

Olympic PyTorch Documentation

Olympic implements a Keras-like API for PyTorch.

The goal of Olympic is to combine the joy of Pytorch’s dynamic graph execution with the joy of Keras’s high level abstractions
for training. Concretely, Olympic contains:

	The olympic.fit() function. This implements a very similar API to Keras’s model.fit and
model.fit_generator methods in a more functional and less object-oriented fashion and spares you the effort
of “hand-rolling” your own training loop.

	Callback objects that perform functionality common to most deep learning training pipelines such as
learning rate scheduling, model checkpointing and csv logging. These integrate into olympic.fit() and spare
you the effort of writing boilerplate code.

	Some helpful utility functions such as common metrics and some convenience layers from Keras that are
missing in PyTorch.

Home:

	About Olympic PyTorch

	Quickstart

	Differences between Olympic and Keras

	Changelog

Features:

	fit()
	Using your own update_fn

	evaluate()

	Callbacks

	Layers

	Metrics
	Custom Metrics

About Olympic PyTorch

My first foray into deep learning code was Tensorflow. Myself (and many others) found Tensorflow to be powerful but
unwieldy. Next I moved onto Keras, which is a brilliant library that makes deep learning very accessible as
it strips away most of the boilerplate code.

As I started to want more control and to implement research architectures I turned to PyTorch as its dynamic graph and
clean interface made it not only relatively easy to use but also fun. However I missed some of the abstractions and
utilities of Keras.

There are other libraries similar to this one (notably ignite and torchsample) but they weren’t quite what I
wanted so I decided to make what I wanted myself. And by make I mean copy and paste from Keras (MIT license)
because don’t fix what ain’t broken.

Future development

I only intend to update this library sufficient to keep it compatible with the latest PyTorch and maintain feature
parity with Keras Callbacks. I will not be adding any more features beyond what already exists.

Quickstart

This quickstart guide will give a minimal code example using Olympic. This example is also available as a Jupyter
notebook at olympic-pytorch/notebooks/Quickstart.ipynb

First make all of the necessary imports.:

from torch import nn, optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision import transforms, datasets
from multiprocessing import cpu_count

import olympic

Create datasets.:

transform = transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

train = datasets.MNIST('', train=True, transform=transform, download=True)
val = datasets.MNIST('', train=False, transform=transform, download=True)

train_loader = DataLoader(train, batch_size=128, num_workers=cpu_count())
val_loader = DataLoader(val, batch_size=128, num_workers=cpu_count())

Define network.:

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 self.conv2_drop = nn.Dropout2d()
 self.fc1 = nn.Linear(320, 50)
 self.fc2 = nn.Linear(50, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), 2))
 x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
 x = x.view(-1, 320)
 x = F.relu(self.fc1(x))
 x = F.dropout(x, training=self.training)
 x = self.fc2(x)
 return F.log_softmax(x, dim=1)

Instantiate network, loss and optimiser.:

model = Net()
optimiser = optim.SGD(model.parameters(), lr=0.1)
loss_fn = nn.CrossEntropyLoss()

Create desired callbacks.:

callbacks = [
 # Evaluates every epoch on val_loader
 olympic.callbacks.Evaluate(val_loader),
 # Saves model with best val_accuracy
 olympic.callbacks.ModelCheckpoint('model.pt', save_best_only=True, monitor='val_accuracy'),
 # Logs all metrics
 olympic.callbacks.CSVLogger('log.csv')
]

Call olympic.fit:

olympic.fit(
 model,
 optimiser,
 loss_fn,
 dataloader=train_loader,
 epochs=10,
 metrics=['accuracy'],
 callbacks=callbacks
)

You should see this output.:

Begin training...

Epoch 1: 26%|██▌ | 122/469 [00:03<00:09, 35.70it/s, loss=0.515, accuracy=0.867]

The network will train for 10 epochs. The current directory will contain both model.pt and log.csv which
should look something like this.:

epoch,accuracy,loss,val_accuracy,val_loss
1,0.7888348436389482,0.6585237751605668,0.9437,0.1692712503015995
2,0.9093039267945985,0.3049919113421491,0.9712,0.08768766190297901
3,0.9272832267235251,0.24685336495322713,0.9745,0.07711423026025295
4,0.9375388681592041,0.21396846514044285,0.9777,0.06789233392337338
5,0.9416588930348259,0.19915449465595203,0.9815,0.0603904211839661
6,0.9476168265813789,0.18155415136136735,0.9822,0.05375468297088519
7,0.9493048152096659,0.1694526430894571,0.984,0.04907846948835067
8,0.953008395522388,0.16376275851377356,0.9852,0.04469430861719884
9,0.9561122956645345,0.15457178367329621,0.9859,0.043301032841484996
10,0.9554237739872068,0.1532330308109522,0.9869,0.0410145413863007

Differences between Olympic and Keras

fit function instead of fit method. Evaluation is a callback rather than having its own API.

Olympic has a few key differences from Keras.

fit function not fit method()

This is mostly personal preference as I find this cleaner than creating a trainer object, “compiling” it and then
calling trainer.fit(model)``the ``torchsample library does this in order to more closely resemble Keras in which
you must make a model.compile call.

Evaluation is just another Callback

In Keras the evaluation data is passed directly to the fit or fit_generator method of a model. However I find
it more consistent to have evaluation on another dataset to be implemented as a Callback.

Changelog

0.1.3

	Added changelog

	Fixed training history always being empty

	Validation metrics now show in progress bar after each epoch

fit()

The olympic.fit function is the heart of this library and where all the good stuff happens. The aim of this function
is to avoid “hand-rolling” your own training loops and hence present a much cleaner interface like Keras or
Scikit-learn.

The pseudocode for fit is very simple.:

def fit(model, optimiser, loss_fn, epochs, dataloader, callbacks, update_fn, update_fn_kwargs):

 callbacks.on_train_begin()

 for epoch in range(1, epochs+1):
 callbacks.on_epoch_begin(epoch)

 epoch_logs = dict()
 for batch_index, batch in enumerate(dataloader):
 batch_logs = dict(batch=batch_index)

 callbacks.on_batch_begin(batch_index, batch_logs)

 x, y = prepare_batch(batch)

 loss, y_pred = update_fn(model, optimiser, loss_fn, x, y, epoch, **update_fn_kwargs)
 batch_logs['loss'] = loss.item()

 # Loops through all metrics
 batch_logs = batch_metrics(model, y_pred, y, metrics, batch_logs)

 callbacks.on_batch_end(batch_index, batch_logs)

 callbacks.on_epoch_end(epoch, epoch_logs)

 callbacks.on_train_end()

The default update_fn is just a regular gradient descent step (see below) but any callable with the right signature
can be passed. Alternate ``update_fn``s could be more involved such as adversarial training or the Model-Agnostic
Meta-Learning algorithm. For an example see fit/usage.

	Using your own update_fn

Using your own update_fn

TBC. See the repo oscarknagg/few-shot for some examples.

evaluate()

The evaluate function is a convenience to evaluate the performance of a model on a particular dataset via different
metrics. It can be incorporated into the training loop using the Evaluate callback.

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to
get a view on internal states and statistics of the model during training. You can pass a list of callbacks
(as the keyword argument callbacks) to the olympic.fit() function. The relevant methods of the callbacks will then
be called at each stage of the training

Layers

This module contains some convenient layers that exist in Keras that do not exist (in such a convenient and readable
form) in Pytorch.

Metrics

A metric is a function that is used to judge the performance of your model. Metric functions are to be supplied to
the olympic.fit() function at training time.

A metric function is similar to a loss function, except that the results from evaluating a metric are not used when
training the model.

You can either pass the name of an existing metric, or pass a PyTorch function.

Custom Metrics

Custom metrics can also be passed to olympic.fit. Custom metrics must take (y_true, y_pred) as arguments and
return a single float as output. You should be able to pass any PyTorch loss function as a custom metric.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Olympic PyTorch Documentation

 		
 About Olympic PyTorch

 		
 Future development

 		
 Quickstart

 		
 Differences between Olympic and Keras

 		
 fit function not fit method()

 		
 Evaluation is just another Callback

 		
 Changelog

 		
 0.1.3

 		
 fit()

 		
 Using your own update_fn

 		
 evaluate()

 		
 Callbacks

 		
 Layers

 		
 Metrics

 		
 Custom Metrics

_static/up.png

_static/up-pressed.png

