation» Service Offering 1 1 1
provides e 1.* «Mediation»
1.* offered to m=
1 1
| A «CompofentOfs
inhgres in 1 «CompohentOfs
«Chgracterization»
s chad:r» . P externally dependent on s
Gl ering e inheres in
1.+| Commitment [1.. «Farmal»
- 1 «Charactgrizations
«Fgrmal»
aModer
externally dgpendent on Service Offering
1 Claim 1

3.9 PhaseMixin

Category AntiRigidNonSortal
Provides identity
no
Identity principle
multiple
Rigidity

antirigid

46

Chapter 3. Class stereotypes

OntoUML specification Documentation

Dependency

mandatory
Allowed supertypes

Mixin, PhaseMixin, Category
Allowed subtypes

Phase, PhaseMixin, Role, RoleMixin
Forbidden associations

Structuration

Abstract True

3.9.1 Definition

A «PhaseMixin» is the equivalent of «Phase» for types that aggregate instances with different identity principles. A
class stereotyped as «PhaseMixin» is also an anti-rigid type. «PhaseMixin» is similar semantically to «RoleMixin»
with the difference in relational dependency.

3.9.2 Constraints

C1: A «PhaseMixin» is always abstract. Notice that abstract classes are represented with an italic label.

C2: A «PhaseMixin» aggregate individuals that follow different identity principles, therefore it may not have as an-
cestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode»,
«Quality».

C3: A «PhaseMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as:
«Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

3.9.3 Common questions

Ask us some question if something is not clear ...

3.9.4 Examples

Ask us some question if you can share an example with us ...

3.10 RoleMixin

Category AntiRigidNonSortal
Provides identity

no
Identity principle

multiple

3.10. RoleMixin 47

OntoUML specification Documentation

Rigidity
antirigid

Dependency
mandatory

Allowed supertypes

Mixin, RoleMixin, Category, PhaseMixin

Allowed subtypes
Role, RoleMixin

Forbidden associations

Structuration

Abstract True

3.10.1 Definition

A «RoleMixin» is the equivalent of «Role» for types that aggregate instances with different identity principles. A class
stereotyped as «RoleMixin» is also an anti-rigid type whose instantiation depends on a relational property. Here are

some examples:

«RoleMixin»

«RoleMixin»

«RoleMixin»

«RoleMixin»

Customer Provider Purchased Resource
RoleMixins usually occur in one of the two patterns:
¢ Pattern 1: «RoleMixin» defined by roles
«RoleMixin»
«Kind» Customer «Kind»
Person Zﬁ Company
«Role» «Role»

Individual Customer

Corporate Customer

¢ Pattern 2: «RoleMixin» as arole of a «Category»

48

Chapter 3. Class stereotypes

OntoUML specification Documentation

«Category» «RoleMixin»
Agent :] Customer

T

«Kind» «Kind»
Person Company

The second pattern is a more concise form of the first. They are semantically equivalent.

3.10.2 Constraints

C1: A «RoleMixin» is always abstract. Notice that abstract classes are represented with an italic label.

«Kind» «RoleMixin» «Kind»
Hard Drive Computer Part CPU
| |
«Role» «Role»
Hard Drive in Use CPU in Use

C2: A «RoleMixin» aggregate individuals that follow different identity principles, therefore it may not have as an-
cestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode»,

«Quality».

C3: A «RoleMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as:
«Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

«RoleMixin» «RoleMixin» «RoleMixin» «RoleMixin»
Analyzed Clay Legal Agreement Insured ltem Cancelled Purchased

4 & c 4 4 V.
y

«Quantity?(«Categor;:>< «Mixin» ?(«Relator?<
Clay N Agreemerit N Insurable It N Purchas¢ |

3.10. RoleMixin 49

OntoUML specification Documentation

3.10.3 Common questions

Ask us some question if something is not clear ...

3.10.4 Examples

EX1: Fragment of the OntoUML Org Ontology (O3) (see more):

ahous
Collaboration Business Role
{disjoint,complete} ?
m'nnhnm i i Relators Mediation» «RoleMixins oo
aMediation» by «Mediation
Internal Collaborati i External External Collaboration
Busi Role Internal Collaborator | 1 - 1| Gollaboration |’ 1.7| Collaborator Business Role
- 1. 1. 1.
{digjoint, complete} . o «Kind»
aKinds {disjoint,complete} Eaiingl
Natural Person ‘Organization
i /\
instance of instance of
b «Forfnal»
okl rolen aRolen «Roles
Organizational Unit Formal Organization Physical Agent So:al &mlm
Member External xternal o
Collab Collaborator
0.
instance of B

«Formals
«Raoles wRoles

Social Agent Physical Agent
[Internal Internal

Collaborator Collaborator

0.
- instance of
«Formal»

EX2: Fragment of a conceptual model about Brazilian Public Tenders (see more):

«Relators
Call for Tender «Relators
Republication
- modifies +republication
+republication 1 «Mediation» 1
{subsets republication} J?
+modifiedObject 1
«Relators
4 _— «Roles
*published - pubiishes F P ot Tender in External
1 «Mediations 1 1. «Mediations 1 Phase
aMediptions
modiies aRolen sRelators . «Rale»
+callForTender | Published Call for | *c@IForTender g pupiishes +publication | Call for Tender | +publication stender | Tender in Call for
. ender «Mediation» 1 [Ay Mediations 1 Jondar
1 :
{subsets {subsets publication}

50 Chapter 3. Class stereotypes

http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html
http://web.archive.org/web/20171008152151/http://www.menthor.net/public-tenders.html

OntoUML specification Documentation

3.11 Mixin

Category SemiRigidNonSortal
Provides identity

no
Identity principle

multiple
Rigidity

semirigid
Dependency

optional
Allowed supertypes

Mixin, Category
Allowed subtypes

Subkind, Kind, Collective, Quantity, Category, Mixin, Role, Phase, RoleMixin, PhaseMixin, Relator, Quality,
Mode

Forbidden associations
Structuration

Abstract True

3.11.1 Definition

A «Mixin» is a semi-rigid type, i.e., it “behaves” as a rigid type for some individuals and as an anti-rigid one for others
(it’s the only stereotype with such feature in OntoUML). As the «Category» and the «RoleMixin», the «Mixin» meta-
class characterizes individuals that follow different identity principles. Here are some examples of types that could be
classified as «Mixin»:

aMixing aMixine aMixing uMixing
Luxury Good Seatable Insurable ftem | | Performer Artist

As categories, mixins are commonly applied during a refactoring process, in particular when we want to state that some
properties are applied to both rigid and anti-rigid types. For instance, let’s consider that we defined the following types
in our model, Car and Jewellery, a general concept for Ring, Necklace, etc. Now we want to define the type Luxury
Good. In our worldview, every jewellery is luxurious, but only cars that are worth more than 30k dollars are. Since the
value of a car changes through the years, being a luxurious car is a temporary classification, whilst being a jewellery is
a permanent one. The type Luxury Good, therefore, is semi-rigid or a «Mixin».

3.11. Mixin 51

OntoUML specification Documentation

aMixing ukind»
Luxury Good Car
s«Categorys «Phases «Phases
Jewellery Luxury Car Regular Car
ukind» aKind» ukind»
Necklace Ring Earing

3.11.2 Constraints

C1: A «Mixin» is always abstract. Note that abstract classes are represented with italic labels.

aMixins
- Performer Artist
akind»

Person £|3

T | |
wRoles akinds

Individual Artist Band

C2: A «Mixin» is a semi-rigid construct and because of that, it cannot have as ancestor either a rigid (other than
«Category») or an anti-rigid type. Therefore, only mixins categories can be ancestor of other mixins.

alixing wCategorys akinds uRoles w3SUbKinds #«Phases wCollectives
Mixin Category Kind Role SubKi Phase Collecti

alMixing alMixing uMixing aMixing alMixing alMixing aMixing
Mixin Mixin Mixin Mixin Mixin Mixin Mixin

52 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.11.3 Common questions

Ask us some question if something is not clear ...

3.11.4 Examples

EX1: Conceptual model based on the Music Ontology (see more):

Medatons

"o body of work <Fomals

ainds
(oftware Program.

ekinds
Guuvre st ton
- &
«Comzonefe0it Mepatons
2
=
Aok |t “Retstons
yesans 1
 compieton Date
1 iy
wRelators
o Pubtabmen: g g
Muskal Gempaser Indiviual Antist
. datayper
aMeations 1.*
{sutets comooser)
' ey o
1 ! e
<wnar «Subkings <A
Weiten | ares - s Wi Work | *Medaton o
“Materats = [1
dera BT (e
]
'
B {dapoet. complete] [, complete}
I T 1
Sutiinds “Sutiinds “Subinds
Ful Score suatch part
s
Wasician
«Subkinds e «Sutind «Sebinds i i
Batet Opara Orchestral Werk Suite 2 S P
rrm——— z
ComphraniOts
'
tdmgnt, compistel (afnt, compiate}
«Subkinds 4 Subiinds «Subiings Compepenits «Sutsngs *Subinds
Gverture Symphony Indvidasl Composite
1 wovemem Movement
s -
[redetees movemeriy
<Roier
Suite Bhort
Morement e, compiete]
<Fhases wPhases it
Dance-ake Siow Mavement | | Fast Mavement
Mavement
Phases
Sthart Movement
(e, fompiete]
aPraves
‘Long Movement

s
Pesvon e
reup
prem—
? f
«Rales aMagiberQfs
Wember | smember (simmmdvnce)
=
ke
arttic Group
1
<Rk e
Artste Mamber
{isimmutatge'ioie |
s
Suknds
Iredetes memar) oy
o
<Reken
Mkl At {isImmutabiehole)
=
e marber)
Stng
Orehesira

EX2: Fragments extracted from the OntoUML Org Ontology (0O3), a model about the active structure of organisations

(see more):

3.11. Mixin

53

http://web.archive.org/web/20171008152050/http://www.menthor.net/music-ontology.html
http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html

OntoUML specification Documentation

«Role»
Individual
Nominator

«Relator» «Relatory
Organizational .<]7 Membership With
Membership Term
{disjoint,complete}
«Relator» «Relator» «Relator»
Membership by Membership by Effective
Appointment Election Membership
1.* 0.*
A A
realizes participates
«Matgrial» «Matdrial»
1 2.*
«Mixin» «Mixin»
Nominator Elector ﬂ
«Role»
«Category» Individual Elector
Social Agent

V_V

«Kind»
Natural Person

54

Chapter 3. Class stereotypes

OntoUML specification Documentation

«Formal»
- defines
0.* +social entity +descr_iption 0.1)
«Formal» recognized - recognizes
«Mixinn 1.x /recognizes B 1. «Category» 1.® «Formal» 1+ «hous»
Social Entity E | Normative <Formas Social Role
shorman Description
defines 0. 0.1 defines = 0.* A
+description
defined
{disjoint}
1
. ’ {redefines
1 +social entity normative
«Kind» | description} formalizes m= i
«Role» «Category» Internal R = : Business Social
Organizational Member Organization Hrormal . Role
1..* ;
* 1.%
{redefines 1. o {"TdEﬂ"ES
description {redefines ;D: g
recognized) description efined}
defined}
1
{redefines
«Kind» social entity} «Formal»
{disjoint izat i
} Organizational Unit t recognized by
1
{redefines social
) entity} «Formal»
«Kind»
Formal defnes & /defines =
Organization
1.7 «Formal»
3.12 Mode
Category Aspect
Provides identity
yves
Identity principle
single
Rigidity
rigid
Dependency
mandatory
Allowed supertypes
Category, Mixin
Allowed subtypes
Subkind, Role, Phase

Forbidden associations

Structuration, ComponentOf , SubCollectionOf , MemberOf , SubQuantityOf , Derivation

Abstract True

3.12. Mode

55

OntoUML specification Documentation

3.12.1 Definition

A «Mode» is a particular type of intrinsic property that has no structured value. Like qualities, modes are also indi-
viduals that existentially depend on their bearers. Types stereotyped as «Mode» are also rigid. You can find some
examples of modes below:

«Moden
Intention

«Moden
Hole

wMode s
Disease

«Moden
Ability

3.12.2 Constraints

C1: Every «Mode» must be (directly or indirectly) connected to an association end of at least one «Characterization»

relation.
wkinds
Agent
1
1 —
«Characterizations
«Charactgrizations 1+
Lt I"."IdeE B “ Mﬂ'de W
Ability gls Intention
wKinds» «Modex
Person] «Characterizatio n1n K Disease

akind s
Road

«Characts

1.

«Moden
Hole

Erizations

C2: The multiplicity of the characterized end (opposite to the «Mode») must be exactly one. Therefore, the following
examples are forbidden.

aCategorys X aModes
Agent § aracterizatio . Mental State

«Categorys X «Modes
Agent @waramerizatin q # | Mental State

C3: Modes cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role»,
«RoleMixin», «Phase», «Relator», «Quality».

56

Chapter 3. Class stereotypes

OntoUML specification Documentation

#SubKinds #Roles wkinds
SubKi Role \(' Kind
I\ / N\ FAN
aModen aModes #Modes
Permission Desire Headache

C4: Modes cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Cate-

gory», «Mixin», «Relator», «Quality».

«Modes sModes uModes
Belief Inte ntion Disease
«Category «Qua ntl’q.r b F{elamrn
Category Quantity Relator

3.12.3 Common questions

Ask us some question if something is not clear ...

3.12.4 Examples

EX1: Fragment from the Configuration Management Task Ontology (see more):

3.12. Mode

57

http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html

OntoUML specification Documentation

«Category»
Item

aRoleMixins
«Charactgrizations AtomicCl
1
«Mode»
T Version

aRoleMiin:
Configurationltem

«Mediation» 1

«Relators

ConfigurationSelection

1.7 aMediations

«Characterizations

e

«RoleMixins
Composite CI

uMode»
AtomicVersion

«Modex»
Configuration

i

«Roles
Baseline

«Characterizations

Person

«Rolex
ConfigurationManager

aMedigtions

1.*

aRelators
Markup

aMediations

EX2: Fragment from the OntoUML Org Ontology (0O3) (see more):

58

Chapter 3. Class stereotypes

http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html

OntoUML specification Documentation

«Mode»
Belief

T

«Mode»
Cognitive Skill

Physical Skill

3.13 Quality

Category Aspect
Provides identity
yes
Identity principle
single
Rigidity
rigid
Dependency
mandatory
Allowed supertypes
Category, Mixin

Allowed subtypes

Subkind, Role, Phase

Forbidden associations

ComponentOf , SubCollectionOf , MemberOf , SubQuantityOf , Derivation

Abstract True

«Kind»
Natural Person
0.* «Relator»
has " «Formal» Functional
v -4 requires 0..*| Responsibility
«Characterization»
0.7 0.7
«Formal» «hou»
«Mode» : Business Social
Skill 0.* -q requires 0.* Role
{disjoint}
«Mode»

3.13. Quality

59

OntoUML specification Documentation

3.13.1 Definition

A «Quality» is a particular type of intrinsic property which has a structured value. Qualities are things that are existen-
tially dependent on the things they characterize, called their bearers. Types stereotyped as «Quality» are also rigid.

OntoUML differentiates between three types of qualities:

* Perceivable, which capture qualities that could be measured by an agent with the appropriate instrument, like

weight, height, color and speed.

* Non-Perceivable, which represent properties which cannot be directly measured by an instrument, like currency.

¢ Nominal, which are used to make reference to an individual, like one’s name, a book’s ISBN or a credit card

number.

Notice some examples of qualities in the next figure:

«PerceivableQuality»
Height

«MNonPerceivableQuality»
Color

Value

«MNonPerceivableQuality»

«MNonPerceivableQuality»
Position

«MNominalQuality»
SSN

«NominalQuality»
Codice Fiscale

You can define different types of geometrical structures for a quality value using dimensions and domains. Here is an

example:

wKinds

Product

3.13.2 Constraints

C1: A «Quality» must always be connected, through a «Characterization» to another type.

] «Characterizations 1

a«MominalCualitys
Product Code

«PerceivableQualitys
Weight

i Strumurationn1

«DecimalRationalDimensions

Grams

watructurations

«DecimalRationalDimension

Kilos

«MonPerceivableQualitys
Value

%I Characterizatio r]l i

C2: The multiplicity of the characterized end (opposite to the quality) must be exactly one. Therefore, the following

examples are forbidden.

«Kind»

u1I: haracterizatio q 0

akinds
Product

1« Charamerizatiomgl

«PerceivableCQualitys
Weight

uPerceivableQualitys

Person

ar;a«c:‘cerizatic:mrr1

Height

«RoleMixin», «Phase», «Relator», «Mode».

X

akind»

1« Cha n?n:terizatiﬂn:rr1

#PerceivableCualitys
Color

«PerceivableQualitys

Person

ara{:terizationn1

C3: Qualtities cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role»,

Height

60

Chapter 3. Class stereotypes

OntoUML specification Documentation

wkinds s SuUbKinds «Relators
Kind X SubKindy Relator '\
«MonPerceivableQualitys aMominalQualitys «PerceivableQualitys
Value SSN Color

C4: Qualtities cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Cat-
egory», «Mixin», «Relator», «Mode».

«MNonPerceivableQualitys «NominalQuality» wPerceivableCualitys
Popularity Score ISBN GPS Coordinate

«Cuantity
Quantity

«RaleMix
RoleMixin

3.13.3 Common questions

Q1: Can I represent the property “height” as an attribute instead of a «Quality»?

Al: Yes. The decision to represent attributes or qualities is entirely up to you. It is useful to represent properties as
qualities when you want to define different escales for the same characteristic. For instance, if you want to model that
a Person has a “height” property, which can be measured in meters or centimeters you should explicitly represent the
Height quality.

#IntegerRationalDimension:

. «Structuratiom% MeterScale
ukinds «PerceivableQualitys
Person «1 Characterization 11} Height
«IntegerRational Dimensions

" Strm:.turﬂtiﬂnn1 CentimeterEscale

3.13. Quality 61

OntoUML specification Documentation

3.13.4 Examples

No examples yet...

62 Chapter 3. Class stereotypes

CHAPTER
FOUR

RELATIONSHIP STEREOTYPES

4.1 Introduction

Relations are entities that glue together other entities. Every relation has a number of relata as arguments, which are
connected or related by it. The number of a relation’s arguments is called its arity. As much as an unary property such
as being Red, properties of higher arities such as being married-to, being heavier-than are universals, since they can
be predicated of a multitude of individuals. Relations can be classified according to the types of their relata. There are
relations between sets, between individuals, and between universals, but there are also cross-categorical relations, for
example, between urelements and sets or between sets and universals. We divide relations into two broad categories,
called Material and Formal relations. Formal relations hold between two or more entities directly without any further
intervening individual. Examples of formal relations are:

e 5is greater than 3
« this day is part of this month
e Nis subset of Q

but also the relations of instantiation, inherence, quale of a quality, association, existential dependence, among others —
... relations that form the mathematical superstructure of our framework. Material relations, conversely, have material
structure on their own and include examples such as:

* employments

* kisses

* enrollments

* flight connections
* commitments

The relata of a material relation are mediated by individuals that are called relators. Relators are individuals with the
power of connecting entities:

* a flight connection, for example, founds a relator that connects airports
e an enrollment is a relator that connects a student with an educational institution
Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005.

63

OntoUML specification Documentation

4.2 Formal

Directed no

Source end
Multiplicity O - *

Target end
Multiplicity O - *

Binary properties

4.2.1 Definition

The name «Formal» is short for Domain Comparative Formal Relation. This construct is used to represent relations
that can be reduced to the comparison of the quality values that characterize the related individuals, like heavier-then,
younger-then or cheaper-then. Here are some examples in OntoUML:

* lighter
Y «PerceivableQualitys»
«Formal» «Kind» «Category» GPS Coordinate
heavigr-then Person Place «Characterization»
. 1 latitude : float1]
weight : Integer[1] *

A longitude : float[1]
«Formal» altitude : floaf{1]
co-located-with

«Category» «MNonPerceivableQuality»
. Product] «Characterization»] Value
~ * 1

«Formal»
more-valuable-then

« Sil'u1c|1 ration»

«DecimallntervalDimension»
Euro

To specify how the relation can be reduced, use an OCL derivation rule:

context Person::lighter : Set(Person)
derive : Person.allInstances()->select(x | self.weight > x.weight)

Tip: Due to its ontological, the «Formal» relations have no constraints in OntoUML. Nonetheless, make sure the relation

you are modeling is indeed a comparative one. Think about how to reduce the relation to a comparison between values
and represent the necessary properties.

64 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.2.2 Common questions

Ask us some question if something is not clear ...

4.2.3 Examples

EX1: Fragment from OntoEmerge, an ontology about Emergency Plans (see more):

Component
Object
«Categarys
UFO-C::Social
o &

—

s«Farmals spatially

subsumes —\

. dataTypes
«Categorys) k)
Spatial Location |0 * has location i Location
Coordinates
+spatialLecation 1. -
- altitude :int
latitude :int
- longitude int
Social Agent
y eMiin» - : 2.
«Category» UFO-C::Normatized {disjoint}
UFO-C::Individual ‘Social Object
Social Agent
aCategory»
‘Geographical Point
0. has location =
{redefines
spatialLocation}
«Category» «Category» wCategarys
Authority | +autharity g controlled by Jurisdiction Geographical
1.* «haterials i Region 0. has location =
{redefines
spatialLocation}
{disjoint, complete}
«Categony: «Category» =Categorys
1.+ | Political Body - contralled by Political Region Nen Political
- name :Sting |1.* «Materials 1. Region
{redefines
e authority}
{disjoint}
«Material» is
subordinated to
«Categorys «Categorys udataTypen
Macro Political Micro Political Adress Domain
Region Region o «Formabe 1
- name :String

4.2. Formal 65

http://web.archive.org/web/20171008152105/http://www.menthor.net/ontoemerge.html

OntoUML specification Documentation

4.3 Material

Directed no

Source end
Multiplicity 1 - *

Target end
Multiplicity 1 - *

Binary properties

Transitivity no

4.3.1 Definition

«Material» relations have material structure on their own and include examples such as employments, kisses, enroll-
ments, flight, connections and commitments. The relata of a material relation are mediated by individuals that are
called relators. Relators («Relator») are individuals with the power of connecting entities; a flight connection, for ex-
ample, founds a relator that connects airports, an enrollment is a relator that connects a student with an educational
institution. Relators play an important role in answering questions of the sort: what does it mean to say that John is
married to Mary? Why is it true to say that Bill works for Company X but not for Company Y?.

Material relations are derived (via «Derivation») from relators and the mediation relations that connect them to the
corresponding relata. Cardinality constraints of mediation relations collapse by derivation. Material relations are
always affected by collapsed cardinality). Also, several «Material» relations can be derived from a single «Relator»
and «Mediation» relations.

4.3.2 Common questions

Ask us some question if something is not clear ...

66 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.3.3 Examples

EX1:
«kind»Person
«subkind» «subkind»
Man Woman
L «mediation»
«mediation» 1q_*
«relator»
Marriage
1.7
|
1 . 1
|
/married to :
«role» || «Kkind»
Husband « material >} Wife
1. I *
I
1.* /husband:of 1.7
« material »
EX2:
amediation» <elatorn amediation» amediation» pr— emediation»
1 * Assigment g Assi*ment "
. |
1 |
I |
1.* 1 1. | . 1
arole» «ma:e”a‘» arole» arolen :cmaler\a\» «Kind»
GraduateStudent /supervised-by Supervisor GraduateStudent {supervised-by Supervisor
= 1 ®

1

For more examples see «Relator», «Derivation», «Mediation», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague

4.3. Material

67

OntoUML specification Documentation

University of Economics, 2011.

4.4 Mediation

Directed yes

Source end
Multiplicity 1 - *

Target end
Multiplicity 1 - *

Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no

4.4.1 Definition

We define a relation of «Mediation» between a «Relator» and the entities it connects. Mediation is a type of existential
dependence relation (a form of nonfunctional inherence). It can be derived from the relation between the relata and the
qua individiuals that compose the relator and that inhere in the relata. A «Relator» must mediate at least two distinct
individuals.

4.4.2 Common questions

Ask us some question if something is not clear ...

4.4.3 Examples

EXI1:
«mediation»q_ * «mediation»
«relator»
Enrollment
1 1.* 1
«kind»Person «kind»Educational Institution

For more examples see «Relator», «Material», and «Relator pattern».
Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

68 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.5 Characterization

Directed yes
Source end
Multiplicity 1-1
Target end
Allowed
Quality, Mode
Multiplicity 1 - *
Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no

4.5.1 Definition

«Characterization» is a relation between a bearer type and its feature. Feature is intrinsic (inherent) moment of its
bearer type, and thus existentially dependent on the bearer. Feature may be stereotyped as «Quality» or «Mode».
Feature characterizes a bearer type iff every instance of bearer exemplifies the feature.

4.5.2 Common questions

Ask us some question if something is not clear ...

4.5.3 Examples

For examples see «Quality» and «Mode».
Source:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.6 Derivation

Directed yes
Source end
Allowed
Relator

Multiplicity 1 -1

4.5. Characterization 69

OntoUML specification Documentation

Target end
Allowed
material
Multiplicity 1-1
Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no
4.6.1 Definition
«Material» relation can be completely derived (via «Derivation») from the «Relator» and the corresponding «Me-

diation» relations. Derivation makes the cardinality constraints of the mediation relations collapse (see «Material»
relation, example 2).

Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations (see «Material»
relation, example 1).

4.6.2 Common questions

Ask us some question if something is not clear ...

4.6.3 Examples

«kind»Person

/\

«mediation»

«mediation»

«relator»
1. 1.%
1 1
«rolex» : «Kind»
Patient Medical Unit
EX1: 4 «m 1al » 4 *

For more examples see «Relator», «Material», and Relator pattern.

Quoted from:

70 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

4.7 Structuration

Directed yes
Source end
Allowed
Quality
Multiplicity O - *
Target end
Allowed
Quality, Mode
Multiplicity 1 -1
Binary properties
Reflexivity no
Transitivity no

Symmetry no

4.7.1 Definition

«Structuration» relation allows structuring «Quality».

4.7.2 Common questions

Ask us some question if something is not clear ...

4.7.3 Examples

For examples see «Quality».
Source:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

4.7. Structuration 71

OntoUML specification Documentation

4.8 Part-Whole

UML distinguishes between aggregation and composition only. OntoUML distinguishes among

* sharing

— shared part (white)

— exclusive part (black)

» multiplicity of relationship

— mandatory part with respect to the whole

— mandatory whole w.r.t. the part

— mandatory non-rigid type (e.g. role, phase, mixin)

OntoUML also distinguishes among various types of wholes and their parts

* functional whole (and ComponentOf relation)

e Collective (and SubCollectionOf and MemberOf relations)

* Quantity (and Containment and SubQuantityOf relations)

4.8.1 Examples

/_“‘
-
- ~

-

wkind» ® {essential wkinds» ® wroles) wkinds
TrainingAgency 1 inseparable} 1 Headquarter 1 1 Director Person
name: String S name: String
’1 ! wkind» 1 wrolen
1.* Site 1.% Assistant
wcollectiver ® wcollectives 3 wrole»
1 TeachingStaff C 2.* SubjectDept 2. Teacher
«quantity» {essential «quantity» «containmenty wkind» 1
TeachingTime 1 WorkingTime 1 1 | PersonalTimeTable !
.n
wkind»
TeachingSkill
description
«weollectives «kind» «wecontainment» wquantity» ‘t{ESSEHtIEﬂ} wquantity»

1 Inventory ﬁ 2.7 Investment 1 1 Cost Q ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp

wquantitys
Depreciation
amount: Currency

EX1:

72

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

wkinds» < member «kind»
Club (“/b — T Person
EX2:
Notice that maximum multiplicity of the whole is > 1.
akinds» wkinds
Engine Chassis
wkinds»
Tractor '«’EI] 1.2 1
N 0.1 1
akinds» wkinds
Semitrailer Cab
EX3:
Notice that maximum multiplicity of the whole is = 1.
wkinds wkinds
Tractor '*D] 01 Semitrailer

EX4:

Optional part w.r.t. the rigid whole. The whole doesn’t necessarily need any part.

EXS5:

wkinds
Tractor

wkinds

5

Cab

Mandatory part w.r.t. the rigid whole. The whole does need a part, instances of the part may mute

EX6:

wkinds
Tractor

{essential}
"I=Z]__1 1

wkinds
Chassis

Essential part w.r.t. the rigid whole. The whole does need a part, instances mustn’t mute.

4.8. Part-Whole

73

OntoUML specification Documentation

wkinds

{essential} *kinds
Tractor "D

— 1 Chassis

EX7:

Optional rigid whole w.r.t. the part. The part may exist alone, even without the whole.

wkinds

wkinds
Man -*1

Heart

EXS:

Mandatory rigid whole w.r.t. the part. The part must belong to some whole, instances of the whole may mute.

wkind» {essential wkind»
Man "1 inseparable} 1 Brain

EX9:

Inseparable part of the rigid whole. The part must belong to the same whole, instances of the whole mustn’t mute.

« lcind»
Person
wroles . « lcind»
Boxer 1*ilmmutat::-le p?rtz} Hand

EX10:

Immutable part of the antirigid whole. Whenever the whole exists in the particular role or phase, its parts must be still
the same instances — they cannot not mute. Compare to {essential}.

74

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

«kind»
Brain

JAN

{disjoint,complete}

1 1

«phase» «phase»
NonFunctioningBrain | | FunctioningBrain

’I «kind»Person

{essential,
immutable whole}
EX11:

Immutable whole w.r.t. the antirigid part. Whenever the part exists in the particular role or phase, its wholes must be
still the same instances — they cannot not mute. Instances of the whole may mute only as the part changes it’s role or
phase.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.9 ComponentOf

Directed yes

Source end
Multiplicity 1 - *

Target end
Multiplicity O - *

Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no

4.9. ComponentOf 75

OntoUML specification Documentation

4.9.1 Definition

«ComponentOf» is a parthood relation between two complexes. Examples include:

A.
B.
C.
D.

my hand is part of my arm;

a car engine is part of a car;

an Arithmetic and Logic Unit (ALU) is part of a Central Process Unit (CPU);

a heart is part of a circulatory system.

Transitivity holds for certain cases but not for others, it depends on context. «ComponentOf» relation obeys weak
supplementation principle (at least 2 parts are required, may be of different types).

4.9.2 Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are
functional complexes.

4.9.3 Common questions

Ask us some question if something is not clear ...

4.9.4 Examples

EX1:

/-

TrainingAgency
name: String

whkind»

¢

1

«quantity»
TeachingTime

wcollectives

Inventory

See also Part-Whole.

date: Timestamp

essential wkinds» N wrolen 3 wkind»
1 inseparable} 1 Headguarter 1 Director Person
- name: String
/ «kind» wrolen
1.* Site Assistant
«weollectiver woollectives q wrole»
1 TeachingStaff SubjectDept 2. Teacher
{essantial} «quantity» «containment» «kind» L
1 WorkingTime 1 1 | PersonalTimeTable 1 !
il
wkindn
TeachingSkill
description
«kind» «containments «wquantity» ‘{BSSEHtIEﬂ} wquantity»
Investment 1 1 Cost Q 1 ResidualPrice
name: String amount: Currency amount: Currency

wquantity»
Depreciation

amount: Currency

76

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.10 Containment

Directed yes

Source end
Multiplicity 1 -1

Target end
Allowed

Quantity

Multiplicity 1 -1

Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no

4.10.1 Definition

«Containment» is a relation between a container and its contents — a «Quantity», e.g., a barrel contains beer.

Multiplicities of the containment relation must be exactly one for the same reason as those of the «SubQuantityOf»
relation.

4.10.2 Common questions

Ask us some question if something is not clear ...

4.10.3 Examples

«kind» «containment» | “GUantty»

Barrel Beer
1 1

EX1:

4.10. Containment 77

OntoUML specification Documentation

«kinds wcontainments aquantitys
Account] 1 Salary
fixedPart

variablePart

EX2:
- \“"'-.‘
wkindx essential wkinds > wroles) wkinds
TrainingAgency 1 inseparable} 1 Headquarter 1 1 Director Person
name: String - name: String
’1 ! wkind» 1 wrolen
1.” Site 1.* Assistant
«collectiver ® wcollectives q wrole»
1 TeachingStaff C 2.* SubjectDept 2. Teacher
«quantity» {essential} «quantity» «containments» «kind» L
TeachingTime 1 WorkingTime 1 1 | PersonalTimeTable |} 1 !
.n
"""'-.-___-____ __-_____,.,.-""_'/ wkind»
TeachingSkill
description
«collectives -~ «kind» «containments «quantity»‘\" {essantial wquantity»
1 Inventory x Investment 1 1 Cost 1 ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp
wquantity»
TTe— 1 Depreciation
amount: Currency
EXa3:
See also

* SubQuantityOf

e Part-Whole

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

78

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.11 MemberOf

Directed yes
Source end
Allowed
Collective
Multiplicity 1 - *
Target end
Allowed
Collective, Functional complex
Multiplicity 1 - *
Binary properties
Reflexivity no
Transitivity no
Symmetry no

Cyclicity no

4.11.1 Definition

«MemberOf» is a parthood relation between a functional complex or a «Collective» (as a part) and a «Collective» (as
a whole).

Examples include:
A. atree is part of forest;
B. acard is part of a deck of cards;
C. afork is part of cutlery set;
D. aclub member is part of a club.

«MemberOf » relation obeys weak supplementation principle (at least 2 parts are required, may be of different types).
The memberOf relation is intransitive.

For example, Kazi, Bobek, Nemo and others are members of the 7J Sokol Zizkov Youth Tourist Club. The TJ Sokol
Zizkov Youth Tourist Club is the member of the Association of the Youth Tourist Clubs. But Kazi, Bobek, Nemo
and others are not members of the Association of the Youth Tourist Clubs, since not persons but only clubs may be
members of the association. Although transitivity does not hold across two «MemberOf» relations, a «MemberOf»
relation followed by «SubCollectionOf » is transitive.

4.11. MemberOf 79

OntoUML specification Documentation

4.11.2 Constraints

C1: This relation can only represent essential parthood if the object representing the whole is extensional (i.e. provided
that adding or removing of any member changes the identity of the collective). In this case, all parthood relations in
which the whole is extensional are constrained as {essential} parthood relations.

C2: The classifier connected to the whole end must be a «Collective». The classifier connected to the part end can be
either a «Collective» or functional complex.

4.11.3 Common questions

Ask us some question if something is not clear ...

4.11.4 Examples

-
-~ _“‘
.

“““ .
wkind» essential wkinds» - «role» s wkinds
TrainingAgency 1 inseparable} 1 Headquarter 1 1 Director Parson
name: String S name: String
’1 ! wkind» 1 wrolen
1.* Site 1. Assistant
— -
wcollectiver ﬁwllecﬁve» 3 wrole» T
1 TeachingStaff C 2__1 SubjectDept 2. Teacher)
______-____ __’___———""/
«quantity» {essential «quantity» «containmenty wkind» L
TeachingTime 1 WorkingTime 1 1 | PersonalTimeTable | 1 !
.n
wkind»
TeachingSkill
”____._——.__\\ description
,"«’Dollective» «kind» -\'\ woontainments wquantity» ‘;ESSEHUEH} wquantity»
Inventory ﬁ 2.7 Investment 1 Cost Q 1 ResidualPrice
name: String amount: Currency amount: Currency

EX1:

See also Part-Whole.

References:

date: Tim_ejw

wquantity»
Depreciation

amount: Currency

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

80

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.12 SubCollectionOf

Directed yes
Source end
Allowed
Collective
Multiplicity 1 -1
Target end
Allowed
Collective
Multiplicity 1 -1
Binary properties
Reflexivity no
Transitivity yes
Symmetry no

Cyclicity no

4.12.1 Definition

«SubCollectionOf » is a parthood relation between two collectives. Examples include:
A. the north part of the Black Forest is part of the Black Forest;
B. the collection of Jokers in a deck of cards is part of that deck of cards;
C. the collection of forks in cutlery set is part of that cutlery set;
D. the collection of male individuals in a crowd is part of that crowd.

The subCollectionOf relation can be shareable in some cases while non-shareable in others. For example, the Kulik
siblings is a collection of three members: Marie, Vaclav, and Karel. The same Kulik siblings are sub-collection of the
Kulik family, as well as a sub-collection of the FC Bilsko football team, as well as a sub-collection of the Voluntary
Firefighter Unit in Bilsko. On contrary, the local organization of the Agrarian Party in Borovno is a sub-collection
of the Agrarian Party, but must not be a sub-collection of any other political party, because the statutes prohibit it.
«Collective» is a type of collections (and collections are instances of collectives). Collection is an integral whole, or
closure defined by a unifying relation. Closure means that no more parts or members can be added to the collection by
its unifying relation.

Unlike «Quantity», «Collective» have members and their members may not be placed together (or connected fopolog-
ically), but unified intentionally e.g. by the common role, or purpose, or social connection. Closure of the unifying
relation makes the collective maximal, e.g. the football team is made up of all its members and no subset of its members
can make up the same team. For this reason, the «SubQuantityOf » relation is irreflexive. Moreover, for the same rea-
son, any super-collective can have at maximum one sub-collective of a given type. Finally, since every sub-collective
of a super-collective is obtained by refining the unifying relation of the latter, the subCollectionOf relation is always
transitive. Since collections are maximal, the «SubCollectionOf » parthood must have a cardinality constraint of one
and exactly one in the sub-collection side. Addition or removal of a sub-collection (or even a member) of a collection
may or may not change identity of the collection. E.g. new firefighter units are taken in the National Rescue System
and some of the existing units cease to exist without changing identity of the National Rescue System. Similarly, the
Voluntary Firefighter Unit in Karlik consists of three members: Velebil, Strasirybka, and Jech. Then Veselik applies

4.12. SubCollectionOf 81

OntoUML specification Documentation

for membership and is taken in the firefighter unit. It is still the same unit, its identity does not change. On contrary,
imagine: Jarmila and Jaroslav are spouses. If Jaroslav died, the spousal will cease to exist. And the unifying relation
of spousal does not even admit changing Jaroslav for Karel — such a change would change the identity of the spousal,
as well. This means that collectives are not extensional (but intentional). That is why only the weak supplementation
axiom holds for the subCollectionOf relation (unlike the «SubQuantityOf » relation, where the strong supplementation
axiom holds). This axiom means among others that every super-collection must have at least two different types of

sub-collections.

4.12.2 Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are

collectives. Collectives are types as defined in the overview table above.

C2: The maximum cardinality constraint in the association end connected to the part must be one.

4.12.3 Common questions

Ask us some question if something is not clear ...

4.12.4 Examples

/_“‘
-~
- T

TrainingAgency

wkind»

name:

String

¢

1

-

«quantity»
TeachingTime

«collective»

EX1:
See also

e Part-Whole

1 Inventary

® {essential, «kind» ® wrole» I «kind»
1 inseparable} 1 Headquarter 1 1 Director Person
- name: String
i wkinds 1 wroles
1.% Site L Assistant
/__,.-——— T
"""--....__‘
wcollectives > woollectives wroles
& TeachingStaff C 1 SubjectDept 2. Teacher
P,]
{essential} wquantity» «containment» «kind» 1
1 WorkingTime 1 1 | PersonalTimeTable | 1 !
.n
wkind»
TeachingSkill
description
«kind» «oontainment» wquantity» ‘{essentlal} wquantity»
ﬁ 2.7 Investment 1 1 Cost Q 1 ResidualPrice

o «MemberOf»

name: String
date: Timestamp

amount: Currency

amount: Currency

wquantity»
Depreciation

amount: Currency

82

Chapter 4. Relationship stereotypes

OntoUML specification Documentation

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.13 SubQuantityOf

Directed yes
Source end
Allowed
Quantity
Multiplicity 1 -1
Target end
Allowed
Quantity
Multiplicity 1 -1
Binary properties
Reflexivity no
Transitivity yes
Symmetry no

Cyclicity no

4.13.1 Definition

«SubQuantityOf » is a parthood relation between two quantities, e.g.:
A. alcohol is part of wine;
B. plasma is part of blood;
C. sugar is part of ice cream.

Quantities have not elements (or members). Since their members cannot be enumerated, they must be defined by a
relation that unifies them into a connected whole (self-connectedness). Quantities are connected topologically (unlike
e.g. collectives, which parts and members may not be placed together). Topological connection is characteristic for
quantities and because of topological connection, sub-quantities cannot be shared among several super-quantities. For
this reason, a subQuantityOf relation is always non-sharable. Since quantities do not have elements, they can be
arbitrarily divided, like e.g. water. That’s why any quantity is defined to be maximal portion and can not be part of
itself (water cannot be part of water). Since every part of a quantity is maximal (and self-connected), the SubQuantityOf
parthood must have a cardinality constraint of one and exactly one in the sub-quantity side. E.g. since alcohol is
a quantity (and, hence, maximal), there is exactly one quantity of alcohol which is part of a specific quantity of wine.
Since quantity is maximal, it cannot have a quantity of the same kind as its part —i.e. the «SubQuantityOf» relation is
irreflexive.

Nevertheless, a quantity can be part of another quantity (like glucose in wine) using the «SubQuantityOf » relation. The
change of any of parts of the quantity changes the identity of the whole (i.e. quantities are extensional entities). That
is why the strong supplementation axiom holds for the the «SubQuantityOf» relations (unlike «SubCollectionOf»

4.13. SubQuantityOf 83

OntoUML specification Documentation

relation, which on contrary holds only weaker axiom). For the same reason, all parts of a quantity are essential and
«SubQuantityOf » relations are essential parthood relations. Further, since essential parthood relations are always

transitive, «SubQuantityOf » is always transitive.

4.13.2 Constraints

C1: The «SubQuantityOf » relation is always non-shareable.

C2: A sub-quantity is always an essential part of its super-quantity (marked with {essential} constraint).

C3: The cardinality in the part-end must be exactly one.

C4: The «SubQuantityOf » quantities at its both ends. Quantities are types as defined in the overview table above.

4.13.3 Common questions

Ask us some question if something is not clear ...

4.13.4 Examples

—

«linds» . " «quantity» . «guUantity»
Barrel «containments | Reer {essential } Alcohol
1 1 Yo 1 P
EX1:
«kind» . _«Quantity» «quantity»
Account «{:ontammen?}‘/ Salary 1 FixedSalary \
({essential} 1
! «quantitys» /
\ T VarSalary |
EX2:
84 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

’_“
-~
- T

wkindx
TrainingAgency
name: String

S

-

?ﬁquantity» {essential}

(TeachingTime

By,

_

EXa3:

See also
e :ref: part-whole
* «Containment»

References:

«weollectives
1 Inventory ﬁ 2.

date: Timestamp

® {essential «kind» &> wroley) «kind»
1 inseparable} 1 Headaquarter 1 1 Director Person
name: String
«kind» 1 «rolen
1.* Site 1.* Assistant
«collectiver ® «collectives < «role»
1 TeachingStaff C 1 SubjectDept 2. Teacher
«quantity» «containments» «kind» L
1 WorkingTime 1 1 | PersonalTimeTable !
.n
_/’ «kind»
TeachingSkill
[resqption
{essential} =
«kinds «oontainment»,/«quantity» > wquantitys
Investment 1 Cost Q ResidualPrice
name: String amount: Currency amount: Currency

wquantity»

Depreciation]
amount: C‘upeﬁ‘c'y

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague

University of Economics, 2011.

4.13. SubQuantityOf

85

OntoUML specification Documentation

86 Chapter 4. Relationship stereotypes

CHAPTER
FIVE

ONTOUML ANTI-PATERN CATALOGUE

This list of anti-patterns was created to help modellers to avoid creating models with unintended and often illogical
results.

5.1 BinOver anti-pattern

Full name Binary Relation between Overlapping Types

Type Logical

Feature Association

Description A binary relation whose end types are overlapping characterizes this anti-pattern.

Justification Modelers often do not perceive by themselves that two or more types overlap. This anti-pattern makes
them aware of that and confronts modelers with the possibility to specify binary relation properties, like reflex-
ivity, transitivity and symmetry.

Constraints The Binary Relation Between Overlapping Types (BinOver) corresponds to an association, of any stereo-
type, that connected two types that compose an overlapping set. It means that the same individual may instantiate
both ends of the relationship. A given relation <R> between types <Source> and <Target> characterize a Bi-
nOver occurrence when:

1. <Source> equals <Target>

2. <Source> is a direct or indirect subtype of <Target>
3. <Target> is a direct or indirect subtype of <Source>
4

. <Source> and <Target> are sortals («Subkind», «Role» or «Phase») that share a common identity provider
(«Kind», «Quantity», «Collective») and there is no generalization set which makes them explicitly disjoint

5. <Source> and <Target> are relators that share a common super-type and there is no generalization set
which makes them explicitly disjoint

6. <Source> and <Target> are modes that share a common super-type and there is no generalization set which
makes them explicitly disjoint;

7. <Source> and <Target> are mixins («Category», «Mixin» or «RoleMixin») that directly or indirectly gen-
eralize at least one common sortal («Kind», «Quantity», «Collective», «Subkind», «Role», «Phase»)

8. <Source> and <Target> are mixins («Category», «Mixin» or «RoleMixin») that share a common mixin
super-type and none of their subtypes are sortals

87

OntoUML specification Documentation

Variation 1: Source equals Target Variation 4: Overlapping Subtypes

SuperType
binaryReglation

+range c..d

Source / Target

+domain a..b {overlapping}

GS GS

Source . Target
+domain +range

a. b binaryRelation. 4

Variation 2: Target subsets Source Variation 5: Overlapping Mixins (Common Sortals)
Source +domain Source Target
+domain +range
a.b a. b binaryRelation; 4
binaryRelation
Target +range Sortal-1 Sortal-2
c.d

Examples *Note: the presented variations are illustrative and do not intend to cover all possibilities

Refactoring Plans
1. [Mod] Fix stereotype: change the stereotype of the relation to fit a desired binary property

2. [OCL] Enforce binary property: create OCL invariant to enforce a desired binary property (as long as it
is compatible with the embedded constraints of the stereotype).

3. [New] Enforce disjointness: make the related types disjoint by the specification of a disjoint generalization
set.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

88 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

5.2 DeclInt anti-pattern

Full name Deceiving Intersection

Type Logical

Feature Hierarchy

Description An occurrence of the DecInt anti-pattern occurs when a type specializes two or more concrete types.

Justification Investigate if the subtype with multiple generalizations is intentional or derived by the intersection (main)
and if its extension is not empty.

Contraints

1. The specialization of the parents into Type must be syntactically valid, e.g. if type is a relator, all its parents
must also be relators.

2. There must be at least two parents for which the following conditions evaluate to true:
a. Parent:subscript: 'n isAbstract = false

b. For all gs: Generalization Set whose common supertype is Parent:subscript: n’, gs.isCovering = true

Parent-1 Parent-2 Parent-3

?

Type

Examples
Refactoring Plans

1. [conditional] [Mod] Fix Generalization Set: can only be adopted if two or more parent types are made
disjoint by a generalization set. The possible solutions are to remove the existing generalization set or set
its isCovering property to true.

2. [conditional] [Mod] Fix Identity Principle: can only be applied if Type is sortal («Subkind», «Role» or
«Phase») and they do not follow the same identity principle. The action consists on defining the single
identity provider.

3. [Mod/Del] Invert/Delete Generalization: consists of deleting and/or inverting one or more generalizations
from Type to one of the identified parents.

4. [OCL] Derived by Intersection: create an OCL derivation or invariant constraint to specify that the ex-
tension of type is derived by the intersection of the extensions of two or more concrete parents:

context Parentl
inv: (self.ocllsTypeOf{(Parent2) and self.ocllsTypeOf{ Parent2))
implies self.ocllsTypeOf(Type)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.2. Declnt anti-pattern 89

OntoUML specification Documentation

5.3 DepPhase anti-pattern

Full name Relationally Dependent Phase

Type Classification; Scope

Feature Phase; Relator

Description A class stereotyped as «Phase» connected to one or more «Mediation» associations.

Justification Phases are instantiated when there is a change in an intrinsic property. Roles are instantiated when there
is a change in a relational property. Selecting the «Phase» stereotype for a class but connecting it to a mediation
is “mixing up” the two meta-categories.

Contraints No additional constraints.

«Phase» «Relator»
Phase Med-1 Relator-1

«Mediation»

Examples
Refactoring Plans

1. [New/Mod] Make the role explicit: Create a «Role» as a parent type of the «Phase» and move the medi-

ation it.
Supertype «Role» «Relator»
<} Role Med-1 Relator-1
«Mediation»
«Phase»
Phase
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.4 FreeRole anti-pattern

Full name Free Role Specialization
Type Logical; Scope
Feature Role; Relator

Description A «Role» type connected to a «Relator» type through a «Mediation» association, is specialized in one or
more «Role» types, which in turn are not connected to an additional «Mediation» association

Justification Identify the condition required for the instantiation of the subtypes of the role that are not connected to
any relator, since no particular condition was defined.

90 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

Constraints The Free Role Specialization (FreeRole) anti-pattern occurs when a «Role» type connected to a «Relator»
through a «Mediation» association, is specialized in other «Role» types, which do not directly own an additional
«Mediation» association. Every free role must meet the following requirements:

1. It cannot be directly connected to any mediation.

2. It cannot be a direct or indirect subtype of a «RoleMixin» that is directly connected to a mediation from a
hierarchy path that does not go through DefinedRole.

«Role» definingMediation «Relator»
DefinedRole «Mediation» DefiningRelator
«Role»
FreeRole-1

Examples
Refactoring Plans

1. [OCL] Set derived role as derived: The instantiation of a free role defined by a derivation rule, which can
be defined as follows:

context FreeRole-1 :: alllnstances() : Set(FreeRole-1)
derive : DefinedRole.alllnstances()->select(x | <CONDITION>)

2. [New] Add independent relator: a free role is defined by another relator which has no relation to Defin-

ingRelator. Implies the creation of a relator and a mediation, like in the structure:

3. [New] Add a redefining material relation: a free role is defined by a redefining material relation, like in

anti-patternsy/FreeRole/refactor

+definedRole «Material»
«Role» definingMediation «Relator» MediatedType
DefinedRole <Mediations DefiningRelator | «Mediation»
«Role»
FreeRole-1 {redefines definedRole} «Material»

the structure:
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.4. FreeRole anti-pattern 91

OntoUML specification Documentation

5.5 GSRig anti-pattern

Full name Generalization Set with Mixed Rigidity
Type Classification; Scope
Feature Hierarchy; Gen. Set

Description A generalization set whose common super-type is rigid and from all its generalizations, at least one comes
from an anti-rigid type and at least one comes from a rigid type.

Justification Generalization sets groups generalizations leading to a common super-type, all defined using the same
specialization criterion. If the super type is not a mixin and the subtypes have different rigidity properties, they
probably do not belong in the same generalization set.

Contraints No additional constrains.

«Kind»
RigidSupertype

I

GenSet GenSet
«SubKind» «Role»
Rigid-1 AntiRigid-1

Examples Note: stereotypes are only illustrative

Refactoring Plans

1. [Mod] Fix subtype rigidity: choose the option if you conclude that one or more stereotype of the subtypes
is wrong. Change them to achieve only rigid or anti-rigid subtypes for the generalization set.

2. [New/Mod] Split generalization set: the generalization set aggregates multiple specialization criteria.
Create additional generalization sets and move the respective generalizations.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.6 HetColl anti-pattern

Full name Heterogeneous Collective

Type Classification

Feature Part-Whole

Description A collection type connected to two or more different member parts through «MemberOf» relations.

Justification The multiple part types, the main characteristic of this anti-pattern, indicate that the modeler might have
confused the concepts of collection and functional complex or the different relations of membership and sub-
collection.

Contraints
1. Only collections may instantiate the Whole.

2. Only collections and functional complexes may instantiate all Part-n.

92 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

3. Let M be the set of memberOf relations identified in an HetColl occurrence, w the class identified as the
Whole, wholeType(r) the function that return the class connected to the whole end of a meronymic relation
1, and ancestorSet(c) the function that returns all direct and indirect super types of a class c:

Vm € M, wholeType(m) = w V wholeType(m) € ancestorsSet(w)

«Kind»
RigidSupertype

4& GenSet

GenSet
«SubKind» «Role»
Rigid-1 AntiRigid-1

*Note: stereotypes are only illustrative
Examples yp y

Refactoring Plans

1. [Mod] Fix subtype rigidity: choose the option if you conclude that one or more stereotype of the subtypes
is wrong. Change them to achieve only rigid or anti-rigid subtypes for the generalization set.

2. [New/Mod] Split generalization set: the generalization set aggregates multiple specialization criteria.
Create additional generalization sets and move the respective generalizations.

3. [New/Mod] Implicit rigid subtype: create rigid subtypes that are the new direct parents of one or more
anti-rigid subtypes. If only one rigid subtype is created, the modeler can optionally set it as derived by
negation of the other rigid subtypes. The following OCL template is proposed to achieve that:

context NewRigid.::alllnstances() : Set(NewRigid)
derive : RigidParent.alllnstances()->select(x | not(x.ocllsTypeOf(Rigid,) or
x.oclslsTypeOf(Rigid,) or ... or x.ocllsTypeOf(Rigid,))

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.7 HomoFunc anti-pattern

Full name Homogeneous Functional Complex

Type Classification; Scope

Feature Part-Whole

Description A functional complex type connected to a single part through a «ComponentOf » relation.

Justification If a whole is composed by a unique type of part, it is most likely that all of the part’s instances play the
same role w.r.t. their whole. That homogeneous structure is not a characteristic of a functional complex.

Contraints
1. Only functional complexes may instantiate the Whole.
2. Only functional complexes may instantiate the Part.

3. Whole is not indirectly connected, at the whole end, to any componentOf.

5.7. HomoFunc anti-pattern 93

OntoUML specification Documentation

4. partOf’s lower bound multiplicity of the part end must be greater or equal to 2.

Examples

Refactoring Plans

1. [Mod] Set as membership: Change the functional nature of Whole to and change the stereotype of the
«ComponentOf» to «MemberOf ».

Whole

«ComponentOf»

partOf

«Collective»
Whole

«MemberOf»

a.b

Part

partOf

a.b

Part

2. [New] Add functional parts: Create one or more functional parts for Whole.

3. [New] Add part subtypes*: Create one or more subtypes of Part and connected them to Whole through
exclusive «ComponentOf » relations. The original relation might be kept, but if so, the new relations must
subset, redefine or specialize it.

References:

Whole

!

Whole

new CompOf-2

: «ComponentOf» Part
partOf . p
new CompOf NewPart
«ComponentOf» c.d

Part

«ComponentOf» ¢_d

New Part-2

NewPart-1

new CompOf-1

a..b

«ComponentOf»

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.8 ImpAbs anti-pattern

Full name Imprecise Abstraction
Type Logical; Scope
Feature Association

Description A given association R characterizes an ImpAbs occurrence if at least one of the following holds: (i)
R’s source end upper bound multiplicity is equal or greater than 2 and the Class connected to it has 2 or more

94

Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

subtypes; (ii) R’s target end upper bound multiplicity is equal or greater than 2 and the Class connected to it has
2 or more subtypes.

Justification Representing a general relation occasionally causes the model to be too permissive because one “loses
control” on how many instances of a particular subtype an instance of the opposite type may be connected to. Fur-
thermore, is precludes the specification of other particular meta-property values, like isDerived and isReadOnly
for all associations, and isEssential and isInseparable for meronymics.

Contraints

1. Let allSubtypes(c) be the function that return all direct and indirect subtypes of a class c, sourceEnd(a) and
targetEnd(a) the functions that return the source and target ends of an association a, and upper(p) be the
function that return the upper bound cardinality of a property p, then:

(upper(sourceEnd(Assoc)) > 2 A F#allSubtypes(Source) > 2) V
(upper(target End(Assoc)) > 2 A #allSubtypes(Target) > 2)

2. Let SoChildren be the set of all classes identified as Source Subtype-n, then:

YV € SoChildren | x € allSubtypes(Source)

3. Let TgChildren be the set of all classes identified as Target Subtype-n, then:

Vo € TgChildren | x € allSubtypes(Target)

Assoc -target

Source Target

p - b

Source Subtype-1 Source Subtype-2 Target Subtype-1 Target Subtype-2

Examples
Refactoring Plans

1. [OCL] Add multiplicity constraint: choose this option if there is a domain restriction that requires an
instance of Source, or of one of its subtypes, to be connected to a minimum, maximum or precise number
of instances of Target, or one of its subtypes. The following OCL invariant enforces the desired constraint:

context Source

inv: let sublSize = self.target->select(x |
x.ocllsTypeOf(_"Target Subtype-1’))->size()
in sublSize >= minl and sublSize <= maxl

2. [New] Add multiplicity constraint (subsetting association): this option has the same logical result of the

first one. However, the results are achieved through the specification of a new association (using the same
stereotype of Assoc) that subsets Assoc and whose cardinalities enforce the cardinality constraints.

Assoc target
Source Target
1.a 1.b
1.a 1.a { §
newAssoc-1
mint .. max Target Subtype-1 Target Subtype-2
min2 .. max2
newAssoc-2

5.8. ImpAbs anti-pattern 95

OntoUML specification Documentation

3. [New] Add custom meta-property (subsetting association): choose this option if the relation between
Source and Target have particular meta-properties (like isSReadOnly and isEssential) when an instance of
Source, or of one of its subtypes, to be connected to a minimum, maximum or precise number of instances
of Target, or one of its subtypes.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.9 Mixlden anti-pattern

Full name Mixin With Same Identity
Type Classification; Scope
Feature Hierarchy; Mixin

Description A non-sortal class specialized only by sortal types that follow the same identity principle (by inheriting
it or supplying it).

Justification The common characteristic of all different types of mixin classes is the aggregation of individuals that
follow different identity principles. The reason to analyze this anti-pattern is that a non-sortal should not be
specified as a sortal or it may convey the wrong meaning.

Contraints

1. For every Subtype-n, either one of the following holds: (i) Sortal-n = Identity Provider; or (ii) Identity
Provider is an ancestor of Sortal-n

Non Sortal

7

| |
Sortal-1 Sortal-2

v

Identity Provider

Examples
Refactoring Plans

1. [Mod/New] Change Mixin to Sortal: change the stereotype of Mixin to either subkind, role or phase and
create a generalization from Mixin to Identity Provider.

2. [New] Add Sortal Subtypes: add new or existing sortal sub-types to Mixin that do not follow the same
identity principle of defined by Identity Provider.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

96 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

5.10 MixRig anti-pattern

Full name Mixin With Same Rigidity
Type Classification; Scope
Feature Hierarchy; Mixin

Description A class stereotyped as «Mixin» specialized only by other classes that have the same rigidity property, i.e.,
are all rigid or all anti-rigid.

Justification As all non-sortals, mixins aggregated individuals that follow different identity principles. Its distinguish-
ing characteristic, though, is that is semi-rigid, i.e., it behaves as a rigid type for some individuals as an anti-rigid
for others. This anti-pattern analyzes mixins that, despite their capabilities, only generalize types with the same
rigidity.

Contraints

1. All sortals are rigid («Subkind», «Kind», «Quantity», «Collective» and «Category») or all sortals are anti-
rigid («Role», «Phase» or «RoleMixin»)

«Mixin»
Mixin

N

Subtype-1 Subtype-2 Subtype-3

Examples
Refactoring Plans

1. [conditional] [Mod] Change mixin to category: if all subtypes are rigid, and no anti-rigid subtype is
expected to specialize «Mixin», change the stereotype to «Category».

2. [conditional] [Mod] Change mixin to roleMixin: if all subtypes are anti-rigid, and no rigid subtype is
expected to specialize «Mixin», change the stereotype to «RoleMixin».

3. [Mod] Change subtypes stereotypes: this solution is a recognition that the semi-rigidity of «Mixin» is
correct and consists in changing the stereotype of one or more subtypes of «Mixin» to properly characterize
the semi-rigidity.

4. [New/Mod] Add subtypes: set new or existing types as direct children of «Mixin» in order to properly
characterize the semi-rigidity.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.10. MixRig anti-pattern 97

OntoUML specification Documentation

5.11 MultDep anti-pattern

Full name Multiple Relational Dependency

Type Logical; Scope

Feature Relator

Description An object class directly connected to two distinct «Relator» types through «Mediation» associations. The

relators may not be direct or indirect specializations of one another.

Justification Externally dependent types, like all roles, require on dependency to characterize them. Whenever more
than one is provided, it can indicate redundancy, scope issues and/or modeling an extra relation between the
relators that characterize the dependency.

Contraints

1. Let R be the set of all Relator in a MultDep occurrence and isAncestor(c1,c2) the binary predicate that
returns true if class cl is a direct or indirect super-type of class (c2,c1):

Vrl,r2 € R, —isAncestor(rl,r2) A —isAncestor(r2,r1)

«Relator»
Relator-1

Med-1

Examples

Refactoring Plans

«Mediation»

Type

Med-2

«Mediation»

«Relator»
Relator-2

1. [New/Mod] Unordered optional dependencies: Create a direct subtype of Type for each dependency. (In

the example below, all dependencies were set as optional for Type)

anti-patterns

MultDep/refactoring_plan_A.pr

2. [New/Mod] Ordered optional dependencies: Create a hierarchy line for dependencies, which an instance
of Type can only acquire after others. (In the example below, all dependencies were set as optional for Type).

«Relator»
Relator-1

Med-1

Type

A

«Mediation»

Mediated by
Relator-1

R

Mediated by
Relator-2

Med-2

«Mediation»

«Relator»
Relator-2

3. [New] Create dependency between relators: Create formal relations connecting relators that depend on
one another. This solution generates an occurrence of AssCyc (which the user should be analyzed) and an
occurrence of UndefFormal (which the user can ignore).

98

Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.12 PartOver anti-pattern

Full name Part Composing Overlapping Wholes
Type Logical
Feature Part-Whole

Description A part composing two or more whole types whose extension overlap. The sum of the meronymics’ upper
bound cardinalities of the whole end must be greater or equal to 2 or at least one of them be unlimited.

Justification This structure is usually too permissive. It is often the case that some of the whole types should be
disjoint or set as exclusive in the context of a single part instance.

Contraints

1. Let M be the set of identified meronymic relations, wholeEnd(m) the function that returns the association
end connected to the whole of a meronymic relation m, and upper(p) the function that return the upper
bound cardinality of a property p, then:

(Z upper(wholeEnd(mn)) > 2
meM

2. Let O be the set of whole types that Part composes, then:

Jz,y € O | overlap(x,y)

SuperType
[|
Whole-1 Whole-2
‘ a.b b c.d
partOf-1 art partof-2

Examples *Note: the presented structure is illustrative and do not cover all possibilities for PartOver occurrence

Refactoring Plans

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple roles w.r.t the
same part instance. Create an OCL invariant according to the template:

context Part

inv: self.overl.oclAsType(Supertype)->asSet()->excludesAll(
self.over2.oclAsType(Agent)->asSet() and
self.overl.oclAsType(Supertype)->asSet()->excludes All(
self.over3.oclAsType(Agent)->asSet() and
self.over2.oclAsType(Supertype)->asSet()->excludesAll(
self.over3.oclAsType(Agent)->asSet())

5.12. PartOver anti-pattern 99

OntoUML specification Documentation

2. [OCL] Partially exclusiveness: choose this option to set a subset of the whole types as exclusive.

3. [Mod/New] Disjoint whole: Enforce whole types to be disjoint through the creation or alteration of a
disjoint generalization set.

e Note: to make all types exclusive, every binary combination should be explicitly ruled out
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.13 RelComp anti-pattern

Full name Relation Composition
Type Logical

Feature Association
Description

Consider two associations, no matter their stereotypes: A, that connects ASource and ATarget; and B, that
connects BSource and BTarget.

For this anti-pattern to occur, one of the possible statements needs to be true: BSource equals or is a sub-
type of ATarget and BTarget equals or is a subtype of ATarget. BSource equals or is a subtype of ASource
and BTarget equals or is a subtype of ASource.

Justification The instantiation of the two relations identified in this anti-pattern may restrict one another.
Contraints
1. A and B are different associations.

2. The association A must have a minimum cardinality greater than 0 and a maximum greater than 1 in the
association end connected to ATarget.

3. One of the following sentences must evaluate to true:

(ATarget = BSource V ancestorO f(ATarget, BSource))A
(ATarget = BT arget V ancestorO f(ATarget, BT arget))

(ASource = BSource V ancestorO f(ASource, BSource))A
(ASource = BTarget V ancestorO f(ASource, BT arget))

100 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

Variation 1 Variation 2
X..
ASource +aSource +aTarget ATarget ASource A y ATarget (BTarget)
A X..y
+bTarget
x>0 and y>1 x>0and y>1
l | B
+bSource +bTarget
BSource BTarget +bSource BSource
B
Variation 3 Variation 4
+aTarget
+aSource +aTarget | X x>0and y>1
ASource ATarget A =Y
A x..y| (BTarget/BSource) ASource (ATarget / +bTarget

+aSource| grarget / BSource)
+bSource +bTarget

x>0and y>1 B +bSource| B

*Note: the presented variations are illustrative and do not intend to cover all possibilities
Examples

Refactoring Plans

1. [OCL] Set Existential Composition: add an OCL invariant to enforce that type B has an existential com-
position to type A:

context BSource
inv: self.bTarget->asSet()->forAll(y |
ASource.alllnstances()->exists(7 |
z.aTlarget->asSet()->contains(self) and
z.aTlarget->asSet()->contains(y))

2. [OCL] Set Right universal Composition: add an OCL invariant to enforce that type B has a right universal
composition to type A:

context BSource
inv: self.bTarget->asSet()->forAll(y |
ASource.alllnstances()->forAll(z |
z.aTarget->asSet()->contains(self) implies
z.aTlarget->asSet()->contains(y))

3. [OCL] Set Left Universal Composition: add an OCL invariant to enforce that type B has a left universal
composition to type A:

context BSource
inv: self.bTarget->asSet()->forAll(y |
ASource.alllnstances()->forAll(z |

z.aTlarget->asSet()->contains(y) implies

5.13. RelComp anti-pattern 101

OntoUML specification Documentation

z.aTarget->asSet()->contains(self))

4. [OCL] Set Forbidden Composition: add an OCL invariant to enforce that type B has a forbidden com-
position to type A:

context BSource
inv: self.bTarget->asSet()->forAll(y |
ASource.alllnstances()->forAll(z |
not(z.alarget->asSet()->contains(y) and
z.aTarget->asSet()->contains(self)))

5. [OCL] Set Custom Existential Composition: add an OCL invariant to enforce that type B has a custom
existential composition to type A:

context BSource
inv: self.bTarget->asSet()->forAll(y |
ASource.alllnstances()->select(z |
z.aTlarget->asSet()->contains(y) and

z.aTarget->asSet()->contains(self))->size()[>|<|=]n)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.14 RelOver anti-pattern

Full name Relator Mediating Overlapping Types
Type Logical
Feature Relator

Description A relator connected, through mediations, to two or more types whose extension possibly overlap. The
sum of the mediations’ upper bound cardinalities of the mediated end must be greater than 2.

Justification Although OntoUML imposes no syntactical constraints on formal relations, it does not mean that mod-
elers can use them at will, what is a very common practice.

Contraints

1. Let M be the set of identified mediations, mediatedEnd(m) the function that returns the association end
opposed to relator of a mediation m, and upper(p) the function that return the upper bound cardinality of a
property p, then:

upper

Z (mediatedEnd(mn)) > 2

2. Let O be the set of types mediated by Relator, then:

Jz,y € O | overlap(x,y)

102 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

Variation 1 Supertype Variation 2 «Mediation» «Relator» «Mediation»
Med-1 Relator Med-3
| | Med-2
«Mediation»
Over-1 Over-2 Over-3 Over-1 Over-3
Over-2
Mgd-2
Mgd-1 «Mediation» Med-3
«Medfation» «Medjiation»
«Relator» Subtype
Relator

Examples *Note: the presented variations are illustrative and do not intend to cover all possibilities

Refactoring Plans

1. [OCL] Exclusiveness *: choose this option to forbid the same individual to play multiple roles w.r.t the
same relator instance. Create an OCL invariant according to the following template:

context Relator

inv: self.overl.oclAsType(Supertype)->asSet()->excludesAll(
self.over2.oclAsType(Agent)->asSet() and
self.overl.oclAsType(Supertype)->asSet()->excludesAll(
self.over3.oclAsType(Agent)->asSet() and
self.over2.oclAsType(Supertype)->asSet()->excludesAll(
self.over3.oclAsType(Agent)->asSet())

2. [OCL] Partially exclusiveness: choose this option to forbid a subset of mediated types as exclusive.

3. [Mod/New] Disjoint mediated: Enforce types to be disjoint through the creation or alteration of a disjoint
generalization set.

* Note: to make all types exclusive, every binary combination should be explicitly ruled out
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.15 RelRig anti-pattern

Full name Relator Mediating Rigid Types

Type Logical; Scope

Feature Relator

Description A «Relator» connected to one or more rigid types through mediations.

Justification When a type is connected to a mediation association, it means that it is externally dependent, i.e. for an
individual to instantiate it, it must be related to another type. Usually, mediations define roles and roleMixins —
anti-rigid types.

Contraints

5.15. RelRig anti-pattern 103

OntoUML specification Documentation

1. Letrelator(m) and mediated(m) be the functions that return, respectively, the relafor and the mediated types
connected to a mediation. Also, let M be the set of mediation-n and R the set of RigidType-n, then:

VYm € M, relator(m) = Relator A mediated(m) € R

2. Let mediatedEnd(m) be the function that returns the association end connected to the mediated type of a
given mediation m, isReadOnly(p) the function that return the value of the isReadOnly meta-property of
an association end p and M the set of the identified mediations, then:

VYm € M, isReadOnly(mediatedEnd(m)) = true

SuperType
[|
Whole-1 Whole-2
‘ a..b P c.d
partOf-1 art partOf-2

Examples *Note: the presented structure is illustrative and do not cover all possibilities for PartOver occurrence

Refactoring Plans

1. [Mod/New] Set as role: choose this plan when a RigidType-n should be anti-rigid. If
previously stereotype with a sortal stereotype, change it to role, if non-sortal, change
to «RoleMixin». (If RigidType-n was stereotyped as «Kind», «Collective» or «Quan-
tity», a new identity provider should be created for it wusing the same stereotype).

Iden. Provider

«Relator» Mediation «Role»

Relator «Mediation» RigidType-n
2. [New/Mod] Add role subtype: choose this action if the mediation-n is op-
tional for RigidType-n. Create a «Role» (for sortals) or a «RoleMixin»

(for non-sortals) that specializes RigidType-n and move mediation-n to it

104 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

RigidType-n
«Relator» Mediation «Role»
Relator «Mediation» Role

3. [Mod] Set as mode: choose this plan when RigidType-n is in fact an unstructured property of Relator-n.
This is only true if the existential dependency specified in the mediation is reversed (RigidType-n should
depend on «Relator» and not the other way around)

4. [Mod] Set bidirectional existential dependency: choose this action if the event that creates the Relator
is the same one that creates RigidType-n and also this relation established in the individuals creation may
never change.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.16 RelSpec anti-pattern

Full name Relation Specialization
Type Logical
Feature Association
Description
Two associations A, connecting ASource to ATarget, and B, connecting BSource to BTarget, such that:
* ASource is equal or a subtype of BSource and ATarget is equal or a subtype of BTarget; or
* ASource is equal or a subtype of BTarget and ATarget is equal or a subtype of BSource

Justification The identified structure suggests the existence of a specialization between the relations or the need for
including a subsetting, redefinition or disjoint constraint.

Contraints
1. A and B are different associations
2. One of the following sentences must evaluate to true:

(ASource = BSource V ancestorO f(ASource, BSource))A
(ATarget = BTarget V ancestorO f(ATarget, BT arget))

(ASource = BTarget V ancestorO f(ASource, BT arget))A
(ATarget = BSource V ancestorO f(ATarget, BSource))

5.16. RelSpec anti-pattern 105

OntoUML specification Documentation

Variation 1 Variation 2
A A
ASource ATarget ASource / BSource ATarget
I 7 B
BSource BTarget BTarget
s A
Variation 3 Variation 4
B
A ’—/l
ASource / BSource 5 ATarget /| BTarget [ASource / ATarget/
BSource / BTarget

Variation 6

Variation 5
—

ASource / ATarget ASource ATarget

1 :
B

BSource BTarget BSource / BTarget

Examples *Note: the presented variations are illustrative and do not intend to cover all possibilities

Refactoring Plans

1. [Mod] Subset: this action should be taken if being connected through relation B implies being connected
through relation A but not the other way around. The fix consists in adding one of A’s association ends to
the subsetted properties of B’s respective association end. Alternatively, the following OCL can be included
in the model*:

context BSource
inv subset : self.oclAsType(ASource).aTarget->includesAll(self.bTarget.oclAsType(ATarget)

2. [Mod] Redefine: this action should be taken if being related through B implies not only being related
through A but requiring that all related elements through A are related through B. The fix consists in adding
one of A’s association ends at the redefined properties set of B’s respective association end. Alternatively,
the following OCL can be included in the model*:

context BSource
inv subset : self.oclAsType(ASource).aTarget=self.bTarget.oclAsType(ATarget)

This solution is strongly discouraged if associations A and B related the same types.

3. [Mod/New] Disjoint: this action should be taken if being related through B implies not being related
through A. Differently from the first two, this constraint can only be enforce through OCL invariants:

context BSource
inv subset : self.oclAsType(ASource).aTarget->excludesAll(self.bTarget.oclAsType(ATarget)

4. [New] Specialize: the logical implication of this solution is the same as enforcing subsetting. Nonetheless,
it should only be selected if association B is a particular type of A and not only if the logical constraint is
required.

* Assuming that the occurrence is the structural variation number 1.

106 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.17 RepRel anti-pattern

Full name Repeatable Relator Instances
Type Logical
Feature Relator

Description A «Relator» connected to two or more «Mediation» associations, whose upper bound cardinalities at the
relator end are greater than one.

Justification Inspired in ORM’s uniqueness constraint (HALPIN; MORGAN, 2008), this anti-pattern aids the modeler
in specifying the number of different relators instances that can mediated the exact same set of individuals.

Contraints

1. Let M be the set of the mediations that characterize RepRel, relatorEnd(m) the function that return the
association end whose type is the relator of a mediation m, and upper(p) the function that return the upper
bound cardinality of a property p, then:

Vm € M, upper(relator End(m)) > 1

2. Let M be the set of the mediations that characterize RepRel, relator(m) the function that returns the relator
connected to a mediation m, then:

Vm € M,relator(m) = Relator V isAncestor(relator(m), Relator)

Im € M, relator(m) = Relator

«Kind»
Person

T

«Role» 1 1.+ | «Relators bill Mediation» product | “Kind»
Customer Bill . 1 Product

customer «Mediation» bill

Examples
Refactoring Plans

1. [Mod] Fix upper cardinality: this plan is individually to the mediations. It consists in changing the maxi-
mum cardinality on the relator to a usually lower value.

2. [OCL] Define uniqueness constraint (Current Relator): this plan is applied to a combination of the media-
tions. Although it can be applied more than once, for different combinations, it cannot be applied simulta-
neously with the historical relator plan. This should be taken if there is a limit of the number of coexistent
relator instances that mediated the same combination of the mediated types. The following OCL invariant
should be created (where <n> is the limit of “cloned” relators):

context Relator
inv: Relator.alllnstances()->select(r | r <> self and
r.typel = self.typel and r.type2=self.type2)->size() = <n-1>

5.17. RepRel anti-pattern 107

OntoUML specification Documentation

3. [OCL] Define uniqueness constraint (Historical Relator): this plan applies to a combination of the me-
diations and, although it can be applied more than once for different combinations, it cannot be applied
simultaneously with the current relator plan.

context Relator
inv: Relator.alllnstances()->select(r | r<>self and r.typel=self.typel
and r.type2=self.type2 and concurrent(self,r))-> size()=<n-1>

context Relator::concurrent(r:Relator):Boolean
body: self.start = r.start or (self.start<r.start and r.start<self.end)
or (r.start<self.start and self.start<r.end)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.18 UndefFormal anti-pattern

Full name Undefined Formal Association
Type Classification
Feature Formal

Description A «Formal» association defined between types that do not own or inherit quality properties, i.e., attributes
or associations whose types are data types.

Justification Although OntoUML imposes no syntactical constraints on formal relations, it does not mean that mod-
elers can use them at will, what is a very common practice.

Contraints

1. Let qualities(c) be the function that return all qualities defined for a class ¢ (through attributes or relations)
and ancestor(c) be the function that return all direct and indirect super types of a class c, then:

#qualities(Source) = 0 A Vx € ancestor(Source), #qualities(z) = 0 A
#qualities(Target) =0 A Vo € ancestor(Target), #qualities(z) =0

formal
Target Source
«Formal»

Examples
Refactoring Plans

1. [New/Mod/OCL] Set as DCFR: choose this plan if the formal relation really is a DCFR. The fix consists in
specifying the data types to which the relation will be derived from, set the relation as derived, and specify
the OCL derivation rule.

2. [Mod] Change stereotype: this alternative should be taken if one reaches the conclusion that the relation
is better qualified by another stereotype. It consists only in changing the stereotype of the relation.

This solution is strongly discouraged if associations A and B related the same types.
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

108 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

5.19 UndefPhase anti-pattern

Full name Undefined Phase Partition
Type Classification; Scope
Feature Phase

Description A partition of phases in whose common parent type does own or inherit attributes and associations con-
nected to data types or modes.

Justification Phases are anti-rigid types that are instantiated due to an alteration in an intrinsic property (a quality or
a mode). For that reason, if the parent type of a partition does not have any intrinsic properties, how does one
expect to define a partition?

Contraints
1. Let qualities(c) be the function that return all qualities defined for a class ¢ (through attributes or relations)

and ancestor(c) be the function that return all direct and indirect super types of a class c, then:

#qualities(SuperType) = 0 A Va € ancestor(SuperType), #qualities(xz) = 0

Supertype
ZF {digoint, complete}
Partition | | Partition
«Phase» «Phase»
Phase-1 Phase-2

Examples
Refactoring Plans

1. [New/OCL] Derived partition: choose this option if the instantiation of the phases is defined by a change
in a quality’s value, owned by the common parent type, one of its ancestor, one of its parts or one of its
modes. (e.g. Person-Adult-Child).

Supertype
- quality :int
%{disjoint, complete}
[|
«Phase» «Phase»
/Phase-1 /Phase-2

2. [New] Intentional partition: choose this option if the instantiation of the phases is defined by the appear-
ance of a mode or a quality in the phases (e.g. Person-Sick-Healthy)

5.19. UndefPhase anti-pattern 109

OntoUML specification Documentation

Supertype «Mode»

Mode

Z%{disjcaint, complete} 1.a

|] «Charactefization»

«Phase» «Phase»
Phase-1 Phase-2

3. [Mod/New] Set phases as roles: choose this option if the instantiation of the phases is defined by a rela-
tional property and not an intrinsic one. To fix, change the stereotype of all phases to role and define their
respective relational dependencies.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.20 WholeOver anti-pattern

Full name Whole Composed of Overlapping Parts
Type Logical
Feature Part-Whole

Description A whole composed of two or more types whose extension possibly overlap. The sum of the meronymics’
upper bound cardinalities of the part end must be greater or equal to 2 or at least one of them be unlimited.

Justification This structure is usually too permissive. It is often the case that some of the part types should be disjoint
or set as exclusive in the context of a single whole instance.

Contraints

1. Let M be the set of identified meronymic relations, partEnd(m) the function that returns the association
end connected to the part of a meronymic relation m, and upper(p) the function that return the upper bound
cardinality of a property p, then:

(Z upper(mediatedEnd(mn))) > 2
meM

2. Let O be the set of part types that compose Whole, then:

z,y € O | overlap(z,y)

110 Chapter 5. OntoUML Anti-Patern Catalogue

OntoUML specification Documentation

Variation 1 Variation 2
SuperType Subtype
[ZP | \ ; b+d>2 ; 7
Part-1 Part-2 Part-1 Part-2
ab b+d>2 c.d a.b c.d
L o > @ >——
parof-1 Whole partOf-2 partOf-1 Whole partOf-2

E *Note: the presented variations are illustrative and do not intend to cover all possibilities
xamples

Refactoring Plans

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple roles w.r.t the
same whole instance. Create an OCL invariant according to the following template:

context Whole

inv: self.overl.oclAsType(Supertype)->asSet()->excludesAll(
self.over2.oclAsType(Agent)->asSet() and
self.overl.oclAsType(Supertype)->asSet()->excludesAll(
self.over3.oclAsType(Agent)->asSet() and
self.over2.oclAsType(Supertype)->asSet()->excludesAll(
self.over3.oclAsType(Agent)->asSet())

2. [OCL] Partially exclusiveness: choose this option to set a subset of the part types as exclusive.

3. [New/Mod] Disjoint parts: Enforce part types to be disjoint through the creation or alteration of a disjoint
generalization set.

* Note: to make all types exclusive, every binary combination should be explicitly ruled out
References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

5.20. WholeOver anti-pattern 111

OntoUML specification Documentation

112 Chapter 5. OntoUML Anti-Patern Catalogue

CHAPTER
SIX

ONTOUML PATTERN CATALOGUE

To help you build your OntoUML models faster, we are assembling a list of known patterns. Please notice that this list
is still under construction, so some patterns might still be missing.

6.1 Phase Partition pattern

6.1.1 Generic pattern

«|dProviders
Provider

FaN
{disjcint, complete }

«Phase» «Phases «Phasew «Phase»
Phasel Phase2 Phase3 Phased

6.1.2 Examples

EX1:

alind»
Person

FaN
{disjcint, complete }

«Phases «Phases #Phases «Phases
Single Married Divorced Widow

113

OntoUML specification Documentation

6.2 Relator pattern

6.2.1 Generic pattern

«Kinds» wkKind»
General 1 General 2
«Rolex «Materal» «Roley
Specific 1 X Specific 2
1 {-:Deri‘%ahjom:r 1
1 1
11
A
«Mediations» «Relators «Mediation»
Relator
1
6.2.2 Examples
EX1:
«Kinds» wkKind»
Person Animal
#«Roles «Material» #«Roles
Pet Owner ! Pet
1 I 1 1.7
1 «Derivationy» 1
|
1 |
|
-
«Mediations» «Relators wMediation»
. Ownership
EX2:
114 Chapter 6. OntoUML Pattern Catalogue

OntoUML specification Documentation

wKind»
Person
«Roles «Material» «Role»
Patient g tneahléd by I~ Doctor
. | .. r
1 I 1..
|
&
«Mediations «Relators «Mediations»
Treatment
1.* 1.*
6.3 RoleMixin pattern
6.3.1 Generic pattern
«RoleMixinw
RM
«|dProvider» «|dProviders»
P1 P2
«Role» «Rolen
RoleOfP1 RoleOfP2

6.3. RoleMixin pattern 115

OntoUML specification Documentation

6.3.2 Examples

See RoleMixin

6.4 RoleMixin Alternative pattern

6.4.1 Generic pattern

«|dProviders
P1

«Category »
P1P2Mixin

«|dProviders
P2

6.4.2 Examples

See RoleMixin

«RoleMixin»
RoleOfCategory

116

Chapter 6. OntoUML Pattern Catalogue

CHAPTER
SEVEN

CONTRIBUTING

This project is community-driven. Are you OntoUML enthusiast? We would like to invite you to cooperate on this
documentation.

7.1 Reporting issues

Found a problem? Any uncertainty? Please create an issue on our GitHub repository github.com/OntoUML/OntoUML.

7.2 Solving issues

Feel free to solve any issue by yourself. You need just a GitHub account, you will fix the problem in your fork of the
repository and then submit a pull request to the original one. Also, you can fork the repository and try to propose your
OntoUML changes for the future version.

7.3 Documentation guidelines

* Keep the file structure, if you want to propose some big changes, please create an issue where we can discuss
such big change.

* Do not use line breaks unless ending paragraph. In 21st century all human-usable editors and IDEs have func-
tionality called “word wrap” that is configurable per user. Why should someone with wide screen see only 80
characters per line if want more?

* Try to be consistent, maximize readers understanding (do not expect any IT or Ontology expertise), interlink
with other related pages and also label your pages.

» Take a look at Sphinx docs and reStructuredText Markup Specification.

117

https://github.com/OntoUML/OntoUML
http://www.sphinx-doc.org/en/master/contents.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

OntoUML specification Documentation

118 Chapter 7. Contributing

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
* modindex

¢ search

119

	Introduction
	OntoUML
	UFO

	Theory
	Types and Individuals
	Identity
	Rigidity

	Class stereotypes
	Kind
	Definition
	Constraints
	Common questions
	Examples

	Subkind
	Definition
	Constraints
	Common questions
	Examples

	Phase
	Definition
	Constraints
	Common questions
	Examples

	Role
	Definition
	Constraints
	Common questions
	Examples

	Collective
	Definition
	Constraints
	Common questions
	Examples

	Quantity
	Definition
	Constraints
	Common questions
	Examples

	Relator
	Definition
	Constraints
	Common questions
	Examples

	Category
	Definition
	Constraints
	Common questions
	Examples

	PhaseMixin
	Definition
	Constraints
	Common questions
	Examples

	RoleMixin
	Definition
	Constraints
	Common questions
	Examples

	Mixin
	Definition
	Constraints
	Common questions
	Examples

	Mode
	Definition
	Constraints
	Common questions
	Examples

	Quality
	Definition
	Constraints
	Common questions
	Examples

	Relationship stereotypes
	Introduction
	Formal
	Definition
	Common questions
	Examples

	Material
	Definition
	Common questions
	Examples

	Mediation
	Definition
	Common questions
	Examples

	Characterization
	Definition
	Common questions
	Examples

	Derivation
	Definition
	Common questions
	Examples

	Structuration
	Definition
	Common questions
	Examples

	Part-Whole
	Examples

	ComponentOf
	Definition
	Constraints
	Common questions
	Examples

	Containment
	Definition
	Common questions
	Examples

	MemberOf
	Definition
	Constraints
	Common questions
	Examples

	SubCollectionOf
	Definition
	Constraints
	Common questions
	Examples

	SubQuantityOf
	Definition
	Constraints
	Common questions
	Examples

	OntoUML Anti-Patern Catalogue
	BinOver anti-pattern
	DecInt anti-pattern
	DepPhase anti-pattern
	FreeRole anti-pattern
	GSRig anti-pattern
	HetColl anti-pattern
	HomoFunc anti-pattern
	ImpAbs anti-pattern
	MixIden anti-pattern
	MixRig anti-pattern
	MultDep anti-pattern
	PartOver anti-pattern
	RelComp anti-pattern
	RelOver anti-pattern
	RelRig anti-pattern
	RelSpec anti-pattern
	RepRel anti-pattern
	UndefFormal anti-pattern
	UndefPhase anti-pattern
	WholeOver anti-pattern

	OntoUML Pattern Catalogue
	Phase Partition pattern
	Generic pattern
	Examples

	Relator pattern
	Generic pattern
	Examples

	RoleMixin pattern
	Generic pattern
	Examples

	RoleMixin Alternative pattern
	Generic pattern
	Examples

	Contributing
	Reporting issues
	Solving issues
	Documentation guidelines

	Indices and tables

