

Welcome to omniconf’s documentation!

Contents:

	Design principles

	Keys

	Terminology

	Supported backends
	backend interface

	commandline arguments

	environment variables

	ConfigObj files

	JSON files

	YAML files

	Hashicorp Vault

	Setting types
	Built-in interpretation

	Custom interpretation and types

	Usage
	Basic usage

	Advanced usage

	Autoconfigure prefix usage

	Backend prefix usage

	Prefix usage examples

	Outputting usage information

Indices and tables

	Index

	Search Page

Design principles

The design of omniconf is based around the following principles:

	Defining settings must be easy.

	Configuration of values must be easy.

	Multiple sources for configuration must be allowed and supported.

	Fine-grained configuration should be an option.

	Backends should be easy to implement.

Configuring an application can be hard, and it gets more complex if more than one way to configure must be supported.
omniconf aims to separate definition of Settings and the loading of the Config, so that multiple Backends can
be easily used and changed.

Keys

All Settings and Configs are defined using a simple key. The key should only contain ASCII characters (altough this
is not validated). The following are valid keys:

username
password
application.module.setting

Dots denote a section, and are mainly used to group similar keys. They can also be used by backends, the
ConfigObjBackend backend for instance uses the dots to lookup keys in nested sections.

Terminology

	Setting

	A definition of a key, along with some metadata, like a type or default value.

	Config

	A Setting that has been configured, by specifying value.

	Key

	A Setting defines a key, which can later be used to set a Config value. A key is defined as a simple ascii only
string. A key may contain dots, which are interpreted a sections. app.database.username is a typical example.

	Backend

	A source of Config values. Also see Supported backends.

	prefix

	Some backends may allow a prefix to be configured. EnvBackend for example prepends this to the environment
it tries to read.

Supported backends

The following backends are supported as of version 1.3.1:

	backend interface

	commandline arguments

	environment variables

	ConfigObj files

	JSON files

	YAML files

	Hashicorp Vault

backend interface

All backends implement the same interface, which allows for easy addition of new (or external backends).

	
class omniconf.backends.generic.ConfigBackend(conf=None)

	Defines a configuration backend, which provides configuration values
based on keys.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
classmethod autodetect_settings(autoconfigure_prefix)

	Returns a tuple of Setting objects, that are required for
autoconfigure() to complete successfully.

	
get_value(setting)

	Retrieves the value for the given Setting.

	
get_values(settings)

	Retrieves a list of Setting`s all at once. Values are returned
as a list of tuples containing the :class:.Setting` and value.

commandline arguments

Command line arguments are implemented using argparse [https://docs.python.org/2/library/argparse.html#module-argparse]. This backend is enabled by default.

	
class omniconf.backends.argparse.ArgparseBackend(conf=None, prefix=None)

	Uses the current process arguments, and allows values in it to
be retrieved using dotted keys with a specific prefix. By default no
prefix is assumed.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
get_value(setting)

	Retrieves the value for the given Setting.

	
get_values(settings)

	Process the given list Setting objects, and retrieve the
values. Keys are converted as follows:

	Dots are replaced by dashes (-).

	The key is lowercased.

	A prefix is attached to the key, if specified

This means that a key like section.value will be queried like
--prefix-section-value. When no prefix is specified,
--section-value is queried instead.

Special handling is added for boolean Settings with a default
specified, which works as follows:

	Settings with _type=bool and no default will be processed
as normal.

	Settings with _type=bool, and where the default value is True will
be specified as an argparse argument with action=store_false.

	Settings with _type=bool, and where the default value is False will
be specified as an argparse argument with action=store_true.

environment variables

Environments are read from os.environ [https://docs.python.org/2/library/os.html#os.environ]. This backend is enabled by default.

	
class omniconf.backends.env.EnvBackend(conf=None, prefix=None)

	Uses the current process Environment, and allows values in it to
be retrieved using dotted keys with a specific prefix. By default no
prefix is assumed.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
get_value(setting)

	Retrieves the value for the given Setting. Keys are converted
as follows:

	Dots are replaced by underscores

	The key is uppercased.

	A prefix is attached to the key

This means that a key like section.value will be queried like
PREFIX_SECTION_VALUE. When no prefix is specified,
SECTION_VALUE is queried instead.

ConfigObj files

Files in ConfigObj format are supported. This backend is only enabled if omniconf.configobj.filename is specified
during setup.

	
class omniconf.backends.configobj.ConfigObjBackend(conf)

	Uses a ConfigObj file (or StringIO [https://docs.python.org/2/library/stringio.html#module-StringIO] instance) as a backend, and
allows values in it to be retrieved using dotted keys.

Dots in the keys denote a section in the ConfigObj document. For instance,
the key section.subsection.key will correspond to this document:

[section]
[[subsection]]
key=value

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
classmethod autodetect_settings(autoconfigure_prefix)

	Returns a tuple of Setting objects, that are required for
autoconfigure() to complete successfully.

JSON files

Files in JSON format are supported. This backend is only enabled if omniconf.json.filename is specified during setup.

	
class omniconf.backends.json.JsonBackend(conf)

	Uses a JSON string as a backend, and allows values in it to
be retrieved using dotted keys.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
classmethod autodetect_settings(autoconfigure_prefix)

	Returns a tuple of Setting objects, that are required for
autoconfigure() to complete successfully.

YAML files

Files in YAML format are supported. This backend is only enabled if omniconf.yaml.filename is specified during setup.
All YAML documents in the file are consumed.

	
class omniconf.backends.yaml.YamlBackend(conf)

	Uses a YAML string as a backend, and allows values in it to
be retrieved using dotted keys.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
classmethod autodetect_settings(autoconfigure_prefix)

	Returns a tuple of Setting objects, that are required for
autoconfigure() to complete successfully.

Hashicorp Vault

Hashicorp’s Vault is supported by using its API. This backend requires several configuration keys to be defined during
setup, see the documentation below for details.

	
class omniconf.backends.vault.VaultBackend(conf=None, prefix=None, url=None, auth=None, credentials=None, base_path=None)

	Uses Hashicorp’s Vault as a backend, and allows values in it to be
retrieved using dotted keys.

Key translation

Dotted keys are translated into an URL path, which is then optionally
prepended by the configured backend prefix. The last part of the path is
used as a property to retrieve. If a base_path is also configured, it
overrides the backend prefix.

For instance, a setting with key setting.foo.bar will be translated into
path setting/foo, from which the property with key bar will be
retrieved. Because Vault nodes are grouped by backend, it usually makes
sense to define base_path as secret, which corresponds to the Generic
backend of Vault. In this example, the example key will be translated into
path secret/setting/foo, from which the property with key bar will be
retrieved.

API Connection

The URL endpoint which omniconf will default to http://localhost:8200,
and can be configured using the configuration key omniconf.vault.url,
assuming the autoconfigure_prefix is set to omniconf.

Authentication

Vault’s API requires some form of authentication, of which the following
are supported:

	Tokens [https://www.vaultproject.io/docs/auth/token.html]

	TLS certificates [https://www.vaultproject.io/docs/auth/cert.html]

	Username & Password [https://www.vaultproject.io/docs/auth/userpass.html]

	LDAP [https://www.vaultproject.io/docs/auth/ldap.html]

	App ID [https://www.vaultproject.io/docs/auth/app-id.html]

	AppRole [https://www.vaultproject.io/docs/auth/approle.html]

Retrieval of Vault data requires an ACL to be defined, which goes beyond
the scope of this documentation. omniconf only needs read rights on the
keys it tries to access.

Selection of what authentication method is used depends on which
configuration is present during setup. For all the following examples, the
autoconfigure_prefix is assumed to be omniconf:

	Token authentication is used if omniconf.vault.auth.token
is defined.

	TLS certificates authentication is used if both
omniconf.vault.auth.tls.cert.filename and
omniconf.vault.auth.tls.key.filename are defined.

	Username and Password authentication is used if both
omniconf.vault.auth.userpass.username and
omniconf.vault.auth.userpass.password are defined.

	LDAP authentication is used if both
omniconf.vault.auth.ldap.username and
omniconf.vault.auth.ldap.password are defined.

	App ID authentication is used if both
omniconf.vault.auth.appid.app_id and
omniconf.vault.auth.appid.user_id are defined.

	AppRole authentication is used if both
omniconf.vault.auth.approle.role_id and
omniconf.vault.auth.approle.secret_id are defined.

The above order is also the order in which the configuration values are
looked up. The first one to satisfy the conditions is used, and no further
attepts are made if configuration fails.

	
classmethod autoconfigure(conf, autoconfigure_prefix)

	Called with a ConfigRegistry, the result of this method must
be either a new instance of this class, or None [https://docs.python.org/2/library/constants.html#None]. This method
is automatically called during the autoconfigure phase.

	
classmethod autodetect_settings(autoconfigure_prefix)

	Returns a tuple of Setting objects, that are required for
autoconfigure() to complete successfully.

	
get_value(setting)

	Retrieves the value for the given Setting.

Setting types

When a Setting is defined, a type is also declared. By default, the value of a Setting
is str [https://docs.python.org/2/library/functions.html#str], but any class or function that accepts a single parameter and returns a class instance can be
used. The class or function passed to _type will be called with the value to process as its only parameter.

Built-in interpretation

Special cases are added to support dict [https://docs.python.org/2/library/stdtypes.html#dict], list, tuple() [https://docs.python.org/2/library/functions.html#tuple] and bool [https://docs.python.org/2/library/functions.html#bool], which are
processed by ast [https://docs.python.org/2/library/ast.html#module-ast]. The implementation can be found in the unrepr method in omniconf.config:

	
omniconf.config.unrepr(src, _type)

	Returns an interpreted value based on src. If source is already an
instance of _type, no interpretation is performed.

This means that a Setting declared as such:

from omniconf import setting
setting("items", _type=list)

Which is provided by a backend with the following string:

"['foo', 'bar', 'baz']"

Will return a list that looks like this:

from omniconf import config
print(config("items"))
['foo', 'bar', 'baz']

For detailed information, see the ast [https://docs.python.org/2/library/ast.html#module-ast] documentation.

Custom interpretation and types

The most simple custom type looks like this:

def custom_type(src):
 return src

This example simply takes the input as provided, and returns it as-is. Custom types are not limited to functions,
classes can also be used. Any class that has exactly one (mandatory) parameter is valid):

class CustomType(object):
 def __init__(self, src, foo=bar):
 self.src = src

Some custom types are provided with omniconf, which may be used as-is, but also serve as examples.

Enum

	
omniconf.types.enum(values)

	Returns the original value if it is present in values, otherwise raises a
RuntimeError.

enum_func = enum(["foo", "bar"])
print enum_func("foo")
"foo"
print enum_func("baz")
...
RuntimeError: Invalid value specified, must be one of: foo, bar

Separator Sequence

A somewhat fancy name for what one might normally call a comma separated list. The implementation is not
limited to just commas however, and can use any string.

	
omniconf.types.separator_sequence(separator)

	Returns a function that parses a string value, separates it into parts and
stores it as a read-only sequence:

parser = separator_sequence(",")
print parser("a,b,c")
['a', 'b', 'c']

If the input value is already a sequence (but not a string), the value is
returned as is. The sequence is an instance of SeparatorSequence,
and can be used as one would normally use a (read-only) tuple or list.

	
class omniconf.types.SeparatorSequence(string, separator)

	Splits the given string using the given separator, and provides a
the result with a read-only Sequence interface.

String Boolean

	
omniconf.types.string_bool(value)

	Returns False if the value is Falsish or “False”, True if value is “True”,
or the original value otherwise.

String or False

	
omniconf.types.string_or_false(value)

	Returns the given value as-is, unless the values equals “False”. In that
case, boolean False is returned.

Usage

Basic usage

The most basic usage of omniconf requires the use of the setting(), config() and
omniconf_load() functions:

	
omniconf.setting(key, _type=<class 'str'>, required=False, default=None, help=None, registry=None)

	Register a new Setting with the given key.

	
omniconf.config(key, registry=None)

	Retrieves the configured value for a given key. If no specific registry is
specified, the value will be retrieved from the default
ConfigRegistry.

	
omniconf.omniconf_load(config_registry=None, backends=None, autoconfigure_prefix=None)

	Fill the provided ConfigRegistry, by default using all available
backends (as determined by autoconfigure_backends(). If no
ConfigRegistry is provided, the default ConfigRegistry
is used. If unset, autoconfigure_prefix will default to “omniconf”.

Define Settings using setting():

from omniconf import setting
setting("app.username")
setting("app.hostname")

After defining the Settings, use omniconf_load() to load values:

from omniconf import omniconf_load
omniconf_load()

Afterwards, you can use config() to retrieve values.

>>> from omniconf import config
>>> print config("app.username")
"user"

By default, all Settings defined using setting() will be stored as str [https://docs.python.org/2/library/functions.html#str]. To use another class, do this:

from omniconf import setting
setting("app.firstname", _type=unicode)
setting("app.load_order", _type=list)

Any class can be used. See Setting types for more information.

Advanced usage

By default all Settings and Configs are registered in global Registries. These are defined in their respective modules:

	
omniconf.config.DEFAULT_REGISTRY = <omniconf.config.ConfigRegistry object>

	Global ConfigRegistry which will be used when no specific
ConfigRegistry is defined.

	
omniconf.setting.DEFAULT_REGISTRY = <omniconf.setting.SettingRegistry object>

	Global SettingRegistry which will be used when no specific
SettingRegistry is defined.

This allows you to easily define Settings. Sometimes you might want to have specific Settings and Configs however. You
can achieve this by specifying your own Registries:

from omniconf.setting import SettingRegistry
from omniconf.config import ConfigRegistry
from omniconf import omniconf_load

settings = SettingRegistry()
configs = ConfigRegistry(setting_registry=settings)

setting("app.username", registry=settings)

omniconf_load(config_registry=configs)

omniconf actually uses this mechanism to build the context needed for autoconfiguring. You can check this out in
autoconfigure_backends()

	
omniconf.loader.autoconfigure_backends(autoconfigure_prefix=None)

	Determine available backends, based on the current configuration available
in the environment and command line. Backends can define a
Setting that is required for proper autodetection.

The result of this function is a list of backends, that are configured and
ready to use.

Autoconfigure prefix usage

Prefixes are used during autoconfiguring step to load Settings, while trying to avoid name clashes with user defined
Settings. By default, omniconf.prefix will be loaded from the environment and cli arguments, by looking for
OMNICONF_PREFIX and --omniconf-prefix respectively. In these settings, omniconf is the prefix.

To change the used during autoconfiguring, do the following:

from omniconf import omniconf_load
omniconf_load(config_registry=configs, autoconfigure_prefix="application")

The above example will set the prefix to application, which will cause autoconfiguring to look for
APPLICATION_PREFIX and --application-prefix instead. Good if you don’t want to leak that you’re using omniconf
to your users.

Backend prefix usage

Backends may allow a prefix to be defined. By default, this setting is loaded from the omniconf.prefix key (see
previous section). If defined, this value is passed to all available backends, and will influence how they will load
Config values.

For instance. if omniconf.prefix is not set, EnvBackend will load some.setting from the
SOME_SETTING environment variable. If omniconf.prefix is set to app, the value is loaded from
APP_SOME_SETTING instead. See the Supported backends section for which Backends allow a prefix to be
configured, and how this changes the loading of values.

Prefix usage examples

Working with prefixes can be a little tricky. The thing to keep in mind is that there are two prefix types, one that is
used during the autoconfigure step where the backends are initialized (the autoconfiguration prefix), and one that is
used when loading the configuration (the backend prefix).

Given this code snippet:

from omniconf import omniconf_load, config, setting

setting("db.url", required=True)
omniconf_load(autoconfigure_prefix="test")

print config("db.url")

A step-by-step analysis:

	The setting db.url is defined and marked as required.

	Autoconfiguration is started and the autoconfigure_prefix is defined as ‘test’.

	During autoconfiguration, by default omniconf.prefix will be looked up. Because we override autoconfigure_prefix,
test.prefix is looked up instead.

	The contents of test.prefix is used by certain backends (EnvBackend in this example) to determine where
they should look for their settings.

	Config values are loaded, and the backend prefix is used to determine how it should be loaded.

Example 1

$ python test.py

Traceback (most recent call last):
...
omniconf.exceptions.UnconfiguredSettingError: No value was configured for db.url

An error is raised because we don’t set any config values at all, and db.url is marked as required.

Example 2

$ TEST_DB_URL=bla python test.py
Traceback (most recent call last):
...
omniconf.exceptions.UnconfiguredSettingError: No value was configured for db.url

An error is raised because we set TEST_DB_URL, but no backend prefix has been configured. The value of db.url is
looked up in DB_URL which is not set.

Example 3

$ TEST_PREFIX=OTHER OTHER_DB_URL=foo python test.py
foo

The backend prefix is set to OTHER. This means that the setting for db.url is looked up in OTHER_DB_URL, which is
also set.

Example 4

$ DB_URL=foo python test.py
foo

No backend prefix is set. This means that the setting for db.url is looked up in DB_URL, which is also set.

Outputting usage information

To output argparse [https://docs.python.org/2/library/argparse.html#module-argparse]-like usage information based on Setting objects contained in a
SettingRegistry, use the show_usage() function.

	
omniconf.show_usage(setting_registry=None, name=None, top_message=None, bottom_message=None, out=None, exit=0)

	Prints usage information based on Setting objects in the given
SettingRegistry. If no setting_registry is specified, the
default SettingRegistry is used.

If no name is specified, sys.argv[0] is used. Additionally, a header
and footer message may be supplied using top_message and bottom_message
message respectively.

By default the usage information is output to sys.stderr. This can be
overidden by specifying a different File-like object to out.

By default, this function will call sys.exit and stop the program with
exit code 0. This can be overridden by a specifying different value to
exit. Set to False to not exit.

For instance, the output for this piece of code:

from omniconf import setting, show_usage

setting("verbose", _type=bool, default=False, help="Enable verbose mode.")
setting("section1.setting", help="An optional setting")
setting("section1.other_setting", help="A different optional setting.")
setting("section2.setting", required=True, help="A required setting.")

show_usage(name="usage_example")

Looks like this:

usage: usage_example [--verbose] [--section1-other_setting SOS]
 [--section1-setting SS] --section2-setting SS

optional arguments:
--verbose Enable verbose mode.

section1:
--section1-other_setting SOS
 A different optional setting.
--section1-setting SS
 An optional setting

section2:
--section2-setting SS
 A required setting.

An user who wants to show usage information, usually specifies a command line flag like --help. To detect this,
omniconf provides a convenience method:

	
omniconf.help_requested()

	Returns True if -h or –help was specified on the command line.

Two other methods are also provided, one to detect a version flag, and one to detect any flag:

	
omniconf.version_requested()

	Returns True if -v or –version was specified on the command line.

	
omniconf.flag_requested(flags)

	Returns True if the specified list of flags were specified on the
command line.

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | O
 | S
 | U
 | V
 | Y

A

 	
 	ArgparseBackend (class in omniconf.backends.argparse)

 	autoconfigure() (omniconf.backends.argparse.ArgparseBackend class method)

 	(omniconf.backends.configobj.ConfigObjBackend class method)

 	(omniconf.backends.env.EnvBackend class method)

 	(omniconf.backends.generic.ConfigBackend class method)

 	(omniconf.backends.json.JsonBackend class method)

 	(omniconf.backends.vault.VaultBackend class method)

 	(omniconf.backends.yaml.YamlBackend class method)

 	
 	autoconfigure_backends() (in module omniconf.loader)

 	autodetect_settings() (omniconf.backends.configobj.ConfigObjBackend class method)

 	(omniconf.backends.generic.ConfigBackend class method)

 	(omniconf.backends.json.JsonBackend class method)

 	(omniconf.backends.vault.VaultBackend class method)

 	(omniconf.backends.yaml.YamlBackend class method)

C

 	
 	config() (in module omniconf)

 	
 	ConfigBackend (class in omniconf.backends.generic)

 	ConfigObjBackend (class in omniconf.backends.configobj)

D

 	
 	DEFAULT_REGISTRY (in module omniconf.config)

 	(in module omniconf.setting)

E

 	
 	enum() (in module omniconf.types)

 	
 	EnvBackend (class in omniconf.backends.env)

F

 	
 	flag_requested() (in module omniconf)

G

 	
 	get_value() (omniconf.backends.argparse.ArgparseBackend method)

 	(omniconf.backends.env.EnvBackend method)

 	(omniconf.backends.generic.ConfigBackend method)

 	(omniconf.backends.vault.VaultBackend method)

 	
 	get_values() (omniconf.backends.argparse.ArgparseBackend method)

 	(omniconf.backends.generic.ConfigBackend method)

H

 	
 	help_requested() (in module omniconf)

J

 	
 	JsonBackend (class in omniconf.backends.json)

O

 	
 	omniconf_load() (in module omniconf)

S

 	
 	separator_sequence() (in module omniconf.types)

 	SeparatorSequence (class in omniconf.types)

 	setting() (in module omniconf)

 	
 	show_usage() (in module omniconf)

 	string_bool() (in module omniconf.types)

 	string_or_false() (in module omniconf.types)

U

 	
 	unrepr() (in module omniconf.config)

V

 	
 	VaultBackend (class in omniconf.backends.vault)

 	
 	version_requested() (in module omniconf)

Y

 	
 	YamlBackend (class in omniconf.backends.yaml)

 nav.xhtml

 Table of Contents

 		
 Welcome to omniconf’s documentation!

 		
 Design principles

 		
 Keys

 		
 Terminology

 		
 Supported backends

 		
 backend interface

 		
 commandline arguments

 		
 environment variables

 		
 ConfigObj files

 		
 JSON files

 		
 YAML files

 		
 Hashicorp Vault

 		
 Setting types

 		
 Built-in interpretation

 		
 Custom interpretation and types

 		
 Enum

 		
 Separator Sequence

 		
 String Boolean

 		
 String or False

 		
 Usage

 		
 Basic usage

 		
 Advanced usage

 		
 Autoconfigure prefix usage

 		
 Backend prefix usage

 		
 Prefix usage examples

 		
 Example 1

 		
 Example 2

 		
 Example 3

 		
 Example 4

 		
 Outputting usage information

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

