

Omniduct v1.1.19 documentation

Omniduct is an extensible Python library that provides uniform interfaces to a
wide variety of (potentially) remote data providers such as databases,
filesystems, and REST services. Its primary objective is to simplify the process
of collecting and analysing data in a heterogeneous data environment, and is
suitable for deployment in interactive and production environments. To that
end, it offers the following features:

	A generic plugin-based programmatic API to access data in a consistent manner
across different services (see Supported protocols).

	A framework for lazily connecting to data sources and maintaining these
connections during the entire lifetime of the relevant Python session.

	Automatic port forwarding of remote services over SSH where connections cannot
be made directly.

	Convenient IPython magic functions for interfacing with data providers from
within IPython and Jupyter Notebook sessions.

	Utility classes and methods to assist in maintaining registries of useful
services.

Omniduct has been designed such that it is convenient to use directly (each
user can configure their own service definitions) or via another package (which
can create a library of pre-defined services, such as for a company). For more
information on how to deploy omniduct refer to Deployment.

Indices and tables

	Index

	Module Index

	Search Page

Supported protocols

The currently supported protocols are listed below. The string inside
the square brackets after the protocol name (if present) indicates that support
for this protocol requires external packages which are not hard-dependencies of
omniduct. To install them with omniduct, simply add these strings to the list
of desired extras as indicated in Installation.

	
	Databases

	
	Druid [druid]

	HiveServer2 [hiveserver2]

	Neo4j (experimental)

	Presto [presto]

	PySpark [pyspark]

	Any SQL database supported by SQL Alchemy (e.g. MySQL, Postgres, Oracle, etc) [sqlalchemy]

	
	Filesystems

	
	HDFS [webhdfs]

	S3 [s3]

	Local filesystem

	
	Remotes (also act as filesystems)

	
	SSH servers, via CLI backend [ssh] or via Paramiko backend [ssh_paramiko]

	REST Services (generic interface)

Adding support for new protocols is straightforward. If your favourite protocol
is missing, feel free to contact us for help writing a patch to support it.

Within each class of protocol (database, filesystem, etc), a certain
subset of functionality is guaranteed to be consistent across protocols, making
them largely interchangeable programmatically. The common API for each
protocol class is documented in the API & IPython Magics section, along with any
exceptions, caveats and extensions for each implementation.

Installation

If your company/organisation has provided a package that wraps around omniduct
to provide a library of services, then a direct installation of omniduct is
not required. Otherwise, you can install it using the standard Python package
manager: pip. If you use Python 3, you may need to change pip references
to pip3, depending on your system configuration.

pip install omniduct[<comma separated list of protocols>]

For example, if you want access to Presto and HiveServer2, you can run:

pip install omniduct[presto,hiveserver2]

Omitting the list of protocols (i.e. pip install omniduct) will mean that
the external dependencies required to interface with the protocols indicated in
Supported protocols will not be automatically installed. Attempts to use these
protocols will throw an error with instructions as to which additional dependencies
you will need to install.

To install omniduct and all possible dependencies, you can install omniduct
using:

pip install omniduct[all]

This is only recommended for casual use, as dragging in unneeded dependencies
could lead to complications with other packages on your machine (and is
otherwise just generally messy!).

Quickstart

omniduct is designed to be intuitive and uniform in its APIs. As such, insofar
as possible, all Duct subclasses have a reasonable default configuration,
making it possible to quickly create working connections to remote services.
Depending on the complexity of your service configuration, it may or may not
make sense to use omniduct’s registry utilities, and so this quickstart
will show you how to directly create Duct instances, as well as how to work
with a Duct registry. Though we only use PrestoClient explicitly in the
following, since all Duct instances have the same basic API, the same
methodology will work with all Duct subclasses.

If you are looking deploy omniduct into production or as part of a
company specific package, or want to share your service configuration with
others, you will likely also be interested in Deployment.

Task 1: Create a Presto client that connects direct to the database service

Method 1: Via PrestoClient class

>>> from omniduct.databases.presto import PrestoClient

>>> pc = PrestoClient(host="<host>", port=8080)

>>> pc.query("SELECT 42")
PrestoClient: Query: Complete after 0.14 sec on 2017-10-13.
 _col0
 0 42

>>> pc.register_magics('presto_local')

The following assumes that you are using an IPython/Jupyter console
>>> %%presto_local
... {# magics are created and queries rendered using Jinja2 templating #}
... SELECT {{ 4 * 10 + 2 }}
...
presto_local: Query: Complete after 1.20 sec on 2017-10-13.
 _col0
0 42

Method 2: Via Duct subclass registry

>>> from omniduct import Duct

>>> pc = Duct.for_protocol('presto')(host='<host>', port=8080)

>>> pc.query("SELECT 42")
... And all of the rest from above.

Method 3: Via DuctRegistry

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

>>> pc = duct_registry.new(name='presto_local', protocol='presto',
... host='localhost', port=8080, register_magics=True)

>>> # Or: pc = duct_registry['presto_local']

>>> # Or: pc = duct_registry.get_proxy(by_kind=True).databases.presto_local

>>> pc.query("SELECT 42")
presto_local: Query: Complete after 0.14 sec on 2017-10-13.
 _col0
0 42

The following assumes that you are using an IPython/Jupyter console
>>> %%presto_local
... {# magics are created and queries rendered using Jinja2 templating #}
... SELECT {{ 4 * 10 + 2 }}
...
presto_local: Query: Complete after 1.20 sec on 2017-10-13.
 _col0
0 42

Task 2: Create a Presto client that connects via ssh to a remote server

Method 1: Directly passing `RemoteClient` instance to PrestoClient constructor

>>> from omniduct import Duct

>>> remote = Duct.for_protocol('ssh')(host='<remote_host>', port=22)

>>> pc = Duct.for_protocol('presto')(host='<host_relative_to_remote>',
 port=8080, remote=remote)

>>> pc.query("SELECT 42") # Query sent to port-forwarded remote service
PrestoClient: Query: Complete after 0.14 sec on 2017-10-13.
 _col0
 0 42

Method 2: Passing name of `RemoteClient` instance via Registry

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

>>> duct_registry.new('my_server', protocol='ssh', host='<remote_host>', port=22)
<omniduct.remotes.ssh.SSHClient at 0x110bab550>

>>> duct_registry.new('presto_remote', protocol='presto', remote='my_server',
 host='<host_relative_to_remote>', port=8080)
<omniduct.databases.presto.PrestoClient at 0x110c04a58>

Query sent to port-forwarded remote service

>>> %%presto_remote
... SELECT 42
...
presto_remote: Query: Connecting: Connected to localhost:8080 on <remote_host>.
presto_remote: Query: Complete after 7.30 sec on 2017-10-13.
 _col0
0 42

Task 3: Persist service configuration for use in multiple sessions

Method 1: Manually import configuration into `DuctRegistry`

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

Specify a YAML configuration verbatim (or the filename of a yaml configuration)
In this case we create the configuration for the previous task.
>>> duct_registry.register_from_config("""
... remotes:
... my_server:
... protocol: ssh
... host: <remote_host>
... databases:
... presto_local:
... protocol: presto
... host: <host_relative_to_remote>
... port: 8080
... remote: my_server
... """)

>>> %%presto_local
... SELECT 42
...
And so on.

Method 2: Save configuration to `~/.omniduct/config`, and autoload

Assuming that the above YAML file has been saved to ~/.omniduct/config,
or to a file located at the location pointed to by the OMNIDUCT_CONFIG
environment variable, you can directly restore your configuration by importing
from omniduct.session.

>>> from omniduct.session import *

>>> presto_local
<omniduct.databases.presto.PrestoClient at 0x110c04a58>

>>> %%presto_local
... SELECT 42

And so on.

Deployment

While Omniduct can be used on its own by manually constructing the services that
you need as part of your scripts and packages, it was designed specifically to
integrate well into a organisation-specific Python wrapper package that
preconfigures the services available within that organisation environment.
Typically such deployments would take advantage of Omniduct’s DuctRegistry to
conveniently expose services within such a package.

An example wrapper package is provided alongside the omniduct module [https://github.com/airbnb/omniduct/tree/master/example_wrapper] to help
bootstrap your own wrappers.

If you need any assistance, please do not hesitate to reach out to us via the
GitHub issue tracker [https://github.com/airbnb/omniduct/issues].

API & IPython Magics

Omniduct’s API has been designed to ensure that ducts which provide the same
type of service (i.e. database querying, filesystem grokking, etc) also provide
a programmatically similar API. As such, all protocol implementations are
subclasses of a generic abstract class Duct via a protocol type-specific
subclass (such as DatabaseClient for database protocols). This ensures that
the core API is consistent between all instances of the same protocol type.
These type-specific classes may also derive from
omniduct.utils.magics.MagicsProvider, and provide IPython magic functions to
provide convenient access to these protocols in IPython sessions. Protocol
implementations can also have protocol-specific additions to the core API.

The Duct class provides the scaffolding for connection management and other
“magic” such as the automatic creation of a registry of the protocols handled by
subclasses. This class is described in more detail in Core Classes, along with
the MagicsProvider class.

The protocol-specific subclasses of Duct that provide the shared APIs
(including any IPython magics) for each protocol type are detailed in dedicated
pages; i.e. Databases, Filesystems, Remotes, and
Caches.

Lastly, utility classes and methods are provided to help manage registries of
connections to various services. These are documented in Registry Management.

	Note

	Omniduct does not guarantee a stable API between major versions.
However, we do commit to ensuring that version x.y.z of omniduct is
API forward-compatible with all future minor versions x.y.*. While there
is no guarantee of APIs remaining fixed between major versions, we expect
that in practice these breaking API changes will be small, and in all cases
will be documented in the release notes. As such, if you are using Omniduct
in a production environment, we recommend installing using a static pinned
version or something like omniduct>=1.2.3<1.3, where 1.2.3 is the version
found to work well in your environment.

Core Classes

All protocol implementations are subclasses (directly or indirectly) of Duct.
This base class manages the basic life-cycle, connection management and protocol
registration. When a subclass of Duct is loaded into memory, and has at least
one protocol name in the PROTOCOLS attribute, then Duct registers that class
into its subclass registry. This class can then be conveniently accessed by:
Duct.for_protocol(‘<protocol_name>’). This empowers the accompanying registry
tooling bundled with omniduct, as documented in Registry Management.

Protocol implementations may also (directly or indirectly) be subclasses of
MagicsProvider, which provides a common API to registry IPython magics into
the user’s session. If implemented, the accompanying registry tooling can
automatically register these magics, as documented in Registry Management.

Duct

	
class omniduct.duct.Duct(protocol=None, name=None, registry=None, remote=None, host=None, port=None, username=None, password=None, cache=None, cache_namespace=None)

	Bases: object

The abstract base class for all protocol implementations.

This class defines the basic lifecycle of service connections, along with
some magic that provides automatic registration of Duct protocol
implementations. All connections made by Duct instances are lazy, meaning
that instantiation is “free”, and no protocol connections are made until
required by subsequent interactions (i.e. when the value of any attribute in
the list of connection_fields is accessed). All Ducts will automatically
connnect and disconnect as required, and so manual intervention is not
typically required to maintain connections.

	Attributes

	
	protocol (str) – The name of the protocol for which this instance was
created (especially useful if a Duct subclass supports multiple
protocols).

	name (str) – The name given to this Duct instance (defaults to class
name).

	host (str) – The host name providing the service (will be ‘127.0.0.1’, if
service is port forwarded from remote; use ._host to see remote
host).

	port (int) – The port number of the service (will be the port-forwarded
local port, if relevant; for remote port use ._port).

	username (str, bool) – The username to use for the service.

	password (str, bool) – The password to use for the service.

	registry (None, omniduct.registry.DuctRegistry) – A reference to a
DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient) – A reference to a
RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache) – A reference to a Cache
instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>) – A list of instance attributes
to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>) – A list of instance attributes to
be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

	Additional attributes including `host`, `port`, `username` and `password` are

	documented inline.

	Class Attributes –

	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(protocol=None, name=None, registry=None, remote=None, host=None, port=None, username=None, password=None, cache=None, cache_namespace=None)

	
	protocol (str, None): Name of protocol (used by Duct registries to inform

	Duct instances of how they were instantiated).

	name (str, None): The name to used by the Duct instance (defaults to

	class name if not specified).

	registry (DuctRegistry, None): The registry to use to lookup remote

	and/or cache instance specified by name.

	remote (str, RemoteClient): The remote by which the ducted service

	should be contacted.

host (str): The hostname of the service to be used by this client.
port (int): The port of the service to be used by this client.
username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

	password (str, bool, None): The password to authenticate with if necessary.

	If True, then users will be prompted at runtime for credentials.

	cache(Cache, None): The cache client to be attached to this instance.

	Cache will only used by specific methods as configured by the client.

	cache_namespace(str, None): The namespace to use by default when writing

	to the cache.

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
_prepare()

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

MagicsProvider

	
class omniduct.utils.magics.MagicsProvider

	Bases: object

Databases

All database clients are expected to be subclasses of DatabaseClient,
and so will share a common API and inherit a suite of IPython magics. Protocol
implementations are also free to add extra methods, which are documented in the
“Subclass Reference” section below.

Common API

	
class omniduct.databases.base.DatabaseClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.duct.Duct, omniduct.utils.magics.MagicsProvider

An abstract class providing the common API for all database clients.

Note: DatabaseClient subclasses are callable, so that one can use
DatabaseClient(…) as a short-hand for DatabaseClient.query(…).

	Class Attributes

	
	DUCT_TYPE (Duct.Type) – The type of Duct protocol implemented by this class.

	DEFAULT_PORT (int) – The default port for the database service (defined
by subclasses).

	CURSOR_FORMATTERS (dict<str, CursorFormatter) – asdsd

	DEFAULT_CURSOR_FORMATTER (str) – …

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	DatabaseClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

IPython Magics

While it is possible in an IPython/Jupter notebook session to write code along
the lines of:

results = db_client.query("""
SELECT *
FROM table
WHERE condition = 1
""", format='pandas', ...)

manually encapsulating queries in quotes quickly becomes tiresome and cluttered.
We therefore expose most functionality as IPython magic functions. For example,
the above code could instad be rendered (assuming magic functions have been
registered under the name db_client):

%%db_client results format='pandas' ...
SELECT *
FROM table
WHERE condition = 1

Especially when combined with templating, this can greatly improve the
readability of your code.

In the following, all of the provided magic functions are listed along with
the equivalent programmatic code. Note that all arguments are passed in as
space-separated tokens after the magic’s name. Position-arguments are always
interpreted as strings and keyword arguments are expected to be provided in the
form ‘<key>=<value>’, where the <value> will be run as Python code and the
resulting value passed on to the underlying function/method as:

db_client.method(..., key=eval('<value>'), ...)

Where present in the following, arguments in square brackets after the magic
name are the options specific to the magic function, and an ellipsis (’…’)
indicates that any additional keyword arguments will be passed on to the
appropriate method.

Querying

%%<name> [variable=None show='head' transpose=False ...]
SELECT *
FROM table
WHERE condition = 1

This magic is equivalent to calling db_client.query("<sql>", ...), with the
following magic-specific parameters offering additional flexibility:

	
	variable (str):

	The name of the local variable where the output should be
stored (typically not referenced directly by name)

	
	show (str, int, None):

	What should be shown if variable is specified (if not
the entire output is returned). Allowed values are ‘all’, ‘head’ (first 5
rows), ‘none’, or an integer which specifies the number of rows to be shown.

	
	transpose (bool):

	If format is pandas, whether the shown results, as defined
above, should be transposed. Data stored into variable is never transposed.

There is also a line-magic version if you are querying using an existing template:

results = %<name> variable='<template_name>' ...

which is equivalent to db_client.query_from_template('<template_name>', context=locals()).
Note that one would typically pass this the template name as a position
argument, i.e. %<name> <template_name>.

Executing

%%<name>.execute [variable=None ...]
INSERT INTO database.table (field1, field2) VALUES (1, 2);

This magic is equivalent to db_client.execute('<sql>', ...), with the
variable argument functioning as previously for the query magic.

As for the query magic, there is also a template version:

Streaming

%%<name>.stream [variable=None ...]
SELECT *
FROM table
WHERE condition = 1

This magic is equivalent to db_client.stream('<sql>', ...), with the
variable argument functioning as previously for the query magic. Keep in mind
that the value returned from this method is a generator object.

As for the query magic, there is also a template version:

Templating

To create a new template:

%%<name>.template <template_name>
SELECT *
FROM table
WHERE condition = 1

which is equivalent to db_client.add_template("<template_name>", "<sql>").

You can render a template in the cell body using current context (or specified
context):

%%<name>.render [context=None, show=True]
SELECT 1 FROM test

or if the template has already been created, you can render it directly by name:

%<name>.render [name=None, context=None, show=True]

In both cases, the context and show parameters respectively control the
context from which template variables are extracted and whether the rendered
template should be shown (printed to screen) or returned as a string.

Table properties

	todo

	Resolve what to keep and dump here.

%%<name>.desc
SELECT 1 FROM test

%%<name>.head
SELECT 1 FROM test

%%<name>.props

Subclass Reference

For comprehensive documentation on any particular subclass, please refer
to one of the below documents.

	DruidClient

	HiveServer2Client

	Neo4jClient

	PrestoClient

	PySparkClient

	SQLAlchemyClient

DruidClient

	
class omniduct.databases.druid.DruidClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a Druid server using the pydruid python library.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	DruidClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

HiveServer2Client

	
class omniduct.databases.hiveserver2.HiveServer2Client(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.SchemasMixin

This Duct connects to an Apache HiveServer2 server instance using the
pyhive or impyla libraries.

	Attributes

	
	schema (str, None) – The default schema to use for queries (will
default to server-default if not specified).

	driver (str) – One of ‘pyhive’ (default) or ‘impyla’, which specifies
how the client communicates with Hive.

	auth_mechanism (str) – The authorisation protocol to use for connections.
Defaults to ‘NOSASL’. Authorisation methods differ between drivers.
Please refer to pyhive and impyla documentation for more details.

	push_using_hive_cli (bool) – Whether the .push() operation should
directly add files using LOAD DATA LOCAL INPATH rather than the
INSERT operation via SQLAlchemy. Note that this requires the
presence of the hive executable on the local PATH, or if
connecting via a RemoteClient instance, on the remote’s PATH.
This is mostly useful for older versions of Hive which do not
support the INSERT statement.

	default_table_props (dict) – A dictionary of table properties to use by
default when creating tables.

	connection_options (dict) – Additional options to pass through to the
.connect() methods of the drivers.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	HiveServer2Client Quirks:

	If use_hive_cli (or if not specified .push_using_hive_cli) is
True, a CREATE TABLE statement will be automatically generated based
on the datatypes of the DataFrame (unless overwritten by
dtype_overrides). The DataFrame will then be exported to a CSV
compatible with Hive and uploaded (if necessary) to the remote, before
being loaded into Hive using a LOAD DATA LOCAL INFILE … query using
the hive cli executable. Note that if a table is not partitioned, you
cannot convert it to a parititioned table without deleting it first.

If use_hive_cli (or if not specified .push_using_hive_cli) is
False, an attempt will be made to push the DataFrame to Hive using
pandas.DataFrame.to_sql and the SQLAlchemy binding provided by
pyhive and impyla. This may be slower, does not support older
versions of Hive, and does not support table properties or partitioning.

If if the schema namespace is not specified, table.schema will be
defaulted to your username.

	Additional Args:

	
	use_hive_cli (bool, None): A local override for the global

	.push_using_hive_cli attribute. If not specified, the global
default is used. If True, then pushes are performed using the
hive CLI executable on the local/remote PATH.

**kwargs (dict): Additional arguments to send to pandas.DataFrame.to_sql.

Further Parameters for CLI method (specifying these for the pandas
method will cause a RuntimeError exception):

	partition (dict): A mapping of column names to values that specify

	the partition into which the provided data should be uploaded,
as well as providing the fields by which new tables should be
partitioned.

sep (str): Field delimiter for data (defaults to CTRL-A, or chr(1)).
table_props (dict): Properties to set on any newly created tables

(extends .default_table_props).

	dtype_overrides (dict): Mapping of column names to Hive datatypes to

	use instead of default mapping.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	HiveServer2Client Quirks:

	
	Additional Args:

	
	poll_interval (int): Default delay in seconds between consecutive

	query status (defaults to 1).

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	HiveServer2Client Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
schemas

	An object with attributes corresponding to the names of the schemas
in this database.

	Type

	object

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

Neo4jClient

	
class omniduct.databases.neo4j.Neo4jClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a Neo4j graph database server using the neo4j python
library.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	Neo4jClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

PrestoClient

	
class omniduct.databases.presto.PrestoClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.SchemasMixin

This Duct connects to a Facebook Presto server instance using the pyhive
library.

In addition to the standard DatabaseClient API, PrestoClient adds a
.schemas descriptor attribute, which enables a tab completion driven
exploration of a Presto database’s schemas and tables.

	Attributes

	
	catalog (str) – The default catalog to use in database queries.

	schema (str) – The default schema/database to use in database queries.

	connection_options (dict) – Additional options to pass on to
pyhive.presto.connect(…).

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	PrestoClient Quirks:

	If if the schema namespace is not specified, table.schema will be
defaulted to your username. Catalog overrides will be ignored, and will
default to self.catalog.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	PrestoClient Quirks:

	If something goes wrong, PrestoClient will attempt to parse the error
log and present the user with useful debugging information. If that fails,
the full traceback will be raised instead.

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	PrestoClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
schemas

	An object with attributes corresponding to the names of the schemas
in this database.

	Type

	object

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

PySparkClient

	
class omniduct.databases.pyspark.PySparkClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a local PySpark session using the pyspark library.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	PySparkClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

SQLAlchemyClient

	
class omniduct.databases.sqlalchemy.SQLAlchemyClient(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.SchemasMixin

This Duct connects to several different databases using one of several
SQLAlchemy drivers. In general, these are provided for their potential
utility, but will be less functional than the specially crafted database
clients.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
NAMESPACE_DEFAULTS_READ

	Backwards compatible shim for NAMESPACE_DEFAULTS.

	
NAMESPACE_DEFAULTS_WRITE

	Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(session_properties=None, templates=None, template_context=None, default_format_opts=None, **kwargs)

	
	session_properties (dict): A mapping of default session properties

	to values. Interpretation is left up to implementations.

	templates (dict): A dictionary of name to template mappings. Additional

	templates can be added using .template_add.

	template_context (dict): The default template context to use when

	rendering templates.

	default_format_opts (dict): The default formatting options passed to

	cursor formatter.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dataframe_to_table(df, table, if_exists='fail', **kwargs)

	Upload a local pandas dataframe into a table in this database.

	Parameters

	
	df (pandas.DataFrame) – The dataframe to upload into the database.

	table (str, ParsedNamespaces) – The name of the table into which the
dataframe should be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._dataframe_to_table.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)

	Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used
in future executions, by passing it as the cursor keyword argument.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	wait (bool) – Whether the cursor should be returned before the
server-side query computation is complete and the relevant
results downloaded.

	cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute
the statement against the provided cursor.

	session_properties (dict) – Additional session properties and/or
overrides to use for this query. Setting a session property
value to None will cause it to be omitted.

	**kwargs (dict) – Extra keyword arguments to be passed on to
_execute, as implemented by subclasses.

	template (bool) – Whether the statement should be treated as a Jinja2
template. [Used by render_statement decorator.]

	context (dict) – The context in which the template should be
evaluated (a dictionary of parameters to values). [Used by
render_statement decorator.]

	use_cache (bool) – True or False (default). Whether to use the cache
(if present). [Used by cached_method decorator.]

	renew (bool) – True or False (default). If cache is being used, renew
it before returning stored value. [Used by cached_method
decorator.]

	cleanup (bool) – Whether statement should be cleaned up before
computing the hash used to cache results. [Used by cached_method
decorator.]

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_file(file, fs=None, **kwargs)

	Execute a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.execute.

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
execute_from_template(name, context=None, **kwargs)

	Render and then execute a named template.

	Parameters

	
	name (str) – The name of the template to be rendered and executed.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .execute().

	Returns

	A DBAPI2 compatible cursor instance.

	Return type

	DBAPI2 cursor

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	SQLAlchemyClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
query(statement, format=None, format_opts={}, use_cache=True, **kwargs)

	Execute a statement against this database and collect formatted data.

	Parameters

	
	statement (str) – The statement to be executed by the query client
(possibly templated).

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	use_cache (bool) – Whether to cache the cursor returned by
DatabaseClient.execute() (overrides the default of False
for .execute()). (default=True)

	**kwargs (dict) – Additional arguments to pass on to
DatabaseClient.execute().

	Returns

	The results of the query formatted as nominated.

	
query_from_file(file, fs=None, **kwargs)

	Query using a statement stored in a file.

	Parameters

	
	file (str, file-like-object) – The path of the file containing the
query statement to be executed against the database, or an open
file-like resource.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs (dict) – Extra keyword arguments to pass on to
DatabaseClient.query.

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_from_template(name, context=None, **kwargs)

	Render and then query using a named tempalte.

	Parameters

	
	name (str) – The name of the template to be rendered and used to query
the database.

	context (dict) – The context in which the template should be rendered.

	**kwargs (dict) – Additional parameters to pass to .query().

	Returns

	The results of the query formatted as nominated.

	Return type

	object

	
query_to_table(statement, table, if_exists='fail', **kwargs)

	Run a query and store the results in a table in this database.

	Parameters

	
	statement – The statement to be executed.

	table (str) – The name of the table into which the dataframe should
be uploaded.

	if_exists (str) – if nominated table already exists: ‘fail’ to do
nothing, ‘replace’ to drop, recreate and insert data into new
table, and ‘append’ to add data from this table into the
existing table.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient._query_to_table.

	Returns

	The cursor object associated with the execution.

	Return type

	DB-API cursor

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
register_magics(base_name=None)

	The following magic functions will be registered (assuming that
the base name is chosen to be ‘hive’):
- Cell Magics:

	%%hive: For querying the database.

	%%hive.execute: For executing a statement against the database.

	
	%%hive.stream: For executing a statement against the database,

	and streaming the results.

	%%hive.template: The defining a new template.

	%%hive.render: Render a provided query statement.

	
	Line Magics:

	
	%hive: For querying the database using a named template.

	
	%hive.execute: For executing a named template statement against

	the database.

	
	%hive.stream: For executing a named template against the database,

	and streaming the results.

	%hive.render: Render a provided a named template.

	%hive.desc: Describe the table nominated.

	%hive.head: Return the first rows in a specified table.

	%hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
schemas

	An object with attributes corresponding to the names of the schemas
in this database.

	Type

	object

	
session_properties

	The default session properties used in statement executions.

	Type

	dict

	
classmethod statement_cleanup(statement)

	Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently
removing comments and replacing all whitespace. It is used by the
statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this
method should be overloaded appropriately.

	Parameters

	statement (str) – The statement to be reformatted/cleaned-up.

	Returns

	The new statement, consistently reformatted.

	Return type

	str

	
classmethod statement_hash(statement, cleanup=True)

	Retrieve the hash to use to identify query statements to the cache.

	Parameters

	
	statement (str) – A string representation of the statement to be
hashed.

	cleanup (bool) – Whether the statement should first be consistently
reformatted using statement_cleanup.

	Returns

	The hash used to identify a statement to the cache.

	Return type

	str

	
stream(statement, format=None, format_opts={}, batch=None, **kwargs)

	Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the
result set. If batch is not None, then the iterator
will be over lists of length batch containing formatted rows.

	Parameters

	
	statement (str) – The statement to be executed against the database.

	format (str) – A subclass of CursorFormatter, or one of: ‘pandas’,
‘hive’, ‘csv’, ‘tuple’ or ‘dict’. Defaults to
self.DEFAULT_CURSOR_FORMATTER.

	format_opts (dict) – A dictionary of format-specific options.

	batch (int) – If not None, the number of rows from the resulting
cursor to be returned at once.

	**kwargs (dict) – Additional keyword arguments to pass onto
DatabaseClient.execute.

	Returns

	
	An iterator over objects of the nominated format or, if

	batched, a list of such objects.

	Return type

	iterator

	
stream_to_file(statement, file, format='csv', fs=None, **kwargs)

	Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the
iterative writing of cursor results to a file. This is especially useful
when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the
default format for this method (rather than pandas).

	Parameters

	
	statement (str) – The statement to be executed against the database.

	file (str, file-like-object) – The filename where the data should be
written, or an open file-like resource.

	format (str) – The format to be used (‘csv’ by default). Format
options can be passed via **kwargs.

	fs (None, FileSystemClient) – The filesystem wihin which the
nominated file should be found. If None, the local filesystem
will be used.

	**kwargs – Additional keyword arguments to pass onto
DatabaseClient.stream.

	
table_desc(table, renew=True, **kwargs)

	Describe a table in the database.

	Parameters

	
	table (str) – The table to describe.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A dataframe description of the table.

	Return type

	pandas.DataFrame

	
table_drop(table, **kwargs)

	Remove a table from the database.

	Parameters

	
	table (str) – The table to drop.

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The cursor associated with this execution.

	Return type

	DB-API cursor

	
table_exists(table, renew=True, **kwargs)

	Check whether a table exists.

	Parameters

	
	table (str) – The table for which to check.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	True if table exists, and False otherwise.

	Return type

	bool

	
table_head(table, n=10, renew=True, **kwargs)

	Retrieve the first n rows from a table.

	Parameters

	
	table (str) – The table from which to extract data.

	n (int) – The number of rows to extract.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the first n rows

	of the nominated table.

	Return type

	pandas.DataFrame

	
table_list(namespace=None, renew=True, **kwargs)

	Return a list of table names in the data source as a DataFrame.

	Parameters

	
	namespace (str) – The namespace in which to look for tables.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	The names of schemas in this database.

	Return type

	list<str>

	
table_partition_cols(table, renew=True, **kwargs)

	Extract the columns by which a table is partitioned (if database supports partitions).

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the results (default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	A list of columns by which table is partitioned.

	Return type

	list<str>

	
table_props(table, renew=True, **kwargs)

	Retrieve the properties associated with a table.

	Parameters

	
	table (str) – The table from which to extract data.

	renew (bool) – Whether to renew the table list or use cached results
(default: True).

	**kwargs (dict) – Additional arguments passed through to implementation.

	Returns

	
	A dataframe representation of the table

	properties.

	Return type

	pandas.DataFrame

	
template_add(name, body)

	Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See
.template_render for more information.

	Parameters

	
	name (str) – The name of the template.

	body (str) – The (typically) multiline body of the template.

	Returns

	A reference to this object.

	Return type

	PrestoClient

	
template_get(name)

	Retrieve a named template.

	Parameters

	name (str) – The name of the template to retrieve.

	Raises

	ValueError – If name is not associated with a template.

	Returns

	The requested template.

	Return type

	str

	
template_names

	A list of names associated with the templates associated with this
client.

	Type

	list

	
template_render(name_or_statement, context=None, by_name=False, cleanup=False, meta_only=False)

	Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail
in the official jinja2 documentation, a meta-templating extension is
also provided. This meta-templating allows you to reference other
reference other templates. For example, if you had two SQL templates
named ‘template_a’ and ‘template_b’, then you could render them into one
SQL query using (for example):

.template_render('''
WITH
 a AS (
 {{{template_a}}}
),
 b AS (
 {{{template_b}}}
)
SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can
chain template embedding, provided that such embedding is not recursive.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	context (dict, None) – A dictionary to use as the template context.
If not specified, an empty dictionary is used.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	cleanup (bool) – True if the rendered statement should be formatted,
False (default) otherwise

	meta_only (bool) – True if rendering should only progress as far as
rendering nested templates (i.e. don’t actually substitute in
variables from the context); False (default) otherwise.

	Returns

	The rendered template.

	Return type

	str

	
template_variables(name_or_statement, by_name=False)

	Return the set of undeclared variables required for this template.

	Parameters

	
	name_or_statement (str) – The name of a template (if by_name is True)
or else a string representation of a jinja2 template.

	by_name (bool) – True if name_or_statement should be interpreted as a
template name, or False (default) if name_or_statement should be
interpreted as a template body.

	Returns

	A set of names which the template requires to be rendered.

	Return type

	set<str>

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

Filesystems

All database clients are expected to be subclasses of DatabaseClient,
and so will share a common API and inherit a suite of IPython magics. Protocol
implementations are also free to add extra methods, which are documented in the
“Subclass Reference” section below.

Common API

	
class omniduct.filesystems.base.FileSystemClient(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	Bases: omniduct.duct.Duct, omniduct.utils.magics.MagicsProvider

An abstract class providing the common API for all filesystem clients.

	Class Attributes

	
	DUCT_TYPE (Duct.Type) – The type of Duct protocol implemented by this class.

	DEFAULT_PORT (int) – The default port for the filesystem service (defined
by subclasses).

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	
	cwd (None, str): The path prefix to use as the current working directory

	(if None, the user’s home directory is used where that makes sense).

	home (None, str): The path prefix to use as the current users’ home

	directory. If not specified, it will default to an implementation-
specific value (often ‘/’).

	read_only (bool): Whether the filesystem should only be able to perform

	read operations.

	global_writes (bool): Whether to allow writes outside of the user’s home

	folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

This method should return a generator over FileSystemFileDesc objects.

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	FileSystemClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
class omniduct.filesystems.base.FileSystemFile(fs, path, mode='r')

	Bases: object

A file-like implementation that is interchangeable with native Python file
objects, allowing remote files to be treated identically to local files
both by omniduct, the user and other libraries.

	
__init__(fs, path, mode='r')

	Initialize self. See help(type(self)) for accurate signature.

	
class omniduct.filesystems.base.FileSystemFileDesc

	Bases: omniduct.filesystems.base.Node

A representation of a file/directory stored within an Omniduct
FileSystemClient.

Subclass Reference

For comprehensive documentation on any particular subclass, please refer
to one of the below documents.

	LocalFsClient

	S3Client

	WebHdfsClient

LocalFsClient

	
class omniduct.filesystems.local.LocalFsClient(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	Bases: omniduct.filesystems.base.FileSystemClient

LocalFsClient is a Duct that implements the FileSystemClient common
API, and exposes the local filesystem.

Unlike most other filesystems, LocalFsClient defaults to the current
working directory on the local machine, rather than the home directory
as used on remote filesystems. To change this, you can always execute:
`
local_fs.path_cwd = local_fs.path_home
`

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	
	cwd (None, str): The path prefix to use as the current working directory

	(if None, the user’s home directory is used where that makes sense).

	home (None, str): The path prefix to use as the current users’ home

	directory. If not specified, it will default to an implementation-
specific value (often ‘/’).

	read_only (bool): Whether the filesystem should only be able to perform

	read operations.

	global_writes (bool): Whether to allow writes outside of the user’s home

	folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

S3Client

	
class omniduct.filesystems.s3.S3Client(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	Bases: omniduct.filesystems.base.FileSystemClient

This Duct connects to an Amazon S3 bucket instance using the boto3
library. Authentication is (optionally) handled using opinel.

	Attributes

	
	bucket (str) – The name of the Amazon S3 bucket to use.

	aws_profile (str) – The name of configured AWS profile to use. This should
refer to the name of a profile configured in, for example,
~/.aws/credentials. Authentication is handled by the opinel
library, which is also aware of environment variables.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	
	cwd (None, str): The path prefix to use as the current working directory

	(if None, the user’s home directory is used where that makes sense).

	home (None, str): The path prefix to use as the current users’ home

	directory. If not specified, it will default to an implementation-
specific value (often ‘/’).

	read_only (bool): Whether the filesystem should only be able to perform

	read operations.

	global_writes (bool): Whether to allow writes outside of the user’s home

	folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	S3Client Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

WebHdfsClient

	
class omniduct.filesystems.webhdfs.WebHdfsClient(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	Bases: omniduct.filesystems.base.FileSystemClient

This Duct connects to an Apache WebHDFS server using the pywebhdfs library.

	Attributes

	namenodes (list<str>) – A list of hosts that are acting as namenodes for
the HDFS cluster in form “<hostname>:<port>”.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

	
	cwd (None, str): The path prefix to use as the current working directory

	(if None, the user’s home directory is used where that makes sense).

	home (None, str): The path prefix to use as the current users’ home

	directory. If not specified, it will default to an implementation-
specific value (often ‘/’).

	read_only (bool): Whether the filesystem should only be able to perform

	read operations.

	global_writes (bool): Whether to allow writes outside of the user’s home

	folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	WebHdfsClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

Remotes

All remote clients are expected to be subclasses of RemoteClient, and so will
share a common API. Protocol implementations are also free to add extra methods,
which are documented in the “Subclass Reference” section below.

Common API

	
class omniduct.remotes.base.RemoteClient(smartcards=None, **kwargs)

	Bases: omniduct.filesystems.base.FileSystemClient

An abstract class providing the common API for all remote clients.

	Attributes

	smartcard (dict) – Mapping of smartcard names to system libraries
compatible with ssh-add -s ‘<system library>’ ….

	Attributes

	smartcard (dict) – Mapping of smartcard names to system libraries
compatible with ssh-add -s ‘<system library>’ ….

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
__init__(smartcards=None, **kwargs)

	
	Parameters

	smartcards (dict) – Mapping of smartcard names to system libraries
compatible with ssh-add -s ‘<system library>’ ….

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	RemoteClient Quirks:

	Connect to the remote server.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch
the first DuctAuthenticationError error triggered by Duct.connect,
and (if smartcards have been configured) attempt to re-initialise the
smartcards before trying once more.

	Returns:

	Duct instance: A reference to the current object.

	
prepare_smartcards()

	Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated
smartcards is available and prepared for use. This may result in
interactive requests for pin confirmation, depending on the card.

	Returns

	
	Returns True if at least one smartcard was activated, and

	False otherwise.

	Return type

	bool

	
execute(cmd, **kwargs)

	Execute a command on the remote server.

	Parameters

	
	cmd (str) – The command to run on the remote associated with this
instance.

	**kwargs (dict) – Additional keyword arguments to be passed on to
._execute.

	Returns

	The result of the execution.

	Return type

	SubprocessResults

	
port_forward(remote_host, remote_port=None, local_port=None)

	Initiate a port forward connection.

This method establishes a local port forwarding from a local port local
to remote port remote. If local is None, an available local port is
automatically chosen. If the remote port is already forwarded, a new
connection is not established.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port to use locally (automatically
determined if not specified).

	Returns

	The local port which is port forwarded to the remote service.

	Return type

	int

	
has_port_forward(remote_host=None, remote_port=None, local_port=None)

	Check whether a port forward connection exists.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	Returns

	
	Whether a port-forward for this remote service exists, or if

	local port is specified, whether that port is locally used for
port forwarding.

	Return type

	bool

	
port_forward_stop(local_port=None, remote_host=None, remote_port=None)

	Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated
with that port is found and stopped; otherwise any established port
forwarding associated with the nominated remote service is stopped.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	
port_forward_stopall()

	Disconnect all existing port forwarding connections.

	
get_local_uri(uri)

	Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and
returns a local uri accessible directly on the local host, establishing
any necessary port forwarding in the process.

	Parameters

	uri (str) – The remote uri to be made local.

	Returns

	A local uri that tunnels all traffic to the remote host.

	Return type

	str

	
show_port_forwards()

	Print to stdout the active port forwards associated with this client.

	
is_port_bound(host, port)

	Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a
given host by attempting to establish a connection with it.

	Parameters

	
	host (str) – The hostname of the target service.

	port (int) – The port of the target service.

	Returns

	Whether the port is active and accepting connections.

	Return type

	bool

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	RemoteClient Quirks:

	This method should return a generator over FileSystemFileDesc objects.

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	RemoteClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

Subclass Reference

For comprehensive documentation on any particular subclass, please refer
to one of the below documents.

	SSHClient

	ParamikoSSHClient

SSHClient

	
class omniduct.remotes.ssh.SSHClient(smartcards=None, **kwargs)

	Bases: omniduct.remotes.base.RemoteClient

An implementation of the RemoteClient Duct, offering a persistent
connection to remote hosts over SSH via the CLI. As such, it requires that
ssh be installed and on your executable path.

To speed up connections we use control sockets, which allows all connections
to share one SSH transport. For more details, refer to:
https://puppetlabs.com/blog/speed-up-ssh-by-reusing-connections

	Attributes

	interactive (bool) – Whether SSHClient should ask the user
questions, if necessary, to establish the connection. Production
deployments using this client should set this to False.
(default: False)

	Attributes inherited from RemoteClient:

	
	smartcard (dict): Mapping of smartcard names to system libraries

	compatible with ssh-add -s ‘<system library>’ ….

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(smartcards=None, **kwargs)

	
	Parameters

	smartcards (dict) – Mapping of smartcard names to system libraries
compatible with ssh-add -s ‘<system library>’ ….

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	RemoteClient Quirks:

	Connect to the remote server.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch
the first DuctAuthenticationError error triggered by Duct.connect,
and (if smartcards have been configured) attempt to re-initialise the
smartcards before trying once more.

	Returns:

	Duct instance: A reference to the current object.

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	SSHClient Quirks:

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Args:

	
	source (str): The path on this filesystem of the file to download to

	the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str): The destination path on filesystem (fs). If not

	specified, the file/folder is uploaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool): True if the contents of any existing file by the

	same name should be overwritten, False otherwise.

	fs (FileSystemClient): The FileSystemClient into which the nominated

	file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	SSHClient Quirks:

	This method is overloaded so that remote-to-local downloads can be
handled specially using scp. Downloads to any non-local filesystem
are handled using the standard implementation.

	
execute(cmd, **kwargs)

	Execute a command on the remote server.

	Parameters

	
	cmd (str) – The command to run on the remote associated with this
instance.

	**kwargs (dict) – Additional keyword arguments to be passed on to
._execute.

	Returns

	The result of the execution.

	Return type

	SubprocessResults

	SSHClient Quirks:

	
	Additional Args:

	
	skip_cwd (bool): Whether to skip changing to the current working

	directory associated with this client before executing the
command. This is mainly useful to methods internal to this
class.

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
get_local_uri(uri)

	Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and
returns a local uri accessible directly on the local host, establishing
any necessary port forwarding in the process.

	Parameters

	uri (str) – The remote uri to be made local.

	Returns

	A local uri that tunnels all traffic to the remote host.

	Return type

	str

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
has_port_forward(remote_host=None, remote_port=None, local_port=None)

	Check whether a port forward connection exists.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	Returns

	
	Whether a port-forward for this remote service exists, or if

	local port is specified, whether that port is locally used for
port forwarding.

	Return type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
is_port_bound(host, port)

	Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a
given host by attempting to establish a connection with it.

	Parameters

	
	host (str) – The hostname of the target service.

	port (int) – The port of the target service.

	Returns

	Whether the port is active and accepting connections.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
port_forward(remote_host, remote_port=None, local_port=None)

	Initiate a port forward connection.

This method establishes a local port forwarding from a local port local
to remote port remote. If local is None, an available local port is
automatically chosen. If the remote port is already forwarded, a new
connection is not established.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port to use locally (automatically
determined if not specified).

	Returns

	The local port which is port forwarded to the remote service.

	Return type

	int

	
port_forward_stop(local_port=None, remote_host=None, remote_port=None)

	Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated
with that port is found and stopped; otherwise any established port
forwarding associated with the nominated remote service is stopped.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	
port_forward_stopall()

	Disconnect all existing port forwarding connections.

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	SSHClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
prepare_smartcards()

	Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated
smartcards is available and prepared for use. This may result in
interactive requests for pin confirmation, depending on the card.

	Returns

	
	Returns True if at least one smartcard was activated, and

	False otherwise.

	Return type

	bool

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
show_port_forwards()

	Print to stdout the active port forwards associated with this client.

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
update_host_keys()

	Update host keys associated with this remote.

This method updates the SSH host-keys stored in ~/.ssh/known_hosts,
allowing one to successfully connect to hosts when servers are,
for example, redeployed and have different host keys.

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	SSHClient Quirks:

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Args:

	
	source (str): The path on the specified filesystem (fs) of the

	file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str): The destination path on this filesystem. If not

	specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool): True if the contents of any existing file by the

	same name should be overwritten, False otherwise.

	fs (FileSystemClient): The FileSystemClient from which to load the

	file/folder at source. If not specified, defaults to the local
filesystem.

	SSHClient Quirks:

	This method is overloaded so that local-to-remote uploads can be
handled specially using scp. Uploads to any non-local filesystem
are handled using the standard implementation.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

ParamikoSSHClient

	
class omniduct.remotes.ssh_paramiko.ParamikoSSHClient(smartcards=None, **kwargs)

	Bases: omniduct.remotes.base.RemoteClient

An experimental SSH client that uses a paramiko rather than command-line
SSH backend. This client has been fully implemented and should work as is,
but until it receives further testing, we recommend using the cli backed SSH
client.

	Attributes inherited from RemoteClient:

	
	smartcard (dict): Mapping of smartcard names to system libraries

	compatible with ssh-add -s ‘<system library>’ ….

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(smartcards=None, **kwargs)

	
	Parameters

	smartcards (dict) – Mapping of smartcard names to system libraries
compatible with ssh-add -s ‘<system library>’ ….

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	RemoteClient Quirks:

	Connect to the remote server.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch
the first DuctAuthenticationError error triggered by Duct.connect,
and (if smartcards have been configured) attempt to re-initialise the
smartcards before trying once more.

	Returns:

	Duct instance: A reference to the current object.

	
dir(path=None)

	Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that
represent the files/directories that a present as children of the
nominated path. If path is not a directory, an exception is raised.
The path is interpreted as being relative to the current working
directory (on remote filesytems, this will typically be the home
folder).

	Parameters

	path (str) – The path to examine for children.

	Returns

	The children of path represented as
FileSystemFileDesc objects.

	Return type

	generator<FileSystemFileDesc>

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
download(source, dest=None, overwrite=False, fs=None)

	Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on
this filesystem to the path dest on filesytem fs, overwriting any
existing file if overwrite is True.

	Parameters

	
	source (str) – The path on this filesystem of the file to download to
the nominated filesystem (fs). If source ends
with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path
does not resolve to a directory.

	dest (str) – The destination path on filesystem (fs). If not
specified, the file/folder is downloaded into the default path,
usually one’s home folder. If dest ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient into which the nominated
file/folder source should be downloaded. If not specified,
defaults to the local filesystem.

	
execute(cmd, **kwargs)

	Execute a command on the remote server.

	Parameters

	
	cmd (str) – The command to run on the remote associated with this
instance.

	**kwargs (dict) – Additional keyword arguments to be passed on to
._execute.

	Returns

	The result of the execution.

	Return type

	SubprocessResults

	
exists(path)

	Check whether nominated path exists on this filesytem.

	Parameters

	path (str) – The path for which to check existence.

	Returns

	
	True if file/folder exists at nominated path, and False

	otherwise.

	Return type

	bool

	
find(path_prefix=None, **attrs)

	Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain
constraints on the attributes of the file (as encoded into
FileSystemFileDesc). Note that without attribute constraints,
this method will function identically to self.dir.

	Parameters

	
	path_prefix (str) – The path under which files/directories should be
found.

	**attrs (dict) – Constraints on the fields of the FileSystemFileDesc
objects associated with this filesystem, as constant values or
callable objects (in which case the object will be called and
should return True if attribute value is match, and False
otherwise).

	Returns

	
	A generator over FileSystemFileDesc

	objects that are descendents of path_prefix and which statisfy
provided constraints.

	Return type

	generator<FileSystemFileDesc>

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
get_local_uri(uri)

	Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and
returns a local uri accessible directly on the local host, establishing
any necessary port forwarding in the process.

	Parameters

	uri (str) – The remote uri to be made local.

	Returns

	A local uri that tunnels all traffic to the remote host.

	Return type

	str

	
global_writes

	Whether writes should be permitted outside of home directory. This
write-lock is designed to prevent inadvertent scripted writing in
potentially dangerous places.

	Type

	bool

	
has_port_forward(remote_host=None, remote_port=None, local_port=None)

	Check whether a port forward connection exists.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	Returns

	
	Whether a port-forward for this remote service exists, or if

	local port is specified, whether that port is locally used for
port forwarding.

	Return type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
is_port_bound(host, port)

	Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a
given host by attempting to establish a connection with it.

	Parameters

	
	host (str) – The hostname of the target service.

	port (int) – The port of the target service.

	Returns

	Whether the port is active and accepting connections.

	Return type

	bool

	
isdir(path)

	Check whether a nominated path is directory.

	Parameters

	path (str) – The path for which to check directory nature.

	Returns

	True if folder exists at nominated path, and False
otherwise.

	Return type

	bool

	
isfile(path)

	Check whether a nominated path is a file.

	Parameters

	path (str) – The path for which to check file nature.

	Returns

	True if a file exists at nominated path, and False
otherwise.

	Return type

	bool

	
listdir(path=None)

	Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and
returns the names of child members as strings. path is interpreted
relative to the current working directory (on remote filesytems, this
will typically be the home folder).

	Parameters

	path (str) – The path of the directory from which to enumerate filenames.

	Returns

	The names of all children of the nominated directory.

	Return type

	list<str>

	
mkdir(path, recursive=True, exist_ok=False)

	Create a directory at the given path.

	Parameters

	
	path (str) – The path of the directory to create.

	recursive (bool) – Whether to recursively create any parents of this
path if they do not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir
rather that implementing the existence check using .exists so that
they can avoid the overhead associated with multiple operations, which
can be costly in some cases.

	
open(path, mode='rt')

	Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing
operations. The object returned is programmatically interchangeable with
any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed
to the source filesystem when the file is closed.

	Parameters

	
	path (str) – The path of the file to open.

	mode (str) – All standard Python file modes.

	Returns

	An opened file-like object.

	Return type

	FileSystemFile or file-like

	ParamikoSSHClient Quirks:

	Paramiko offers a complete file-like abstraction for files opened over
sftp, so we use that abstraction rather than a FileSystemFile. Results
should be indistinguishable.

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
path_basename(path)

	Extract the last component of a given path.

Components are determined by splitting by self.path_separator.
Note that if a path ends with a path separator, the basename will be
the empty string.

	Parameters

	path (str) – The path from which the basename should be extracted.

	Returns

	The extracted basename.

	Return type

	str

	
path_cwd

	The path prefix associated with the current working directory. If
not otherwise set, it will be the users’ home directory, and will be the
prefix used by all non-absolute path references on this filesystem.

	Type

	str

	
path_dirname(path)

	Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last
component), where components are determined by splitting by
self.path_separator.

	Parameters

	path (str) – The path from which the directory path should be
extracted.

	Returns

	The extracted directory path.

	Return type

	str

	
path_home

	The path prefix to use as the current users’ home directory. Unless
cwd is set, this will be the prefix to use for all non-absolute path
references on this filesystem. This is assumed not to change between
connections, and so will not be updated on client reconnections. Unless
global_writes is set to True, this will be the only folder into
which this client is permitted to write.

	Type

	str

	
path_join(path, *components)

	Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all
previous path components are discarded, and the effective base path
becomes that component (with ‘~’ expanding to self.path_home). Note
that this method does not simplify paths components like ‘..’. Use
self.path_normpath for this purpose.

	Parameters

	
	path (str) – The base path to which components should be joined.

	*components (str) – Any additional components to join to the base
path.

	Returns

	The path resulting from joining all of the components nominated,
in order, to the base path.

	Return type

	str

	
path_normpath(path)

	Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path
on this filesystem.

	Parameters

	path (str) – The path to normalise (make absolute).

	Returns

	The normalised path.

	Return type

	str

	
path_separator

	The character(s) to use in separating path components. Typically
this will be ‘/’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
port_forward(remote_host, remote_port=None, local_port=None)

	Initiate a port forward connection.

This method establishes a local port forwarding from a local port local
to remote port remote. If local is None, an available local port is
automatically chosen. If the remote port is already forwarded, a new
connection is not established.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port to use locally (automatically
determined if not specified).

	Returns

	The local port which is port forwarded to the remote service.

	Return type

	int

	
port_forward_stop(local_port=None, remote_host=None, remote_port=None)

	Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated
with that port is found and stopped; otherwise any established port
forwarding associated with the nominated remote service is stopped.

	Parameters

	
	remote_host (str) – The hostname of the remote host in form:
‘hostname(:port)’.

	remote_port (int, None) – The remote port of the service.

	local_port (int, None) – The port used locally.

	
port_forward_stopall()

	Disconnect all existing port forwarding connections.

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	ParamikoSSHClient Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

	
prepare_smartcards()

	Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated
smartcards is available and prepared for use. This may result in
interactive requests for pin confirmation, depending on the card.

	Returns

	
	Returns True if at least one smartcard was activated, and

	False otherwise.

	Return type

	bool

	
read_only

	Whether this filesystem client should be permitted to attempt any
write operations.

	Type

	bool

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
remove(path, recursive=False)

	Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive
is set to True.

	Parameters

	
	path (str) – The path of the file/directory to be removed.

	recursive (bool) – Whether to remove directories and all of their
contents.

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
show_port_forwards()

	Print to stdout the active port forwards associated with this client.

	
showdir(path=None)

	Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of
a path, which are retrieved using .dir(path). The exact columns will
vary from filesystem to filesystem, depending on the fields returned
by .dir(), but the returned DataFrame is guaranteed to at least have
the columns: ‘name’ and ‘type’.

	Parameters

	path (str) – The path of the directory from which to show contents.

	Returns

	A DataFrame representation of the contents of the
nominated directory.

	Return type

	pandas.DataFrame

	
upload(source, dest=None, overwrite=False, fs=None)

	Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on
filesystem fs to the path dest on this filesytem, overwriting any
existing file if overwrite is True. This is equivalent to
fs.download(…, fs=self).

	Parameters

	
	source (str) – The path on the specified filesystem (fs) of the
file to upload to this filesystem. If source ends with ‘/’,
and corresponds to a directory, the contents of source will be
copied instead of copying the entire folder.

	dest (str) – The destination path on this filesystem. If not
specified, the file/folder is uploaded into the default path,
usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and
will throw an error if path does not resolve to a directory.

	overwrite (bool) – True if the contents of any existing file by the
same name should be overwritten, False otherwise.

	fs (FileSystemClient) – The FileSystemClient from which to load the
file/folder at source. If not specified, defaults to the local
filesystem.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

	
walk(path=None)

	Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths
that are children of path, one result for each directory, of form:
(<path name>, [<directory 1>, …], [<file 1>, …])

	Parameters

	path (str) – The path of the directory from which to enumerate
contents.

	Returns

	A generator of tuples, each tuple being associated
with one directory that is either path or one of its descendants.

	Return type

	generator<tuple>

Caches

All remote clients are expected to be subclasses of Cache, and so will share a
common API. Protocol implementations are also free to add extra methods, which
are documented in the “Subclass Reference” section below.

Common API

	
omniduct.caches.base.cached_method(key, namespace=<function <lambda>>, cache=<function <lambda>>, use_cache=<function <lambda>>, renew=<function <lambda>>, serializer=<function <lambda>>, metadata=<function <lambda>>)

	Wrap a method of a Duct class and add caching capabilities.

All arguments of this function are expected to be functions taking two
arguments: a reference to current instance of the class (self) and a
dictionary of arguments passed to the function (kwargs).

	Parameters

	
	key (function -> str) – The key under which the value returned by the
wrapped function should be stored.

	namespace (function -> str) – The namespace under which the key should be
stored (default: “<duct class name>.<duct instance name>”).

	cache (function -> Cache) – The instance of cache via which to store the
output of the wrapped function (default: self.cache).

	use_cache (function -> bool) – Whether or not to use the caching
functionality (default: True).

	renew (function -> bool) – Whether to renew the stored cache, overriding
if a value has already been stored (default: False).

	serializer (function -> Serializer) – The Serializer subclass to use
when storing the return object (default: PickleSerializer).

	metadata (function -> None, dict) – A dictionary of additional metadata
to be stored alongside the wrapped function’s output
(default: None).

	Returns

	
	The (potentially cached) object returned when calling the

	wrapped function.

	Return type

	object

	Raises

	Exception – If cache fails to store the output of the wrapped function,
and the omniduct configuration key cache_fail_hard is True, then
the underlying exceptions raised by the Cache instance will be
reraised.

	
class omniduct.caches.base.Cache(**kwargs)

	Bases: omniduct.duct.Duct

An abstract class providing the common API for all cache clients.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
__init__(**kwargs)

	
	protocol (str, None): Name of protocol (used by Duct registries to inform

	Duct instances of how they were instantiated).

	name (str, None): The name to used by the Duct instance (defaults to

	class name if not specified).

	registry (DuctRegistry, None): The registry to use to lookup remote

	and/or cache instance specified by name.

	remote (str, RemoteClient): The remote by which the ducted service

	should be contacted.

host (str): The hostname of the service to be used by this client.
port (int): The port of the service to be used by this client.
username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

	password (str, bool, None): The password to authenticate with if necessary.

	If True, then users will be prompted at runtime for credentials.

	cache(Cache, None): The cache client to be attached to this instance.

	Cache will only used by specific methods as configured by the client.

	cache_namespace(str, None): The namespace to use by default when writing

	to the cache.

	
set(key, value, namespace=None, serializer=None, metadata=None)

	Set the value of a key.

	Parameters

	
	key (str) – The key for which value should be stored.

	value (object) – The value to be stored.

	namespace (str, None) – The namespace to be used.

	serializer (Serializer) – The Serializer subclass to use for the
serialisation of value into the cache. (default=PickleSerializer)

	metadata (dict, None) – Additional metadata to be stored with the value
in the cache. Values must be serializable via yaml.safe_dump.

	
set_metadata(key, metadata, namespace=None, replace=False)

	Set the metadata associated with a stored key, creating the key if it
is missing.

	Parameters

	
	key (str) – The key for which value should be stored.

	metadata (dict, None) – Additional/override metadata to be stored
for key in the cache. Values must be serializable via
yaml.safe_dump.

	namespace (str, None) – The namespace to be used.

	replace (bool) – Whether the provided metadata should entirely
replace any existing metadata, or just update it. (default=False)

	
get(key, namespace=None, serializer=None)

	Retrieve the value associated with the nominated key from the cache.

	Parameters

	
	key (str) – The key for which value should be retrieved.

	namespace (str, None) – The namespace to be used.

	serializer (Serializer) – The Serializer subclass to use for the
deserialisation of value from the cache. (default=PickleSerializer)

	Returns

	The (appropriately deserialized) object stored in the cache.

	Return type

	object

	
get_bytecount(key, namespace=None)

	Retrieve the number of bytes used by a stored key.

This bytecount may or may not include metadata storage, depending on
the backend.

	Parameters

	
	key (str) – The key for which to extract the bytecount.

	namespace (str, None) – The namespace to be used.

	Returns

	
	The number of bytes used by the stored value associated with

	the nominated key and namespace.

	Return type

	int

	
get_metadata(key, namespace=None)

	Retrieve metadata associated with the nominated key from the cache.

	Parameters

	
	key (str) – The key for which to extract metadata.

	namespace (str, None) – The namespace to be used.

	Returns

	The metadata associated with this namespace and key.

	Return type

	dict

	
unset(key, namespace=None)

	Remove the nominated key from the cache.

	Parameters

	
	key (str) – The key which should be unset.

	namespace (str, None) – The namespace to be used.

	
unset_namespace(namespace=None)

	Remove an entire namespace from the cache.

	Parameters

	namespace (str, None) – The namespace to be removed.

	
namespaces

	A list of the namespaces stored in the cache.

	Type

	list <str,None>

	
has_namespace(namespace=None)

	Check whether the cache has the nominated namespace.

	Parameters

	namespace (str,None) – The namespace for which to check for existence.

	Returns

	Whether the cache has the nominated namespaces.

	Return type

	bool

	
keys(namespace=None)

	Collect a list of all the keys present in the nominated namespaces.

	Parameters

	namespace (str,None) – The namespace from which to extract all of the
keys.

	Returns

	The keys stored in the cache for the nominated namespace.

	Return type

	list<str>

	
has_key(key, namespace=None)

	Check whether the cache as a nominated key.

	Parameters

	
	key (str) – The key for which to check existence.

	namespace (str,None) – The namespace from which to extract all of the
keys.

	Returns

	
	Whether the cache has a value for the nominated namespace and

	key.

	Return type

	bool

	
get_total_bytecount(namespaces=None)

	Retrieve the total number of bytes used by the cache.

This method iterates over all (nominated) namespaces and the keys
therein, summing the result of .get_bytecount(…) on each.

	Parameters

	namespaces (list<str,None>) – The namespaces to which the bytecount
should be restricted.

	Returns

	The total number of bytes used by the nominated namespaces.

	Return type

	int

	
describe(namespaces=None)

	Return a pandas DataFrame showing all keys and their metadata.

	Parameters

	namespaces (list<str,None>) – The namespaces to which the summary
should be restricted.

	Returns

	
	A representation of keys in the cache. Will include

	at least the following columns: [‘bytes’, ‘namespace’, ‘key’,
‘created’, ‘last_accessed’]. Any additional metadata for keys
will be appended to these columns.

	Return type

	pandas.DataFrame

	
prune(namespaces=None, max_age=None, max_bytes=None, total_bytes=None, total_count=None)

	Remove keys from the cache in order to satisfy nominated constraints.

	Parameters

	
	namespaces (list<str, None>) – The namespaces to consider for pruning.

	max_age (None, int, timedelta, relativedelta, date, datetime) – The
number of days, a timedelta, or a relativedelta, indicating the
maximum age of items in the cache (based on last accessed date).
Deltas are expected to be positive.

	max_bytes (None, int) – The maximum number of bytes for each key,
allowing the pruning of larger keys.

	total_bytes (None, int) – The total number of bytes for the entire
cache. Keys will be removed from least recently accessed to most
recently accessed until the constraint is satisfied. This
constraint will be applied after max_age and max_bytes.

	total_count (None, int) – The maximum number of items to keep in the
cache. Keys will be removed from least recently accessed to most
recently accessed until the constraint is satisfied. This
constraint will be applied after max_age and max_bytes.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	Cache Quirks:

	This method may be overridden by subclasses, but provides the following
default behaviour:

	Ensures self.registry, self.remote and self.cache values are
instances of the right types.

	It replaces string values of self.remote and self.cache with
remotes and caches looked up using self.registry.lookup.

	It looks through each of the fields nominated in self.prepared_fields
and, if the corresponding value is callable, sets the value of that
field to result of calling that value with a reference to self. By
default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’,
and ‘_password’.

	Ensures value of self.port is an integer (or None).

Subclass Reference

For comprehensive documentation on any particular subclass, please refer
to one of the below documents.

	FileSystemCache

FileSystemCache

	
class omniduct.caches.filesystem.FileSystemCache(**kwargs)

	Bases: omniduct.caches.base.Cache

An implementation of Cache that wraps around a FilesystemClient.

	Attributes inherited from Duct:

	
	protocol (str): The name of the protocol for which this instance was

	created (especially useful if a Duct subclass supports multiple
protocols).

	name (str): The name given to this Duct instance (defaults to class

	name).

	host (str): The host name providing the service (will be ‘127.0.0.1’, if

	service is port forwarded from remote; use ._host to see remote
host).

	port (int): The port number of the service (will be the port-forwarded

	local port, if relevant; for remote port use ._port).

username (str, bool): The username to use for the service.
password (str, bool): The password to use for the service.
registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

	remote (None, omniduct.remotes.base.RemoteClient): A reference to a

	RemoteClient instance to manage connections to remote services.

	cache (None, omniduct.caches.base.Cache): A reference to a Cache

	instance to add support for caching, if applicable.

	connection_fields (tuple<str>, list<str>): A list of instance attributes

	to monitor for changes, whereupon the Duct instance should automatically
disconnect. By default, the following attributes are monitored:
‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

	prepared_fields (tuple<str>, list<str>): A list of instance attributes to

	be populated (if their values are callable) when the instance first
connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

Additional attributes including host, port, username and password are
documented inline.

	Class Attributes:

	
	AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct

	logging code as a “scope”. Should be overridden by subclasses as
appropriate.

	DUCT_TYPE (Duct.Type): The type of Duct service that is provided by

	this Duct instance. Should be overridden by subclasses as
appropriate.

	PROTOCOLS (list<str>): The name(s) of any protocols that should be

	associated with this class. Should be overridden by subclasses as
appropriate.

	
class Type

	Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of
Duct.DUCT_TYPE. Also determines the order in which ducts are loaded by DuctRegistry.

	
__init__(**kwargs)

	
	protocol (str, None): Name of protocol (used by Duct registries to inform

	Duct instances of how they were instantiated).

	name (str, None): The name to used by the Duct instance (defaults to

	class name if not specified).

	registry (DuctRegistry, None): The registry to use to lookup remote

	and/or cache instance specified by name.

	remote (str, RemoteClient): The remote by which the ducted service

	should be contacted.

host (str): The hostname of the service to be used by this client.
port (int): The port of the service to be used by this client.
username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

	password (str, bool, None): The password to authenticate with if necessary.

	If True, then users will be prompted at runtime for credentials.

	cache(Cache, None): The cache client to be attached to this instance.

	Cache will only used by specific methods as configured by the client.

	cache_namespace(str, None): The namespace to use by default when writing

	to the cache.

	
connect()

	Connect to the service backing this client.

It is not normally necessary for a user to manually call this function,
since when a connection is required, it is automatically created.

	Returns

	A reference to the current object.

	Return type

	Duct instance

	
describe(namespaces=None)

	Return a pandas DataFrame showing all keys and their metadata.

	Parameters

	namespaces (list<str,None>) – The namespaces to which the summary
should be restricted.

	Returns

	
	A representation of keys in the cache. Will include

	at least the following columns: [‘bytes’, ‘namespace’, ‘key’,
‘created’, ‘last_accessed’]. Any additional metadata for keys
will be appended to these columns.

	Return type

	pandas.DataFrame

	
disconnect()

	Disconnect this client from backing service.

This method is automatically called during reconnections and/or at
Python interpreter shutdown. It first calls Duct._disconnect (which
should be implemented by subclasses) and then notifies the
RemoteClient subclass, if present, to stop port-forwarding the remote
service.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
classmethod for_protocol(protocol)

	Retrieve a Duct subclass for a given protocol.

	Parameters

	protocol (str) – The protocol of interest.

	Returns

	
	The appropriate class for the provided,

	partially constructed with the protocol keyword argument
set appropriately.

	Return type

	functools.partial object

	Raises

	DuctProtocolUnknown – If no class has been defined that offers the
named protocol.

	
get(key, namespace=None, serializer=None)

	Retrieve the value associated with the nominated key from the cache.

	Parameters

	
	key (str) – The key for which value should be retrieved.

	namespace (str, None) – The namespace to be used.

	serializer (Serializer) – The Serializer subclass to use for the
deserialisation of value from the cache. (default=PickleSerializer)

	Returns

	The (appropriately deserialized) object stored in the cache.

	Return type

	object

	
get_bytecount(key, namespace=None)

	Retrieve the number of bytes used by a stored key.

This bytecount may or may not include metadata storage, depending on
the backend.

	Parameters

	
	key (str) – The key for which to extract the bytecount.

	namespace (str, None) – The namespace to be used.

	Returns

	
	The number of bytes used by the stored value associated with

	the nominated key and namespace.

	Return type

	int

	
get_metadata(key, namespace=None)

	Retrieve metadata associated with the nominated key from the cache.

	Parameters

	
	key (str) – The key for which to extract metadata.

	namespace (str, None) – The namespace to be used.

	Returns

	The metadata associated with this namespace and key.

	Return type

	dict

	
get_total_bytecount(namespaces=None)

	Retrieve the total number of bytes used by the cache.

This method iterates over all (nominated) namespaces and the keys
therein, summing the result of .get_bytecount(…) on each.

	Parameters

	namespaces (list<str,None>) – The namespaces to which the bytecount
should be restricted.

	Returns

	The total number of bytes used by the nominated namespaces.

	Return type

	int

	
has_key(key, namespace=None)

	Check whether the cache as a nominated key.

	Parameters

	
	key (str) – The key for which to check existence.

	namespace (str,None) – The namespace from which to extract all of the
keys.

	Returns

	
	Whether the cache has a value for the nominated namespace and

	key.

	Return type

	bool

	
has_namespace(namespace=None)

	Check whether the cache has the nominated namespace.

	Parameters

	namespace (str,None) – The namespace for which to check for existence.

	Returns

	Whether the cache has the nominated namespaces.

	Return type

	bool

	
host

	The host name providing the service, or ‘127.0.0.1’ if self.remote is
not None, whereupon the service will be port-forwarded locally. You can
view the remote hostname using duct._host, and change the remote host
at runtime using: duct.host = ‘<host>’.

	Type

	str

	
is_connected()

	Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently
connected. This is performed by verifying that the remote host and port
are still accessible, and then by calling Duct._is_connected, which
should be implemented by subclasses.

	Returns

	Whether this Duct instance is currently connected.

	Return type

	bool

	
keys(namespace=None)

	Collect a list of all the keys present in the nominated namespaces.

	Parameters

	namespace (str,None) – The namespace from which to extract all of the
keys.

	Returns

	The keys stored in the cache for the nominated namespace.

	Return type

	list<str>

	
namespaces

	A list of the namespaces stored in the cache.

	Type

	list <str,None>

	
password

	Some services require authentication in order to connect to the
service, in which case the appropriate password can be specified. If
True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then
None will be returned. You can specify a different password at runtime
using: duct.password = ‘<password>’.

	Type

	str

	
port

	The local port for the service. If self.remote is not None, the
port will be port-forwarded from the remote host. To see the port used on
the remote host refer to duct._port. You can change the remote port
at runtime using: duct.port = <port>.

	Type

	int

	
prepare()

	Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced
in self.connection_fields are retrieved. The fields include, by
default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’.
Subclasses may add or subtract from these special fields.

When called, it first checks whether the instance has already been
prepared, and if not calls _prepare and then records that the instance
has been successfully prepared.

	
prune(namespaces=None, max_age=None, max_bytes=None, total_bytes=None, total_count=None)

	Remove keys from the cache in order to satisfy nominated constraints.

	Parameters

	
	namespaces (list<str, None>) – The namespaces to consider for pruning.

	max_age (None, int, timedelta, relativedelta, date, datetime) – The
number of days, a timedelta, or a relativedelta, indicating the
maximum age of items in the cache (based on last accessed date).
Deltas are expected to be positive.

	max_bytes (None, int) – The maximum number of bytes for each key,
allowing the pruning of larger keys.

	total_bytes (None, int) – The total number of bytes for the entire
cache. Keys will be removed from least recently accessed to most
recently accessed until the constraint is satisfied. This
constraint will be applied after max_age and max_bytes.

	total_count (None, int) – The maximum number of items to keep in the
cache. Keys will be removed from least recently accessed to most
recently accessed until the constraint is satisfied. This
constraint will be applied after max_age and max_bytes.

	
reconnect()

	Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

	Returns

	A reference to this object.

	Return type

	Duct instance

	
reset()

	Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary
authentication and restores the values of the attributes listed in
prepared_fields to their values as of when Duct.prepare was called.

	Returns

	A reference to this object.

	Return type

	Duct instance

	
set(key, value, namespace=None, serializer=None, metadata=None)

	Set the value of a key.

	Parameters

	
	key (str) – The key for which value should be stored.

	value (object) – The value to be stored.

	namespace (str, None) – The namespace to be used.

	serializer (Serializer) – The Serializer subclass to use for the
serialisation of value into the cache. (default=PickleSerializer)

	metadata (dict, None) – Additional metadata to be stored with the value
in the cache. Values must be serializable via yaml.safe_dump.

	
set_metadata(key, metadata, namespace=None, replace=False)

	Set the metadata associated with a stored key, creating the key if it
is missing.

	Parameters

	
	key (str) – The key for which value should be stored.

	metadata (dict, None) – Additional/override metadata to be stored
for key in the cache. Values must be serializable via
yaml.safe_dump.

	namespace (str, None) – The namespace to be used.

	replace (bool) – Whether the provided metadata should entirely
replace any existing metadata, or just update it. (default=False)

	
unset(key, namespace=None)

	Remove the nominated key from the cache.

	Parameters

	
	key (str) – The key which should be unset.

	namespace (str, None) – The namespace to be used.

	
unset_namespace(namespace=None)

	Remove an entire namespace from the cache.

	Parameters

	namespace (str, None) – The namespace to be removed.

	
username

	Some services require authentication in order to connect to the
service, in which case the appropriate username can be specified. If not
specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as
necessary. If False was provided, then None will be returned. You can
specify a different username at runtime using: duct.username = ‘<username>’.

	Type

	str

Registry Management

Omniduct provides some simple tooling to help manage ensembles of Duct
configurations. The primary tool is the DuctRegistry, which manages
Duct instances and allows them to communicate with each other.

For some simple examples on its use, please refer to the Quickstart.

	
class omniduct.registry.DuctRegistry(config=None)

	Bases: object

A convenient registry for Duct instances.

This class provides a simple interface to a pool of configured services,
allowing convenient lookups of available services and the creation of new
ones. It also allows for the batch creation of services from a shared
configuration, which is especially useful in a company deployment.

	
__init__(config=None)

	
	Parameters

	config (iterable, dict, str, None) – Refer to .import_from_config
for more details (default: None).

	
register(duct, name=None, override=False, register_magics=True)

	Register an existing Duct instance into the registry.

Names of ducts can consist of any valid Python identifier, and multiple
names can be provided as a comma separated list in which case the names
will be aliases referring to the same Duct instance. Keep in mind that
any name must uniquely identify one Duct instance.

	Parameters

	
	duct (Duct) – The Duct instance to be registered.

	name (str) – An optional name to use when registering. If not
provided this will fall back to duct.name. If neither is
configured, an error will be thrown. Name can be a
comma-separated list of names, in which case the names are
aliases and will point to the same Duct instance.

	override (bool) – Whether to override any existing Duct instance
of the same name. If False, any overrides will result in an
exception.

	Returns

	The Duct instance being registered.

	Return type

	Duct

	
new(name, protocol, override=False, register_magics=True, **kwargs)

	Create a new service and register it into the registry.

	Parameters

	
	name (str) – The name (or names) of the target service. If multiple
aliases are to be used, names should be a comma separated list.
See .register for more details.

	protocol (str) – The protocol of the new service.

	override (bool) – Whether to override any existing Duct instance
of the same name. If False, any overrides will result in an
exception.

	register_magics (bool) – Whether to register the magics if running in
and IPython session (default: True).

	**kwargs (dict) – Additional arguments to pass to the constructor of
the class associated with the nominated protocol.

	Returns

	The Duct instance registered into the registry.

	Return type

	Duct

	
names

	The names of all ducts in the registry.

	Type

	list

	
lookup(name, kind=None)

	Look up an existing registered Duct by name and (optionally) kind.

	Parameters

	
	name (str) – The name of the Duct instance.

	kind (str, Duct.Type) – The kind of Duct to which the lookup should
be restricted.

	Returns

	The looked up Duct instance.

	Return type

	Duct

	Raises

	DuctNotFound – If no Duct can be found for requested name and/or
type.

	
populate_namespace(namespace=None, names=None, kinds=None)

	Populate a nominated namespace with references to a subset of ducts.

While a registry object is a great way to store and configure Duct
instances, it is sometimes desirable to surface frequently used
instances in other more convenient namespaces (such as the globals of
your module).

	Parameters

	
	namespace (dict, None) – The namespace to populate. If using from a
module you can pass globals(). If None, a new dictionary is
created, populated and then returned.

	names (list<str>, None) – The names to include in the population. If
not specified then all names will be exported.

	kinds (list<str>, None) – The kinds of ducts to include in the
population. If not specified, all kinds will be exported.

	Returns

	The populated namespace.

	Return type

	dict

	
get_proxy(by_kind=True)

	Return a structured proxy object for easy exploration of services.

This method returns a proxy object to the registry upon which the Duct
instances are available as attributes. This object is
also by default structured such that one first accesses an attribute
associated with a kind, which makes larger collections of services
more easily navigatable.

For example, if you have DatabaseClient subclass registered as
‘my_service’, you could access it on the proxy using:
>>> proxy = registry.get_proxy(by_kind=True)
>>> proxy.databases.my_service

	Parameters

	by_kind (bool) – Whether to nest proxy of Duct instances by kind.

	Returns

	The proxy object.

	Return type

	ServicesProxy

	
register_from_config(config, override=False)

	Register a collection of Duct service configurations.

The configuration format must be one of the following:
- An iterable sequence of dictionaries containing a mapping between the

keyword arguments required to instantiate the Duct subclass.

	A dictionary mapping names of Duct instances to dictionaries of
keyword arguments.

	A dictionary mapping Duct types (‘databases’, ‘filesystems’, etc) to
mappings like those immediately above.

	A string YAML representation of one of the above (with at least one
newline character).

	A string filename containing such a YAML representation.

There are three special keyword arguments that are required by the
DuctRegistry instance:
- name: Should be present only in the configuration dictionary when

config is provided as an iterable sequence of dictionaries.

	protocol: Which specifies which Duct subclass to fetch. Failure to
correctly set this will result in a warning and an ignoring of this
configuration.

	register_magics (optional): A boolean flag indicating whether to
register any magics defined by this Duct class (default: True).

	Parameters

	
	config (iterable, dict, str, None) – A configuration specified in one
of the above described formats.

	override (bool) – Whether to override any existing Duct instance
of the same name(s). If False, any overrides will result in an
exception.

Extensions and Plug-ins

Extending Omniduct to support additional services is relatively straightforward,
requiring you only to subclass Duct or one of the protocol specific common
API subclasses (a template for each of these is provided as a stub.py file
in the appropriate subpackage, e.g. https://github.com/airbnb/omniduct/blob/master/omniduct/databases/stub.py).

As soon as your subclass is in memory, it will integrate automatically with the
rest of the Omniduct ecosystem, and be instantiatable by protocol name through
the DuctRegistry or Duct.for_protocol() systems.

If you would like to contribute this extension into the upstream Omniduct
library, we welcome your contribution. This would entail simply adding a module
containing your subclass to the appropriate Omniduct subpackage, and then
(if it is stable and ready for broad usage) importing that subpackage from
omniduct.protocols. Once your module is merged into the master branch of
Omniduct, maintainance will fall to the core Omniduct maintainers, though you
are of course welcome to continue submitting patches to improve it or any
other aspect of Omniduct.

If you need further assistance, please do not hesitate to open an issue on our
issue tracker: https://github.com/airbnb/omniduct/issues .

Contributions

Contributions of any nature are welcome, including software patches,
improvements to documentation, bug reports, or feature requests. One of the most
useful contributions will undoubtedly be support for new protocols, and so we
look forward to seeing your patches to support your favourite services.

For documentation on how to contribute support for new protocols, please refer
to Extensions and Plug-ins.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 omniduct	

 	
 	
 omniduct.caches.base	

 	
 	
 omniduct.filesystems.base	

 	
 	
 omniduct.registry	

Index

 _
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.base.FileSystemFile method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.registry.DuctRegistry method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	_prepare() (omniduct.duct.Duct method)

C

 	
 	Cache (class in omniduct.caches.base)

 	cached_method() (in module omniduct.caches.base)

 	connect() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

D

 	
 	DatabaseClient (class in omniduct.databases.base)

 	dataframe_to_table() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	describe() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	dir() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	disconnect() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	download() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	DruidClient (class in omniduct.databases.druid)

 	DruidClient.Type (class in omniduct.databases.druid)

 	Duct (class in omniduct.duct)

 	Duct.Type (class in omniduct.duct)

 	DuctRegistry (class in omniduct.registry)

E

 	
 	execute() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	execute_from_file() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	
 	execute_from_template() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	exists() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

F

 	
 	FileSystemCache (class in omniduct.caches.filesystem)

 	FileSystemCache.Type (class in omniduct.caches.filesystem)

 	FileSystemClient (class in omniduct.filesystems.base)

 	FileSystemFile (class in omniduct.filesystems.base)

 	FileSystemFileDesc (class in omniduct.filesystems.base)

 	find() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	for_protocol() (omniduct.caches.filesystem.FileSystemCache class method)

 	(omniduct.databases.druid.DruidClient class method)

 	(omniduct.databases.hiveserver2.HiveServer2Client class method)

 	(omniduct.databases.neo4j.Neo4jClient class method)

 	(omniduct.databases.presto.PrestoClient class method)

 	(omniduct.databases.pyspark.PySparkClient class method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient class method)

 	(omniduct.duct.Duct class method)

 	(omniduct.filesystems.local.LocalFsClient class method)

 	(omniduct.filesystems.s3.S3Client class method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient class method)

 	(omniduct.remotes.ssh.SSHClient class method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient class method)

G

 	
 	get() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	get_bytecount() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	get_local_uri() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	get_metadata() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	
 	get_proxy() (omniduct.registry.DuctRegistry method)

 	get_total_bytecount() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	global_writes (omniduct.filesystems.base.FileSystemClient attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

H

 	
 	has_key() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	has_namespace() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	has_port_forward() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	HiveServer2Client (class in omniduct.databases.hiveserver2)

 	HiveServer2Client.Type (class in omniduct.databases.hiveserver2)

 	host (omniduct.caches.filesystem.FileSystemCache attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	(omniduct.duct.Duct attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

I

 	
 	is_connected() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	is_port_bound() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	isdir() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	isfile() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

K

 	
 	keys() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

L

 	
 	listdir() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	LocalFsClient (class in omniduct.filesystems.local)

 	LocalFsClient.Type (class in omniduct.filesystems.local)

 	lookup() (omniduct.registry.DuctRegistry method)

M

 	
 	MagicsProvider (class in omniduct.utils.magics)

 	mkdir() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

N

 	
 	names (omniduct.registry.DuctRegistry attribute)

 	NAMESPACE_DEFAULTS_READ (omniduct.databases.base.DatabaseClient attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	NAMESPACE_DEFAULTS_WRITE (omniduct.databases.base.DatabaseClient attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	
 	namespaces (omniduct.caches.base.Cache attribute)

 	(omniduct.caches.filesystem.FileSystemCache attribute)

 	Neo4jClient (class in omniduct.databases.neo4j)

 	Neo4jClient.Type (class in omniduct.databases.neo4j)

 	new() (omniduct.registry.DuctRegistry method)

O

 	
 	omniduct.caches.base (module)

 	omniduct.filesystems.base (module)

 	omniduct.registry (module)

 	open() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

P

 	
 	ParamikoSSHClient (class in omniduct.remotes.ssh_paramiko)

 	ParamikoSSHClient.Type (class in omniduct.remotes.ssh_paramiko)

 	password (omniduct.caches.filesystem.FileSystemCache attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	(omniduct.duct.Duct attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	path_basename() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	path_cwd (omniduct.filesystems.base.FileSystemClient attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	path_dirname() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	path_home (omniduct.filesystems.base.FileSystemClient attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.base.RemoteClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	path_join() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	path_normpath() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	path_separator (omniduct.filesystems.base.FileSystemClient attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.base.RemoteClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	
 	populate_namespace() (omniduct.registry.DuctRegistry method)

 	port (omniduct.caches.filesystem.FileSystemCache attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	(omniduct.duct.Duct attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	port_forward() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	port_forward_stop() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	port_forward_stopall() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	prepare() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	prepare_smartcards() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	PrestoClient (class in omniduct.databases.presto)

 	PrestoClient.Type (class in omniduct.databases.presto)

 	prune() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	PySparkClient (class in omniduct.databases.pyspark)

 	PySparkClient.Type (class in omniduct.databases.pyspark)

Q

 	
 	query() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	query_from_file() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	
 	query_from_template() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	query_to_table() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

R

 	
 	read_only (omniduct.filesystems.base.FileSystemClient attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

 	reconnect() (omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	register() (omniduct.registry.DuctRegistry method)

 	register_from_config() (omniduct.registry.DuctRegistry method)

 	register_magics() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	
 	RemoteClient (class in omniduct.remotes.base)

 	remove() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	reset() (omniduct.caches.filesystem.FileSystemCache method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	(omniduct.duct.Duct method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

S

 	
 	S3Client (class in omniduct.filesystems.s3)

 	S3Client.Type (class in omniduct.filesystems.s3)

 	schemas (omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	session_properties (omniduct.databases.base.DatabaseClient attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	set() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	set_metadata() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	show_port_forwards() (omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	showdir() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	SQLAlchemyClient (class in omniduct.databases.sqlalchemy)

 	SQLAlchemyClient.Type (class in omniduct.databases.sqlalchemy)

 	SSHClient (class in omniduct.remotes.ssh)

 	
 	SSHClient.Type (class in omniduct.remotes.ssh)

 	statement_cleanup() (omniduct.databases.base.DatabaseClient class method)

 	(omniduct.databases.druid.DruidClient class method)

 	(omniduct.databases.hiveserver2.HiveServer2Client class method)

 	(omniduct.databases.neo4j.Neo4jClient class method)

 	(omniduct.databases.presto.PrestoClient class method)

 	(omniduct.databases.pyspark.PySparkClient class method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient class method)

 	statement_hash() (omniduct.databases.base.DatabaseClient class method)

 	(omniduct.databases.druid.DruidClient class method)

 	(omniduct.databases.hiveserver2.HiveServer2Client class method)

 	(omniduct.databases.neo4j.Neo4jClient class method)

 	(omniduct.databases.presto.PrestoClient class method)

 	(omniduct.databases.pyspark.PySparkClient class method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient class method)

 	stream() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	stream_to_file() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

T

 	
 	table_desc() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	table_drop() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	table_exists() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	table_head() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	table_list() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	table_partition_cols() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	
 	table_props() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	template_add() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	template_get() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	template_names (omniduct.databases.base.DatabaseClient attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	template_render() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

 	template_variables() (omniduct.databases.base.DatabaseClient method)

 	(omniduct.databases.druid.DruidClient method)

 	(omniduct.databases.hiveserver2.HiveServer2Client method)

 	(omniduct.databases.neo4j.Neo4jClient method)

 	(omniduct.databases.presto.PrestoClient method)

 	(omniduct.databases.pyspark.PySparkClient method)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient method)

U

 	
 	unset() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	unset_namespace() (omniduct.caches.base.Cache method)

 	(omniduct.caches.filesystem.FileSystemCache method)

 	update_host_keys() (omniduct.remotes.ssh.SSHClient method)

 	upload() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	username (omniduct.caches.filesystem.FileSystemCache attribute)

 	(omniduct.databases.druid.DruidClient attribute)

 	(omniduct.databases.hiveserver2.HiveServer2Client attribute)

 	(omniduct.databases.neo4j.Neo4jClient attribute)

 	(omniduct.databases.presto.PrestoClient attribute)

 	(omniduct.databases.pyspark.PySparkClient attribute)

 	(omniduct.databases.sqlalchemy.SQLAlchemyClient attribute)

 	(omniduct.duct.Duct attribute)

 	(omniduct.filesystems.local.LocalFsClient attribute)

 	(omniduct.filesystems.s3.S3Client attribute)

 	(omniduct.filesystems.webhdfs.WebHdfsClient attribute)

 	(omniduct.remotes.ssh.SSHClient attribute)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient attribute)

W

 	
 	walk() (omniduct.filesystems.base.FileSystemClient method)

 	(omniduct.filesystems.local.LocalFsClient method)

 	(omniduct.filesystems.s3.S3Client method)

 	(omniduct.filesystems.webhdfs.WebHdfsClient method)

 	(omniduct.remotes.base.RemoteClient method)

 	(omniduct.remotes.ssh.SSHClient method)

 	(omniduct.remotes.ssh_paramiko.ParamikoSSHClient method)

 	
 	WebHdfsClient (class in omniduct.filesystems.webhdfs)

 	WebHdfsClient.Type (class in omniduct.filesystems.webhdfs)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Omniduct v1.1.19 documentation

_static/up-pressed.png

_static/up.png

