
Omicron Server Documentation
Release 0.1.1

Michal Kononenko, Chris Yoo, Shahab Akmal

February 22, 2016





Contents

1 Installation 3
1.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Running the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Running Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Brief Concepts Summary 5
2.1 Representational State Transfer (REST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Git and GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Relational Databases and You . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Technologies Used in This Project 9
3.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Git and GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Travis CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Coveralls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Heroku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 SQLAlchemy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Web API 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 URL Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 API Reference 19
5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Tests 37
6.1 Integration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Introduction 41
7.1 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Readme 43

9 Welcome to OmicronServer 45
9.1 Badges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 Running the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



10 Indices and tables 47

HTTP Routing Table 49

Python Module Index 51

ii



Omicron Server Documentation, Release 0.1.1

Contents:

Contents 1



Omicron Server Documentation, Release 0.1.1

2 Contents



CHAPTER 1

Installation

1.1 Dependencies

Package dependencies are outlined in the “requirements.txt” folder. In order to install all dependencies, run

$ pip install -r requirements.txt

from the project’s root directory.

1.1.1 Windows Users and Python Packages

The following packages may have trouble installing on Windows

• psycopg2

Due to the fact that some Python packages depend on compiled C code to run properly (Numpy. being a good
example), users running Windows may get an error when installing the following packages. This error usually states
that pip is unable to find a file named vcvarsall.bat. In order to resolve this, it is recommended that you go to
the UC Irvine Repo. to find pre-compiled .whl binaries for these packages. Running pip on these wheels should
install them on your machine. Keep in mind that these are UNOFFICIAL binaries, and are distributed AS-IS.

1.2 Running the Code

To run the code, run

$ python run_server.py

from the project’s root directory. Flask includes a built-in threaded web server that will start up on localhost:5000
by default. In order to change these parameters, set the IP_ADDRESS and PORT environment variables on your
command line to the desired values

On Linux (specifically bash), this can be done using

$ EXPORT IP_ADDRESS=127.0.0.1

On Windows, this can be done using

> SET IP_ADDRESS=127.0.0.1

3

http://www.numpy.org/
http://www.lfd.uci.edu/~gohlke/pythonlibs/


Omicron Server Documentation, Release 0.1.1

1.3 Running Tests

This project is tested using Python’s built-in unittest. for writing unit tests. In order to run all tests, run

$ nosetests

from your command line. To run unit tests from a particular directory, cd into that directory, and run nosetests
from it. nosetests determines what is a test by the following criteria

• The name of the method must start with test_

• The class in which the method is located must inherit from unittest.TestCase somewhere along its
inheritance hierarchy

• The module in which the method is located must start with test_

4 Chapter 1. Installation

https://docs.python.org/2/library/unittest.html


CHAPTER 2

A Brief Concepts Summary

Here is a brief explanation of some of the concepts powering this API, and a discussion on what was intended to be
achieved using certain technologies. If you are a web developer, or have experience writing web applications, feel free
to skip over this chapter. The purpose of this chapter is to give newcomers a brief introduction into some of the terms
and concepts used in general web development, and to ensure that we are all on the same page when we discuss this
project.

If there is anything to which this document doesn’t do justice, or you feel like information on an important concept is
missing, that’s a bug. Please report it here.

2.1 Representational State Transfer (REST)

2.1.1 The Role of an API

The goal of any Application Programming Interface (API) is to expose the functionality of a software component,
defined as some coherent block of code, to the outside world in a way that makes sense. A good API will make it easy
for programmers to take our code, and stich it together with other APIs in order to build applications.

The majority of the codebase of OmicronServer is devoted to presenting our code for managing projects, experiments,
and users on the Omicron System to the outside world. In addition, it presents our data model to interested clients.

The problem becomes non-trivial as our API needs to be online, it needs to be language-agnostic (clients can be using
several different programming languages), and we need to be able to control who has access to the data that our API
manages. To solve this problem, we have chosen to implement a REST API

2.1.2 Enter REST

REST is an architectural style for writing APIs, where a client machine can interact and invoke functionality on a
remote server. It requires the following six criteria

• It must follow a client-server model

• It must be stateless

• Responses must be cacheable

• The system must be layered

• Code should be available on demand

• The API should provide a uniform interface to users

5

https://github.com/MichalKononenko/OmicronServer/issues
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Representational_state_transfer


Omicron Server Documentation, Release 0.1.1

As you can see, these requirements are very general. And of course, the combination of a nifty idea with vague
standards results in a lot of arguing in the blogosphere, as can be seen here, here, here, here, and, well you get the
point.

I recommend reading these articles, and listening to this talk by Miguel Grinberg from PyCon 2015 where he discusses
his take on REST, and also by joining the discussion on the GitHub Repository to make our API more RESTFul.

2.1.3 HTTP and REST: Why They Go So Well Together

REST doesn’t require that you use a particular protocol to communicate with other machines, but the Hypertext
Transfer Protocol (HTTP) has become the ideal protocol on which most well-known APIs are based. This is because
in addition to its ubiquity as the protocol of the World Wide Web, HTTP helps create a uniform interface for our API
by packaging all API calls in requests and packaging all return values in responses.

HTTP requests consist of the following

• A web address and a port to which the request is being sent

– If a text web address is specified, then the Domain Name Service (DNS) is used to resolve the ad-
dress behind the covers

– The port to which the request is being sent, as an integer from 0 to 65535.

– The HTTP Method to be executed on the address. GET is a good example

• A request header containing a set of key-value pairs containing request metadata (data about the request),
and data required to make the request that doesn’t involve the actual request data. This data is returned if
a HEAD request is made.

– An example of a header is content-type: application/json, which specifies that the
response should be returned in the JSON format, as opposed to, for example, XML

– Another important header that you will encounter is Authorization, which contains authen-
tication information

• A request body consisting of the data to be sent to the browser. The format of the body is specified by the
content-type header.

An HTTP response contains all these as well, but it also contains a status code, communicating whether the message
succeeded or failed, and in what way. This is why websites will display 404 if you go to a non-existent page on their
sites.

So what does this have to do with REST? Think of a REST API as a very simple web site, without any of the buttons,
styling, forms, or anything that would disrupt the machine readability of the site. There is only text. If you want to
interact with the site, you as the programmer will have to know to where you have to send your request, and, in the case
of POST and PATCH requests, what is expected of you in the request body. It may sound like a lot, but the advantage
of using HTTP is that libraries exist in a multitude of programming languages for making requests, and for parsing
JSON. Also, it provides you with a fantastic tool for debugging REST APIs, your web browser

Note: For Chrome users, I recommend getting the Postman extension, which provides an easy-to-use interface for
making requests to REST APIs.

2.2 Git and GitHub

The OmicronServer GitHub repository is the single source of truth for working production-ready code in this project.
If your code isn’t in version control, it doesn’t exist. There’s no way to track code changes, no way to merge your code

6 Chapter 2. A Brief Concepts Summary

http://vvv.tobiassjosten.net/development/your-api-is-not-restful/
https://www.danpalmer.me/blog/your-api-is-not-restful
http://www.infoq.com/articles/web-api-rest
http://www.lornajane.net/posts/2013/five-clues-that-your-api-isnt-restful
https://www.youtube.com/watch?v=pZYRC8IbCwk
https://github.com/MichalKononenko/OmicronServer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.restapitutorial.com/lessons/httpmethods.html
http://www.json.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.json.org/
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://github.com/MichalKononenko/OmicronServer


Omicron Server Documentation, Release 0.1.1

with working code in a transactional way, no easy way to see what you want to change in the project codebase, and
you’re one disk failure away from losing everything. Version control solves all these problems, and, for the purposes
of this project, git solves them the best.

2.2.1 Git: Distributed Version Control

Initially developed by Linus Torvalds in 2005 for Linux kernel development, git is a free and open-source version con-
trol system optimized for non-linear development workflows and synchronization of code across multiple repositories.
Your local copy of a git repository is treated no differently from a git repository on a remote server, i.e. GitHub. This
makes it a very powerful program for version control, but also presents a bit of a learning curve for newcomers.

2.2.2 GitHub: A Hub For Git

GitHub is a super-awesome website that works both as a central repository for git projects, and provides web apps for
simple project management. It is by far the largest code host in the world for open-source projects, and is nice enough
to host open-source projects for free. In addition to providing all the utilities of git in a nice GUI, it also offers some
nice features including

• Pull Requests: When you feel your branch is ready to be merged into master (let’s say you fixed the bug
you were trying to fix), you can open up a pull request, which is a way for you to ask the owner of a repo
to pull one of your branches (hence the name) and merge it into their master branch. This opens up a
lovely window where you can see line-for-line exactly what they intend to change, offers an opportunity
for TravisCI to check your code, and lets contributors comment on your code. They can even reference the
lines they think can be improved. Pull requests, therefore, serve an important role as the place where code
review occurs.

• Issues: GitHub also lets you track issues with code. These aren’t just bug reports, but can also be enhance-
ments, questions to ask the contributors, or any discussion thread that you feel is relevant to the code in
this repository. Issues can be opened, closed (indicating that they are solved), assigned to people, and ref-
erenced in other issues and pull requests, making them powerful tools for project management and request
specifications. If you want to see a particular feature in this code, or if you would like to report a bug,
please open an issue here.

• Milestones: Milestones are nothing more than collections of issues that may be attached to a particular due
date. This lets us set project deadlines, and establish project scope for releases. Milestones also come with
a nifty percentage bar that lets contributors know how far along work has progressed towards meeting a
particular milestone. This is how project scope will be tracked, at least for now.

2.3 Relational Databases and You

REST APIs need to be stateless, meaning that after a request is processed, the application must return to the same state
that it was in before the request started. We can’t, for example, open up a session for a user when they authenticate,
store the fact that the session was opened, and close the session when the user logs out. It also means that, at least in
production, we can’t store our data in our app. So where can we put this data if not in the app? The answer: a database.

Cuz you know I’m all about that ‘base, database, no treble!

• Meghan Trainor if she was a web developer

In production, the API will be pulling its data from PostgreSQL. This is a relational database, meaning that it stores
data as a bunch of cross-indexed tables. This gives us the following benefits

• Relations do not set either of their partners as first-class citizens. Do projects belong to users or do users
belong to projects? Relational databases don’t care.

2.3. Relational Databases and You 7

https://git-scm.com/
https://github.com/
https://github.com/MichalKononenko/OmicronServer/issues?q=is%3Aopen+is%3Aissue
http://www.postgresql.org/


Omicron Server Documentation, Release 0.1.1

• Relational databases can enforce constraints on our data by mandating that a value in a column must
match one of the values in another table, or that a value in a column must be unique. This prevents us
from, for example, creating a project without a user as its owner.

• Relational databases are transactional, meaning any update or delete operations can be done in such a way
that the database always moves from one allowed state to another allowed state.

8 Chapter 2. A Brief Concepts Summary

https://en.wikipedia.org/wiki/Database_transaction


CHAPTER 3

Technologies Used in This Project

This is a brief rundown of key third-party libraries and programs that this API depends on. Each system is summarized
below, a guide is provided on how to use it for this project, and useful links are also provided for additional resources.

3.1 Libraries

3.1.1 Flask

Flask bills itself as a “micro-framework” for web development in Python. Essentially, it is a set of functions and
objects used by the code here to interact with Werkzeug, processing HTTP requests and returning HTTP responses.
You give Flask a URL, and Flask maps those HTTP requests into function calls.

Compared to other Python web frameworks, notably Django, Flask is a lot more flexible to use, and behaves more like
a library than a framework. For instance, a simple “Hello World” server clocks in at 7 lines of Python code.

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello World'

if __name__ == '__main__':
app.run()

This program will start a server, and return ‘Hello World’ if a GET request is sent to localhost:5000. Note
the use of the decorator to decorate our route, and the fact that the run method is inside an if __name__ ==
’__main__’ block.

Flask defines routes in terms of decorators, but for this API, we mixed this up a little bit with the next library on our
list.

For more information, I would like to refer you to Miguel Grinberg’s excellent 18-part Flask Mega-Tutorial on what
Flask is capable of, and to some of his other posts on REST APIs, including

• Designing a RESTful API in Flask

• RESTful Authentication with Flask

• Designing a RESTful API using Flask-RESTful

9

http://flask.pocoo.org/
http://werkzeug.pocoo.org/
https://www.djangoproject.com/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://blog.miguelgrinberg.com/post/restful-authentication-with-flask
http://blog.miguelgrinberg.com/post/designing-a-restful-api-using-flask-restful


Omicron Server Documentation, Release 0.1.1

3.1.2 Flask-RESTful

Flask RESTFul is an extension to Flask that provides a very useful abstraction to vanilla Flask by letting us use classes
instead of functions in order to write endpoints. In order to implement it, the following is required

• The class must inherit from flask_restful.Resource

• An object of type flask_restful.Api must be created and bound to an object of type flask.Flask

• The class must be registered with the API using flask_restful.Api.add_resource()

What does this offer us?

• Each subclass of flask_restful.Resource has methods available corresponding to each HTTP
verb (GET, POST, PUT, etc.). Endpoints are now mapped to objects in a one-to-one relationship

• Code that helps the object process HTTP requests now travels with the request-processing business
logic, if it’s not being used anywhere else. This provides some nice separation of concerns.

• Our entire API can now have a common URL prefix, and all our resources are registered in one
place, creating a pseudo-routing table in our code. Neat!

An example of a simple REST API created with Flask RESTFul is given below

from flask import Flask
from flask_restful import Api, Resource

app = Flask(__name__)
api = Api(app, prefix='api/v1')

class HelloWorld(Resource):

def get():
return 'Hello World'

def post():
# Post handling logic here
return 'Request posted!'

api.add_resource(HelloWorld, '/hello', endpoint='hello)

if __name__ == '__main__':
app.run()

I think you’ll agree that this is a lot lighter-weight than something like DjangoRESTFramework

3.1.3 SQLAlchemy

R

3.2 Git and GitHub

3.2.1 Git: Distributed Version Control

The following section provides a brief introduction to some git commands that you may need to use. For a more
comprehensive tutorial, check out the official documentation for git here.

10 Chapter 3. Technologies Used in This Project

https://flask-restful-cn.readthedocs.org/en/0.3.4/
http://flask.pocoo.org/
http://flask.pocoo.org/
https://flask-restful-cn.readthedocs.org/en/0.3.4/
http://www.django-rest-framework.org/
https://git-scm.com/doc


Omicron Server Documentation, Release 0.1.1

• git clone <url> will take a repository located at <url>, create a new folder to hold your
code, and will download the master branch of the repository into this new folder.

• git branch <name> will create a new branch named <name> in your local repository. Git
branches are a series of snapshots of your code repository that show some linear development
of code. For example, I could create a branch called “Issue14BugFix”, and I would develop in
this branch anything that I needed to fix whatever “Issue 14” is. Then, when I felt the issue was
fixed, I would merge this branch with the “master” branch.

Calling just git branch will give you a list of local git branches, and will highlight the branch you are
currently in.

Note: The master branch is special. It is the first branch created with each repository, and represents
the main line of development in the code. Only users with write access to a repository can write to the
master branch, and it is generally considered bad practice to develop in master. Use git branch
to make a new branch and develop in that instead.

• git checkout <branch> is how you switch between git branches. Any file tracked by git
will be changed to the version stored in that branch. Any file not tracked by git will stay the
way it is.

• git add <file> is how you add files to git to be tracked. If you specify a directory, git
add will be run recursively over every file and subdirectory in the directory. git add . is a
common command, and will add every file to git in your current directory, provided you are in a
git repository (there is a .git folder somewhere between your current directory and your sys-
tem root directory). Git will not add any file whose name matches a string in the .gitignore
file. This is by design. I will have more to say about this later, but .gitignore‘s job is to tell
git what files are not source code so that they aren’t tracked.

• git commit is the most important command. When you hit the save button on a file, you
write it to disk, but git can overwrite saved files if you git checkout to another branch.
git commit writes your code changes to a branch. Branches are nothing more than sets of
git commit‘‘s. ‘‘git commit is atomic, meaning that either all the changed files
are committed, or none of the changed files are committed. adding an -a to git commit
will make git run git add . before committing, and adding an -m <message> flag will
allow you to insert a brief (up to 80 characters) message stating what you did in the commit.
(Relevant XKCD). If you don’t add a message in the command, you will be prompted for a
message.

The following is a list of other useful git commands, expect documentation for them soon

• git diff

• git rm

• git remote add

• git push

• git pull

• git merge

3.3 Travis CI

Travis CI, short for Continuous Integration, is a hosted web service that has only one job, take any code changes
from GitHub, build the changes, run the tests, and report on whether the tests passed or not. The advantage of this

3.3. Travis CI 11

https://xkcd.com/1296/


Omicron Server Documentation, Release 0.1.1

is that since tests are run remotely on a “clean” server, we can get some confidence that the server will run in any
environment. Furthermore, the server builds all pull requests, and so it lets us catch any test failures during the pull
request.

The build parameters for Travis are described in the .travis.yml file.

More information about Travis can be found here_.

3.4 Coveralls

Coveralls, like Travis CI, is a free service for open source projects, except instead of running tests to see if they pass,
this service measures code coverage. This is the percentage of lines of code in the project that are actually hit during
testing. This should be as high as possible.

3.5 Heroku

Heroku will serve as the development machine for this project. The server is hosted at omicronserver.herokuapp.com.
This machine will pull the master branch from GitHub and deploy it using instructions given to it in Procfile. For
more information, check out Heroku’s Documentation.

Warning: The dev machine on Heroku will shut down after 30 minutes of inactivity, and can only be up for a
combined total of 18 hours per day, as part of the free usage tier for Heroku hosting. This machine should not be
used for production, or any serious performance testing.

3.6 SQLAlchemy

As awesome as relational databases are, there is a problem. There are cases where relations and objects simply don’t
get along as data structures. To quote SQLAlchemy’s Documentation

SQL databases behave less like object collections the more size and performance start to matter; object
collections behave less like tables and rows the more abstraction starts to matter.

SQLAlchemy is not the solution to the object-relational impedance_mismatch, but it tries to alleviate some problems
associated with working with relational databases in object-oriented programming languages. Namely

• For small queries (i.e. queries returning little data ), SQLAlchemy can take the data returned from execut-
ing SQL code against the database (a blob of tables and columns), and map those return values to a list of
objects of the type specified by the SQLAlchemy query. For instance

with sessionmaker() as session:
session.query(User).all()

will return a list of objects of type User, and allow further processing.

12 Chapter 3. Technologies Used in This Project

https://devcenter.heroku.com/
http://www.sqlalchemy.org/
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch


CHAPTER 4

Web API

4.1 Introduction

Done properly, end users will never have to interact with this project at all! The functionality in this server will be
exposed through an HTTP REST API. This module provides documentation for all the HTTP requests that will be
handled by this API (application programming interface).

4.2 URL Endpoints

POST /api/v1/projects
Create a new project

Example Request

HTTP/1.1
Content-Type: application/json

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": "mkononen"

}

Example Response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": {

"username": "mkononen",
"email": "my@email.com"

}
}

Status Codes

• 201 Created – Project successfully created

13

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2


Omicron Server Documentation, Release 0.1.1

• 400 Bad Request – Unable to create project due to malformed JSON

Parameters

• session (ContextManagedSession) – The database session to be used for making
the request

Return A Flask response

Rtype flask.Response

GET /api/v1/projects
Returns the list of projects accessible to the user

Example Response

HTTP/1.1 200 OK
Content-type: application/json
page: 1
items_per_page: 1
Count: 1

{
"projects": [

{
"name": "NMR Project",
"description": "This is a project",
"date_created": "2015-01-01T12:00:00",
"owner": {

"username": "mkononen"
"email": "my@email.com"

}
}

]
}

Status Codes

• 200 OK – Request completed without errors

• 400 Bad Request – Bad request, occurred due to malformed JSON or due to the fact that the
user was not found

Parameters

• pag_args (PaginationArgs) – A named tuple injected into the function’s arguments
by the @restful_pagination() decorator, containing parsed parameters for pagina-
tion

Return A flask response object containing the required data to be displayed

POST /api/v1/users
Create a new user

Example Request

HTTP/1.1
Content-Type: application/json

{
"username": "scott",
"password": "tiger",

14 Chapter 4. Web API

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1


Omicron Server Documentation, Release 0.1.1

"email": "scott@tiger.com"
}

Example Response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"username": "scott",
"email": "scott@tiger.com

}

Status Codes

• 201 Created – The new user has been created successfully

• 400 Bad Request – The request could not be completed due to poor JSON

• 422 Unprocessable Entity – The request was correct, but the user could not be created due
to the fact that a user with that username already exists

Parameters

• session (Session) – The database session that will be used to make the request

GET /api/v1/users
Process a GET request for the /users endpoint

Example request

GET /api/v1/users HTTP/1.1
Host: example.com
Content-Type: application/json

Example response

Vary: Accept
Content-Type: application/json

.. include:: /schemas/users/examples/get.json

Query Parameters

• contains – A string specifying what substring should be contained in the username. De-
fault is ’’

• starts_with – The substring that the username should start with. Default is ’’.

• page – The number of the page to be displayed. Defaults to 1.

• items_per_page – The number of items to be displayed on this page of the results.
Default is 1000 items.

Status Codes

• 200 OK – no error

Parameters

• session (Session) – The database session used to make the request

4.2. URL Endpoints 15

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://tools.ietf.org/html/rfc4918#section-11.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Omicron Server Documentation, Release 0.1.1

• pag_args (PaginationArgs) – The pagination arguments generated by the
@restful_pagination() decorator, injected into the function at runtime

Return A flask response object with the search request parsed

POST /api/v1/token
Generate a user’s auth token from the user in Flask’s Flask.g object, which acts as an object repository unique
to each request. Expects an Authorization header with Basic Auth.

Example Request

POST /api/v1/token HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: B12kS1l2jS1=

Example Response

Content-Type: application/json

{
"token": "a409a362-d733-11e5-b625-7e14f79230d0",
"expiration_date": "2015-01-01T12:00:00"

}

Return A Flask response object with the token jsonified into ASCII

DELETE /api/v1/token
Revoke the current token for the user that has just authenticated, or the user with username given by a query
parameter, allowed only if the user is an Administrator

GET /index

GET /
Base URL to confirm that the API actually works. Eventually, this endpoint will serve the OmicronClient.
JavaScript UI to users.

Example Response

GET / HTTP/1.1
Content-Type: application/json

Hello World!

Return Hello, world!

Rtype str

GET /api/v1/users/(username_or_id)
Returns information for a given user

Example Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"username": "scott"
"email": "scott@tiger.com"
"projects": [

16 Chapter 4. Web API

https://github.com/MichalKononenko/OmicronClient


Omicron Server Documentation, Release 0.1.1

{
"name": "NMR Experiment 1",
"description": "Measure this thing in NMR",
"date_created": "2015-01-01T12:00:00Z",
"owner": {

"username": "scott",
"email": "scott@tiger.com"

}
}

]
}

Parameters

• session (Session) – The database session to be used in the endpoint

• or str username_or_id (int) – The username or user_id of the user for which data
needs to be retrieved

DELETE /api/v1projects/(project_name_or_id)
Delete a project

Status Codes

• 200 OK – The project was deleted successfully

• 404 Not Found – Unable to find the project to delete

Parameters

• or str project_name_or_id (int) – The project to delete

GET /api/v1projects/(project_name_or_id)
Returns the details for a given project

Example Response

HTTP/1.1 200 OK

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": {

"username": "mkononen",
"email": "my@email.com"

}
}

Status Codes

• 200 OK – The Request completed successfully

• 404 Not Found – The request project could not be found

Parameters

• or str project_name_or_id (int) – The id or name of the project to retrieve

Return A flask response object containing the required data

Rtype flask.Response

4.2. URL Endpoints 17

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5


Omicron Server Documentation, Release 0.1.1

GET /static/(path: filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

18 Chapter 4. Web API



CHAPTER 5

API Reference

5.1 Contents

5.1.1 API Documentation

Contains documentation pulled from all modules in Omicron Server api_server

Defines the flask app which will run our HTTP application. This also creates a flask-restful
API object, which will serve as the router to the objects in api_views.

api_server.create_token(*args, **kwargs)
Generate a user’s auth token from the user in Flask’s Flask.g object, which acts as
an object repository unique to each request. Expects an Authorization header with Basic
Auth.

Example Request

POST /api/v1/token HTTP/1.1
Host: example.com
Content-Type: application/json
Authorization: B12kS1l2jS1=

Example Response

Content-Type: application/json

{
"token": "a409a362-d733-11e5-b625-7e14f79230d0",
"expiration_date": "2015-01-01T12:00:00"

}

Returns A Flask response object with the token jsonified into ASCII

api_server.hello_world()
Base URL to confirm that the API actually works. Eventually, this endpoint will serve the
OmicronClient. JavaScript UI to users.

Example Response

GET / HTTP/1.1
Content-Type: application/json

19

https://github.com/MichalKononenko/OmicronClient


Omicron Server Documentation, Release 0.1.1

Hello World!

Returns Hello, world!
Return type str

api_server.revoke_token(*args, **kwargs)
Revoke the current token for the user that has just authenticated, or the user with username
given by a query parameter, allowed only if the user is an Administrator

authentication

Contains declarations for HTTP authorization, needed to be put here to avoid a circu-
lar import where api_server imports api_views.users.UserContainer, but
api_views.users.UserContaner requires an auth object declared in api_server

auth._verify_user(username, password)
Check if the username matches the user. If it does, write the user to Flask.g() and
return True, else return False :param str username: The name of the user to validate
:param str password: The password to validate :return: True if the user authenticated and
False if not

auth.verify_password(username_or_token, password=None)
Callback function for flask.ext.httpauth.HTTPBasicAuth.verify_password(),
used to verify both username and password authentication, as well as authentication
tokens.

In order to authenticate, the user must use base64 encoding, encode a string of the form
username:password, and submit the encoded string in the request’s Authorization.
header.

Alternatively, the user can encode their token in base64, and submit this in their Autho-
rization. header. In this case, the incoming password will be None.

Warning: Basic Authentication, unless done over SSL. IS NOT A SECURE FORM
** OF AUTHENTICATION**, as ANYONE can intercept an HTTP request, and
decode the information in the Authorization header. This will be solved in two ways

•Any production deployment of this API will be done using SSL
•HMAC-SHA256. authentication will be supported, although this is

currently out of scope for the Christmas Release of this API

Parameters
• username_or_token (str) – The username or token of the user at-

tempting to authenticate into the API
• password (str) – The password or token to be used to authenticate into

the API. If no password is supplied, this value will be None.
Returns True if the password or token is correct, False if otherwise
Rtype bool

config

Contains global config parameters for the API

20 Chapter 5. API Reference

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code


Omicron Server Documentation, Release 0.1.1

class config.Config(conf_dict={‘READTHEDOCS_PROJECT’: ‘omicron-
server’, ‘READTHEDOCS’: ‘True’, ‘AP-
PDIR’: ‘/app’, ‘DEBIAN_FRONTEND’: ‘non-
interactive’, ‘OLDPWD’: ‘/’, ‘HOSTNAME’:
‘version-latest-of-omicronserver-1769447’, ‘PWD’:
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/docs/source’, ‘BIN_PATH’:
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/bin’, ‘READTHE-
DOCS_VERSION’: ‘latest’, ‘PATH’:
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’,
‘HOME’: ‘/home/docs’})

Contains configuration parameters and methods for receiving values from environment
variables.

For global configuration, system environment variables have priority, followed by values
in this object, then followed by the value in a component’s configuration file.

__init__(conf_dict={‘READTHEDOCS_PROJECT’: ‘omicron-server’,
‘READTHEDOCS’: ‘True’, ‘APPDIR’: ‘/app’, ‘DE-
BIAN_FRONTEND’: ‘noninteractive’, ‘OLDPWD’: ‘/’, ‘HOST-
NAME’: ‘version-latest-of-omicronserver-1769447’, ‘PWD’:
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/docs/source’, ‘BIN_PATH’:
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/bin’, ‘READTHEDOCS_VERSION’: ‘latest’,
‘PATH’: ‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’,
‘HOME’: ‘/home/docs’})

Instantiate config parameters from environment variables
Parameters conf_dict – The dictionary or dictionary-like object from which

configuration parameters should be pulled, defaults to os.environ. This is
overwritten for testing

__weakref__
list of weak references to the object (if defined)

decorators

Contains utilities to decorate endpoints with additional functionality

Decorators

A decorator is a function that takes in a function as an argument, and returns a function. In
Python, a typical decorator can be used as follows

class UserContainer(Resource):
@staticmethod
def parse_search_params(params):

pass

@restful_pagination()
def get(self, pag_args):

pass

5.1. Contents 21

http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/


Omicron Server Documentation, Release 0.1.1

The use of the @ symbol is syntactic sugar for

parse_search_params = staticmethod(parse_search_params)

In order to provide arguments to the decorator, as in the case of @restful_pagination,
another level of indirection is needed. restful_pagination is not a decorator in and of
itself, but it returns a decorator that then decorates a particular function.

Note: Due to Sphinx Autodoc <http://sphinx-doc.org/ext/autodoc.html>‘s documen-
tation generator, the __name__ and __doc__ property of the function to be dec-
orated must be assigned to the __name__ and __doc__ of the decorator. See
tests.unit.test_decorators.TestRestfulPagination for an example of a
unit test that tests this behaviour

class decorators.PaginationArgs(page, items_per_page, offset)

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

__getstate__()
Exclude the OrderedDict from pickling

static __new__(_cls, page, items_per_page, offset)
Create new instance of PaginationArgs(page, items_per_page, offset)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values

classmethod _make(iterable, new=<built-in method __new__ of type object at
0x9192c0>, len=<built-in function len>)

Make a new PaginationArgs object from a sequence or iterable

_replace(_self, **kwds)
Return a new PaginationArgs object replacing specified fields with new values

items_per_page
Alias for field number 1

offset
Alias for field number 2

page
Alias for field number 0

decorators.restful_pagination(default_items_per_page=1000)
Wraps a RESTful getter, extracting the arguments page and items_per_page from
the URL query parameter. These arguments are then parsed into integers, and returned as
a named tuple. consisting of the following variables

•page: The number of the page to be displayed
•items_per_page: The number of items to be displayed on each page
•offset: The offset (item number of the first item on this page)

The PaginationArgs tuple is then injected into the decorated function as a keyword argu-
ment (kwarg.), in a similar way to the @mock.patch decorator. A usage pattern for this
decorator could be

22 Chapter 5. API Reference

https://docs.python.org/2/library/collections.html#collections.namedtuple
https://stackoverflow.com/questions/1769403/understanding-kwargs-in-python


Omicron Server Documentation, Release 0.1.1

@restful_pagination()
def paginated_input(pagination_args):

with sessionmaker() as session:
session.query(Something).limit(

pagination_args.limit
).offset(

pagination_args.offset
).all()

Parameters default_items_per_page – The number of items that should
be displayed by default. This is to prevent a query with, for example, 300,000
results loading a large amount of data into memory.

Returns A decorator with the default arguments per page configured
Return type function

JSON Schema Parser

Contains utilities for loading, parsing, and validating inputs against a JSON schema

exception json_schema_parser.BadJsonSchemaError
Thrown if the JSON Schema presented is not a valid draft 3 or draft 4 schema

__weakref__
list of weak references to the object (if defined)

exception json_schema_parser.FileNotFoundError
Thrown if the parser is unable to find the file

__weakref__
list of weak references to the object (if defined)

class json_schema_parser.JsonSchemaValidator(path)
Contains utilities for validating JSONSchema from a file

__init__(path)
Initialize the schema :param path: the path from which the file should be pulled

__weakref__
list of weak references to the object (if defined)

static _read_schema_from_file(path)
Read the file containing the JSON Schema and return it as a json-loaded dictionary
:return:

validate_dict(dict_to_validate)
Validates a dictionary against self.json_dict. :param dict dict_to_validate: The
dictionary to check against self.json_dict, representing the base JSON Schema
to validate.

Returns True if the dictionary is allowed by the schema and false if not. The
False return also returns a string showing the reason why validation failed.

5.1.2 Database API

Contains documentation for database, which contains all the model classes for allowing the API to
interact with the database

5.1. Contents 23



Omicron Server Documentation, Release 0.1.1

Database Models

Contains documentation for all database model classes Projects

Contains model classes related to managing projects on the Omicron server

class database.models.projects.Project(project_name, description,
date_created=datetime.datetime(2016,
2, 22, 2, 44, 22, 609803),
owner=None)

Models a project for a given user. The project constructor requires the following
Variables

• project_name (str) – The name of the project
• description (str) – A description of the project
• date_created (datetime.datetime) – The date at which the

project was created, defaults to the current datetime
• owner (User) – The user who owns this project

__init__(project_name, description, date_created=datetime.datetime(2016, 2,
22, 2, 44, 22, 609803), owner=None)

Instantiates the variables described above

date_created_isoformat
Returns the project date created as an ISO 8601 - compliant string :return: The date
string :rtype: str

get
Returns a dictionary representing a summary of the project. :return: A summary of
the project :rtype: dict

Users

Contains all model classes relevant to management of users

class database.models.users.Administrator(username, password, email,
date_created=datetime.datetime(2016,
2, 22, 2, 44, 22, 613849))

Represents a “superuser” type. The administrator will be able to oversee all projects,
revoke anyone’s token, and approve new users into the system, when user approval is
complete.

class database.models.users.Token(token_string, expiration_date=None,
owner=None)

Contains methods for manipulating user tokens.

static hash_token(token_string)
Takes a token string and hashes it using SHA256.

revoke()
Expire the token by setting the expiration date equal to the current date

verify_token(token)
Checks if the provided token string matches the token hash in the DB, and that the
token is not expired :param str token: The token to verify :return: True if the token is
valid, False if not

class database.models.users.User(username, password, email,
date_created=datetime.datetime(2016,
2, 22, 2, 44, 22, 613849))

24 Chapter 5. API Reference

https://en.wikipedia.org/wiki/ISO_8601


Omicron Server Documentation, Release 0.1.1

Base class for a User.

__eq__(other)
Parameters other (User) – The user against which to compare

__ne__(other)
Check if two users are not equal :param other:

classmethod from_session(username, session)
Provides an alternate “constructor” by using the supplied session and returning the
user matching the given username. The method also asserts that a user was returned
by the query. If it did not happen, something horrible has happened.

Parameters
• username (str) – The username of the user to get
• session (ContextManagedSession) – The session to use for re-

trieving the user
Returns The user to be retrieved

generate_auth_token(expiration=600, session=ContextManagedSession(bind=Engine(sqlite:////home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/test_db.sqlite3), ex-
pire_on_commit=True))

Generates a token for the user. The user’s token is a UUID 1, randomly generated in
this function. A Token is created with this randomly-generated UUID, the UUID
token is hashed, and stored in the database.

Warning: The string representation of the generated token is returned
only once, and is not recoverable from the data stored in the database.
The returned token is also a proxy for the user’s password, so treat it as
such.

Parameters
• expiration (int) – The lifetime of the token in seconds.
• session (ContextManagedSession) – The database session

with which this method will interact, in order to produce a token.
By default, this is a ContextManagedSession that will point to
conf.DATABASE_ENGINE, but for the purposes of unit testing, it
can be repointed.

Returns A tuple containing the newly-created authentication token, and the
expiration date of the new token. The expiration date is an object of type
Datetime

Return type tuple(str, Datetime)

static hash_password(password)
Hash the user’s password :param str password: The password to hash :return:

verify_auth_token(token_string)
Loads the user’s current token, and uses that token to check whether the supplied
token string is correct

Parameters token_string (str) – The token to validate
Returns True if the token is valid and False if not

verify_password(password)
Verify the user’s password :param str password: The password to verify :return: True
if the password is correct, else False :rtype: bool

5.1. Contents 25

https://goo.gl/iUS6s9


Omicron Server Documentation, Release 0.1.1

Database Management API

Contains API documentation for the database schema, session management, and database version man-
agement

ContextManagedSession

Contains classes related to session management with the DB.

class database.sessions.ContextManagedSession(bind=None, autoflush=True,
expire_on_commit=True, _en-
able_transaction_accounting=True,
autocommit=False,
twophase=False,
weak_identity_map=True,
binds=None, extension=None,
info=None, query_cls=<class
‘sqlalchemy.orm.query.Query’>)

An extension to sqlalchemy.orm.Session that allows the session to be run using a with
statement, committing all changes on an error-free exit from the context manager.

This class also allows deep copies of itself to be injected dynamically into function arguments,
when employed as a decorator.

Note: In order to make the best use of ContextManagedSession, it is recommended that
this class is first instantiated in a module-level scope, with its bind (i.e. the SQLAlchemy engine
or connection to which the session is bound), declared in as global a scope as possible. In par-
ticular, engines should be declared as globally as possible in order to maximize the efficiency of
SQLAlchemy’s connection pooling features.

The module-level instantiation is then used as a master from which copies are created as needed.

** Example **

The following example shows how to use the session as both a context manager and a decorator

import engine # import the DB engine from somewhere else if needed

session = ContextManagedSession(bind=engine)

@session()
def do_something(session):

session.query(something)

def do_something_context_managed():

with session() as new_session:
new_session.query(something)

__call__(f=None)
Returns itself, provided that the argument f is not a callable function. (i.e., it does not have a
__call__ method defined)

Parameters f (function or None) – The function to be decorated. If no func-
tion is provided, then f is None.

26 Chapter 5. API Reference

http://docs.sqlalchemy.org/en/latest/core/engines.html
http://goo.gl/tIJ33L
http://goo.gl/qCr2Uk


Omicron Server Documentation, Release 0.1.1

Returns A deep copy of this session, or a decorator function that can then inject
arguments dynamically into the function to be decorated.

Return type ContextManagedSession or a function

__enter__()
Magic method that opens a new context for the session, returning a deep copy of the session
to use in the new context.

Returns A deep copy of self

Return type ContextManagedSession

__exit__(exc_type, exc_val, _)
Magic method that is responsible for exiting the context created in
ContextManagedSession.__enter__(); running the required clean-up logic
in order to flush changes made in the session to the database.

If there are no exceptions thrown in the ContextManagedSession‘s context, it is as-
sumed that the code inside the context completed successfully. In this case, the changes made
to the database in this session will be committed.

If an exception was thrown in this context, then the database will be rolled back to the state
before any logic inside the context manager will be executed.

The arguments taken into this method are the standard arguments taken into an __exit__
method.

The last argument _ is used as a placeholder for the stack trace of the exception thrown in
the context. This parameter is currently not used in this method, as re-throwing an excep-
tion prepends the stack trace of the exception prior to re-throw into the exception. Python is
awesome this way :)!

Parameters

• exc_type (type) – The class of exception that was thrown in the context.
This is None if no exception was thrown

• exc_val (exc_type) – The particular instance of the exception that was
thrown during execution in the context. After the session is rolled back, this
exception is re-thrown.

__repr__()
Returns a string representation of an instance of ContextManagedSession useful for
debugging.

Returns A string representing useful data about an instance of this class

Return type str

_decorator(f)
This method decorates a function f with the session to be run. This is done by invoking the
ContextManagedSession‘s context manager to open and clean up a new session, and
running the decorated function in this context. The session is then appended to the decorated
function’s argument list, and the function is then run.

For reconciling method names and docstring for documentation purposes, and to avoid names-
pace collisions in the server’s routing table, the __name__ and __doc__ properties of the
decorated function are assigned to the decorator.

Parameters f (function) – The function to decorate

Returns A function that decorates the function to be decorated

5.1. Contents 27

http://goo.gl/ZHXkZ4


Omicron Server Documentation, Release 0.1.1

Return type function

copy()
Returns a new ContextManagedSession with the same namespace as self

Versioning

Contains tools for versioning databases, and for managing database upgrades. This code is currently not
implemented in the dev version of OmicronServer, but will eventually be used as part of the server’s
command line interface.

This code was adapted from Miguel Grinberg’s Flask mega-tutorial.

class database.versioning.DatabaseManager(metadata=MetaData(bind=None),
database_url=None,
migrate_repo=’/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/db_versioning_repo’,
api=<module ‘mi-
grate.versioning.api’ from
‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/local/lib/python2.7/site-
packages/migrate/versioning/api.pyc’>,
engine=Engine(sqlite:////home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/test_db.sqlite3))

Wraps methods for managing database versions. The constructor requires the following

Variables

• metadata – An object of type sqlalchemy.MetaData, containing infor-
mation about the database schema. Defaults to the metadata object located in
database.models.schema.

• database_url – The URL [RFC 3986] of the database to be upgraded or
downgraded. Defaults to the database URL given in config, or read from
command line environment variables.

• migrate_repo – An absolute path to the directory in which database migra-
tion scripts are stored. Defaults to the value given in config.

• api – The sqlalchemy-migrate API that will be used to perform the migra-
tion operations. This is overwritten for testability. Defaults to the API in
migrate.versioning. See the Flask mega-tutorial for more details

__init__(metadata=MetaData(bind=None), database_url=None,
migrate_repo=’/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/db_versioning_repo’, api=<module ‘mi-
grate.versioning.api’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/envs/latest/local/lib/python2.7/site-packages/migrate/versioning/api.pyc’>,
engine=Engine(sqlite:////home/docs/checkouts/readthedocs.org/user_builds/omicron-
server/checkouts/latest/test_db.sqlite3))

Instantiates the variables listed above :raises: DatabaseNotReferencedError if the Database-
Manager is created

without a database url or a database engine

__repr__()
Returns a representation of the Database Manager useful for debugging :return:

28 Chapter 5. API Reference

http://goo.gl/h5q3UP
https://www.ietf.org/rfc/rfc3986.txt


Omicron Server Documentation, Release 0.1.1

__weakref__
list of weak references to the object (if defined)

create_db(engine=None)
Create a database at self.database_url

Parameters engine – The SQLAlchemy engine which will be used to create the
database

create_migration_script()
Creates a new migration script for the database. The migration script is a python script located
at self.migrate_repo. The target version of the script is listed on the file name. Each
migration script must contain the following two functions.

upgrade describes how to move from the previous version to the version written in the file
name.

downgrade describes how to downgrade the database from the version written on the file
name to the previous version.

Warning: It is recommended that each migration script is reviewed prior to use, ES-
PECIALLY IN PRODUCTION. Automatically-generated migration scripts have known
issues with migrations, particularly with queries involving ALTER COLUMN queries. In
such situations, the migration script can easily DROP the old column and create a new one.
Care should be taken when running migrations.

downgrade_db()
Downgrade the DB from the current version to the decremented previous version.

upgrade_db()
Upgrade the database to the most current version in the migrate repository, by running
upgrade in all the migration scripts from the database’s version up to the current version.

version
Return the version of the database using the SQLAlchemy-migrate API

exception database.versioning.DatabaseNotReferencedError
Thrown if :class:database.versioning.DatabaseManager‘ is instantiated without an engine or a
database url.

__weakref__
list of weak references to the object (if defined)

Schema

Contains the database schema to be implemented or queried, from which models in database.models
will be populated. This describes the database to be built on server initialization. This is the most current
version of the database schema.

5.1.3 API Views

Schema-defined Resource

class views.schema_defined_resource.SchemaDefinedResource
Abstract class that defines an API view with a schema built into it. This class is capable of serving
its schema and

5.1. Contents 29



Omicron Server Documentation, Release 0.1.1

is_schema_draft3
Checks if self.schema corresponds to the Draft 3 JSON Schema

Note: At the time of writing, the latest draft of JSON Schema is Draft 4. Refrain from using
Draft 3 schemas in this API wherever possible

Returns True if the schema conforms to draft 3, else false

Return type bool

schema
Return the JSON schema of the view as a dictionary

validate(dict_to_validate, source_dict=None)
Checks that the supplied dictionary matches the JSON Schema in another dictionary. If no
source_dict is provided, the method will attempt to validate the validation dictionary
against attr:self.schema.

Parameters

• dict_to_validate (dict) – The dictionary representing the JSON
against the JSON Schema to be validated

• source_dict – The dictionary representing the JSON Schema against
which the incoming JSON will be compared

Returns A tuple containing a boolean corresponding to whether the schema vali-
dated or not, and a message. If the schema validated successfully, the message
will be "success". If not, then the message will correspond to the reason why
the schema did not successfully validate

Projects

class views.projects.ProjectContainer
Maps the /projects endpoint

get(*args, **kwargs)
Returns the list of projects accessible to the user

Example Response

HTTP/1.1 200 OK
Content-type: application/json
page: 1
items_per_page: 1
Count: 1

{
"projects": [

{
"name": "NMR Project",
"description": "This is a project",
"date_created": "2015-01-01T12:00:00",
"owner": {

"username": "mkononen"
"email": "my@email.com"

}

30 Chapter 5. API Reference



Omicron Server Documentation, Release 0.1.1

}
]

}

Statuscode 200 Request completed without errors

Statuscode 400 Bad request, occurred due to malformed JSON or due to the fact
that the user was not found

Parameters pag_args (PaginationArgs) – A named tuple injected into the
function’s arguments by the @restful_pagination() decorator, contain-
ing parsed parameters for pagination

Returns A flask response object containing the required data to be displayed

post(*args, **kwargs)
Create a new project

Example Request

HTTP/1.1
Content-Type: application/json

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": "mkononen"

}

Example Response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": {

"username": "mkononen",
"email": "my@email.com"

}
}

Statuscode 201 Project successfully created

Statuscode 400 Unable to create project due to malformed JSON

Parameters session (ContextManagedSession) – The database session to
be used for making the request

Returns A Flask response

Return type flask.Response

class views.projects.Projects
Maps the “/projects/<project_id>” endpoint

exception ProjectNotFoundError
Thrown if __getitem__ cannot find the required project

5.1. Contents 31



Omicron Server Documentation, Release 0.1.1

__weakref__
list of weak references to the object (if defined)

Projects.__delitem__(*args, **kwargs)
Retrieve the required project name or ID corresponding r

Parameters

• session (ContextManagedSession) – The database session that this
method will use to communicate with the database

• project_name_or_id (str) – The project name or ID that will be used
as the key to find the project

Projects.__getitem__(*args, **kwargs)
Return the project corresponding to the name or ID

Parameters

• session (ContextManagedSession) – The database session to be
used for making the request. This is injected into the method using the
@database_session() decorator

• project_name_or_id (str) – The project name or the project ID

Returns The project model class from the database

Return type database.models.projects.Project

Raises Projects.ProjectNotFoundError if the project is not found in the
DB

Projects.delete(*args, **kwargs)
Delete a project

Statuscode 200 The project was deleted successfully

Statuscode 404 Unable to find the project to delete

Parameters or str project_name_or_id (int) – The project to delete

Projects.get(*args, **kwargs)
Returns the details for a given project

Example Response

HTTP/1.1 200 OK

{
"name": "NMR Project",
"description": "NMR Project Description",
"owner": {

"username": "mkononen",
"email": "my@email.com"

}
}

Statuscode 200 The Request completed successfully

Statuscode 404 The request project could not be found

Parameters or str project_name_or_id (int) – The id or name of the
project to retrieve

Returns A flask response object containing the required data

32 Chapter 5. API Reference



Omicron Server Documentation, Release 0.1.1

Return type flask.Response

Users

Contains views for the /users endpoint.

class views.users.UserContainer
Maps the /users endpoint’s GET and POST requests, allowing API consumers to create new users

get(*args, **kwargs)
Process a GET request for the /users endpoint

Example request

GET /api/v1/users HTTP/1.1
Host: example.com
Content-Type: application/json

Example response

Vary: Accept
Content-Type: application/json

.. include:: /schemas/users/examples/get.json

Query contains A string specifying what substring should be contained in the user-
name. Default is ’’

Query starts_with The substring that the username should start with. Default is
’’.

Query page The number of the page to be displayed. Defaults to 1.

Query items_per_page The number of items to be displayed on this page of the
results. Default is 1000 items.

Statuscode 200 no error

Parameters

• session (Session) – The database session used to make the request

• pag_args (PaginationArgs) – The pagination arguments generated by
the @restful_pagination() decorator, injected into the function at
runtime

Returns A flask response object with the search request parsed

static parse_search_query_params(request)
This method enables text search over the results returned by a GET request on the /users
endpoint. It parses query parameters from Flask.request, a container for the HTTP
request sent into the method. Currently, the query parameters parsed here are

•starts_with: A string stating what the username should begin with

•contains: A string specifiying what the username should contain

•ends_with: A string stating what the username should end with

Parameters request – The flask request from which query parameters need to be
retrieved

5.1. Contents 33



Omicron Server Documentation, Release 0.1.1

Returns A % delineated search string ready for insertion as a parameter into a SQL
or SQLAlchemy query language’s LIKE clause

post(*args, **kwargs)
Create a new user

Example Request

HTTP/1.1
Content-Type: application/json

{
"username": "scott",
"password": "tiger",
"email": "scott@tiger.com"

}

Example Response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"username": "scott",
"email": "scott@tiger.com

}

Statuscode 201 The new user has been created successfully

Statuscode 400 The request could not be completed due to poor JSON

Statuscode 422 The request was correct, but the user could not be created due to
the fact that a user with that username already exists

Parameters session (Session) – The database session that will be used to
make the request

class views.users.UserView
Maps the /users/<username> endpoint

get(*args, **kwargs)
Returns information for a given user

Example Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"username": "scott"
"email": "scott@tiger.com"
"projects": [

{
"name": "NMR Experiment 1",
"description": "Measure this thing in NMR",
"date_created": "2015-01-01T12:00:00Z",
"owner": {

"username": "scott",
"email": "scott@tiger.com"

}

34 Chapter 5. API Reference



Omicron Server Documentation, Release 0.1.1

}
]

}

Parameters

• session (Session) – The database session to be used in the endpoint

• or str username_or_id (int) – The username or user_id of the user
for which data needs to be retrieved

5.1. Contents 35



Omicron Server Documentation, Release 0.1.1

36 Chapter 5. API Reference



CHAPTER 6

Tests

Contains documentation for integration and unit tests for OmicronServer.

Contents:

6.1 Integration Tests

The purpose of these tests is to test server functionality without mocking. These tests are not so much about attaining
code coverage, as they are about ensuring that OmicronServer “plays nice” with other components.

6.1.1 Test Database Round-Trip

Tests that the server can successfully write and read from the database in a “Round Trip”

class tests.integration.test_database_roundtrip.TestDatabaseRoundTrip(methodName=’runTest’)
Tests that SQLAlchemy is successfully able to connect to the database, store an object in the DB,
and retrieve it successfully.

test_write()
Tests the round trip

6.1.2 Test Auth

Contains integration tests for auth, performing authentication without stubbing out any functionality.

class tests.integration.test_auth.TestAuth(methodName=’runTest’)
Base class for testing auth

classmethod setUpClass()
Set up the test database, and put the server into a request context requiring authentication.

classmethod tearDownClass()
Clean up a test suite by dropping all tables in the test database.

class tests.integration.test_auth.TestVerifyPassword(methodName=’runTest’)
Tests the auth.verify_password() callback

test_verify_correct_uname_bad_pwd()
Tests that the callback returns False if the correct username but an incorrect password are
supplied.

37



Omicron Server Documentation, Release 0.1.1

test_verify_incorrect_username_correct_pwd()
Tests that the callback returns False if an incorrect username but correct password are sup-
plied.

test_verify_password_correct_credentials()
Tests that the callback returns True if the correct username and password are provided.

class tests.integration.test_auth.TestVerifyToken(methodName=’runTest’)
Tests auth._verify_token()

setUp()
Starts up the server, and requests an authentication token using the correct login credentials.

test_token_auth()
Tests that the verify_password callback can authenticate a user when the correct token
is provided.

test_token_auth_bad_token()
Tests that the user cannot be authenticated if an incorrect token is provided.

6.2 Unit Tests

Contains standalone unit tests for the Omicron Server. These tests take advantage of mocking via unittest.mock
to ensure high code coverage, and to isolate the components of OmicronServer apart from themselves and outside
components. These tests test code, and only code.

6.2.1 Top-Level Modules

Contains documentation for unit tests in top-level modules in the unit testing library

API Server

Contains unit tests for api_server

class tests.unit.test_api_server.TestAPIServer(methodName=’runTest’)
Base class for unit tests in api_server

classmethod setUpClass()
Sets up basic parameters for testing in api_server.

classmethod tearDownClass()
Tear down the tests

class tests.unit.test_api_server.TestGetAuthToken(methodName=’runTest’)
Tests api_server.create_token()

setUp()
Set up the tests by creating a mock token, and assigning it as a return value to self.user,
which is assigned to g.user.

class tests.unit.test_api_server.TestHelloWorld(methodName=’runTest’)
Tests api_server.hello_world()

test_hello_world()
Tests that a request to the server’s root endpoint returns 200, indicating that the server has set
up and is running successfully.

38 Chapter 6. Tests

https://docs.python.org/3/library/unittest.mock.html


Omicron Server Documentation, Release 0.1.1

class tests.unit.test_api_server.TestRevokeToken(methodName=’runTest’)
Tests api_server.revoke_token()

Auth

Contains unit tests for auth

Config

Decorators

JSON Schema Parser

Contains unit tests for json_schema_parser

6.2. Unit Tests 39



Omicron Server Documentation, Release 0.1.1

40 Chapter 6. Tests



CHAPTER 7

Introduction

OmicronServer forms the back end of the Omicron Project, which aims to automate a large part of laboratory processes
and record-keeping.

7.1 Audience

This document is intended for developers coming from a non-Python background to understand how this software
works, and how to contribute additional functionality to the software.

In addition, this document is intended for reading by potential consumers of this API, in order to understand what each
HTTP request in this API does.

41



Omicron Server Documentation, Release 0.1.1

42 Chapter 7. Introduction



CHAPTER 8

Readme

43



Omicron Server Documentation, Release 0.1.1

44 Chapter 8. Readme



CHAPTER 9

Welcome to OmicronServer

OmicronServer is the back end for Omicron Web Services, a project that aims to automate much of the process
engineering and experimentation

9.1 Badges

9.2 Installation

A stable version of OmicronServer has not yet been released. TravisCI builds are run on all branches and pull requests
with every commit, but features may be lacking in these builds. See the issues and project milestones for a timeline of
future releases.

$ git clone https://github.com/MichalKononenko/OmicronServer.git

9.2.1 Packages and Dependencies

Dependencies are outlined in requirements.txt. In order to install dependencies, run

pip install -r requirements.txt

TravisCI uses this file to install all its dependencies, and Heroku uses this to identify OmicronServer as a Python
project.

Since Travis runs on Linux, it has the advantage of using gcc to compile some of the packages listed here. your
machine may not have this luxury, and so you may have to find binaries for the psycopg2 package, in order to connect
to PostgreSQL

9.2.2 Supported Versions

This project is currently supported for Python versions

• 2.7

• 3.4

• 3.5

45

https://docs.python.org/3.5/
http://initd.org/psycopg/


Omicron Server Documentation, Release 0.1.1

9.2.3 Supported Databases

OmicronServer currently supports PostgreSQL and SQLite.

9.3 Running the Program

To run the server, run

$ python run_server.py

from the command line. By default, the server will run on localhost:5000. The address can be specified by
setting the IP_ADDRESS and PORT environment variables in your command line.

9.3.1 Environment Variables

The file config.py will adjust its settings depending on the value of several environment variables. These are

• IP_ADDRESS: The IP address at which the server is to be hosted

• PORT: The port number at which the server is to be hosted

• BASE_DIRECTORY: The base directory where run_server.py is kept. By default, this is the current direc-
tory of the config.py file

• TOKEN_SECRET_KEY: The secret key used as a salt to generate authentication tokens for the user. Tokens are not stored on
the back end, but are generated from user data, and the value of TOKEN_SECRET_KEY. If this value is
changed, the user’s token will no longer work.

• DATABASE_URL: The URL at which the database sits. This is the database to be used by the server

• DEBUG: If TRUE, then stack traces will be displayed when in the browser if the server throws a 500 error

• STATE: A generic flag for specifying between DEV, CI, and PROD machines. Currently not wired to anything

• LOGFILE: The file to which the log should be written. If this is not defined, the application log will be
written to ‘sys.stdout‘.

9.3.2 Command Line Parsing

Unfortunately, the values above must be set as environment variables as OmicronServer does not currently support
parsing these arguments in the command line

9.4 License

This project and all files in this repository are licensed under the GNU General Public License (GPL) version 3. A
copy of this license can be found in the LICENSE file

46 Chapter 9. Welcome to OmicronServer



CHAPTER 10

Indices and tables

• genindex

• modindex

• search

47



Omicron Server Documentation, Release 0.1.1

48 Chapter 10. Indices and tables



HTTP Routing Table

/
GET /, 16

/api
GET /api/v1/projects, 14
GET /api/v1/users, 15
GET /api/v1/users/(username_or_id), 16
GET /api/v1projects/(project_name_or_id),

17
POST /api/v1/projects, 13
POST /api/v1/token, 16
POST /api/v1/users, 14
DELETE /api/v1/token, 16
DELETE /api/v1projects/(project_name_or_id),

17

/index
GET /index, 16

/static
GET /static/(path:filename), 17

49



Omicron Server Documentation, Release 0.1.1

50 HTTP Routing Table



Python Module Index

a
api_server, 19
auth, 20

c
config, 20

d
database.models.projects, 24
database.models.users, 24
database.schema, 29
database.sessions, 26
database.versioning, 28
decorators, 21

j
json_schema_parser, 23

t
tests.integration.test_auth, 37
tests.integration.test_database_roundtrip,

37
tests.unit.test_api_server, 38
tests.unit.test_auth, 39
tests.unit.test_config, 39
tests.unit.test_decorators, 39
tests.unit.test_json_schema_parser, 39

v
views.projects, 30
views.schema_defined_resource, 29
views.users, 33

51



Omicron Server Documentation, Release 0.1.1

52 Python Module Index



Index

Symbols
__call__() (database.sessions.ContextManagedSession

method), 26
__delitem__() (views.projects.Projects method), 32
__enter__() (database.sessions.ContextManagedSession

method), 27
__eq__() (database.models.users.User method), 25
__exit__() (database.sessions.ContextManagedSession

method), 27
__getitem__() (views.projects.Projects method), 32
__getnewargs__() (decorators.PaginationArgs method),

22
__getstate__() (decorators.PaginationArgs method), 22
__init__() (config.Config method), 21
__init__() (database.models.projects.Project method), 24
__init__() (database.versioning.DatabaseManager

method), 28
__init__() (json_schema_parser.JsonSchemaValidator

method), 23
__ne__() (database.models.users.User method), 25
__new__() (decorators.PaginationArgs static method), 22
__repr__() (database.sessions.ContextManagedSession

method), 27
__repr__() (database.versioning.DatabaseManager

method), 28
__repr__() (decorators.PaginationArgs method), 22
__weakref__ (config.Config attribute), 21
__weakref__ (database.versioning.DatabaseManager at-

tribute), 28
__weakref__ (database.versioning.DatabaseNotReferencedError

attribute), 29
__weakref__ (json_schema_parser.BadJsonSchemaError

attribute), 23
__weakref__ (json_schema_parser.FileNotFoundError

attribute), 23
__weakref__ (json_schema_parser.JsonSchemaValidator

attribute), 23
__weakref__ (views.projects.Projects.ProjectNotFoundError

attribute), 31
_asdict() (decorators.PaginationArgs method), 22

_decorator() (database.sessions.ContextManagedSession
method), 27

_make() (decorators.PaginationArgs class method), 22
_read_schema_from_file()

(json_schema_parser.JsonSchemaValidator
static method), 23

_replace() (decorators.PaginationArgs method), 22
_verify_user() (in module auth), 20

A
Administrator (class in database.models.users), 24
api_server (module), 19
auth (module), 20

B
BadJsonSchemaError, 23

C
Config (class in config), 20
config (module), 20
ContextManagedSession (class in database.sessions), 26
copy() (database.sessions.ContextManagedSession

method), 28
create_db() (database.versioning.DatabaseManager

method), 29
create_migration_script()

(database.versioning.DatabaseManager
method), 29

create_token() (in module api_server), 19

D
database.models.projects (module), 24
database.models.users (module), 24
database.schema (module), 29
database.sessions (module), 26
database.versioning (module), 28
DatabaseManager (class in database.versioning), 28
DatabaseNotReferencedError, 29
date_created_isoformat (database.models.projects.Project

attribute), 24

53



Omicron Server Documentation, Release 0.1.1

decorators (module), 21
delete() (views.projects.Projects method), 32
downgrade_db() (database.versioning.DatabaseManager

method), 29

F
FileNotFoundError, 23
from_session() (database.models.users.User class

method), 25

G
generate_auth_token() (database.models.users.User

method), 25
get (database.models.projects.Project attribute), 24
get() (views.projects.ProjectContainer method), 30
get() (views.projects.Projects method), 32
get() (views.users.UserContainer method), 33
get() (views.users.UserView method), 34

H
hash_password() (database.models.users.User static

method), 25
hash_token() (database.models.users.Token static

method), 24
hello_world() (in module api_server), 19

I
is_schema_draft3 (views.schema_defined_resource.SchemaDefinedResource

attribute), 29
items_per_page (decorators.PaginationArgs attribute), 22

J
json_schema_parser (module), 23
JsonSchemaValidator (class in json_schema_parser), 23

O
offset (decorators.PaginationArgs attribute), 22

P
page (decorators.PaginationArgs attribute), 22
PaginationArgs (class in decorators), 22
parse_search_query_params()

(views.users.UserContainer static method),
33

post() (views.projects.ProjectContainer method), 31
post() (views.users.UserContainer method), 34
Project (class in database.models.projects), 24
ProjectContainer (class in views.projects), 30
Projects (class in views.projects), 31
Projects.ProjectNotFoundError, 31

R
restful_pagination() (in module decorators), 22

revoke() (database.models.users.Token method), 24
revoke_token() (in module api_server), 20

S
schema (views.schema_defined_resource.SchemaDefinedResource

attribute), 30
SchemaDefinedResource (class in

views.schema_defined_resource), 29
setUp() (tests.integration.test_auth.TestVerifyToken

method), 38
setUp() (tests.unit.test_api_server.TestGetAuthToken

method), 38
setUpClass() (tests.integration.test_auth.TestAuth class

method), 37
setUpClass() (tests.unit.test_api_server.TestAPIServer

class method), 38

T
tearDownClass() (tests.integration.test_auth.TestAuth

class method), 37
tearDownClass() (tests.unit.test_api_server.TestAPIServer

class method), 38
test_hello_world() (tests.unit.test_api_server.TestHelloWorld

method), 38
test_token_auth() (tests.integration.test_auth.TestVerifyToken

method), 38
test_token_auth_bad_token()

(tests.integration.test_auth.TestVerifyToken
method), 38

test_verify_correct_uname_bad_pwd()
(tests.integration.test_auth.TestVerifyPassword
method), 37

test_verify_incorrect_username_correct_pwd()
(tests.integration.test_auth.TestVerifyPassword
method), 37

test_verify_password_correct_credentials()
(tests.integration.test_auth.TestVerifyPassword
method), 38

test_write() (tests.integration.test_database_roundtrip.TestDatabaseRoundTrip
method), 37

TestAPIServer (class in tests.unit.test_api_server), 38
TestAuth (class in tests.integration.test_auth), 37
TestDatabaseRoundTrip (class in

tests.integration.test_database_roundtrip),
37

TestGetAuthToken (class in tests.unit.test_api_server), 38
TestHelloWorld (class in tests.unit.test_api_server), 38
TestRevokeToken (class in tests.unit.test_api_server), 38
tests.integration.test_auth (module), 37
tests.integration.test_database_roundtrip (module), 37
tests.unit.test_api_server (module), 38
tests.unit.test_auth (module), 39
tests.unit.test_config (module), 39
tests.unit.test_decorators (module), 39

54 Index



Omicron Server Documentation, Release 0.1.1

tests.unit.test_json_schema_parser (module), 39
TestVerifyPassword (class in tests.integration.test_auth),

37
TestVerifyToken (class in tests.integration.test_auth), 38
Token (class in database.models.users), 24

U
upgrade_db() (database.versioning.DatabaseManager

method), 29
User (class in database.models.users), 24
UserContainer (class in views.users), 33
UserView (class in views.users), 34

V
validate() (views.schema_defined_resource.SchemaDefinedResource

method), 30
validate_dict() (json_schema_parser.JsonSchemaValidator

method), 23
verify_auth_token() (database.models.users.User

method), 25
verify_password() (database.models.users.User method),

25
verify_password() (in module auth), 20
verify_token() (database.models.users.Token method), 24
version (database.versioning.DatabaseManager attribute),

29
views.projects (module), 30
views.schema_defined_resource (module), 29
views.users (module), 33

Index 55


	Installation
	Dependencies
	Running the Code
	Running Tests

	A Brief Concepts Summary
	Representational State Transfer (REST)
	Git and GitHub
	Relational Databases and You

	Technologies Used in This Project
	Libraries
	Git and GitHub
	Travis CI
	Coveralls
	Heroku
	SQLAlchemy

	Web API
	Introduction
	URL Endpoints

	API Reference
	Contents

	Tests
	Integration Tests
	Unit Tests

	Introduction
	Audience

	Readme
	Welcome to OmicronServer
	Badges
	Installation
	Running the Program
	License

	Indices and tables
	HTTP Routing Table
	Python Module Index

