

	
.. include:: /../common/authors.txt

Omnia Foundation Documentation

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Getting Started

	Omnia Foundation Fundamentals
	Omnia Extension Package

	Omnia Feature

	Resource Mappings

	Localization

	Permissions

	Configuration

	Bundling

	Logging

	SharePoint Provisioning
	Field

	Content Type

	List

	Image Rendition

	File
	Page Layout

	Glue Layout

	Webpart Definition

	Generic File

	Provisioning Pipeline

	Omnia API
	Caching

	Configurations

	Controls

	Email

	Features

	Lists

	Logging

	Security

	Custom Web API for Omnia extensions
	Omnia base controller

	Omnia Jobs
	Scheduled Job

	Message Queues

	Client-Side Development
	Live reload

	Angular 1
	UI Components
	Single Picker

	Multi Picker

	Client-Side Services

	Angular 2
	Components
	DropDownList

	ColorPicker

	Services
	AJAX Service

	Dialogs Service

	Configuration Service

	Localization Service

	Performance

	Release Notes
	Omnia Foundation

	Omnia Tooling

	Contribute to this Documentation
	Get started

	Work with the documentation

	Commit your changes

	
.. include:: /../common/authors.txt

Getting Started

1. Install Visual Studio 2017

Download and install Visual Studio 2017 (not Community edition)

2. Install Node JS

Download and install Node JS from https://nodejs.org/ . Choose the latest Current version. (Tested with version 8.5.0)

Or, if you have the need for running different versions of nodejs, for various projects.
NVM (Node Version Manager) for windows is recomended, it allows for easy switching between nodejs versions.
It can be found at https://github.com/coreybutler/nvm-windows
You will need to uninstall nodejs if you already have it, instructions are on the repo.

3. Install Office Developer Tools

Download and install Office Developer Tools from https://www.visualstudio.com/vs/office-tools/

4. Configure Precio Fishbone NuGet package source in Visual Studio

Precio Fishbone NuGet package source is needed for download Omnia NuGet packages. To configure Precio Fishbone NuGet package source, follow these steps:

	In Visual Studio, navigate to Tools > NuGet Packages Manager > Packages Manager Settings

	In the Options dialog, select Package Sources in the left pane

	Add a new package source named Precio Fishbone with this URL http://nuget.preciofishbone.se/api/v2

[image: _images/nuget-package-source.png]

5. Install Omnia Tooling for Visual Studio

Download and install Omnia Tooling for Visual Studio

6. Create new project with Omnia Extension project template

[image: _images/extension-new-project.PNG]

Note

	Omnia Documentation - Project template for creating an Omnia documentation package

	Omnia Extension - Project template for creating an Omnia extension package

Select the Omnia Extension template and name your project. Click OK.

The following screen opens

[image: _images/extension-new-omnia-extension-project.PNG]
The first section is where you enter metadata about your extension. Normally there is no need to change these two values

[image: _images/extension-dialog-extension.PNG]
The second section exists to help you configure the communication beween your development environment and your Omnia tenant

[image: _images/extension-dialog-devenv.PNG]

	Tenant Id is found in Omnia Admin in your tenant, in the Settings section (see image below)

	Foundation Url is also found in Omnia Admin, in the Settings section (see image below)

[image: _images/omnia-admin-tenant-info.PNG]

	Api Secret. This secret is recieved from Omnia by navigating to Omnia Admin > System > Extensions > Register Extension and paste in your Extension Id (from the Visual Studio dialog)

[image: _images/omnia-admin-register-extension.png]
[image: _images/omnia-admin-register-extension2.png]
The third section’s purpose is there to help you target the correct API version, both in Omnia and SharePoint

[image: _images/extension-dialog-apiversion.png]
The Foundation API version used in your tenant can be found in Omnia Admin > System, in the Developer Information section

The right hand side of the dialog determines the structure and files that will be created in the Extension projects

[image: _images/extension-dialog-project-options.PNG]

	The Extension Package checkbox controls if an Omnia Extension project is created in the solution

	The Web API checkbox controls if a Web API project, prepared to communicate with Omnia is created in the solution

The Extension Package checkbox has some child items that can be selected

	The Client Side checkbox determines if the project structure and files for doing client side development should be added to the solution

	The Angular Tooling checkbox makes sure the relevant files and tooling support for Angular development is added

	The Less Tooling checkbox makes sure the relevant files and tooling support for compiling Less files is added

	The Server Side checkbox determined if the project structure for doing server side development (like features, jobs etc.) is added to the project

	Below the Examples checkbox you can select different code examples to be provisioned to your project, to set you off to a quick start

	The Setup basic folder structure checkbox will add a best practice folder structure to your project

After filling in all the fields in the form, and selecting all the checkboxes, the following solution structure will be created

[image: _images/toolings-project-structure-new.png]

7. Alter the environment information in your project

(when changing tenant, or when passing the extension over to a fellow developer)

Open the file environment.json in MyOmniaExtension and fill in:

	TenantId: you get this from the System page in Omnia admin

	ApiSecret: the secret you got when you registered your extension in step 6

	FoundationUrl: you get this from the System page in Omnia admin

[image: _images/toolings-environment-json.png]

9. Deploy your extension

Right click on Extension project (DevelopDocumentation) and click Omnia Deploy

[image: _images/toolings-omnia-deploy.png]
You can see the deployment progress in the Output window in Visual Studio

[image: _images/toolings-omnia-deploy-output.png]

10. Verify

After the extension has been deployed successfully to Omnia, you can verify it by navigating to System > Extension in Omnia admin

[image: _images/omnia-admin-new-extension-success.png]
And in the Features page you should see the features from your extension.

Congratulations, you are now ready to build your magical Omnia extension!

	
.. include:: /../common/authors.txt

Omnia Foundation Fundamentals

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Omnia Extension Package

	Omnia Feature

	Resource Mappings

	Localization

	Permissions

	Configuration

	Bundling

	Logging

	
.. include:: /../common/authors.txt

Omnia Extension Package

Omnia Foundation is built with extensibility in mind since day one and an Omnia Extension Package is the main way to extend Omnia. This article will give an overview of what you can achieve with extension packages and the basic structure of an extension package. For a more practical guide on how to start developing Omnia extensions see the Getting Started guide.

Sections:

	What is an Omnia Extension Package?

	Manage extension packages

What is an Omnia Extension Package?

An Omnia extension package is a pack of features or extensions for Omnia. You can think of it like SharePoint solution packages but for the Omnia platform. An extension can be used to deploy all kinds of new features, from small UI changes to non-trivia applications with its own back-end and database. Examples are Omnia Intranet and Omnia Documentation Management.

[image: ../_images/extensionpackage.png]
At the core of an extension package are resource files. Resource files can be anything from client-side code like JavaScript, CSS, HTML templates to SharePoint artifacts like page layouts and web parts. These resources are mapped and deployed by logical containers called Omnia feature.

For example, the resources in a large extension might looks like this

[image: ../_images/extensionpackage-tenantresources.png]
An extension package can also contain Omnia jobs, pieces of code that will run as scheduled tasks in Omnia, and provisioning pipelines, pieces of code that will be hooked into the site provisioning pipeline of Omnia.

Manage extension packages

All extension packages in a tenant can be managed in Omnia admin, System > Extensions

[image: ../_images/omnia-admin-new-extension-upload.png]
New extensions can be uploaded directly from this UI by drag and drop or from Visual Studio using Omnia Tooling. An extension need to be registered before it can be uploaded, see the Getting Started guide for more details.

In this UI you can also manage configurations for each extension by clicking on the extension name

[image: ../_images/extensionpackage-configurations.png]
When a new version of an extension package has been deployed, all the new changes will not be available for users until the features of that extension are upgraded to the latest version.

	
.. include:: /../common/authors.txt

Omnia Feature

Omnia features are modules containing customizations for Omnia. They are very similar to SharePoint features, except that they can provisioning resources to both SharePoint and to Omnia database. An Omnia feature can also run your custom code when they are activated, upgraded or removed.

Sections:

	Feature scopes

	Built-in methods and properties

	Create new feature

	Feature activation, deactivation and upgrade

	Provisioning tenant resources

	Provisioning SharePoint artifacts

Feature scopes

A feature will have one of the three scopes Site, SiteCollection and Tenant, each scope can deploy different types of artifacts.

	Scope

	Artifacts

	SharePoint ClientContext

	Site

	
	Page

	List instance

	Site.js bundle

	Site.css bundle

	
App-only context of the

target site

	SiteCollection

	
	Page

	List instance

	Content Type

	Field

	Masterpage and pagelayout

	Webpart

	SiteCollection.js bundle

	SiteCollection.css bundle

	
App-only context of the

root site of the target

site collection

	Tenant

	
	Tenant resource

	Tenant.js bundle

	Tenant.css bundle

	
Not available

Built-in methods and properties

	Properties

	Type

	Description

	Ctx

	ClientContext

	
App-only client context for the targeting site.

This property is not available in tenant scope features.

	Methods

	Type

	Description

	CreateContextFor(string spUrl)

	ClientContext

	
Create a new app-only context for another site

	Log(string log)

	void

	
Add a new entry to this feature’s logs

	WorkWith()

	ApiFactory

	
Return the ApiFactory that can call Omnia API

Example: WorkWith().Logging().AddLog(log)

	Localize(string localizeKey)

	string

	
Return the localized string

Create new feature

As usual, you can create new Omnia feature using the template from Omnia tooling

[image: ../_images/toolings-item-templates-feature.png]
At the top of the feature is the FeatureDefinition attribute which contains the feature’s metadata

[FeatureDefinition(
 id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
 name: "MyOmniaExtension Sample Feature Core",
 version: "0.1.0",
 scope: FeatureScopes.Tenant
)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature

Feature activation, deactivation and upgrade

In a feature you can override the activation, decativation or upgrade events to run custom code. In these events, you can:

	Write CSOM code to work with data in SharePoint (except for Tenant scope features where the ClientContext is not available)

	Call the API of Omnia Foundation like logging and configurations using the built-in method WorkWith

	Trigger queue jobs using Omnia Queues API

Example: Provisioning new start page for the target site when activating the feature

/// <summary>
/// Activates the feature
/// </summary>
public override void Activate()
{
 try
 {
 string pageTitle = this.Localize("$Localize:MyOmniaExtension.StartPageTitle;");
 var publishingClient = this.WorkWith().Publishing(this.Ctx);
 publishingClient.CreateStartPage(new Page
 {
 Name = "StartPage.aspx",
 PageLayout = MyOmniaExtension.PageLayouts.StartPage,
 Title = pageTitle
 });
 }
 catch (Exception ex)
 {
 this.Log("Activate feature", ex.Message, FeatureInstanceLogTypes.Error);
 throw;
 }
}

/// <summary>
/// Deactivates the feature.
/// </summary>
/// <param name="fromVersion">From version.</param>
public override void Deactivate(string fromVersion)
{
 // Your code to handle feature deactivation here
}

/// <summary>
/// Upgrades the feature
/// </summary>
/// <param name="fromVersion">From version.</param>
public override void Upgrade(string fromVersion)
{
 // Your code to handle feature upgrade here
}

Provisioning tenant resources

By overriding the method OnTenantResourceMappings, a feature can provision tenant resources to Omnia database.

For code resources like JavaScript and CSS, you will also need to add them to a bundle for them to be loaded and executed on SharePoint or Omnia admin application. Read more on bundling in Omnia.

Note

Only tenant-scope features can provision tenant resources, though any features can add resources to bundles.

Example

/// <summary>
/// Called when [OmniaFeature resource mappings is being performed].
/// </summary>
/// <param name="resourceMapper">The resource mapper.</param>
public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 // Provisioning tenant resources to Omnia database
 // NOTE: Only tenant-scope features can provision tenant resources
 resourceMapper
 .AddOrUpdateTenantResourcesFrom<ResourcesMapping>();

 // Adding resources to the scope's bundles, in this case tenant.js and tenant.css
 resourceMapper
 .CreateBundleFor(BundleTargets.SharePoint)
 .Include<ResourcesMapping.Scripts.Core>()
 .Include<ResourcesMapping.Scripts.Services>()
 .Include<ResourcesMapping.Scripts.Directives>()
 .Include<ResourcesMapping.Scripts.Controls>()
 .Include<ResourcesMapping.Styles>();

 resourceMapper
 .CreateBundleFor(BundleTargets.OmniaAdmin)
 .Include<ResourcesMapping.Scripts.Core>()
 .Include<ResourcesMapping.Scripts.Services>()
 .Include<ResourcesMapping.Scripts.Directives>()
 .Include<ResourcesMapping.Scripts.AdminSettings>(q => q.SampleAdminSettingsFormJs)
 .Include<ResourcesMapping.Scripts.AdminSettings>(q => q.SampleAdminSettingsJs)
 .Include<ResourcesMapping.Scripts.AdminSettings>();
}

Provisioning SharePoint artifacts

In the method OnTenantResourceMappings you can also provision files like masterpage and pagelayout to SharePoint. To provision other SharePoint artifacts like fields, content types and list instances you need to override the method OnSharePointArtifactMappings.

Note

Only site-scope and sitecollection-scope features can provision SharePoint artifacts

Example

/// <summary>
/// Called when [OmniaFeature resource mappings is being performed].
/// </summary>
/// <param name="resourceMapper">The resource mapper.</param>
public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper
 .MapTenantResource<ResourcesMapping.PageLayouts>(q => q.SamplePageLayout)
 .WithSettingsForPageLayout()
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

/// <summary>
/// Called when [OmniaFeature sharepoint artifacts mappings is being performed].
/// </summary>
/// <param name="artifactMapper">The artifacts mapper.</param>
public override void OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
{
 artifactMapper.MapToField<SampleField>()
 .DeployTo(Ctx.Site.RootWeb);

 artifactMapper
 .MapToContentType<SampleContentType>()
 .DeployTo(Ctx.Site.RootWeb)
 .UpdateChildren();

 artifactMapper
 .MapToList<SampleList>()
 .DeployTo(Ctx.Site.RootWeb);
}

	
.. include:: /../common/authors.txt

Resource Mappings

In an Omnia extension, every resource files need to be mapped with a unique ID. The resource mappings are defined with an attribute-based pattern like other entities in Omnia like feature, jobs and SharePoint artifacts.

[image: ../_images/extensionpackage-resourcemapping.png]
The resource mappings aslo help create an logical hierachy or grouping of resources, which can be used to distribute the resources to different Omnia features. If your extension is small (less than 50 resource files) you should put all resource mappings into one file, otherwise you should split it into multiple files by feature area.

In the resource mappings you can also specify different properties and metadata.

Sections:

	Folders mapping

	Generic files mapping

	Site templates mapping

	Localization files mapping

	SharePoint masterpages mapping

	SharePoint webparts mapping

	SharePoint pagelayouts mapping

Folders mapping

[TenantResourceFolderMapping(id: "EE2FFD07-D5B6-4964-BD46-09472229F49C", name: "Scripts")]
public class Scripts
{
 // Other folders or files mapping code in here
}

Generic files mapping

[TenantResourceFileMapping(id: "DC37115E-9ED7-4017-BCA1-449C67D8EBC0",
 sourceRelativePath: "/TenantResources/Scripts/Core/sample.core.js")]
public string SampleCoreJs { get; set; }

Site templates mapping

[TenantResourceFileMapping(id: "AA5A09DA-CA8D-4289-9EF2-D05AE99E4AB2",
 sourceRelativePath: "/TenantResources/SiteTemplates/sampletemplate.json",
 Category = BuiltInCategories.SiteProvisioning.SiteTemplate)]
public string SampleTemplate { get; set; }

Localization files mapping

[TenantResourceFileMapping(id: "766F18D7-1E6B-486D-912B-C12D6683B28A",
 sourceRelativePath: "/TenantResources/Localization/sample.loc.json")]
public string SampleLocalization { get; set; }

[TenantResourceFileMapping(id: "0CD92A43-9065-49DC-83EB-054123445A9E",
 sourceRelativePath: "/TenantResources/Localization/sample.loc.sv-se.json")]
public string SampleLocalizationSvSe { get; set; }

SharePoint masterpages mapping

[TenantResourceFileMapping(id: "69B74E73-CDA2-4BB9-A917-C16F2FACB5D1",
 sourceRelativePath: "/TenantResources/MasterPages/sample.master")]
[ContentTypeId(typeof(Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.MasterPage))]
[SharePointFileProperty("MasterPageDescription", "")]
[SharePointFileProperty("UIVersion", "15")]
public string PortalMaster { get; set; }

SharePoint webparts mapping

[TenantResourceFileMapping(id: "5486D161-E899-4AC5-BBCE-2F4B093B788C",
 sourceRelativePath: "/TenantResources/WebParts/sample.webpart")]
[SharePointFileProperty("Group", Omnia.Foundation.Core.Constants.WebPartGroups.Omnia)]
public string SampleWebPart { get; set; }

SharePoint pagelayouts mapping

[TenantResourceFileMapping(id: "94D169CF-B8F0-4A55-9767-5F410DBAC9F5",
 sourceRelativePath: "/TenantResources/PageLayouts/SamplePageLayout.aspx")]
[ContentTypeId(typeof(Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.PageLayout))]
[PublishingAssociatedContentType(typeof(ArticlePage))]
[SharePointFileProperty("Title",
 "$Localize:MyOmniaExtension.Sample.PageLayouts.SamplePageLayout.Title;")]
public string SamplePageLayout { get; set; }

Working with resource mappings

When developing new extension, after you have all the resources ready, you can create a new resource mapping class using Omnia tooling

[image: ../_images/toolings-item-templates-resourcemapping.png]
[image: ../_images/toolings-item-templates-resourcemapping2.png]
After the resource mapping class has been created, you can manually write code to map your resource files following that sample pattern here, or you can again use Omnia toolings to generate the mapping code for you. Right-click on the folder contains your new resources and select Create Resource Mappings

[image: ../_images/toolings-create-resourcemappings.png]
The generated mapping code has been copy to your clipboard, now go to the new ScriptMappings class you have created ealier and replace the sample code with the correct mapping

[image: ../_images/toolings-create-resourcemappings2.png]
[image: ../_images/toolings-create-resourcemappings3.png]

	
.. include:: /../common/authors.txt

Localization

Omnia Foundation has a powerful localization engine that is using localization strings stored in JSON. By usin json which is a language neutral format we can use it both server-side and client-side.

Sections:

	Creating localization files

	Localization in client-side code

	Localization in server-side code

	Override localization in the Omnia admin app

Creating localization files

You can create new localization file using the template from Omnia toolings

[image: ../_images/toolings-item-templates-localization.png]

Note

	Public Localization - Used to store localization strings for UI in SharePoint

	Admin Localization - Used to store localization strings for UI in Omnia admin app

Each localization file contains the localization strings for only one language, and it need to follow this naming convention:

	*.loc.json for default language (English) localization. Example: sample.loc.json

	*.loc.[culture code].json for other langauge localization. Example: sample.loc.sv-se.json

Most of the cases, localization files with the same name but different culture code should contain the same JSON structure with different string values.

Note

The first level of the JSON will aways be “Public” or “Admin” depend on the localization target. You do not need to include “Public” or “Admin” part when getting localized strings.

sample.loc.json

{
 "Public": {
 "MyOmniaExtension": {
 "Sample": {
 "SiteCollection": "Site Collection",
 "Site": "Site"
 }
 }
 }
}

sample.loc.sv-se.json

{
 "Public": {
 "MyOmniaExtension": {
 "Sample": {
 "SiteCollection": "Webbplatssamling",
 "Site": "Webbplats"
 }
 }
 }
}

Localization in client-side code

Once the localization resources have been deployed, your client-side code can get the localized strings in three ways:

	Using the global variable $localize. This should only be used if you are writing non-Angular code. For Angular code you should use the other ways for better support.

	Using the filter omfLocalization for Angular

	Using the service localizationService for Angular

constructor(private $scope: ISystemLogScope,
 private localizationService: Omnia.Foundation.Services.LocalizationService) {
 this.init();
}

private init = () => {
 this.$scope.logTypes = new Array<Log>();
 this.$scope.logTypes.push({
 source: this.localizationService.getText("System.SystemLogs.LogTypes.Info"),
 logType: LogTypes.Info
 });
 this.$scope.logTypes.push({
 source: this.localizationService.getText("System.SystemLogs.LogTypes.Warning"),
 logType: LogTypes.Warning
 });
 this.$scope.logTypes.push({
 source: this.localizationService.getText("System.SystemLogs.LogTypes.Error"),
 logType: LogTypes.Error
 });
}

Localization in server-side code

Server-side code can also use localized strings. Typical examples are localized email content in Omnia timer jobs and localized title of SharePoint fields and content types.

Note

Currently the title of Omnia features cannot be localized. This may become possible in future version.

Example: Localized SharePoint content type

[ContentType(id: "78FBA358-10D6-459A-ABD9-6E1539EFF8C0",
 name: "$Localize:MyOmniaExtension.Sample.ContentTypes.SampleContentType.Name;",
 Group = "Sample Content Type Group",
 Description = "$Localize:MyOmniaExtension.Sample.ContentTypes.SampleContentType.Description;")]
public class SampleContentType : Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.Item
{
 [FieldRef(typeof(SampleField))]
 public string SampleField { get; set; }
}

Example: Get localized strings in timer jobs

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{
 try
 {
 string language = "en-US";

 string[] localizationKeys = new string[] {
 "$Localize:MyOmniaExtension.Sample.EmailSubject;",
 "$Localize:MyOmniaExtension.Sample.EmailContent;" };

 ILocalizationService localizationService = WorkWith().Localization();
 Dictionary<string, string> localizationsResult =
 localizationService.GetLocalization(localizationKeys, language);

 string localizedEmailSubject = "";
 localizationResult.TryGetValue(localizationKeys[0], out localizedEmailSubject);

 string localizedEmailContent = "";
 localizationResult.TryGetValue(localizationKeys[1], out localizedEmailContent);
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
}

Override localization in the Omnia admin app

End users can change the localized strings using the Omnia admin app at System > Localization

Note

Once a localized string has been changed in the admin app it will not be updated when a newer version of extension package is deployed. To make get the latest version of the localization users need to undo the customization. On the otherhand, when an extension package is removed all customization will also be removed.

[image: ../_images/omnia-admin-localization.png]

	
.. include:: /../common/authors.txt

Permissions

Omnia permission roles

Omnia permission roles are security groups for managing access rights to Omnia resources. Permission roles can also be used to limit the access to the API of Omnia extensions. An Omnia permission role can be assign to a user or a security group in Office 365 and can be apply to site, site collection or tenant scope.

Create form for managing permission roles in Omnia extension

Omnia toolings provides a template for managing permission roles in admin app for each feature

[image: ../_images/toolings-item-templates-permissionpage.png]
The permission settings page is the same as any other admin app settings page in an Omnia extensions. The first notable part is the navigationNode. In the navigationNode, along with other metadata, you need to specify the authorizedRoles: the permission roles that can access this page and manage other permission roles. Usually, the authorizedRoles for permission settings pages are set to the OmniaAdmin.

static navigationNode: NavigationNode = {
 title: "",
 state: "AdminSettingsPermissionsPagePermissions",
 url: "permission",
 controller: AdminSettingsPermissionsPagePermissionsController.ngName,
 viewId: "",
 iconClass: "fa-key",
 authorizedRoles: [
 {
 name: Omnia.Foundation.Security.PermissionRoles.OmniaAdmin,
 scope: Omnia.Foundation.Security.PermissionScopes.Tenant
 }
]
};

You will need to register this navigationNode to the navigation system of admin app. For more information about this read the article admin settings pages.

var node: NavigationNode = SampleSettings.SampleSettingsController.navigationNode;
if (node.children == null)
 node.children = [];

node.children.push(SampleSettings.AdminSettingsPermissionsPagePermissionsController.navigationNode);
$admin.Navigation.addNode(NavigationScope.tenant, node);

The last and most important part is the roleDefinitionList property on $scope where you define all permission roles that can be managed on this page.

 private init = () => {
 this.$scope.roleDefinitionList = [
 {
 name: "AdminSettingsPermissionsPage.Admin",
 scope: PermissionScopes.Tenant,
 label: "AdminSettingsPermissionsPage.Permissions.Admin.Label",
 description: "AdminSettingsPermissionsPage.Permissions.Admin.Description"
 }
];
}

Deploy the extension and the permissions settings should be available

[image: ../_images/extensionpackage-permission.png]

Secured extension API

The API of extensions can limit the access to certain endpoints by using the RequiredPermissionRoles attribute

[HttpGet]
[Route("api/settings")]
[RequiredPermissionRoles(""AdminSettingsPermissionsPage.Admin"",
 PermissionScopes.Tenant)]
public ApiOperationResult<Settings> GetSettings()
{ }

	
.. include:: /../common/authors.txt

Configuration

Omnia configuration API provides a key-value storage that can be accessed from both server-side and client-side code.

A configuration can have the following properties:

	Property

	Type

	Description

	Name

	String

	
Name of the configuration (case-insensitive)

	Region

	String

	
Group or category of the configuration (case-insensitive)

	ExtensionPackageId

	Guid

	
ID of the extension package that the configuration

belongs to

	Value

	String

	
Value of the configuration

	UIEditable

	Boolean

	
Specify whether the configuration is editable in

Omnia admin app

	IncludedInClient

	Boolean

	
Specify whether the configuration should be included

in the client-side context in

_omniaContextInfo.customConfigurations

A configuration “key” is the unique combination of its name, region and extension ID. Configuration value is string-based so it can be anything from plain string to URL or JSON.

Configuration API for server-side code

Note

To use Omnia configuration API in server-side code you need to install the NuGet package Omnia.Foundation.Extensibility.Core to you project.

In server-side code, the configuration API can be called by using OmniaApi factory

IConfigurationService configurationService = OmniaApi.WorkWith(tenantId).Configurations();

When working with configuration API, you can specify the extension ID that the configuration belongs to, or you can omit it. When omitted, the extension package ID will be read from the app setting Omnia.Foundation.Settings.ExtensionId of the current app domain.

Example: Get a single configuration by name and region

// Get a built-in configuration from Omnia Foundation
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(
 name: "configuration-name",
 region: "configuration-region",
 extensionPackageId: Extensibility.Core.Constants.Extensions.BuiltInExtensionPackageId);

// Get a configuration from your extension. When omitted, the extension package ID will be read
// from the app setting 'Omnia.Foundation.Settings.ExtensionId' of the current app domain
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(
 name: "configuration-name",
 region: "configuration-region");

// Get a configuration from another extension.
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(
 name: "configuration-name",
 region: "configuration-region",
 extensionPackageId: "extension-id");

Example: Get all configurations in a region

OmniaApi.WorkWith(tenantId).Configurations().GetConfigurationsInRegion(
 name: "configuration-region",
 extensionPackageId: "extension-id");

Example: Add or update a configuration

MyModel myModel = new MyModel();

OmniaApi.WorkWith(tenantId).Configurations().AddOrUpdateConfiguration(
 name: "configuration-name",
 value: JsonConvert.SerializeObject(myModel),
 region: "configuration-region",
 includedInClient: false,
 uiEditable: false,
 extensionPackageId: "extension-id");

Example: Delete a configuration

OmniaApi.WorkWith(tenantId).Configurations().DeleteConfiguration(
 name: "configuration-name",
 region: "configuration-region",
 extensionPackageId: "extension-id");

Configuration for extension

You can automatically set the configurations for your extension when it is deployed by specifying those configurations in the extension.json file

{
 "Id": "3847fb18-8cb7-4597-83d8-6bcb7136ce7a",
 "Title": "MyOmniaExtension",
 "Description": "",
 "Version": "1.0.0",
 "PackageName": null,
 "TenantResourceFolders": [
 "TenantResources"
],
 "Configurations": [
 {
 "Name": "MyWebApiUrl",
 "Region": "MyOmniaExtension",
 "IncludedInClient": true,
 "UIEditable": true,
 "Required": true,
 "DefaultValue": "https://localhost:44300/api/"
 },
 {
 "Name": "TermSetId",
 "Region": "MyOmniaExtension",
 "IncludedInClient": true,
 "UIEditable": true,
 "Required": true,
 "DefaultValue": "888F3B90-9A90-4F77-B64D-305EFF1EB3D5"
 }
]
}

Configuration default values will be used when the extension package is deployed the first time from Visual Studio. When the package is uploaded from Omnia admin app user will need to fill in the configuration values.

[image: ../_images/omnia-admin-new-extension-upload-configurations.png]

	
.. include:: /../common/authors.txt

Bundling

Bundling is the process of concatinate multiple files into a single file. In web development, bundling can increase performance significantly, especially in high latency networks, by reducing the number of requests and round trips to the server.

In Omnia feature you can specify which JavaScript and CSS resources to be bundled and which application the bundle is targeted for (more on this in bundle targets section). When that feature is activated, those resources will be add to the bundle corresponding to the feature’s scope and the target application.

Sections:

	Creating bundles

	Bundle scopes

	Bundle targets

	Bundle sequence number

	Bundle minification

Creating bundles

To bundle resources, override the method OnTenantResourceMappings in your Omnia feature and use the method CreateBundleFor of the resourceMapper.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper
 .CreateBundleFor(Models.Features.BundleTargets.SharePoint)
 .Include<ResourcesMapping.Core>()
 .Include<ResourcesMapping.Services>(q => q.AjaxService)
 .Include<ResourcesMapping.Services>();
}

You can add specific file from the resources mapping

.Include<ResourcesMapping.Services>(q => q.AjaxService)

Or you can add a whole folder and the resourceMapper will recursively include every files in that folder. The resource mapper will be smart enough to not include a file again if it is already in the bundle

.Include<ResourcesMapping.Services>(q => q.AjaxService)
.Include<ResourcesMapping.Services>()

The resources will be bundled in the same order as they were included here. In this example, the resources will be bundled in the following order:

	All the files (recursively including child folders) in Core folder

	The ajaxService file in Services folder

	All the files in Services folder (recursively including child folders) except for ajaxService

Bundle scopes

There are 3 bundle scopes: Tenant, Site Collection and Site. These scopes map with Omnia feature scopes, meaning an tenant-scope feature can only add resources to the tenant-scope bundle, etc.

On each Omnia page load (in SharePoint or in admin web), these 6 bundle files that will be loaded:

	Scope

	Bundle

	Content

	Site

	
	site.js

	site.css

	
All resources bundled by site-scope features

activated on the current site

	SiteCollection

	
	sitecollection.js

	sitecollection.css

	
All resources bundled by sitecollection-scope features

activated on the current site collection

	Tenant

	
	tenant.js

	tenant.css

	
All resources bundled by activated tenant-scope

features

Bundle targets

Currently there are only two bundle targets, SharePoint and OmniaAdmin. As the names imply, resources bundles targeting SharePoint will only be loaded in SharePoint and the resources bundle targeting OmniaAdmin will only be loaded in Omnia admin web.

A general guideline on bundle targets would be:

	JavaScript services and directives usually can target both SharePoint and Omnia Admin.

	Omnia controls should only target SharePoint.

	Admin settings should only target OmniaAdmin.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper
 .AddOrUpdateTenantResourcesFrom<TenantResources>();

 resourceMapper
 .CreateBundleFor(Models.Features.BundleTargets.SharePoint)
 .Include<ResourcesMapping.Enums>()
 .Include<ResourcesMapping.Core>()
 .Include<ResourcesMapping.Services>()
 .Include<ResourcesMapping.Directives>()
 .Include<ResourcesMapping.Styles>();

 resourceMapper
 .CreateBundleFor(Models.Features.BundleTargets.OmniaAdmin)
 .Include<ResourcesMapping.Enums>()
 .Include<ResourcesMapping.Core>()
 .Include<ResourcesMapping.Services>()
 .Include<ResourcesMapping.Directives>()
 .Include<ResourcesMapping.Styles>()
 .Include<ResourcesMapping.AdminSettings.Controllers>()
 .Include<ResourcesMapping.AdminSettings>();
}

Bundle sequence number

While you can specify the order of resources in your feature just by order they were included, sometimes you will also need to ensure the resources of one feature is loaded before the resources of other features. For that purpose you can set the sequence number for your feature bundle:

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper
 .AddOrUpdateTenantResourcesFrom<TenantResources>();

 resourceMapper
 .CreateBundleFor(Models.Features.BundleTargets.SharePoint)
 .Include<ResourcesMapping.Enums>()
 .Include<ResourcesMapping.Core>()
 .Include<ResourcesMapping.Services>()
 .Include<ResourcesMapping.Directives>()
 .Include<ResourcesMapping.Styles>();

 resourceMapper
 .CreateBundleFor(Models.Features.BundleTargets.OmniaAdmin)
 .Include<ResourcesMapping.Enums>()
 .Include<ResourcesMapping.Core>()
 .Include<ResourcesMapping.Services>()
 .Include<ResourcesMapping.Directives>()
 .Include<ResourcesMapping.Styles>()
 .Include<ResourcesMapping.AdminSettings.Controllers>()
 .Include<ResourcesMapping.AdminSettings>();

 resourceMapper
 .SetBundlesSequence(90000, Models.Features.BundleTargets.SharePoint)
 .SetBundlesSequence(80000, Models.Features.BundleTargets.OmniaAdmin);
}

The bundle with lower sequence number will be included first in the bundle. The default sequence number is 100000. You should not set the sequence number to lower than 100 because the sequence numbers from 0 to 100 are reserved for core features of Omnia Foundation.

Also, from the example you can see that the sequence number can be different for bundling targets.

Bundle minification

In non-development environments, all JavaScript bundles will be minified [https://en.wikipedia.org/wiki/Minification_(programming)] to reduce the size of the bundles and further improve performance. However, this sometimes can cause issues if the code was not written in a way that is compatible with minification. If you have errors happened only in non-development environments and you suspect it could be from the minification, use the querystring parameter “debug=true” to un-minify your code.

One common issue with minification is Angular dependencies injection. For example, this code will not work when minified

var app = angular.module('bigApp', []);

app.controller('mainController', function($scope) {
 $scope.message = 'OH NO!';
});

But this will code will

var app = angular.module('bigApp', []);

app.controller('mainController', ['$scope', function($scope) {
 $scope.message = 'HOORAY!';
}]);

To understand why the second code block works with minification while the first does not, read this article [https://scotch.io/tutorials/declaring-angularjs-modules-for-minification].

	
.. include:: /../common/authors.txt

Logging

Omnia provides a logging API for extensions to write logs to Omnia Foundation’s logs database. There are three different types of logs in Omnia: System Logs, Queue Logs and Feature Logs.

System Logs is a general-purpose place for information or error logs from both Omnia Foundation and extensions. System Logs can be viewed in Omnia admin app at System > Logs

[image: ../_images/omnia-admin-system-logs.png]
Queue Logs contains logs from queue messages jobs. For errors related to long-running operations like uploading extension packages or creating site collection, check the Queue Logs. Queue Logs can be viewed in Omnia admin app at System > Queues

[image: ../_images/omnia-admin-queue-logs.png]
The last type of logs is Feature Logs, which contains logs from custom code in feature activation, upgrade or deactivation. Feature Logs can be viewed in the feature detail page.

[image: ../_images/omnia-admin-feature-logs.png]

Logging in extension Web API

In extension API that inherit from SharePointContextProvidedController you can use the built-in Logging service to write to the System Logs.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments()
{
 try
 {
 // Web API code here
 }
 catch (Exception ex)
 {
 // The built-in Logging service can be used to write to System Logs
 this
 .Logging
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
 }
}

For API that does not inherit from SharePointContextProvidedController, you can use OmniaApi factory to create the Logging service.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments(
 string tokenKey, string spUrl, string language)
{
 try
 {
 // Web API code here
 }
 catch (Exception ex)
 {
 // For controller that does not inherit from SharePointContextProvidedController
 // we need to create the ClientContext first.
 ClientContext ctx = SharePointContextProvider
 .CreateUserClientContext(tokenKey, spUrl, language);

 OmniaApi
 .WorkWith(Ctx.Omnia())
 .Logging()
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
 }
}

Logging in extension features

In Omnia feature you can write to System Logs using OmniaApi factory or write to Feature Logs using the built-in Log method

[FeatureDefinition(
 id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
 name: "MyOmniaExtension Sample Feature Core",
 version: "0.1.0",
 scope: FeatureScopes.Tenant
)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature
{
 /// <summary>
 /// Activates the OmniaFeature
 /// </summary>
 public override void Activate()
 {
 // This will write to System Logs
 this.WorkWith().Logging()
 .AddLog("SampleFeatureCore", "Feature activation", DefaultLogTypes.Info);

 // This will write to Feature Logs
 this.Log("Feature activation", "Success", FeatureInstanceLogTypes.Information);
 }
}

Logging in extension jobs

Similar to features, in jobs you can use the OmniaApi factory to write to System Logs. One important thing to note is that currently any uncachted error in queue job will be write to the Queue Logs, but for timer jobs you need to handle the error and explicitly write to the System Logs in your code.

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
}

public void SampleJobQueue([QueueTrigger("SampleJob")] object queueMessage)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("SampleJobQueue", ex.Message, DefaultLogTypes.Error, ex);
 }
}

	
.. include:: /../common/authors.txt

SharePoint Provisioning

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Field

	Content Type

	List

	Image Rendition

	File
	Page Layout

	Glue Layout

	Webpart Definition

	Generic File

	Provisioning Pipeline

	
.. include:: /../common/authors.txt

Field

Fields are used in Lists and Content Types in SharePoint and Omnia Foundation makes it easy to create field definitions by using attributes that can be provisioned using a, Omnia feature or referenced in a List definition.

All field attributes are located in the Omnia.Foundation.Extensibility.Fields namespace
and the following list contains the different attributes that can be used to create field definitions.

	Attribute

	Description

	FieldAttribute

	The base attribute that all field attributes inherits from containing generic properties like title, description etc

	BooleanFieldAttribute

	Boolean field definition

	CalculatedFieldAttribute

	Calculated field definition

	DateTimeFieldAttribute

	DateTime field definition

	HTMLFieldAttribute

	HTML field definition

	LookupFieldAttribute

	Lookup field definition

	ManagedMetadataFieldAttribute

	Managed metadata field definition

	NoteFieldAttribute

	Note field definition

	NumberFieldAttribute

	Number field definition

	TextFieldAttribute

	Text field definition

	UrlFieldAttribute

	Url field definition

	UserFieldAttribute

	User field definition

Field definitions can be referenced both in list definitions and content type definitions, so they are defined using class level attribute decoration. Below is an example of how to define a basic NoteField using the NoteFieldAttribute

[NoteField(id: "37643EF6-2BB9-429B-BD19-4684FC7879DD", internalName: "MyNoteField",
 Title = "My Title", Group = "Custom Group")]
public class MyNoteField : FieldBase
{

}

Note

Even if the attribute is called NoteFieldAttribute its not necessary to include Attribute in the name, NoteField is enough and that will make the code look more clean.

All field definitions requires the minimal id and internalName parameters since this is required to be able to create the field. For the different field attributes there are always minimal required parameters that need to be provided but there is also optional properties that can be specified. Below is an example of all the optional properties that can be specified on the NoteFieldAttribute

[image: ../_images/notefield-properties.png]
Now that we have a field definition we can either use a site-scoped or sitecollection-scoped Omnia feature to deploy it to a site or use it in a List definition.

	
.. include:: /../common/authors.txt

Content Type

Content Types are used in SharePoint to classify information. Omnia Foundation makes it easy to create content type definitions by using attributes that can be provisioned using an Omnia feature or referenced in a List definition.

Content Types are hierarchical, meaning that new content types needs to inherit from an existing one. The base content type in SharePoint is Item.

Create a Content Type

	In your Visual Studio project, right click and choose Add -> New item

	From the Omnia group, choose the Content Type template and give your content type class a name. Click Add

When doing this a new class is created in your project, inheriting from Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.Item. This class represents the Item content type in SharePoint.

Inheritance

To make your content type inherit from another content type than Item, you can either choose to inherit from another class in the Omnia.Foundation.Extensibility.ContentTypes.BuiltIn or from any other content type class in your project.

Properties

The content type class is also decorated with a ContentType attribute. This attribute tells Omnia that your class should be treated as a content type and contains a number of required properties:

	Attribute

	Description

	id

	A unique GUID for the content type, adds as part of the ContentTypeId

	name

	The name of the content type. Could be a Localization string or a plain text string

	Group

	The group of the content type

	Description

	The description of the content type. Could be a Localization string or a plain text string

There is also a large number of optional properties that can help you configure the content type the way you want.

Adding fields

To add fields to your content type you add properties to your class:

[FieldRef(typeof(Preamble))]
public string Preamble { get; set; }

In the FieldRef attribute you supply the class of an existing Field

In the FieldRef attribute you can also specify a number of optional properties, to for example make the field required or hidden:

[FieldRef(typeof(Preamble), Required = true)]
public string Preamble { get; set; }

Provisioning

As mentioned, a content type can be provisioned directly via an Omnia feature. This way the content type will be created as a Site Content Type.

It can also be provisioned via a List definition class. This way the content type will be a List Content Type.

Provision Site Content Type

In a site scoped feature, in the OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper) method, add the following code

public override void OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
{
 artifactMapper.MapToContentType<MyContentTypeClass>().
 ApplyChangeOn(Ctx.Web);
}

You can also tell Omnia to add the content type to a list:

public override void OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
{
 artifactMapper.MapToContentType<MyContentTypeClass>().
 ApplyChangeOn(Ctx.Web).
 AddToList<Omnia.Foundation.Extensibility.Lists.Builtin.Pages>();
}

Provision List Content Type

In a List class find the public IEnumerable<ContentTypeBase> ContentTypes property.

Decorate this property with a ContentTypeRef attribute

[ContentTypeRef(typeof(MyContentTypeClass))]
public IEnumerable<ContentTypeBase> ContentTypes
{
 get { return GetContentTypes(); }
}

In the ContentTypeRef attribute, supply the class of your content type, or the ContentTypeId of an existing content type.

The ContentTypeRef attribute also contains a number of optional parameters to allow you to for example make the content type the default one for the list.

	
.. include:: /../common/authors.txt

List

A List is one of the core SharePoint artifacts and Omnia Foundation makes it easy to create list definitions by using attributes that can be provisioned using Omnia features.

Create a List

	In your Visual Studio project, right click and choose Add -> New item

	From the Omnia group, choose the List template and give your list class a name. Click Add

When doing this a new class is created in your project, inheriting from Omnia.Foundation.Extensibility.Lists.ListBase and implementing the Omnia.Foundation.Extensibility.Lists.IListBase interface.

The class is also decoreated with a List attribute with a number of required properties

Properties

The List attribute has the following required properties

	Attribute

	Description

	url

	The site relative path of the list

	title

	The title of the list. Could be a Localization string or a plain text string

	listTemplate

	The list template type to inherite from, defaults to ListTemplateType.GenericList

There is also a large number of optional properties that can help you configure the list the way you want.

Adding Fields

You can add Fields to your list by following the steps below.

In the List class find the public IEnumerable<FieldBase> Fields property.

Decorate this property with a FieldRef attribute

[FieldRef(typeof(LinkTitle))]
public IEnumerable<FieldBase> Fields
{
 get { return GetFields(); }
}

In the FieldRef attribute, supply the class of your field or a class from Omnia.Foundation.Extensibility.Fields.BuiltIn.

The FieldRef attribute also contains a number of optional parameters to allow you to for example make the field required in the list.

Adding Content Types

You can add Content Types to your list by following the steps below.

In the List class find the public IEnumerable<ContentTypeBase> ContentTypes property.

Decorate this property with a ContentTypeRef attribute

[ContentTypeRef(typeof(MyContentTypeClass))]
public IEnumerable<ContentTypeBase> ContentTypes
{
 get { return GetContentTypes(); }
}

In the ContentTypeRef attribute, supply the class of your content type, or the ContentTypeId of an existing content type.

The ContentTypeRef attribute also contains a number of optional parameters to allow you to for example make the content type the default one for the list.

Setup the default view

Omnia also provides logic to configure the default view of the list.

In the Lists class find the public IEnumerable<FieldBase> DefaultView property. Decorate it with FieldRef attributes where you supply the type for the field and the index you want the field to have in the view.

[FieldRef(typeof(DocIcon), 1)]
[FieldRef(typeof(LinkTitle), 2)]
[FieldRef(typeof(Modified), 3)]
[FieldRef(typeof(Author), 4)]
public IEnumerable<FieldBase> DefaultView
{
 get { return GetDefaultViewFields(); }
}

Provisioning

A list is provisioned directly via a site scoped Omnia feature

In the OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper) method, add the following code

public override void OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
{
 artifactMapper
 .MapToList<MyListClass>()
 .DeployTo(Ctx.Web);
}

	
.. include:: /../common/authors.txt

Image Rendition

By using attributes it is easy to specify and provision Image Renditions to SharePoint

[image: ../_images/image-renditions.png]
To create Image Renditions start by creating a new class that inherits from ImageRenditionBase then apply the ImageRendition attribute on your class. The id of your Image Rendition should start on a higher number so that it wont conflict with the built in SharePoint and Omnia Image Renditions. SharePoint starts with Id 1 and ends on 4 and Omnia on 1001 and ends on 1004 but your customization could start on 2000 to be sure not to write over existing renditions. If you want the height to be dynamic then you can set it to 0

[ImageRendition(id: 1001, name: "$Localize:OMF.Core.ImageRenditions.Landscape;", width: 600, height: 300)]
[ImageRendition(id: 1002, name: "$Localize:OMF.Core.ImageRenditions.Square;", width: 300, height: 300)]
[ImageRendition(id: 1003, name: "$Localize:OMF.Core.ImageRenditions.Portrait;", width: 300, height: 450)]
[ImageRendition(id: 1004, name: "$Localize:OMF.Core.ImageRenditions.LandscapeSmallSize;", width: 300, height: 150)]
public class PortalCoreImageRendition : ImageRenditionBase
{
}

Now that we have the specification of the Image Renditions all we need to do is to add the mapping code in the OnSharePointArtifacts method of an Omnia feature that will perform the deployment.

Note

The provisioning must be done from a Site Collection scoped feature

public override void OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
 {
 artifactMapper.MapToImageRendition<PortalCoreImageRendition>();
 }

	
.. include:: /../common/authors.txt

File

Using Omnia it is easy to provision different kinds of files to SharePoint. You can for example provision Page Layouts and Webpart Definitions, but also any other file you need.

The first thing you need to do is to add the file to your Visual Studio Project, inside a Tenant Resources folder. Then add the file to a Resource Mappings class as described here.

Note

You need to decorate your mappings differently based on the type of file you are adding (ex. for Page Layouts).

After creating the needed Resource Mappings, follow the steps in the section below matching your file type.

	Page Layout

	Glue Layout

	Webpart Definition

	Generic File

	
.. include:: /../common/authors.txt

Page Layout

Page layouts in SharePoint are stored in the Master Page gallery on the root web of a site collection. Therefore it is recommended to provision page layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.PageLayouts with the class name of your Page layout in the Resource Mappings class, and StartPage with the property representing your page layout.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.PageLayouts>(q => q.StartPage)
 .WithSettingsForPageLayout()
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

Note that this is a fluent API where you after the .WithSettingsForPageLayout() can modify a number of additional things about how the file will be provisioned, for example the file name

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.PageLayouts>(q => q.StartPage)
 .WithSettingsForPageLayout()
 .SetFileName("StartPageLayout.aspx")
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

	
.. include:: /../common/authors.txt

Glue Layout

Glue layouts in Omnia are used as layouts for Quick Pages.

They are stored in the Master Page gallery on the root web of a site collection. Therefore it is recommended to provision page layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.GlueLayouts with the class name of your Glue layout in the Resource Mappings class, and StartPage with the property representing the specific glue layout.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.StartPage)
 .WithSettingsForGlueLayout()
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

Note that this is a fluent API where you after the .WithSettingsForGlueLayout() can modify a number of additional things about how the file will be provisioned, for example the file name

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.StartPage)
 .WithSettingsForGlueLayout()
 .SetFileName("StartPageLayout.aspx")
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

or make it the default layout for new quick pages

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.StartPage)
 .WithSettingsForGlueLayout()
 .SetAsDefault()
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

You can also add tokens in your layouts that can be replaced when the file is provisioned to SharePoint

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.StartPage)
 .WithSettingsForGlueLayout()
 .TokenReplace("[WeWantTheWebsTitleHere]", Ctx.Web.Title)
 .DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

	
.. include:: /../common/authors.txt

Webpart Definition

Deploying a webpart definition is very similar to provisioning a page layout. Web part definitions are also stored in the root web of a site collection, but in the Webpart gallery library. Therefore it is recommended to provision page layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.Webparts with the class name of your Webpart in the Resource Mappings class, and MyWebPart with the property representing your webpart definition.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.Webparts>(q => q.MyWebPart)
 .WithSettingsForWebPart()
 .DeploysTo(SharePointFileDeploymentTargets.WebPartGallery);
}

Note

This is a fluent API, see the Page layout section for more information about how to for example change the file name of the webpart definition file when it is provisioned.

	
.. include:: /../common/authors.txt

Generic File

There could be a need in your project to provision other kinds of files than the ones outlined in the previous sections.
This can be done in either a Site Collection scoped feature or a Site scoped feature.

Locate the public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.Files with the class name of your Files in the Resource Mappings class, and MyFile with the property representing your file.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
 .WithSettingsForGenericFile()
 .SetFileName("MyFile.html")
 .DeploysTo(SharePointFileDeploymentTargets.StyleLibrary);
}

Notice that in the SetFileName you can decide the filename of the uploaded file.

You can also use the RenameFile(“OldFileName.aspx”) to update an already provisioned file, where you have changed the file name in your resource mapping.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
 .WithSettingsForGenericFile()
 .RenameFile("OldFileName.html")
 .DeploysTo(SharePointFileDeploymentTargets.StyleLibrary);
}

The DeploysTo() method can either be called,like above with a predefined library from the SharePointFileDeploymentTargets class, or with a site (web) relative path to a library

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
 .WithSettingsForGenericFile()
 .SetFileName("MyFile.html")
 .DeploysTo("/MyLibrary");
}

Or even to a specific folder in a library

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{
 resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
 .WithSettingsForGenericFile()
 .SetFileName("MyFile.html")
 .DeploysTo("/MyLibrary", "AFolder");
}

	
.. include:: /../common/authors.txt

Provisioning Pipeline

Omnia provides a way of doing modifications to resources provisioned as part of core Omnia features.

A Provisioning Pipeline makes it possible to modify the content of a resource file at the time it is provisioned to a SharePoint site. This enables you to adapt those resources to specific needs.

Add a Provisioning Pipeline

To add a new Provisioning Pipline to your project, add a new class inheriting from SharePointFileProvisioningPipeline (found in Omnia.Foundation.Extensibility.TenantResources).

Decorate it with a SharePointFileProvisioningPipelineDefinition attribute and a unique GUID:

using Omnia.Foundation.Extensibility.TenantResources;

[SharePointFileProvisioningPipelineDefinition(id: "2F5450A8-8C6E-4C8F-A907-4F285691BEEB")]
public class MyMasterPageProvisioningPipeline : SharePointFileProvisioningPipeline
{

}

Methods

The SharePointFileProvisioningPipeline class has two overridable methods:

public override string BeforeContentReplacements(string content, TenantResource tenantResource)

public override string AfterContentReplacements(string content, TenantResource tenantResource)

The content parameter of the methods contains the full file content in a string format. This allows you to do string operations like Contains and Replace. Omnia also provides a number of extensions to the String object in C#, like InsertBefore and InsertAfter.

The tenantResource parameter contains information about the resource that is currently being processed. You can do comparisons with properties in this object to make sure your modifications only affects a specific Omnia resource:

public override string BeforeContentReplacements(string content, TenantResource tenantResource)
{
 var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

 if (tenantResource.Id == portalMasterPageId)
 {
 // Do code modifications to content here
 }
}

The main difference between the BeforeContentReplacements and AfterContentReplacements is that in the BeforeContentReplacements the internal tokens Omnia uses to insert functionality to the files are still present in the content string.

The content in the AfterContentReplacements resembles exactly the content of the file that is provisioned to SharePoint.

Example of a BeforeContentReplacements method

public override string BeforeContentReplacements(string content, TenantResource tenantResource)
{
 var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

 if (tenantResource.Id == portalMasterPageId)
 {
 try
 {
 content = content.InsertBefore(ProvisioningPipelineTokens.BodyContainerTop, "<div class=\"myClass\">Hello World</div>");
 }
 catch(Exception ex)
 {
 return content.InsertBefore(ProvisioningPipelineTokens.GlobalNavLeft, ex.Message);
 }
 }

 return content;
}

Note

The ProvisioningPipelineTokens class contains the internal tokens still present in the resource files in the BeforeContentReplacements method

Example of an AfterContentReplacements method

public override string AfterContentReplacements(string content, TenantResource tenantResource)
{
 var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

 if (tenantResource.Id == portalMasterPageId)
 {
 try
 {
 content = content.InsertBefore("<div class=\"myClass\">", "<div>This is added in front of the Hello World tag added in the BeforeContentReplacements method</div>");
 }
 catch (Exception ex)
 {
 content.InsertBefore("</head>", "<div>" + ex.Message + "</div>");
 }
 }

 return content;
}

	
.. include:: /../common/authors.txt

Omnia API

Omnia contains various API’s designed to simplify various tasks.

The API’s are located in the OmniaApi class in the Omnia.Foundation.Extensibility.Core namespace.

The basic C# code needed to begin working with the API’s from an Omnia Feature or a Custom Web API for Omnia extensions looks like below.

OmniaApi.WorkWith(Ctx.Omnia());

By adding a . after WorkWith(Ctx.Omnia()) you will reach the available API services listed below. E.g.

OmniaApi.WorkWith(Ctx.Omnia()).Caching();

Services

	Caching

	Configurations

	Controls

	Email

	Features

	Lists

	Logging

	Security

	
.. include:: /../common/authors.txt

Caching

The Caching API makes it easy to work with object caching, either locally on one server or distributed to all servers in an Omnia server cluster (similar to Distributed Cache used in SharePoint).

You reach the Caching API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Caching();

The API contains the following methods:

	AddOrUpdateMemoryCache

	GetFromMemoryCache

	GetFromMemoryCache<T>

	MemoryCacheContains

	RemoveFromMemoryCache

	AddOrUpdateDistributedCache

	GetFromDistributedCache

	GetFromDistributedCache<T>

	RemoveFromDistributedCache

AddOrUpdateMemoryCache

Adds or updates an already existing object in the memory cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key, object value);

Optionally you can supply an expiration time as a DateTimeOffset

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key, object value, DateTimeOffset expires);

GetFromMemoryCache

Gets an object from the memory cached by suppling the key the object was stored with

object OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromMemoryCache(string key);

GetFromMemoryCache<T>

Gets an object from the memory cached by suppling the key the object was stored with. Casts the object to the supplied type

T OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromMemoryCache<T>(string key);

MemoryCacheContains

Checks if an object with the given key is present in the memory cache

bool OmniaApi.WorkWith(Ctx.Omnia()).Caching().MemoryCacheContains(string key);

RemoveFromMemoryCache

Deletes the object with the given key from the memory cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().RemoveFromMemoryCache(string key)

AddOrUpdateDistributedCache

Adds or updates an already existing object in the distributed cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateDistributedCache(string key, object value, DateTimeOffset expires);

Optionally you can cache the data encrypted

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key, object value, bool encrypted, DateTimeOffset expires);

You can also cache multiple objects at once by creating a List<CachedItem> (CachedItem is found in the Omnia.Foundation.Extensibility.Core.Caching namespace

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateDistributedCache(List<CachedItem> objectsToCache);

GetFromDistributedCache

Gets objects from the distributed cache by supplying a list of the keys the items are stored with

List<CachedItem> OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromDistributedCache(List<string> keys);

GetFromDistributedCache<T>

Gets an object from the distributed cache, cast to the specified type

T OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromDistributedCache<T>(string key);

RemoveFromDistributedCache

Deletes objects from the distributed cache by supplying a list of keys

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().RemoveFromDistributedCache(List<string> keys);

	
.. include:: /../common/authors.txt

Configurations

The Configurations API allows you to read, store, update and delete configurations for you solution.

Use Configurations as a means for allowing certain values in your solution to be configurable, via code or from the Omnia Admin app, to make it more adaptable.

You reach the Configurations API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Configurations();

The API contains the following methods:

	AddOrUpdateConfiguration

	AddOrUpdateConfigurations

	DeleteConfiguration

	GetConfiguration

	GetConfigurations

	GetConfigurationsInRegion

	GetOmniaInstanceMode

	GetParentSiteConfigurations

AddOrUpdateConfiguration

Adds a new configuration, or updates an existing one.

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .AddOrUpdateConfiguration(Configuration configuration);

You find the Configuration class in the Omnia.Foundation.Models.Configurations namespace

You can also add or update a configuration with the following overload

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .AddOrUpdateConfiguration(string key, dynamic value, [string region = ""], [bool includedInClient = false], [bool uiEditable = false], [string permissionRoles = ""]);

AddOrUpdateConfigurations

To add / update multiple configurations at once, use the following method

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .AddOrUpdateConfigurations(IEnumerable<Configuration> configurations);

You find the Configuration class in the Omnia.Foundation.Models.Configurations namespace

DeleteConfiguration

Deletes an existing configuration by passing the name and region of it.

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .DeleteConfiguration(string name, string region);

Optionally you can also pass in an extension id as the last parameter, to target configurations for a specific extension

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .DeleteConfiguration(string name, string region, [Guid? extensionPackageId = null]);

GetConfiguration

Gets a specific configuration by name and region.

Configuration OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfiguration(string name, string region);

Optionally you can also pass in an extension id as the last parameter, to target configurations for a specific extension

Configuration OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfiguration(string name, string region, Guid? extensionPackageId = null]);

GetConfigurations

To get all existing configurations, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfigurations();

You can also scope this to only get configurations for a specific extension by supplying the Id of the solution

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfigurations([Guid? extensionPackageId = null]);

To specify which configurations to get, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfigurations(List<string> names, string region);

Where you pass in the names and region of the configurations to retrieve.

GetConfigurationsInRegion

To get all configurations in a given region, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfigurationsInRegion(string region);

You can also scope this to only get configurations for a specific extension by supplying the Id of the solution

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetConfigurationsInRegion(string region, [Guid? extensionPackageId = null]);

GetOmniaInstanceMode

In some scenarios you might need know if Omnia is running in Site collection or Tenant mode. To get this information, call the following method

OmniaInstanceModes OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetOmniaInstanceMode();

This will return a value from the enum Omnia.Foundation.Models.Shared.OmniaInstanceModes, either SiteCollection or Tenant

GetParentSiteConfigurations

Gets configurations from a specified parent site, based on the site URL and region of the configuration.

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
 .GetParentSiteConfigurations(string fromSiteUrl, string region);

	
.. include:: /../common/authors.txt

Controls

The Controls API contains methods that makes it easier to work with Omnia Controls.

You reach the Controls API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Controls();

The API contains the following methods:

	GetControlSettings

GetControlSettings

Use this method to get the stored settings for a given instance of an Omnia Control

string OmniaApi.WorkWith(Ctx.Omnia()).Controls()
 .GetControlSettings(string scope, Guid controlId, string siteCollectionUrl, string siteUrl, int? pageItemId, Guid? featureResourceId);

Pass in the scope of the control (“masterpage”, “site”, “page” or “webpart”), the Guid of the control, the url of the site collection and site.

To target a control on a certain page pass the a item ID of the page.

You can also pass in the feature resource Id of your control.

	
.. include:: /../common/authors.txt

Email

The Email API allows you to send email from your solution.

You reach the Caching API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Email(Ctx);

The API contains the following methods:

	SendEmail

SendEmail

Sends an email message

void OmniaApi.WorkWith(Ctx.Omnia()).Email(Ctx).SendEmail(string subject, string body, List<string> emailTo);

You can add multiple email addresses in the emailTo list

There is also two optional input parameters: emailCC and emailBcc, both of type List<string>.

	Add email addresses to emailCC to add them to the the carbone copies list of the email .

	Add email addresses to emailBCC to add them to the the blind carbone copies list of the email.

	
.. include:: /../common/authors.txt

Features

The Features API allows you to Activate, Deactivate and in other ways work with Omnia Features.

Note

This API works with Omnia Features, not SharePoint Features.

You reach the Features API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Features();

The API contains the following methods:

	ActivateFeature

	DeactivateFeature

	GetFeature

	GetFeatures

	GetFeatureActivationStatus

	GetFeatureInstanceLogs

	GetFeatureInstances

	UpgradeFeature

ActivateFeature

To activate an Omnia Feature, use the following method

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .ActivateFeature(Guid id, string spUrl, bool force);

Supply the unique Guid of the feature, the URL of the tenant authority / site collection / web where the feature should be activated. Set the force parameter to true to ignore errors on activation.

DeactivateFeature

To deactivate an Omnia Feature, use the following method

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .DeactivateFeature(Guid id, string spUrl);

Supply the unique Guid of the feature and the URL of the tenant authority / site collection / web where the feature should be deactivated.

GetFeature

To get more information about a specific feature, use the following method

FeatureModel OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .GetFeature(Guid id);

Supply the unique Guid of the feature. In return you get a Omnia.Foundation.Models.Features.FeatureInstance object containing feature details like Name, Description and Scope

GetFeatures

To get more information about a all existing features, use the following method

IEnumerable<FeatureModel> OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .GetFeatures();

GetFeatureActivationStatus

To check if a given feature is activated or not on a site / site collection / tenant, use the following method

FeatureInstanceStatus OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .GetFeatureActivationStatus(Guid id, string spUrl);

This will return a value from the Omnia.Foundation.Models.Features.FeatureInstanceStatus enumeration.

This can have any of the following values:

	NotActivated

	Activating

	Activated

	Upgrading

	Deactivating

	Error

GetFeatureInstanceLogs

To get the log messages written for a specific feature, use the following method

IEnumerable<FeatureInstanceLog> OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .GetFeatureInstanceLogs(Guid id, DateTimeOffset? startingBefore = default(DateTimeOffset?), int take = -1);

GetFeatureInstances

To get all instances of a feature (e.g. all places where a feature is activated), use the following method

IEnumerable<FeatureInstance> OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .GetFeatureInstances(Guid id);

This will return a collection of Omnia.Foundation.Models.Features.FeatureInstance, containing for example Status and Target of the feature

UpgradeFeature

To upgrade a feature on one target (Tenant / Site collection / Site), use the following method

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .UpgradeFeature(Guid id, string spUrl);

To upgrade features in multiple places at once, you can use the following method

Dictionary<string, ApiOperationResult> OmniaApi.WorkWith(Ctx.Omnia()).Features()
 .UpgradeFeature(Guid id, List<string> spUrls);

This will update the feature in all of the instances specified by the list of URLs supplied in the spUrls parameter.

	
.. include:: /../common/authors.txt

Lists

The Lists API contains methods that makes it easier to work with lists and libraries in SharePoint.

You reach the Lists API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx);

The API contains the following methods:

	AddFileToList

	GetAllDocumentLibraries

	GetAllImageLibraries

	GetDocuments

	GetDocumentsByFolder

	GetListItems

	GetPageList

	GetPageListId

	GetPageListUrl

AddFileToList

Use this method to create a file in a library based on a supplied byte array containing the file data.

void OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .AddFileToList(Guid listId, string folderServerRelativeUrl, string fileName, byte[] data);

Pass in the GUID of the library, a server relative Url to a folder (or empty string to add in root folder) and a file name.

Optionally, you can also supply a boolean indicating if the file should be published or not

void OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .AddFileToList(Guid listId, string folderServerRelativeUrl, string fileName, byte[] data, bool publish);

GetAllDocumentLibraries

To get information about all document libraries on the current web, use the following method

IEnumerable<ListIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetAllDocumentLibraries();

The returned array contains ListIdentifier objects containing for example Title, Id and ListUrl for the document libraries.

GetAllImageLibraries

To get information about all image libraries on the current web, use the following method

IEnumerable<ListIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetAllImageLibraries();

The returned array contains ListIdentifier objects containing for example Title, Id and ListUrl for the image libraries.

GetDocuments

To get documents from a library, you can use the following method

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetDocuments(Guid listId, ListQuery listQuery, bool recursive = true, string folderServerRelativeUrl = "");

Supply a ListQuery object to filter the results.

To get a paged subset of the documents, you can instead use the following method

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 GetDocuments(Guid listId, string searchString = null, int skipId = 0, int take = -1, string orderBy = null, bool ascending = true, bool isGetAbsoluteUrl = false);

Passing in a skipId decides from which item to start fetching, and take sets the number of documents to return. You can also supply orderBy and ascending parameters to decide the sort order.

The returned DocumentIdentifier class contains basic information about the documents in the library, for example Id, Title, FileName, DocumentUrl and more.

GetDocumentsByFolder

Much like the GetDocuments method, you can use this method to get a paged subset of documents, but in a specific folder

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 GetDocumentsByFolder(Guid listId, string folderUrl, string searchString = null, int skipId = 0, int take = -1, string orderBy = null, bool ascending = true);

Pass in site relative folderUrl

GetListItems

Use this method to get list items from a list

IEnumerable<ListItem> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetListItems(Guid listId, ListQuery listQuery);

Note that this returns the full ListItem objects. Use the listQuery parameter to filter what items are returned.

GetPageList

Note

Publishing webs only

To get the Pages list of the current web use one of the following methods

List OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetPageList(Web web, string webUrl);

or (to target a specific list)

List OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 .GetPageList(Web web, string webUrl, string listId);

GetPageListId

Note

Publishing webs only

To get the Guid of the Pages library on a publishing web, use the following method

Guid OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 GetPageListId(Web web, string webUrl);

GetPageListUrl

Note

Publishing webs only

To get the URL of the Pages library on a publishing web, use the following method

string OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
 GetPageListUrl(Web web, string webUrl);

	
.. include:: /../common/authors.txt

Logging

Omnia provides a logging API for extensions to write logs to Omnia Foundation’s logs database. There are three different types of logs in Omnia: System Logs, Queue Logs and Feature Logs.

System Logs is a general-purpose place for information or error logs from both Omnia Foundation and extensions. System Logs can be viewed in Omnia admin app at System > Logs

[image: ../_images/omnia-admin-system-logs.png]
Queue Logs contains logs from queue messages jobs. For errors related to long-running operations like uploading extension packages or creating site collection, check the Queue Logs. Queue Logs can be viewed in Omnia admin app at System > Queues

[image: ../_images/omnia-admin-queue-logs.png]
The last type of logs is Feature Logs, which contains logs from custom code in feature activation, upgrade or deactivation. Feature Logs can be viewed in the feature detail page.

[image: ../_images/omnia-admin-feature-logs.png]

Logging in extension Web API

In extension API that inherit from SharePointContextProvidedController you can use the built-in Logging service to write to the System Logs.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments()
{
 try
 {
 // Web API code here
 }
 catch (Exception ex)
 {
 // The built-in Logging service can be used to write to System Logs
 this
 .Logging
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
 }
}

For API that does not inherit from SharePointContextProvidedController, you can use OmniaApi factory to create the Logging service.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments(
 string tokenKey, string spUrl, string language)
{
 try
 {
 // Web API code here
 }
 catch (Exception ex)
 {
 // For controller that does not inherit from SharePointContextProvidedController
 // we need to create the ClientContext first.
 ClientContext ctx = SharePointContextProvider
 .CreateUserClientContext(tokenKey, spUrl, language);

 OmniaApi
 .WorkWith(Ctx.Omnia())
 .Logging()
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
 }
}

Logging in extension features

In Omnia feature you can write to System Logs using OmniaApi factory or write to Feature Logs using the built-in Log method

[FeatureDefinition(
 id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
 name: "MyOmniaExtension Sample Feature Core",
 version: "0.1.0",
 scope: FeatureScopes.Tenant
)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature
{
 /// <summary>
 /// Activates the OmniaFeature
 /// </summary>
 public override void Activate()
 {
 // This will write to System Logs
 this.WorkWith().Logging()
 .AddLog("SampleFeatureCore", "Feature activation", DefaultLogTypes.Info);

 // This will write to Feature Logs
 this.Log("Feature activation", "Success", FeatureInstanceLogTypes.Information);
 }
}

Logging in extension jobs

Similar to features, in jobs you can use the OmniaApi factory to write to System Logs. One important thing to note is that currently any uncachted error in queue job will be write to the Queue Logs, but for timer jobs you need to handle the error and explicitly write to the System Logs in your code.

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
}

public void SampleJobQueue([QueueTrigger("SampleJob")] object queueMessage)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("SampleJobQueue", ex.Message, DefaultLogTypes.Error, ex);
 }
}

	
.. include:: /../common/authors.txt

Security

Note

This is a draft version of the documentation, it is not yet complete. Feel free to contribute to it via GitHub.

The Security API allows you to work with permissions, both Omnia permissions and SharePoint permissions.

You can for example check if the current user has a certain permission on a web, or a certain role in Omnia.

You reach the Security API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx);

The API contains the following methods:

	AddOrUpdateOmniaPermissionRoles

	DeleteOmniaPermissionRolesForExtensionPackage

	DoesUserHavePermissionOnWeb

	GetAllOmniaPermissionRoles

	GetCurrentUserADGroups

	GetPermissionRoles

	IsUserAuthorized

	SearchOmniaPermissionRoles

AddOrUpdateOmniaPermissionRoles

Documentation in progress

DeleteOmniaPermissionRolesForExtensionPackage

Documentation in progress

DoesUserHavePermissionOnWeb

Use this method to check if the user has the specified permission on the current web.

bool OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .DoesUserHavePermissionOnWeb(PermissionKind permissionKind);

Returns true if the user has the supplied permissionKind, otherwise false.

GetAllOmniaPermissionRoles

Use this method to get all available Omnia Permission roles for a given URL.

IEnumerable<PermissionRole> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .GetAllOmniaPermissionRoles(string targetUrl);

Returns an array of PermissionRole for the given targetUrl.

GetCurrentUserADGroups

If you need to get all AD groups the current user is a member of, use the following end-point.

Note

Only AD groups used somewhere in Omnia Foundation will be returned, e.x. groups used for security in Omnia Administration or as part of targeting definitions.

IEnumerable<string> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .GetCurrentUserADGroups(string[] groups);

If you supply and empty groups parameter, you will get all AD groups, used somewhere in Omnia, that the user is a member of.

var allGroups = OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .GetCurrentUserADGroups(new string[0]());

To only check specific AD groups, pass their names in the groups parameter

var someGroups = OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .GetCurrentUserADGroups(new string{ "ADGroup1", "ADGroup2" });

GetPermissionRoles

To get Permissions Roles for given Permission Role Definitions you can use the following method, passing in a List<PermissionRoleDefinition> containing the role definitions of interest.

IEnumerable<PermissionRole> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 GetPermissionRoles(List<PermissionRoleDefinition> requestedRoles);

This will return an array containing all permissions roles existing for the supplied definitions.

IsUserAuthorized

Use this method to check if the user is authorized, e.g. is a member of the required Omnia PermissionRoleDefinition

bool OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
 .IsUserAuthorized(PermissionRoleDefinition requiredRole);

Returns true if the user is a member of the required Omnia role, else false.

SearchOmniaPermissionRoles

Documentation in progress

	
.. include:: /../common/authors.txt

Custom Web API for Omnia extensions

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Omnia base controller

	
.. include:: /../common/authors.txt

Omnia base controller

When building Web API for Omnia extension it’s recommended to use the base class SharePointContextProvidedController from Omnia. This base class provides many useful services when working with SharePoint and Omnia.

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{
 [HttpGet, Route("api/items")]
 public ApiOperationResult<IEnumerable<Item>> GetItems()
 {
 try
 {
 // Your controller logic here
 }
 catch (Exception ex)
 {
 this
 .Logging
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
 }
 }
}

SharePoint ClientContext

The base class SharePointContextProvidedController will enforce the parameters SPUrl and TokenKey on every endpoints in the controller, either in querystring or in the request headers. These paramters will be used to authenticate who is calling the API and create a SharePoint user ClientContext. This client context can be accessed using the base controller’s property Ctx. This way the Web API developers will not need to think about authentication and how to communicate with Omnia Foundation services.

The base controller class also provides a helper method, named CreateContextFor, to create ClientContext for another SharePoint site than the site specified by SPUrl paramter, or to create ClientContext with elevated permission.

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{
 [HttpGet, Route("api/items")]
 public ApiOperationResult<IEnumerable<Item>> GetItems()
 {
 try
 {
 // Use the current ClientContext
 this.Ctx.Load(this.Ctx.Web, w => w.Url);
 thix.Ctx.ExecuteQuery();

 // Create ClientContext with elevated permission
 using (ClientContext appContext = CreateContextFor(this.Ctx.Web.Url, elevated: true))
 {

 }
 }
 catch (Exception ex)
 {
 this
 .Logging
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
 }
 }
}

To Create ClientContext with elevated permission you need to have a valid ClientId and ClientSecret in web.config (for Office 365) or have a high-trust certificate configured (for on-premise).

<appSettings>
 <add key="ClientSecret" value="DljsSY31wlsZFytMRhjr4xE11NynROTf0K1p/9XDWnM=" />
 <add key="ClientId" value="62669ea8-15f0-4b24-83e4-1e99fce5ecd5" />
 ...
</appSettings>

Omnia Foundation Services

SharePointContextProvidedController has a built-in Logging service which write to Omnia Foundation logs database. Other Omnia Foundation services can be accessed using the factory method WorkWith()

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Extensibility.Core.Configurations;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{
 [HttpGet, Route("api/items")]
 public ApiOperationResult<IEnumerable<Item>> GetItems()
 {
 try
 {
 // Use Omnia configuration service
 var configuration = WorkWith().Configurations().GetConfiguration(
 name: "configuration-name",
 region: "configuration-region");
 }
 catch (Exception ex)
 {
 // Built-in logging service
 this
 .Logging
 .AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

 return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
 }
 }
}

Other contextual information are also provided:

	TenantId: ID of the Omnia tenant that the current SharePoint site belongs to.

	LoginName: SharePoint loginname of the current user.

	OmniaInstanceMode: The mode that Omnia Foundation is running in, either Tenant or SiteCollectionOnly

	
.. include:: /../common/authors.txt

Omnia Jobs

Omnia Jobs are pieces of code for handling long-running operations that can be run either as a message queue or as a scheduled timer job.

Create new Omnia Job

You can create Omnia Job using the template from Omnia Tooling

[image: ../_images/toolings-item-templates-jobs.png]
[JobDefinition(
 id: "368D7722-9F75-4789-A1BA-460DBB6595F8",
 name: "MyJob",
 description: ""
)]
public class MyJob : OmniaJob
{
 // Scheduled Job job function
 public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
 {
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
 }

 // Message Queue job function
 public void MyJobQueue([QueueTrigger("MyJob")] object queueMessage)
 {
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.Error, ex);
 }
 }
}

The job metadata is defined by the attribute JobDefinition. Each Omnia Job can contains any number of independent job functions, each can be of one of the two types Scheduled Job or Message Queue.

Built-in methods and properties

Similar to Omnia Feature and Omnia Web API, Omnia common services are available through the built-in WorkWith method. The code in Omnia Jobs is run at tenant scope so there is no user context, you can get an app-only ClientContext using the method CreateContextFor

	Properties

	Type

	Description

	Tenant

	Tenant

	
The current tenant.

	OmniaInstanceMode

	Enum

	
The mode of the current tenant.

could be Tenant or Sitecollection

	Methods

	Type

	Description

	CreateContextFor(string spUrl)

	ClientContext

	
Create an app-only context

	WorkWith()

	ApiFactory

	
Return the ApiFactory that can call Omnia API

Example: WorkWith().Logging().AddLog(log)

Manage jobs in a tenant

Unlike tenant resources, jobs are available and running immediately after the extension is deployed, there is no need to activate any feature.

All jobs deployed by extensions can be viewed in admin app at Systems > Jobs. You can also change the interval of scheduled jobs or stop/force run them from this interface. Note that built-in jobs will not be displayed here.

[image: ../_images/omnia-admin-system-jobs.png]

Job Types

	Scheduled Job

	Message Queues

	
.. include:: /../common/authors.txt

Scheduled Job

// Scheduled Job job function
public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
}

Scheduled jobs will run at the interval defined in the TimerTrigger. There are 2 different contructors you can use:

Note

The minimum interval supported by Omnia Jobs is 10 seconds

Note

TimerInfo is a place-holder for future features, currently it contains no information

public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)

public void MyJobTimer([TimerTrigger(1, 0, 0)] TimerInfo timerInfo)

	
.. include:: /../common/authors.txt

Message Queues

public void MyJobQueue([QueueTrigger("MyQueue")] object queueMessage)
{
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.Error, ex);
 }
}

Message queue jobs will be triggered everytime a message is added to the queue that the jobs listen to (“MyQueue” in this example).

Queue messages can be added when a feature is activated/deactivated, when an web api endpoint is called or from another Omnia Job. To add a queue message, use the Queues service:

public void MyJobTimer([TimerTrigger(1, 0, 0)] TimerInfo timerInfo)
 {
 try
 {
 // Add a queue message to the queue "MyQueue" every hour, triggering the queue message job.
 WorkWith().Queues().AddQueueMessage("MyQueue", new MyModel());
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.Error, ex);
 }
 }

 // The content of the queue message will de deserialized to type MyModel
 public void MyJobQueue([QueueTrigger("MyQueue")] MyModel queueMessage)
 {
 try
 {
 // Your job code here
 }
 catch (Exception ex)
 {
 WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.Error, ex);
 }
 }

Dequeue Mode

When adding a queue message you can set the transaction ID for the message, so that multiple messages can be grouped together in the same transaction. By default, the message queue job will be triggered immediately when a new message is added, however you can change this behavior by setting the dequeue mode to SynchronousTransaction.

When running synchronous dequeue mode, all messages in the same transaction will be processed sequentially by the order that they was added. In other words, if a new message of the same transaction is added while the previous message was being processed, the new message will not be processed until the previous message has been finished.

public void MyJobQueue([QueueTrigger("MyJob", DequeueMode = Models.Queues.DequeueModes.SynchronousTransaction)] MyModel queueMessage)

	
.. include:: /../common/authors.txt

Client-Side Development

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Live reload

	Angular 1
	UI Components
	Single Picker

	Multi Picker

	Client-Side Services

	Angular 2
	Components
	DropDownList

	ColorPicker

	Services
	AJAX Service

	Dialogs Service

	Configuration Service

	Localization Service

	
.. include:: /../common/authors.txt

Live reload

When doing client side development, you can enable a mode called “Live reload”. In this mode, the page is automatically updated to reflect your new HTML, TypeScript and Less code when you save a file in Visual Studio.

Sections:

	Enable Live reload

	Working in Live reload mode

	Disable Live reload

Enable Live reload

	Open Visual Studio as Administrator

	In the environment.json file of your Omnia extension, do the following

	In the Hosting section set Enabled to true, and UseLiveReload to true

	Note the Port number (ex 9900)

	Save the file

[image: ../_images/live-reload-environment-json.png]

	In the Output window of Visual Studio, select “Omnia Tooling” in the Show output from dropdown

	Make sure the Hosting server has started correctly by reading the output.

[image: ../_images/live-reload-output-window.png]

Note

If you get an error message in the output, you need to make sure that the IIS Express SSL certificate is installed on your computer.

You can trigger the installation by creating an MVC project, Enable SSL and then start Debugging the project. You will now get a dialog asking if you want to trust the IIS Express SSL certificate. Click “Yes”

	In your web browser

	Navigate to a site in the Office 365 Tenant used for developing your Omnia Extension

	Add ?console=on to the URL of the page, ex /somepage?console=on.
If you are on a quick page, instead add |console=on, ex /#/somepage|console=on

	This will display the Omnia Console on the current page. Type help in the console to get a list of all available commands

	To enable Live reload, type hosting enable https://localhost:9900 where 9900 is the port number you noted in Step 2, from the environment.json

[image: ../_images/live-reload-omnia-console-enable.png]

	The page should now be reloaded and after some time your controls should be displayed, now served from https://localhost:9900 instead of the Omnia server

Working in Live reload mode

Edit your LESS, TypeScript or HTML files as you normally would. When saved, the browser will update to instantly display the changes.

Disable Live reload

To disable Live reload, do the following:

	In the Omnia console in the browser window, write hosting disable

	In the Visual Studio project, in the environment.json file, set the Enabled parameter in the Hosting section to false

	
.. include:: /../common/authors.txt

Angular 1

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	UI Components
	Single Picker

	Multi Picker

	Client-Side Services

	
.. include:: /../common/authors.txt

UI Components

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Single Picker

	Multi Picker

	
.. include:: /../common/authors.txt

Single Picker

Note

This component is an Angular 1 directive registered in module Omnia.Foundation.Core.Module

The single picker is a dropdown component that supports type-ahead search and customizable UI.

[image: ../../../_images/singlepicker.png]

Sample

$scope.employees = [
 { id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
 { id: 2, firstName: 'John', lastName: 'Smith', age: 36 }
];

$scope.department = {
 id: 1,
 name: "Marketing",
 managerId: 1
}

<omf-single-picker
 items="employees"
 title-expression="[firstName] [lastName]"
 id-prop="id"
 bind-selected-item-id="department.managerId"
 pre-selected-item-id="department.managerId">
</omf-single-picker>

Properties

	Name

	Binding

	Description

	items

	=

	The list of options in the dropdown

	titleProp

	@

	The property on model to be used as the display text

	titleExpression

	@

	The format string for display text. Example: [firstName] [lastName] ([email])

	idProp

	@

	The property on model to be used as the value

	onSelect

	&

	Callback when an option is selected. Parameters: (selectedItem, parentItem)

	onDeselect

	&

	Callback when the dropdown is cleared.

	onOpen

	&

	Callback when the dropdown is opened.

	bindSelectedItemId

	=

	The selected value. This property is only one-way binding from the dropdown to the consumer scope.

	preSelectedItemId

	=

	The initial selected value.

	updateSelectedItemEvent

	@

	The event name used to update selected value of the dropdown from outsite scope.

	preSelectFirstItem

	@

	true or false - whether to preselect the first option if no initial selected value is provided.

	parentItem

	=

	An object to be pass along the selected item on the onSelect callback.

	
.. include:: /../common/authors.txt

Multi Picker

Note

This component is an Angular 1 directive registered in module Omnia.Foundation.Core.Module

The multi picker is a dropdown component that supports multiple selected values, type-ahead search and customizable UI.

[image: ../../../_images/multipicker.png]

Sample

$scope.employees = [
 { id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
 { id: 2, firstName: 'John', lastName: 'Smith', age: 36 }
];

$scope.department = {
 id: 1,
 name: "Marketing",
 managerId: 1,
 members: [
 { id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
 { id: 2, firstName: 'John', lastName: 'Smith', age: 36 }
]
}

<omf-multi-picker items="employees"
 title-expression="[firstName] [lastName]"
 selected-items="department.members">
</omf-multi-picker>

Properties

	Name

	Binding

	Description

	items

	=

	The list of options in the dropdown

	titleProp

	@

	The property on model to be used as the display text

	titleExpression

	@

	The format string for display text. Example: [firstName] [lastName] ([email])

	idProp

	@

	The property on model to be used as the value

	onSelect

	&

	Callback when an option is selected. Parameters: (selectedItem)

	onDeselect

	&

	Callback when the dropdown is cleared.

	onOpen

	&

	Callback when the dropdown is opened.

	selectedItems

	=

	The selected value. This property is only two-way binding between the dropdown and the consumer scope.

	
.. include:: /../common/authors.txt

Client-Side Services

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	
.. include:: /../common/authors.txt

Angular 2

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	Components
	DropDownList

	ColorPicker

	Services
	AJAX Service

	Dialogs Service

	Configuration Service

	Localization Service

	
.. include:: /../common/authors.txt

Components

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	DropDownList
	How it looks like

	Selector

	Parameters

	Examples

	ColorPicker
	How it looks like

	Selector

	Parameters

	Examples

	
.. include:: /../common/authors.txt

DropDownList

Note

This documentation is a work in progress and contributions can be made on our Github repo

DropDownList is a dropdown component that supports type-ahead search and customizable UI.

How it looks like

[image: ../../../_images/singlepicker1.png]

Selector

<omf-dropdown-list></omf-dropdown-list>

Parameters

- items: Array<any>

The list of options for the dropdown. Could be an array of string or an array of object.

allowMultipleValues: boolean

Flag for allowing multiple values to be selected. Default value is false.

textProperty: string

The name of property to be used as the display text of the options. Only applicable if items is an array of object.

textExpression: string

The expression for formatting the display text of the options. textProperty will be ignored if textExpression is set. Only applicable if items is an array of object.

Example: text-expression=”[firstName] [lastName] ([email])”

valueProperty: string

The name of the property to be used as the selected value. Only applicable of items is an array of object.

preSelectFirstItem: boolean

Flag for setting the first item in items as selected if no selected value is provided. Default value is false.

onItemSelected: (selectedItem: any, parentItem?: any) => void

Event handler for item selected event. If items is an array of object, selectedItem will be the object that was selected, not just the value property.

onItemDeselected: (deselectedItem: any, parentItem?: any) => void

Event handler for item deselected event. If items is an array of object, deselectedItem will be the object that was selected, not just the value property.

onDropDownOpen: () => void

Event handler for dropdown open event.

onInputChange: (newValue: string) => void

Event handler for

showLoading: boolean

Flag for showing the loading indicator. Should be set to true while items is being loaded. Default value is false.

selectedItemValue: any

Two-way bind selected value(s). If items is an array of object then the selected value(s) will be taken from the valueProperty of the selected item.

If allowMultipleValues is true then selectedItemValue will be an array, otherwise it will be a single value.

parentItem: any

The related object to be passed in onItemSelected and onItemDeselected.

Examples

import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
 selector: 'my-component'
})
export class MyComponent {
 employees = [
 { id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
 { id: 2, firstName: 'John', lastName: 'Smith', age: 36 }
];

 selectedEmployeeId = 1;

 constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef) {
 }
}

<omf-dropdown-list [items]="employees"
 textProperty="firstName"
 valueProperty="id"
 [(selectedItemValue)]="selectedEmployeeId">
</omf-dropdown-list>

	
.. include:: /../common/authors.txt

ColorPicker

Note

This documentation is a work in progress and contributions can be made on our Github repo

ColorPicker is a component for selecting color from Omnia corporate colors feature or from custom colors.

How it looks like

[image: ../../../_images/colorpicker.png]

Selector

<omf-color-picker></omf-color-picker>

Parameters

- color: string

Two-way bind selected color.

onColorChange: (color: string) => void

Even handler for the color selected event.

position: string

The position of the color picker popover. Must be one of these: ‘top’, ‘bottom’, ‘left’, ‘right’

Examples

import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
 selector: 'my-component'
})
export class MyComponent {
 selectedColor = '#ffffff';

 constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef) {
 }
}

<omf-color-picker [color]="selectedColor" [position]="'bottom'"></omf-color-picker>

	
.. include:: /../common/authors.txt

Services

Note

This documentation is a work in progress and contributions can be made on our Github repo

Topics

	AJAX Service
	Available Methods

	Examples

	Dialogs Service
	Available Methods

	Examples

	Configuration Service
	Available Methods

	Examples

	Localization Service
	Available Methods

	Examples

	
.. include:: /../common/authors.txt

AJAX Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

AJAX service is a utility for making AJAX requests to Omnia Foundation and Omnia extensions web API. The AJAX service is usually not used directly in UI components but in other services.

Available Methods

	Method

	Description

	Parameters

	buildRequest

	
Fluent API for making

an AJAX request

	
- apiPath (string): The request’s URL. If apiPath is a relative URL, it will be direct to Omnia Foundation.

Other extensions can inherit this AJAX and override the internal method getFullApiPath to make calls to it’s API instead

- dataType (string) (optional): The request’s Content-Type. Default value is ‘application/json’

Examples

Note

To use the AjaxService, you need to import The module OmniaExtensibilityModule into the NgModule of your component or add it directly to the list of providers of your compoment

Normal Usage

import { AjaxService } from "Omnia/Foundation/Extensibility/Services";
import { Pipe, Injectable , Inject } from '@angular/core';

@Injectable()
export class ConfigurationService {
 constructor(@Inject(AjaxService) private ajaxService: AjaxService) {

 }

 public getConfiguration = (callback: (result: Configurations.IConfiguration) => void, name: string, region: string, extensionPackageId: string = null) => {
 var params = {
 name: name,
 region: region,
 extensionPackageId: extensionPackageId
 };

 this.ajaxService.buildRequest("configuration/configurations")
 .addQueryStrings(params)
 .doGet<Configurations.IConfiguration>()
 .subscribe((result) => { callback(result.json()); });
 }
}

Inherit AJAX Service

import { AjaxService as FoundationAjaxService } from 'Omnia/Foundation/Extensibility/Services'
import { Utils } from "Omnia/Foundation/Extensibility";

@Injectable()
export class AjaxService extends FoundationAjaxService{
 static apiBaseUrl: string = "";

 public getFullApiPath(apiPath: string): string {
 if (Utils.isNullOrEmpty(AjaxService.apiBaseUrl)) {
 AjaxService.apiBaseUrl = Utils.ensureTrailingSlash("<my-extension-api-url>");
 }

 return AjaxService.apiBaseUrl + apiPath;
 }
}

	
.. include:: /../common/authors.txt

Dialogs Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

Dialogs service is a utility for working with modal dialogs in Angular 2 and Omnia.

Available Methods

	Method

	Description

	Parameters

	onConfirmationDialog

	
Show a confirmation dialog

with yes/no outcome

	
- title (string): The dialog’s title

- body (string): The dialog’s body text

- viewContainerRef (ViewContainerRef): the viewContainerRef of the calling component

- okCallback (() => void): The callback for ‘OK’ outcome

- cancelCallback (() => void): The callback for ‘Cancel’ outcome

	openDialog

	
Show a custom dialog

	
- componentType (Type<any>): The component to show in the dialog

- params (any): the parameters passed to the dialog

- viewContainerRef (ViewContainerRef): the viewContainerRef of the calling component

- dialogSize (DialogSize): can be small, medium and large. Default value is medium

- okCallback (() => void): The callback for ‘OK’ outcome

- cancelCallback (() => void): The callback for ‘Cancel’ outcome

	blockUI

	
Show a loading indicator

and block the whole page UI

	

	unblockUI

	
Remove the UI block from

blockUI method

	

Examples

Note

To use the DialogService, you need to import The module OmniaExtensibilityModule into the NgModule of your component or add it directly to the list of providers of your compoment

Injection

import { DialogService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
 selector: 'my-component',
 providers: [DialogService]
})
export class MyComponent {
 constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
 @Inject(DialogService) private dialogService: DialogService) {
 }
}

Open confirmation dialog

private deleteItem(item) {
 let dialogTitle = "Delete Item";
 let dialogBody = "Are you sure you want to delete this item?";

 this.dialogService.onConfirmationDialog(dialogTitle, dialogBody, this.viewContainer, () => {
 // Confirmed, proceed to delete the item
 });
}

Open custom dialog

import { EditItemForm } from "MyComponent/EditItemForm";
import { DialogSize } from "Omnia/Foundation/Extensibility/Enums";

// ...

private editItem(item) {
 this.dialogService.openDialog(EditItemForm, { item: item },
 this.viewContainer, DialogSize.Large);
}

import { Component, Inject, ViewContainerRef, OnDestroy , OnInit } from '@angular/core';
import { DialogRef} from 'angular2-modal';
import { BaseDialogComponent, BaseDialogModel } from "Omnia/Foundation/Extensibility/Services";

@Component({
 selector: 'edit-item-form'
})
export class EditItemForm extends BaseDialogComponent<BaseDialogModel<any>> implements OnInit {
 item: Item;

 constructor(@Inject(DialogRef) public dialog: DialogRef<BaseDialogModel<any>>) {
 super(dialog);
 }

 ngOnInit() {
 this.item = this.context.params.item;
 }
}

	
.. include:: /../common/authors.txt

Configuration Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

Configuration service is a utility for working with Omnia configurations. Read more about configuration in Omnia here

Available Methods

	Method

	Description

	Parameters

	getConfiguration

	
Get configuration from

Omnia Foundation API

	
- callback ((result: Configurations.IConfiguration) => void): The callback with the requested configuration

- name (string): The name of the configuration

- region (string): The region of the configuration

- extensionPackageId (string) (optional): The ID of the extension that created the configuration. Default value is built-in configurations

	getClientConfiguration

	
Get configuration included

in client-side

	
- name (string): The name of the configuration

- region (string): The region of the configuration

- extensionPackageId (string) (optional): The ID of the extension that created the configuration. Default value is built-in configurations

	addOrUpdateConfigurations

	
Add or update a list of

configurations

	
- configurations (Array<Configurations.IConfiguration>): The list of configurations to add or update

- callback ((isSuccess: boolean) => void): The callback function

	getConfigurationsInRegion

	
Get all configurations by

region

	
- region (string): The region of the configurations

- callback ((result: Array<Configurations.IConfiguration>) => void): The callback function with result

	updateConfiguration

	
Update a configuration

	
- configuration (Configurations.IConfiguration): The configuration to be updated

- callback ((isSuccess: boolean) => void): The callback function

	deleteConfiguration

	
Remove a configuration

	
- name (string): The name of the configuration

- region (string): The region of the configuration

- callback ((isSuccess: boolean) => void): The callback function

Examples

Note

To use the ConfigurationService, you need to import The module OmniaExtensibilityModule into the NgModule of your component or add it directly to the list of providers of your compoment

Injection

import { ConfigurationService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
 selector: 'my-component',
 providers: [ConfigurationService]
})
export class MyComponent {
 constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
 @Inject(ConfigurationService) private configurationService: ConfigurationService) {
 }
}

Get configuration

private getDefaultColors() {
 this.configurationService.getConfiguration((configuration: Configurations.IConfiguration) => {
 let defaultColors = configuration.value;
 }, "defaultcolors", "");
}

	
.. include:: /../common/authors.txt

Localization Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

Localization service is a utility for getting localized text in Omnia. Read more about localization in Omnia here

Available Methods

	Method

	Description

	Parameters

	getText

	
Get the localized text

for a label in Omnia

	
- key (string): The key for the localization. If no localized text match, this key will be return

Examples

Note

To use the LocalizationService, you need to import The module OmniaExtensibilityModule into the NgModule of your component or add it directly to the list of providers of your compoment

Injection

import { LocalizationService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
 selector: 'my-component',
 providers: [ConfigurationService]
})
export class MyComponent {
 constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
 @Inject(LocalizationService) private localizationService: LocalizationService) {
 }
}

Get localized text

private getItemTypes() {
 return [
 { id: 0, title: this.localizationService.getText('MyExtension.ItemTypes.Small') },
 { id: 1, title: this.localizationService.getText('MyExtension.ItemTypes.Medium') },
 { id: 2, title: this.localizationService.getText('MyExtension.ItemTypes.Large') }
];
}

	
.. include:: /../common/authors.txt

Performance

The following sections will guide you in using functionality in Omnia to improve the performance in your solution

ClientContext.LoadIfNeeded and ClientContext.ExecuteQueryIfNeeded

Often, a single SharePoint Client Context is passed between different services and you do not know if the data you need has already been loaded or if an ExecuteQuery is needed.

To make this process more effective and straight forward, Omnia has implemented two extension methods on ClientContext: LoadIfNeeded and ExecuteQueryIfNeeded.

By using the above methods, already loaded and fetched data will not trigger a new ExecuteQuery to the server.

Example:

public string GetServerRelativeUrl(ClientContext ctx)
{
 ctx.LoadIfNeeded(Ctx.Web, x => x.ServerRelativeUrl).ExecuteQueryIfNeeded();

 return ctx.Web.ServerRelativeUrl;
}

The ExecuteQueryIfNeeded method also takes an optional parameter of type Microsoft.SharePoint.Client.ClientContextExtensions.ExecuteOption. This is an enum with two possible values:

	LoadAllIfOneIsNeeded

	LoadOnlyNeeded

This is useful to decide if only missing property should be loaded from the server, or if all loaded properties should be reloaded if an execute needs to be done.

If this parameter is not supplied, LoadOnlyNeeded is used.

	
.. include:: /../common/authors.txt

Release Notes

Topics

	Omnia Foundation

	Omnia Tooling

	
.. include:: /../common/authors.txt

Omnia Foundation

Sections:

	1.0.1.1681 (2016-09-20)

1.0.1.1681 (2016-09-20)

What’s new

	It’s now possible in the API for an extension to change the configuration created by another extension.

	A new feature called “Omnia Statistics Provider” makes it possible to register a third-party analytics script in the Admin UI to be included on all pages within a specific site collection.

	Targeting api that makes it possible to specify targeting definitions in Omnia Admin using Taxonomy/Profile Properites or Security Groups and then use the api in extensions to filter content based on selected targeting.

	Omnia Jobs is a new feature that makes it possible to create Jobs in Extensions that can be based on a Timer or by listening on a Queue.

	OmniaApi support to work with queues.

	Updated font awesome to version 4.6.3.

	Omnia Console now has support to listen to commands. Currently we support two commands that enables support for the built in webserver in Omnia Tooling for example:

	hosting enable https://localhost:9930

	hosting disable

	A new section in Omnia Admin > System called Developers was added. It lists the version of Omnia Foundation and also displays the nuget version to be used for Extensions.

	OmniaApi now has a SitesService that has the following methods GetSiteRequestById, GetRecentSites, AddOrUpdateRecentSite.

Bug fixes

	When provisioning a Field without a description an error was thrown.

	Left navigation in admin missing scroll support.

	Slow performance in Features view in Admin.

	Fixed an performance issue where the JobHost was loading all extension packages from database at startup.

	When adding new properties to a site template and performing a migration the migration would stop if a site was deleted.

	When using approval flow in site requests there was sometimes a timeout error when approving the request.

	When editing site templates deployed by extensions the save button was always disabled.

	The announcements control had a problem with overflow when long text without space was in the message.

	When uploading a extension package with configuration we now always sort it in alphabetic order.

	The customized localization made in the localization editor in Omnia Admin for an extension package was removed when a feature was upgraded.

	Selected features in site templates was not checked in UI when the template was loaded.

	When specifying a FieldRef using [FieldRef(typeof(Field1), Required = true)] it didn’t listen on the Required property.

	
.. include:: /../common/authors.txt

Omnia Tooling

Here you can find the releases of the Omnia Tooling for Visual Studio 2013/2015

Sections:

	Visual Studio 2017 1.0.0

	Visual Studio 2017 1.0.6924 Beta 4 (Vietnam Codebase Edition)

	Visual Studio 2017 1.0.6828 Beta 3 (France Codebase Edition)

	Visual Studio 2017 1.0.6250 Beta 2

	Visual Studio 2017 1.0.5935 Beta 1

	Visual Studio 2017 Preview

	Stable 1.0.1.3965

	Stable 1.0.1.2305-62

	Stable 1.0.1.1699-48

	Stable 1.0.1.1115-38

Visual Studio 2017 1.0.0

Please report issues with tooling on our Github repo [https://github.com/preciofishbone/Omnia-Foundation]

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.0.vsix]

Visual Studio 2017 1.0.6924 Beta 4 (Vietnam Codebase Edition)

Note

	To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What`s new

	Improvement in Resource Mapper

	Its now possible to create new Omnia Controls without any additional setup

	Bugfixes

Please report issues with tooling on our Github repo [https://github.com/preciofishbone/Omnia-Foundation]

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6924-beta.vsix]

Visual Studio 2017 1.0.6828 Beta 3 (France Codebase Edition)

Note

	To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What`s new

	Visual Resource Mapper makes it easy adding resources to mapping files

	Support for Visual Resource Mapper when adding TenantResources from item templates

Please report issues with tooling on our Github repo [https://github.com/preciofishbone/Omnia-Foundation]

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6828-beta.vsix]

Visual Studio 2017 1.0.6250 Beta 2

Note

	To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What`s new

	Improved Copy to Tenant

	Remove extra folder from solution

	Upgrade TypeScript to version 2.4.1

Please report issues with tooling on our Github repo [https://github.com/preciofishbone/Omnia-Foundation]

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6250-beta.vsix]

Visual Studio 2017 1.0.5935 Beta 1

Note

	To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What`s new

	Completely new Project Wizard and Item Template Wizard that uses Github as source

	Angular 4 support

	Extensible TaskRunner (angular aot, less etc)

	We now use npm for Foundation (https://www.npmjs.com/package/@omnia/foundation)

Please report issues with tooling on our Github repo [https://github.com/preciofishbone/Omnia-Foundation]

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.5935-beta.vsix]

Visual Studio 2017 Preview

What`s new

	Added support for Visual Studio 2017

Download vsix [http://nuget.preciofishbone.se/omniatoolings/dev/omniatooling.1.0.1.3965-vs2017.vsix]

Stable 1.0.1.3965

What`s new

	New extension projects can now build without errors

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.3965.vsix]

Stable 1.0.1.2305-62

What`s new

	Update Omnia Control Item Templates for Angular 2 to comply with Angular 2.0.0

	Update Omnia Extension Sample Project Template with new samples of Angular 2

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.2305-62.vsix]

Stable 1.0.1.1699-48

What`s new

	Omnia Control Item Templates for Angular 2

	Built in websever for hosting Tenant bundles locally

	Live Reload support for Tenant bundles

Note

The Omnia Control Templates for Angular 2 is only for preview purposes since the Angular 2 RTM was just released we removed the bootstrapping for Angular 2 in Foundation until we have a working version running on Angular 2 RTM

Bug fixes

	The item template for Field contained a space in the internalname which could cause problems in provisioning

	Item Template for Omnia Control without settings should have enableSettings value set to false and the constructor should not have the ControlConfigService injected

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.1699-48.vsix]

Stable 1.0.1.1115-38

Download vsix [http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.1115-38.vsix]

	
.. include:: /../common/authors.txt

Contribute to this Documentation

This documentation is a constant work in progress, and contributions can be made on our Github repo. For more extensive contributions please follow the steps below to get started with using Sphinx.

	Get started

	Work with the documentation

	Commit your changes

	
.. include:: /../common/authors.txt

Get started

Please follow the steps below to install Sphinx and get the source code from our Git repository.

1. Install Python

Download and install Python 3.6.0 from here https://www.python.org/downloads/

Note

Make sure to select pip and Add Python to environment variables during the installation

2. Install Sphinx

	Open a command prompt

	Run

pip install sphinx sphinx-autobuild sphinx_rtd_theme

3. Install Git for Windows

Download and install Git from here https://git-scm.com/download/win

4. Get the Git repository

	Create a folder in your file system where you would like to keep the documentation source code, for example

C:\Git\OMF-docs

	In a command prompt, navigate to the folder you just created and execute the following command

git clone https://github.com/preciofishbone/Omnia-Foundation-Docs.git

The source code is now cloned to the current folder

	
.. include:: /../common/authors.txt

Work with the documentation

To work with the source code locally using Sphinx, follow the steps below

	Open a command prompt and navigate to the folder containing the source code for the documentation

	Execute the following command

make livehtml

After a while the console window will settle down, and you will find a link in the window, like this Serving on http://127.0.0.1:8000

	In a web browser, enter the link from above. A locally rendered version of the documentation will be displayed.

Now, any time you add a file, or edit an existing file and then save it, Sphinx will rebuild the documentation locally and reload the browser window to display the latest changes.

You do edits, additions and deletes by just working with the files in the source code folder in your favorite text editor.

Note

The documentation is written with reStructuredText. To learn more about this markup language, you can use this link http://sphinx-doc.org/rest.html#rst-primer

To stop Sphinx, press Ctrl + C in the command prompt and then select Y

	
.. include:: /../common/authors.txt

Commit your changes

To commit your change to the Git-repo perform the following steps

	Open a command prompt and navigate to the folder containing the source code for the documentation

	Execute the following command

git pull

	Execute the following command

git commit -a -m "A description of your changes"

	Execute the following command

git push

You have now successfully contributed to this documentation. Thank you for your time and effort!

Index

	
.. include:: /../common/authors.txt

Icon Picker

	
.. include:: /../common/authors.txt

People Picker

	
.. include:: /../common/authors.txt

Configurations Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

	
.. include:: /../common/authors.txt

Dialogs Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

	
.. include:: /../common/authors.txt

Localizations Service

Note

This documentation is a work in progress and contributions can be made on our Github repo

	
.. include:: /../common/authors.txt

IconPicker

Note

This documentation is a work in progress and contributions can be made on our Github repo

IconPicker is a picker for Font Awesome icons

 _images/live-reload-omnia-console-enable.png
Omnia Console

TERMINAL LOGS PERFORMANCE

omnia> help
hosting enable A
hosting disable

aot enable

aot disable

cls

omnia> hosting enable https://localhost:9900]

_images/live-reload-output-window.png
> Started hosting on https://localhost:990€|

_images/image-renditions.png
>

start
About us
How we work

My employment

EDITUNKS
Site Contents

start -

Image Renditions o

[
Add new item
1

2
3

4

1001
1002
1003
1008

EDITUINKS

Neme

Display Template Picture 3 Lines
Display Template Picture On Top
Display Template Large Picture
Display Template Video
Landscape

Square

portrait

Landscape (small size)

Width

100px
304px
a68px
120px
600px
300px
300px
300px

Height

100px
100px
220
epx

300px
300px
as0px
150px

Edic

Rl Rt e i il
XX XX XXXX

Delete.

_images/live-reload-environment-json.png
"TenantId":

“"UseliveReload": true
3,
“Angular®: {
"A0T": {
“RunOnBuild": true
¥
1,

FeatureActivations”

_images/nuget-package-source.png
Search Options (C1-6) P
Source Contel
Tot ditor
Debugging
Perormance Toos
Database Toos

nugetorg v2
https://www.nuget org/api/v2/

File Nesting hitps://api.nuget org/v3/indexjson

Graphics Diagnostics

NuGet Package Manager
e Machine-wide package

lEackaoeSnce Microsoft and .NET

Office Tools
htps/fumen. nuget org/api/2 cursted-feeds/mictosoftdotnet/
SQL Server Tools. P et or/ep

Text Templating
Web Forms Designer

Web Performance Test Tools Name: [Precio Fishbone

Windows Fom Desaner
i Souce [magtprecatbanes e =] [l

Cancel

_images/omnia-admin-feature-logs.png
Features » Omnia Core MasterPage

Omnia Core MasterPage: 1.0.6

url Version

/ 106 Hidelog

Logs - Refresh

2016-06-30 06:12:45 Upgrade feature from version 1.0.6

2016-06-2911:01:33 Upgrade feature from version 1.0.5

_images/multipicker.png
Department Members

_images/notefield-properties.png
Elnamespace MyomniaExtension.Fields

=]

{

[NoteField(i

"37643EF6-2BB9-429B-BD19-4684FC7879DD", internalName: "MyNoteField”,
My Title", Group = "Custom Group”,))]

Title =

0 NoteFieldAttribute(stiing i, sting intemalName, Properties: [AllowDeletion = bool] [AllowHyperlink = bool],

P
{

[AppendOnly = booll [DefaultValue = <tring], [Description = stingl, [Direction = stringl, [DisplaySize = stringl
[EnforceliniqueVelues = booll FieldTypekind = Microsoft SharePoint Client FieldTypel, [Group = <ting), [Hidden = booll,

[1d= Guidl, lIndexed = booll, [IntemalName = <trngl, [1solteStyles = bool, USLink = <tring],

[LinkToltemAllowed = ListtemMenuState) [ListtemMenuAllowed = ListitemMenustate], [NumberOfLines = inf], [PIAtribute = <tring],
[PTerget = stringl, [PrimaryPlAttribute = sring], [PimaryPITarget = sring], [ReadOnlyField = booll

[Required = bool], [RestrictedMode = bool], [RichText = bool], RichTextMode = RichTextModel, [SchemaXmi = stringl,

[Sealed = booll, [ShowlnDisplayForm = booll, [ShowlnEditForm = bool, [ShowinListSettings = booll,

[ShowlnNewForm = booll [ShowlnVersionHistory = booll, [StaticName = sring), [Title = string], [TypeAsString = <tring],
[UnlimitedLengthinDocumentLibrary = booll, [VelidationFormula = sting], ValdationMessage = <trngl)

_images/omnia-admin-localization.png
System » @ Localization

Product Resource File Language

Omnia Foundation . pfp.core . English (United States) .

S public

SoMF

B common

PagesLibraryUrl Jpages

ContentTypeGroup Omnia Content Types

SiteColumnGroup ©Omnia Site Columns

_images/omnia-admin-new-extension-success.png
Name Status Description

MyOmniaxtension Available

_images/omnia-admin-new-extension-upload-configurations.png
System » & Extensions » Upload Package

MyOmniaExtension

Name Region

mywebapiurl myomniaextension

termsetid myomniaextension

Value

Included i Client

v

nav.xhtml

 Table of Contents

 		
 Omnia Foundation Documentation

 		
 Getting Started

 		
 Omnia Foundation Fundamentals

 		
 Omnia Extension Package

 		
 Omnia Feature

 		
 Resource Mappings

 		
 Localization

 		
 Permissions

 		
 Configuration

 		
 Bundling

 		
 Logging

 		
 SharePoint Provisioning

 		
 Field

 		
 Content Type

 		
 List

 		
 Image Rendition

 		
 File

 		
 Page Layout

 		
 Glue Layout

 		
 Webpart Definition

 		
 Generic File

 		
 Provisioning Pipeline

 		
 Omnia API

 		
 Caching

 		
 Configurations

 		
 Controls

 		
 Email

 		
 Features

 		
 Lists

 		
 Logging

 		
 Security

 		
 Custom Web API for Omnia extensions

 		
 Omnia base controller

 		
 Omnia Jobs

 		
 Scheduled Job

 		
 Message Queues

 		
 Client-Side Development

 		
 Live reload

 		
 Angular 1

 		
 UI Components

 		
 Client-Side Services

 		
 Angular 2

 		
 Components

 		
 Services

 		
 Performance

 		
 Release Notes

 		
 Omnia Foundation

 		
 Omnia Tooling

 		
 Contribute to this Documentation

 		
 Get started

 		
 Work with the documentation

 		
 Commit your changes

_images/omnia-admin-register-extension.png
System » & Extensions » & Register Extension

Extensionld
aaf868ac-469f-479-a5e1-6ec181a6de38
8c03468f-ef20-49ef-9349-88418305433c
0d54230e-d0ec-4b57-835f-92325218fc52
df041edc-14c1-4a07-a8be-f0775d48f07¢
72e65df6-aab0-4f4c-bb27-1bdaaddf3107
b708fc36-57af-4ede-8334-5705a2e696a1

3e244375-6a6f-458c-bfe8-2993d4fd6f8s

Created At

2016-06-10 10:24:18

2016-06-10 13:34:03

2016-06-29 09:26:40

2016-07-06 11:51:13

2016-08-08 06:12:55

2016-10-13 12:51:14

2017-07-26 11:36:30

® & & & ® & &

ate

_images/omnia-admin-register-extension2.png
System » & Extensions » & Register Extension » New Extension

The Extension ID has been created successfully. This is the only time the API secret will be displayed in clear text, please save it somewhere else for later use.
Extensionld

d3282397-b325-469d-8b81-a7b521380256

API Secret

sZxfAASWNOf3DyuShaOMWIEDSMabp6NI

_images/omnia-admin-new-extension-upload.png
System » & Extensions

Name Status Description Version
| Myomniaextension Available 100 E]
| omniantranet Available 100]

| omniarr Available 100]

_images/omnia-admin-queue-logs.png
System » B Queues

Queue Messages

Filter by Transaction I

Start Time

2016-08-04 12:25:56

20160804 13:

2016-08-04 12:

20160803 11:25:59

End Time

2016-08-04 12:26:00

20160804 12:25:28

2016-08-04 12:15:59

20160803 11:26:04.

Name
processfeature
processfeature
processfeature

newextensionpackage

Transaction

d7a463c3-2577-4580-8f17-f09891896820

C2f41878-695-4004-9308-6501d5b0b7d3

62f3e62a-7723-4047-8224-d83fcbbeffd7

85366¢f5-b32e-4d03-bb56-6fdfb419c6fd

Status

Success

Success

Success

Success

View Details

View Details

View Details

View Details

_images/singlepicker.png
Department Manager

ayowm a

_images/singlepicker1.png
Department Manager

ayowm a

_images/omnia-admin-system-jobs.png
System » @ Jobs

Name
Calendarsyndjob
QMssearchsyncob

Searchsyncronize

PowerPack Email Job
AssetRequestReminderjob

IntranetNavigationSyncjob

employeesyndob

QMsRUEmailsenderjob

ODMReviewWorkflow
ODMReviewReminder
ExtranetsLALevelCheckUp

ExtranetNotificationEmailServicejob

QMS Search sync Job

Timer

Sync the navigations
from configuration to
SharePoint

QMs Read and
Understood Email
Sender Job

Review Workflow Job.

Review Reminder job

Extension Trigger
3244375-6a6(-458¢ bfes-209304fd6188
0d54230-d0ec-4bs7-835.92325218fc52

0d54230e-d0ec-4b57-835F-92325218fc52 00:30:00

36244375-6a6f-458¢-bfe8-2003d4fd6fs8
36244375-6a6f-458¢-bfe8-2003d4fd6fs8

8C03468f-2120-49¢f-0349-88418305433¢

36244375-6a6f-458¢-bfe8-2003d4fd6fs8

0d54230e-d0ec-4b57-8357-02325218fc52

2af868ac-4601-47f0-35e1-6ec1 812600238
2af868ac-4601-47f0-35e1-6ec1 812600238
2982ff0d-7cb6-4207-b858-4ce17a00ca06

2982ff0d-7cb6-4207-b858-4ce17a00ca06

Started At

20161121 11:18:28

Finished At

20161121 11:18:

_images/omnia-admin-system-logs.png
System » Q Logs

System Logs
Unable to connect to the remote server

Source Message Type

2016-08-05 04

111 Omnia.Foundation.Core.Security.SecurityServiceExtended Unable to connect to the remote server Error Hide Exception

Exception

System.Net WebException: Unable to connect to the remote server > System.Net.Sockets SocketException: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because
connected host has failed to respond 172.27.80.71:7777 at System.Net Sockets Socket. DoConnect(EndPoint endPaintsnapshot, Socketaddress socketaddress) at System.Net ServicePoint.Connectsocketinternal(Boolean connectFailure, Socket s4, Socket s6,
Sockets socket, IPAddress& address, Connectsocketstate state, |AsyncResult asyncResult, Exceptiona exception) - End of inner exception stack trace — at System.Net HttpWebRequest GetRequeststream(TransportContext context) at

System.Net HttpWebRequest GetRequeststream) at Microsoft.SharePoint. Client.SPWebRequestExecutor. GetRequeststream() at Microsoft. SharePoint Client ClientRequest ExecuteQueryToserver(ChunkstringBuilder sb) at
Microsoft.sharePoint Client ClientRequest ExecuteQuery() at Microsoft. SharePoint Client ClientRuntimeContext ExecuteQuery) at Microsoft.sharePoint.Client.ClientContext ExecuteQuery() at

Omnia.Foundation.Core.SharePoint ExtendedClientContext ExecuteQueryRetry(Inta2 retryCount, Int32 delay) in C:\Omnia\Foundation\Dev\Omnia. Foundation. Core\SharePoint\ExtendedClientContext.csine 84 at

Omnia.Foundation.Core.SharePoint ExtendedClientContext ExecuteQuery() in C:\Omnia\Foundation\Dev\Omnia. Foundation. Core\sharePoint\ExtendedClientContext.csine 36 at
Omnia.Foundation.Core.Security.SecurityServiceExtended.GetUserPermissionRoles() in C\Omnia\Foundation\Dev\Omnia. Foundation.Core\Security\SecurityServiceExtended.csiline 1040 at
Omnia.Foundation.Core.Security.SecurityServiceExtended.GetCurrentUserPermissionRolesDictionary() in C:\Omnia\Foundation\Dev\Omnia. Foundation. Core\Security\SecurityServiceExtended.csiine 421

2016-07-2912:02:05 Omnia.Foundation. Core Security.SecurityServiceExtended Unable to connect to the remote server Error View Exception

_images/toolings-create-resourcemappings.png
MyOmniaExtension
b F Properties

b m References
b M Features

b M ScriptTypings
>

3

M SharePointArtifacts

o Styles
&) TenantResources
b Images
b M Localization
b 1 PageLayouts
A
b M AdminSettings Add ,
b M Controls e R
b M Core g
b M Directives ExaDUls
b M Senvices B New Solution Explorer View
b SieTemplotes e
b Styles
b c* ResourcesMapping.cs % cu G
b c* ScriptsMapping.cs i Copy cleC
Solution Explorer | Team Explorer
Properties 6 mE Del
Rename

Scripts Folder Properties
Open Folderin File Explorer

Properties Alt+Enter

Copyto Tenant
Create Resource Mappings

i @ Y

_images/toolings-create-resourcemappings2.png
[TenantResourceFolderMapping(id: "B382CFFA-1CBF-42E9-A2A6-F1E3C5996872", name: "TenantResources”)]
public class ScriptsMapping

{

[TenantResounraEnTdartianninml id: *AGRNEEGS ASI3_ANRS_AAAR_ANIDGI7A3IDL", name: "Folderl”)]
public class »

Ctrl+Alts.

[TenantR :B8672A", */TenantResources/Folder1/scriptl.js")]

public s

Ctrlek X
ik S
Alt+F12

Fi2

c+F12
Culek R
Ctrl+K, Cerl+T

Ctr+F10

Ctrl+E, Ctri+E
[R%
ctisc
sy,

_images/toolings-create-resourcemappings3.png
[TenantResourceFoldertapping(id

public class ScriptsMapping

{

[TenantResourceFoldertiapping(id:

EE2FFDO7-DSB6-4964-BD46-09472220F49C", name: "Scripts”)]

public class Scripts

{

[TenantResourceFoldertiapping(id: "CC316600-2332-4218-3349-2F1FS5786FAD", name: "AdminSettings”)]
public class AdminSettings

{
[TenantResourceFileMapping("534C8721-8597-4016-8683-8F2F 81202485, "/ TenantResources/Scripts/Adminsettings/sanple. adminsettings. form.3s")]
public string SampleAdminsettingsFormds { get; set; }

[TenantResourceFileMapping("308015D3-CCAC-4A7C-B011-C57286086097", "/ TenantResources/Scripts/Adminsettings/sanple. adminsettings. form. html")]
public string SampleAdminsettingsFormView { get; set; }

[TenantResourcerileMapping("DAG66EFS-3249-4382-A4AA-91845EDISB3E", "/ TenantResources/Scripts/Adminsettings/sanple. adminsettings. js")]
public string SampleAdminsettingsds { get; set; }

i

‘TenantResourceFoldertapping(id: "ABG7DA3E-2426-4BF4-BAB4-DIFCAO067DES" , name: "Controls”
pping(
public class Controls

{

[TenantResourceFileMapping("9D916C28-4524-4732-9413-4B38FFCDB764", "/ TenantResources/Scripts/Controls/sanple. controls. sample. settings. js")]
public string SampleControlsSampleSettingsds { get; set; }

[TenantResourcerileMapping("SDCE4726-4394-4F6A-8981-BCED3BABIC25", "/ TenantResources/Scripts/Controls/sanple. controls. sample. settings. html")]
public string SampleControlsSampleSettingsView { get; set; }

[TenantResourceFileMapping("04D7EESD-0DB9-47C5-B38D-DFA1418D665E", "/ TenantResources/Scripts/Controls/sanple. controls. sample. js")]
public string SampleControlssampleds { get; set; }

[TenantResourceFileMapping("C20BCAB7-2FFC-4F42-8737-E4CERA320548", "/ TenantResources/Scripts/Controls/sanple. controls. sample. html")]
public string SampleControlssampleView { get; set; }

_images/toolings-item-templates-jobs.png
Add New Item -

- Default Search Instaled Templates (Ctie) =

Admin Localization Type: Visual C#

OmniaJob.
Public Localization

Admin Settings

Admin Settings Page

Admin Settings Permissions Page

Feature

Job

‘Omia Control (Angular 1)

‘Omia Control (Angular 2)

‘Omnia Control With Settings (Angular 1)

‘Omnia Control With Settings (Angular 2)

‘Omia Control For Notification Panel (Angular 1)

‘Omnia Control Web Part

Click here to go onlin and find templates

_images/toolings-item-templates-localization.png
Add New Item - MyOmnia

: Default

Admin Localization

Public Localization

Admin Settings

Admin Settings Page

Admin Settings Permissions Page.

Feature

Job.

Omnia Control

‘Omnia Control With Settings

‘Omnia Control For Notification Panel

‘Omnia Control Web Part

Site Template

Tenant Resources Mapping

Click here to go onlin and find templates

Search Installed Templates (Ctrl+E)

Type: Visual C# ftems.
Localization used in SharePoint

o~

_images/toolings-environment-json.png
'd4Fb9533-ab1a-4007-b552-5dabSeadsF3e"
‘e07PRFIXZ9cgLKCYXKINTFILIVASTbSP" ,
‘https://onniacil.azurewebsites.net”,

B THosting™: {
false,

"FeatureActivations”: []

_images/toolings-item-templates-feature.png
Add New Item - MyOmnia

: Default

Admin Localization

Public Localization

Admin Settings

Admin Settings Page

Admin Settings Permissions Page.

Feature

Omnia Control

‘Omnia Control With Settings

‘Omnia Control For Notification Panel

‘Omnia Control Web Part

Site Template

Tenant Resources Mapping

Field

Click here to go onlin and find templates

SampleFestureCores

Search Installed Templates (Ctrl+E)

Type: Visual C# ftems.
Omnia Feature

o~

_images/toolings-item-templates-resourcemapping2.png
Elnamespace MyOmniaExtension.TenantResources

{

‘TenantResources")]

[Tenantesourceroldertiapping(id
public class Scriptahapping

{
| ¥ s v an e, o Ty

public class Folderl
{
[TenantResourceFs letapping("@06905C5-1D66-4561-B04E-669CDFBE672A" ,
public string Scriptl { get; set; }

E}
" /TenantResources/Folder1/scriptl.js")]

_images/toolings-omnia-deploy-output.png
T —— - =

Compiling extension package

Extension package is saved at: C:\MyOmniaExtension\MyOmniaExtension\MyOmniaExtension\bin\Debug\Omnia.Publish\1.6.6
Uploading extension package

Working on it

Initializing Package....
Extension Package was added

>
>
>
>
>
>

Hurray! 1 Deployed the extension package successfully.
Lets hope you dont have any bugs! |

Package Manager Console Task Runner Explorer Comment Preview [GhostDoc] Documentation Maintenance [GhostDoc] Error List Output Find Results 1 Find Symbol Results Call Hierarchy

_images/toolings-item-templates-permissionpage.png
Add New Item - M;

- Default Search Instaled Templates (Ctie) =

Admin Localization Type: Visual C# ftems.

‘Omnia Adin Settings Permisions Page
Public Locaizaton

Admin Settings

Admin Settings Page

Adrmin Settings Permisions Page
Feature

Job

Oma Control

Oma Control With Settings
‘Omaa ControlFor Notification Panel
Omia Control Web Part

Site Template

Tenant Resources Mapping

Click here to go onlin and find templates

[AdminsettingsPemisionsPage

_images/toolings-item-templates-resourcemapping.png
Add New Item - MyOmnia

: Default

Admin Localization

Public Localization

Admin Settings

Admin Settings Page

Admin Settings Permissions Page.

Feature

Omnia Control

‘Omnia Control With Settings

‘Omnia Control For Notification Panel

‘Omnia Control Web Part

Site Template

Tenant Resources Mapping

Field

Click here to go onlin and find templates

[ScriptsMzpping.cs

Search Installed Templates (Ctrl+E)

Type: Visual C# ftems.

Tenant resources mapping file

o~

_images/toolings-project-structure-new.png
%7 Solution DevelopDocumentation’ (3 projects)
DevelopDocumentation
K Properties
References
Ml ContentTypes
@l Features
b c* Corefeaturecs
W Fields
W Jobs
o Lists
4 @l ProvisioningPipelines
b c* FaviconProvisioningPipeline.cs

~

S

4 @l ResourceMappings
b c* CoreMappings.cs
4 @l TaskRunner
4 @l Tasks
b ol Angular
b Ml Less
LT indexjs

M TenantResources

&T environmentjson

&T extensionjson

LT gulpfilejs

&7 packagejson

¢ packages.config

& tsconfigjson
DevelopDocumentation TestHost
4 =] DevelopDocumentation.WebApi
& Connected Services

K Properties

=B References

Ml Bootstrappers

£ Global.asax

¢ packages.config

b ¢ Web.config

_static/ajax-loader.gif

_images/toolings-omnia-deploy.png
]

b
3
3
3
3

2l

® o -Ccam K-
S S e T)
lution 'MyOmniaExtension’ (3 projects)

 Properties
*a References
M Features
M ScriptTypir
M SherePoint
o Styles

M TenantRes
& environme
& extension
1) packages.c
MyOmniabite
MyOmniabite
 Propertes
*a References
M Bootstrapp
M Controllers
&) Globalasay
D) packages.c
B Web.confic

Solution Explorer | Teal

Properties
MyOmniakxtension P

=]

Project File
Project Folder

& B

S
W
%
X

Analyze

File Nesting
Scopeto This

New Solution Explorer View
Build Dependencies

Add

Manage NuGet Packages...

Set asStartUp Project

Debug

Initilize Interactive with Project
Source Control

‘Omnia Deploy

Omnia Package

cut

Remove

Rename
Unload Project
Open Folderin File Explorer

Properties

[R%

Del

Alt+Enter

niaxt

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/extensionpackage-resourcemapping.png
Elnanespace MyOmniakxtension.TenantResources

{

[TenantResourceFoldertiapping(id: "DDAS3FDC-333E-4EF3-9912-54E7FDSSCAFL”, name: "TenantResources”

Bl public class Resourceshapping

{
[TenantResourceFolderMapping(id Inages™)]
El public class Images
{
[TenantResourcerileMapping("79C53094-AFDI-4227-8A5A-103726FC5268", "/ TenantResources/Tnages/sanple. gif")]
public string SampleImage { get; set; }
i
[TenantResourceFoldertiapping(id: "6F70EFS7-FF6A-4011-B902-AFCE15B37BE! Localization™)]
El public class Localization

{

[TenantResourcerileMapping("766718D7-1868-436D-9128-C12D66838284", "/ TenantResources/Localization/sample. loc. son")]
public string Samplelocalization { get; set; }

[TenantResourcerileMapping("0CD92443-9065-49DC-83E8-054123445A98" , "/ TenantResources/Localization/sample. loc. sv-se.json")]
public string SampleLocalizationsvse { get; set; }

_images/extensionpackage-tenantresources.png
M AggregatedCalendar
M Banner
M ContentManagement
i Core
M ImportantAnnouncements
& LinksManagement.
b Ml AdminSettings
b Ml Controls
b il Core
4 @l Directives
MylinksListts

) MyLinksListhtml
M Localization
M Sevices
& styles
LinksManagementSettings.ess
o) Mylinksess
] WebParts
LastVisitedLinks webpart
Mylinks webpart

b 1 Navigation

Solution Explorer Team Explorer

_images/extensionpackage-configurations.png
System & Extensions » Omnia.Intranet

Name Region Value Included In Client

omnia.ntranet.apiurl omnia.intranet]

https://omniaci1-intranet.azurewebsites.net/api/

omnia.intranet storageid omnia.ntranet BF112171-ACAO-4285-AECO-DFT94F 1 46653

_images/extensionpackage-permission.png
= MyOmniaExtension » & Permissions

My Extension Admins

Admi

This ro @ perm

_images/extensionpackage.png
| Omnia Extension Package

Omnia Feature Omnia Feature

Provisioning | Provisioning

'
'

'

'

'

'

'

'

'

'

'

'

'

| Module Module
'

'

=

_images/colorpicker.png
Background Color

HEFF <

#eebc25

#179017
#17bce?

#ada2a2

Pick other colors

_images/extension-dialog-apiversion.png
Foundation Api Version
M Use Prerelease

iw .

‘Sharepoint Api Version

SharePoint 2013 OnPrem / Oniine (15 |§

