

Welcome to Open-Knesset Developers documentation!

Open Knesset’s aim is making the israeli Knesset more transparent. The project
is Python [http://www.python.org/] and Django [https://www.djangoproject.com/] based.

Note

This guide is for developers working on Open Knesset’s code.

For 3rd party applications and services developers, please see the
API documentation [http://oknesset-api.readthedocs.org/].

Some useful project links:

	Our code repository [https://github.com/hasadna/Open-Knesset/]

	The issue tracker [https://huboard.com/hasadna/Open-Knesset] (bugs, tasks etc.)

	The production Open Knesset [http://oknesset.org/] site

	The Hasadna [http://www.hasadna.org.il/] site (our parent organization)

Important

If not done already, please subscribe to the
Open Knesset Developers group [https://groups.google.com/forum/#!forum/oknesset-dev].

Contents:

	GitHub and Source Code
	Create a GitHub account

	Forking the Open Knesset project

	Setting up the development environment
	Linux

	MS Windows

	OS X

	Initial Testing, Development DB & Server

	Development Workflow
	Commits and Pull Requests

	Before Coding

	While Coding

	Working on CSS and Documentation
	CSS

	Documentation

	Development Tips
	IDE setup

	Useful bash functions

	Debugging

	Quicker testing

	Browser testing
	Running Browser Tests

	Writing tests

	Scraping
	Scraping Tasks

	Where and how the tasks are run

	DevOps - Servers, Configuration, Deployment, Common tasks
	Servers

	Configuration

	Deployment

	Common Tasks

	Feature toggles
	Using “waffle” - a feature toggle framework for django

	Cleaning up after

	Project Management
	Pull Request Code Review

	Merging an approved pull request

	Deploying a release

Indices and tables

	Index

	Module Index

	Search Page

GitHub and Source Code

The Open Knesset code is hosted on GitHub [https://github.com/], and uses git for distributed
version control.

Create a GitHub account

If not done already, goto the github’s sign up [https://github.com/users], and create a user account.

Once done, login.

Forking the Open Knesset project

Forking the project creates your personal repository of the source code. Goto to
the Open Knesset repository [https://github.com/hasadna/Open-Knesset] and fork the project.

[image: _images/oknesset_fork.png]

Setting up the development environment

There are several initial requirements for Open-Knesset, mainly:

	Python 2.x (including dev files)

	setuptools

	virtualenv

	pip (version 8 and up)

	git

For simple installation using http://c9.io/ cloud IDE, just clone an existing open knesset workspace: https://c9.io/orihoch/oknesset/

Once inside the worksapce, continue with the “Initial Testing, Development DB & Server” section

The section will guide you on:

	Linux
	Installing Initial Requirements

	Creating and Activating the virtualenv

	Getting the Source Code (a.k.a Cloning)

	Installing requirements

	MS Windows
	Installing Initial Requirements

	git and GitHub tools

	Creating and Activating the virtualenv

	Getting the Source Code (a.k.a Cloning)

	Installing requirements

	OS X
	Command Line Tools

	Install pip and virtualenv

	Install basic dependencies

	Creating and Activating the virtualenv

	Installing PDF Command Line tools (Optional. This is only needed if you want to work on the scrapers)

	Getting the Source Code (a.k.a Cloning)

	Installing requirements

	Initial Testing, Development DB & Server
	Running Tests

	Download the Development DB

	Running the Development server

	Using the debug toolbar

Linux

Installing Initial Requirements

On Linux we’ll be creating a clean virtualenv, so in addtion we’ll need
developer tools (to compile PIL, lxml etc).

Debian and derivatives like Ubuntu and Mint, Including c9.io

sudo apt-get update
sudo apt-get install build-essential git python python-dev python-setuptools python-virtualenv python-pip
sudo apt-get install libjpeg-dev libfreetype6 libfreetype6-dev
sudo apt-get build-dep python-imaging
sudo apt-get build-dep python-lxml

Fedora

sudo yum groupinstall "Development Tools" "Development Libraries"
sudo yum install git python python-devel python-setuptools python-virtualenv python-pip libjpeg-turbo-devel libpng-devel libxml2-devel libxslt-devel

Creating and Activating the virtualenv

Navigate in a terminal to the directory you want the
environment created in (usually under your home directory). We’ll name the
created environment oknesset.

Once in that directory:

virtualenv oknesset

Warning

In case you have both Python 2 and 3 installed, please make sure the virtualenv
is created with Python 2. If that’s not the case, pass the correct python
executable to the virtualenv command. e.g:

virtualenv -p python2 oknesset

To check which is the default interpreter virtualenv will use, run
virtualenv -h and check in the output the default for -p flag.

We need to activate the virtual environment (it mainly modifies the paths so
that correct packages and bin directories will be found) each time we wish to
work on the code.

In Linux we’ll source the activation script (to set env vars):

cd oknesset/
. bin/activate

Note the changed prompt which includes the virtualenv’s name.

Getting the Source Code (a.k.a Cloning)

Now we’ll clone the forked repository into the virutalenv. Make sure you’re in
the oknesset directory and run:

git clone https://github.com/your-username/Open-Knesset.git

Replace your-username with the username you’ve registered at GitHub.

Note

You can also clone with ssh keys, in that case follow the
github guide on ssh keys [https://help.github.com/articles/generating-ssh-keys#platform-linux]. Once you’ve done that, your clone command
will look like:

git@github.com:your-username/Open-Knesset.git

For c9.io you will have to use ssh keys - you will need to add c9.io ssh key to your GitHub Profile’s trusted keys.

Note

If you have forked Open-Knesset in the past, make sure you have the latest version before proceeding to installation, by invoking:

git remote add hasadna https://github.com/hasadna/Open-Knesset.git
git pull hasadna master
git push origin master

Installing requirements

Still in the terminal with the virtualenv activated, inside the oknesset directory,
run:

pip install --upgrade pip
pip install -r Open-Knesset/requirements.txt

And wait …

Once done, proceed to Initial Testing, Development DB & Server.

MS Windows

Installing Initial Requirements

On MS Windows the process is more manual. We’ll start by downloading and
installing Python and some packages.

Important

The documentation here assumes you’ll accept defaults:

	Python installed into C:\Python27

	Virtualenv will be created at C:\oknesset

If you’ve changed those, please adjust the instructions accordingly.

Python and packages

Python

[image: Python 2.7 install]
Python 2.7 install (click to enlarge)

Download the latest Python 2.7 [https://www.python.org/downloads/] MSI installer matching your architecture
(32 or 64 bit). As of this writing, the latest one is 2.7.8 [http://www.python.org/download/releases/2.7.8/].

Once downloaded, run the installer, and accept defaults.

Important

The documentation assumes you’ve installed to the default C:\Python27. If
it’s not the case, please adjust accordingly.

distribute

distribute replaces setuptools and makes our windows install simpler (as
setuptools for python2.7 on windows has problems on 64bit platforms and needs a
different installation method).

Download the distribute setup script [http://python-distribute.org/distribute_setup.py] and run it, either automatically
via your browser, by double-clicking it in windows explorer or
manually by running:

python \path\to\the\download\directory\distribute_setup.py

pip and virtualenv

We’ll install them with distribute. Open a command window, and:

cd c:\Python27\Scripts
easy_install pip
pip install virtualenv

Pillow, lxml and ujson

Since compiling those packages (inside the virtualenv) is not an easy task,
we’ll install them separately and instruct virtualenv to use python’s
global site-packages (not pure, but will make things easier for MS
Windows developers).

	Download and run the exe installer matching your architecture for lxml [https://pypi.python.org/pypi/lxml/2.3]
(version 2.3.x)

	Install Pillow with easy_install by running:

easy_install Pillow==2.4.0

	Download and run the exe install matching you architecture for ujson [http://www.lfd.uci.edu/~gohlke/pythonlibs/#ujson].

git and GitHub tools

[image: GitHub tools installer]
GitHub tools install (click to enlarge)

The Open Knesset code is hosted on GitHub, and uses git for distributed
version control. The easiest way to install them on windows is with
GitHub for Windows [http://windows.github.com] (download from the top right corner).

Run the installer, it’ll start and download the rest of the needed packages:

Run the GitHub program (you should have an icon on the desktop), and sign in
with your username and password. This should also extract git, and create a ssh
key and upload the public part to GitHub.

Creating and Activating the virtualenv

From the desktop (or programs menu) run Git Shell [image: gitshell], it’s a shell
with git already configured, in the shell:

cd C:\
C:\Python27\Scripts\virtualenv --distribute --system-site-packages oknesset

Note

If this command fails:

	You probably have an older virtualenv installed.
The quickest work-around is to replace it with the latest version:

cd C:\Python27\Lib\site-packages
del .\virtualenv*
..\..\Scripts\easy_install.exe virtualenv

	Another problem may be that you had PYTHONPATH environment variable
configured, in that case, unset it.

We need to activate the virtual environment (it mainly modifies the paths so
that correct Lib and Scripts directories will be found) each time we wish to
work on the code.

cd oknesset
Scripts\activate

Note the changed prompt with includes the virtualenv’s name.

Getting the Source Code (a.k.a Cloning)

First, we need to fork the Open-Knesset repository [https://github.com/hasadna/Open-Knesset] on github.

Now we’ll clone the forked repository into the virutalenv. Make sure you’re in
the oknesset directory and run:

git clone git@github.com:your-name/Open-Knesset.git

Replace your-username with the username you’ve registered at GitHub.

Installing requirements

In the Git Shell command window, with the virtualenv activated,
inside the oknesset directory, run:

pip install -r Open-Knesset/requirements.txt

And wait … See an example in the following screenshot:

[image: ../_images/git_shell.png]
Once done, proceed to Initial Testing, Development DB & Server.

OS X

Important

The info here is based on the post
Fixing Python, virtualenv and pip on Mountain Lion [http://blog.dyve.net/fixing-python-virtualenv-and-pip-on-mountain]

Command Line Tools

	Go to https://developer.apple.com/downloads

	Search for “command line tools”

	Download and install the version right for your OS

Install pip and virtualenv

sudo easy_install pip
sudo pip install virtualenv

Install basic dependencies

Install homebrew:

ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

Install binary python libraries build dependencies:

brew install jpeg libpng libxml2 libxslt

Add locale settings (in case you’re not UTF-8), put in your ~/.profile:

export LANG="en_US.UTF-8"
export LC_COLLATE="en_US.UTF-8"
export LC_CTYPE="en_US.UTF-8"
export LC_MESSAGES="en_US.UTF-8"
export LC_MONETARY="en_US.UTF-8"
export LC_NUMERIC="en_US.UTF-8"
export LC_TIME="en_US.UTF-8"
export LC_ALL=

And source them (to have them updated in the current shell):

source ~/.profile

Creating and Activating the virtualenv

Navigate in a terminal to the directory you want the
environment created in (usually under your home directory). We’ll name the
created environment oknesset.

Once in that directory:

virtualenv oknesset

We need to activate the virtual environment (it mainly modifies the paths so
that correct packages and bin directories will be found) each time we wish to
work on the code.

To do it, we’ll source the activation script (to set env vars):

cd oknesset/
. bin/activate

Note the changed prompt which includes the virtualenv’s name.

Installing PDF Command Line tools (Optional. This is only needed if you want to work on the scrapers)

Now we will install Poppler, which is a package that contains pdfinfo and pdftotext.
Both are requirements for running the scrapers.

brew install poppler

Note that oknesset will look for the XPATH tools on the PATH environment variable.

Getting the Source Code (a.k.a Cloning)

Now we’ll clone the forked repository into the virutalenv. Make sure you’re in
the oknesset directory and run:

git clone https://github.com/your-username/Open-Knesset.git

Replace your-username with the username you’ve registered at GitHub.

Note

You can also clone with ssh keys, in that case follow the
github guide on ssh keys [https://help.github.com/articles/generating-ssh-keys#platform-mac]. Once you’ve done that, your clone command
will look like:

git@github.com:your-username/Open-Knesset.git

Installing requirements

Still in the terminal with the virtualenv activated, inside the oknesset directory,
run:

pip install -r Open-Knesset/requirements.txt

And wait …

Once done, proceed to Initial Testing, Development DB & Server.

Initial Testing, Development DB & Server

After you’ve installed the base environment, it’s time to run the tests and get
an initial development db.

Important

	Linux users: you can replace python manage.py with ./manage.py for
less typing

	Run the manage.py commands from the Open-Knesset directory, with the
virtualenv activated.

	If you used the c9.io worksapce, you should run the following command to get you in the write directory: cd oknesset/Open-Knesset/ && . ../bin/activate

Running Tests

cd Open-Knesset
python manage.py test

Download the Development DB

Download and extract dev.db.zip [http://oknesset-devdb.s3.amazonaws.com/dev.db.zip] or dev.db.bz2 [http://oknesset-devdb.s3.amazonaws.com/dev.db.bz2] (bz2 is smaller). After
unpacking, place dev.db in the `Open-Knesset` directory.

On c9.io (or similar linux environment) you can write the following code:

wget http://oknesset-devdb.s3.amazonaws.com/dev.db.zip
unzip dev.db.zip

To make sure everything is up to date, run the database schema migrations:

python manage.py migrate

You might want to create your own superuser:

On the c9.io environment there is a superuser preconfigured: admin / 123456

python manage.py createsuperuser

Running the Development server

To run the development server:

python manage.py runserver

Once done, you can access it with your browser via http://localhost:8000 .

Using the debug toolbar

If you’ve enabled the debug toolbar, you should see it’s
icon on the top right corner of the page:

[image: ../_images/djdt.png]
Clicking on it will reveal a sidebar which will expose lots of info about the
generated page (templates used, context variables, SQL queries etc.).

We’re cool ? Time for some Development Workflow.

Development Workflow

Congratulations, we have everything installed, now it’s time to start working on
the project. Here are some guidelines and scenarios to help you get started.

Important

	MS Windows users: replace ./manage.py with python manage.py

	Run manage.py commands from the Open-Knesset directory, with the
virtualenv activated.

Commits and Pull Requests

Make it easier for you and the maintainers, increasing the chances of a pull
request getting accepted:

	No big Pull Requests. It makes reviewing and ensuring correctness hard. If
possible, break it to smaller commits/pulls, each related to a specific issue.

	Always work on a specific issue from our issue tracker [https://github.com/hasadna/Open-Knesset/issues?state=open]. Open new issue if
needed and claim it in the comments.

	Discuss big things in the Open Knesset Developers group [https://groups.google.com/forum/#!forum/oknesset-dev].

Before Coding

We need to make sure we’re in sync with changes done by others (upstream).

Important

Please do this every time before you start developing:

Update the code and requirements

Enter the Open-Knesset directory, and run:

git pull git@github.com:hasadna/Open-Knesset.git master

Note

Running this command requires having SSH keys registered with github. If you don’t have these, or
if you don’t understand what this means and do not want to look it up, you can use:

git pull https://github.com/hasadna/Open-Knesset.git master

If requirements.txt was modified, make sure all of them are installed (no harm
running this command even in case of no changes):

pip install -r requirements.txt

Note

We recommend running the pip command from the parent diretory (the
virtualenv’s root), as it may create an src directory when pulling
packages from git repos. in that case:

`pip install -r Open-Knesset/requirements.txt`

Run migrations and tests

./manage.py migrate
./manage.py test
by default the browser tests use firefox - make sure it's installed first
./manage.py test --testrunner=knesset.browser_test_runner.Runner

If there are any failures, contact the other developers in the oknesset-dev [https://groups.google.com/forum/#!forum/oknesset-dev]
group to see if that’s something you should worry about.

See Development Tips for a few bash functions that may help.

While Coding

General

	Write tests for everything that you code.

	Keep performance in mind - test the number of db queries your code performs
using ./manage.py runserver and accessing a page that runs the code you
changed. See the output of the dev-server before and after your change.

Adding a field to existing model

We use South [http://south.aeracode.org/] to manage database schema migrations. The work process is:

	Add the field you want to model SampleModel in app sample_app

	python manage.py schemamigration sample_app –auto this generates a new migration
under sample_app/migrations. You should review it to make sure it does what
you’ve expected.

	python manage.py migrate runs the migration against the database.

	Don’t forget to git add and commit the migration file.

After you code

	./manage.py test # make sure you didn’t break anything

	./manage.py test --testrunner=knesset.browser_test_runner.Runner # run the browser tests (see Browser testing)

	git status # to see what changes you made

	git diff filename # to see what changed in a specific file

	git add filename # for each file you changed/added.

	git commit -m "commit message"

Please write a sensible commit message, and include “fix#: [number]” of the issue number you’re working on (if any).

	git push # push changes to git repo

	go to github.com and send a “pull request” so your code will be reviewed and
pulled into the main branch, make sure the base repo is
hasadna/Open-Knesset.

Working on CSS and Documentation

CSS

We’re using LESS [http://lesscss.org/#-server-side-usage] (no direct editing of CSS). If you’d like to contribute to the
design efforts:

Before first run, and only once, you’ll need:

git submodule init
git submodule update

We recommend to use nvm to install the correct node version (so that all the developers get consistent css results):

install nvm, see: https://github.com/creationix/nvm
then, run:
$ cd OpenKnesset
OpenKnesset$ nvm install

If you encounter problems using nvm, you can install the node another way, you need node in the version specified in .nvmrc file

Install less using the version specified in package.json:

$ cd OpenKnesset
OpenKnesset$ nvm use
OpenKnesset$ npm install

Make your changes to the files in the less directory, and compile
(assuming you’re in the Open-Knesset directory):

$ cd OpenKnsset
OpenKnesset$ nvm use
OpenKnesset$ npm run less

Documentation

Our documentation is written with Sphinx [http://sphinx-doc.org/], install it with the virtualenv
activated:

pip install sphinx

Edit the relevant docs under the docs directory, and once done, run
make html. You’ll have the resulting documentation in build/html
directory.

We have 2 documentation directories:

	api — API and Embedding for 3rd party apps/services developers

	devel — Developer guide for the OpenKnesset project (TBD)

e.g: To work on the devel docs, edit the files under docs/devel/source, once
ready to build:

cd docs/devel
make html

You’ll have the result under:

docs/devel/build/html

Development Tips

IDE setup

Basically you should lookup for virtualenv configuration of your preferred
development environment.

Eclipse with PyDev

Start by creating a new PyDev Project.

Warning

Don’t create a Django project! It’ll overwrite manage.py and create other
files. We’ll convert it to a Django project later.

[image: _images/new_pydev_project.png]

	Click “Next” and type a name for the project — e,g OpenKnesset.

	Uncheck “Use default” if checked, click “Browse”, navigate to the virtualenv
and selected the previously cloned “Open-Knesset” directory.

	Click the link named “Click here to configure an interpreter not listed”.

In the opened window, click “New”, and in the opened window “browse”. Navigate
to your virtualenv and select the python executable in your Scripts folder
(for MS Windows) or bin (on Linux).

[image: _images/pydev_interpreter.png]
Click “OK”. A window will popup with folders to be added to python path, click
“OK”. If you get a warning click “Proceed anyways”. Let it process the
libraries and click “OK”.

Now you’re back in the Project’s dialog.
Select the interpreter you’ve just added.

	Make sure “Add project directory to the PYTHONPATH” is selected.

You should have something like:

[image: _images/pydev_project_dialog.png]

	Click “Finish”, and switch to the PyDev perspective (if the dialog appears).

	Now you should have the project in the PyDev Package explorer (left side).
In the project. Right click it and select “PyDev” | “Set as Django project”.

	Right click the project and select “Properties”.

	Select “PyDev - Django”, and enter manage.py int “Django manage.py” and
knesset.settings in “Django settings module”.

[image: _images/pydev_django_settings.png]
Click “OK”.

	Create a run configuration for your project (to make sure it’ll find the
database, etc.):

	Right click the project, select “Run As” | “Run configurations”.

	Right click “PyDev Django” and select “New”.

	Give it a name (e.g. “oknesset Django”)

	In the Project field click “Browser” and select you project.

	In Main Module, click browse and select “manage.py”.

	In the “Arguments” tab click, in “Program arguments” enter
runserver --noreload.

	Click “Run”, you should be able to open your browser and access
http://localhost:8000 . You can use this run configration from now on.

Useful bash functions

You can use some variation on these functions when beginning a development session (only after you finished the initial setup).
To use these, paste these functions into your ~/.bashrc file and change the ~/oknesset/ in oknesset_activate to the directory where you installed the project’s virtualencv. These functions will now be available to you in all future bash sessions, but to get it working in already opened tabs, you’ll need to type source ~/.bashrc.

A possible session might include:

	Open a bash tab and run oknesset_update to pull the new code and db, install any new dependencies and run the tests to check that everything is ok.

	Run oknesset_runserver in the same tab to launch the development site.

	Open another tab and run oknesset_activate to enter the Open Knesset directory (and virtualenv) to do any manual work on the files.

	Assuming you have the documentation tools set up and have changed some .rst files, run oknesset_makedocs to recreate the html pages.

oknesset_activate () { #Just enter the Open-Knesset directory and activate the virtualenv
 cd ~/oknesset/ #or wherever you put it

 source bin/activate
 cd Open-Knesset
}

oknesset_update () { #Pull the new code and prepare the environment
 oknesset_activate

 DB_URL="http://oknesset-devdb.s3.amazonaws.com/dev.db.bz2"
 if wget --timestamping $DB_URL | grep Saving # new version downloaded
 then
 mv dev.db dev.db.old
 bzip2 -kd `basename $DB_URL`
 fi

 git pull git@github.com:hasadna/Open-Knesset.git master

 cd ..
 pip install -r Open-Knesset/requirements.txt
 cd Open-Knesset

 ./manage.py migrate
 ./manage.py test
}

oknesset_runserver () { #start the local server
 oknesset_activate
 ./manage.py runserver
}

oknesset_makedocs () { #make the documentation html
 oknesset_activate
 pushd docs/devel >/dev/null
 make html
 popd >/dev/null
}

Debugging

During debugging, you can use the Python debugger, pdb [http://docs.python.org/2/library/pdb.html].

Add import pbd in the code, and pdb.set_trace() in the line you want to begin debugging from.

Run the server and browse the site as usual. When the code hit the line you set a trace in, the browser will hang, and you will get the pdb shell back:

> /home/yourname/workspace/oknesset/Open-Knesset/agendas/models.py(448)get_mks_values()
-> summaries_for_ranges = []

(Pdb)

You can run any python code from there, just like a normal python interpreter, in addition to control commands [http://docs.python.org/2/library/pdb.html#debugger-commands],
like c to continue execution, and n to step single line.

Warning

The debugger will not work in python manage.py, since the output is blocked. The tests will just hang.

Important

Remember to remove any set_trace() commands from the code before committing.

Quicker testing

PASSWORD_HASHERS

You may want to add this too to local_settings.py, in order to speed up the testing by 25%-30%:

import sys
if 'test' in sys.argv:
 PASSWORD_HASHERS = (
 'django.contrib.auth.hashers.MD5PasswordHasher',
)

--failfast

if you want the test suite to fail as soon as the first test does, add --failfast flag:

python manage.py test --failfast

alert

In Ubuntu, you can add an alert after this command:

python manage.py test --failfast; alert

This will pop up a notification when the test is finished.

Browser testing

Running Browser Tests

Browser tests are run with a different test runner, so running ./manage.py test will not run the browser tests.

Instead, you have to specify a different test runner:

./manage.py test --testrunner=knesset.browser_test_runner.Runner

This test runner looks for files that start with browser_cases and runs only the tests contained in those files.

You can run the tests locally - on your own browser, or remotely:

Running tests locally

By default the tests run locally using Firefox. You can specify a different browser using the –browser parameter.

./manage.py test --testrunner=knesset.browser_test_runner.Runner --browser=Chrome

The tests are run using selenium, check the selenium docs for available browser options: http://selenium-python.readthedocs.org/api.html

Running tests remotely - using SauceLabs

A better option for running tests is using the SauceLabs service (https://saucelabs.com/). You will first need a username and access key - we have an open source license for SauceLabs but to avoid misuse we can’t provide it here, ask your fellow Open Knesset developer for this.

To use SauceLabs you first need to setup a tunnel from your local server to their remote service. This is done using Sauce Connect, see the SauceLabs docs for how to install and use it: https://docs.saucelabs.com/reference/sauce-connect/

Once you have the Sauce Connect tunner working using the username and accesskey, you can run the tests:

./manage.py test --testrunner=knesset.browser_test_runner.Runner --browser=Sauce --sauce-user=OpenKnesset --sauce-accesskey=ACCESS_KEY

In the test output you can find links to the test sessions, something like this: https://saucelabs.com/jobs/0383bb8bb3094a35b36edfd4e68aa094

Note that all the test sessions are publicly available because we have an open source license.

Writing tests

Tests are written using the python selenium bindings and the standard django unit tests framework.

All browser test file names must be in the format browser_cases*.py

You can see a simple test in knesset/browser_cases.py - it is commented with useful details.

Refer to the selenium python documentation for help on using selenium: http://selenium-python.readthedocs.org

Scraping

One of the most important tasks in Open Knesset are the scraping processes, this document will try to describe all those processes (but pay attention that as the code changes, this documentation might not..)

We are currently moving towards having knesset-data-django project handle all the scraping jobs.

See the project documentation for more details: https://github.com/hasadna/knesset-data-django/blob/master/README.md

Knesset-data-django is integrated in Open Knesset, so you can run the management commands detailed there in Open Knesset.

Scraping Tasks

	Votes

	Committees

	Presence

Where and how the tasks are run

The scraping tasks are all run from the db server using cron, these are the cron jobs (last updated: ~2015):

1 02,14 * * * /oknesset_data/oknesset/Open-Knesset/manage.py update_all_feeds
05 06,12,18 * * * /oknesset_data/presence/PresenceChecker.sh
30 03 * * * /oknesset_data/oknesset/Open-Knesset/manage.py update_videos --only-members --current-knesset
45 03 * * * /oknesset_data/oknesset/Open-Knesset/manage.py parse_plenum_protocols --download --parse
00 04 * * * /oknesset_data/oknesset/Open-Knesset/manage.py parse_future_plenum_meetings
15 04 * * * /oknesset_data/oknesset/Open-Knesset/manage.py syncdata --update
59 04 * * * /oknesset_data/oknesset/Open-Knesset/manage.py send_email_to_editors
00 05 * * * /oknesset_data/oknesset/Open-Knesset/manage.py notify --daily
01 05 * * 5 /oknesset_data/oknesset/Open-Knesset/manage.py notify --weekly
02 01,05,09,13,17,21 * * * /oknesset_data/oknesset/Open-Knesset/manage.py send_mail
03 05 * * * /oknesset_data/oknesset/Open-Knesset/manage.py parse_future_committee_meetings
30 04 * * * /oknesset_data/oknesset/Open-Knesset/manage.py okscrape lobbyists --dblog

Votes

Votes are scraped using the syncdata process, specifically the “update_votes” function.

This functions interates based on vote id corresponding to knesset’s vote page, e.g. http://www.knesset.gov.il/vote/heb/Vote_Res_Map.asp?vote_id_t=23556

For the above URL, the vote id is 23556.

We then scrape all the relevant data from that html page, and connect to related objects.

Committees

Committees are scraped using the Knesset-data-django project.

See their documentation for details: https://github.com/hasadna/knesset-data-django/blob/master/README.md

Presence

presence data is acumulated using the presence/PresenceChecker.sh script which is run by cron every 6 hours

this process goes to http://www.knesset.gov.il/presence/eng/PresentList_eng.aspx and checks which mks are currently in knesset

DevOps - Servers, Configuration, Deployment, Common tasks

Servers

Following is the servers configuration (as it was on Feb. 16, 2016):

	db1

	DB server, runs cronjobs, (EC2 Name: Postgres1)

	small1

	web app

	small2

	web app

Configuration

	web app servers

	Runs supervisor service which includes oknesset app

The file /etc/supervisor/conf.d/oknesset.conf contains the relevant configuration

This is the command that it runs: command=newrelic-admin run-program gunicorn knesset.wsgi:application -w 4 -t 60

	db servers

	Runs the DB
Runs cronjobs, see https://github.com/hasadna/Open-Knesset/blob/master/deploy/crontab.txt

Deployment

Deployment is done using fabric, see: https://github.com/hasadna/Open-Knesset/blob/master/fabfile.py

There is a local_fab_settings.py file which contains login details.

common deployment tasks

	$ fab deploy_backend

	deploy to the db server

	$ fab deploy_backend:migration=yes

	deploy to db and run ./manage.py migrate as well

	$ fab deploy_backend:requirements=yes,migration=yes

	deploy to db, run migrations and also pip install -r requirements.txt

	$ fab deploy_web

	deploy to the web servers (small1, small2)

	$ fab deploy_web:requirements=yes

	deploy to the web servers and also run pip install -r requirements.txt

Common Tasks

Updating the dev DB

Run the following on the production DB instance:

	(oknesset) Open-Knesset$./manage.py sync_dev

	(oknesset) Open-Knesset$ bzip2 dev.db -fk

	(oknesset) Open-Knesset$ s3put –access_key AWS_ACCESS –secret_key AWS_SECRET –bucket oknesset-devdb dev.db.bz2

	(oknesset) Open-Knesset$ zip dev.db.zip dev.db

	(oknesset) Open-Knesset$ s3put –access_key AWS_ACCESS –secret_key AWS_SECRET –bucket oknesset-devdb dev.db.zip

	(oknesset) Open-Knesset$ rm dev.db dev.db.bz2 dev.db.zip

After the above is done, you may need to log-in to S3 and make the files public (right-click each file and choose “make public”)

Feature toggles

Sometimes we would like Develop new features but not expose them yet to users.
Perhaps we need to expose them only to Qa, or by user role (such as admins).

Maybe we need some backend model to start gathering data and calculations from real production data but not expose
this data in the view, while retaining the possibilty

Another use case can be rolling and exposing a feature only to a small sample of our users. We would like
to get input from real usage pattens before we proceed with rolling a feature to all users..

For all those use cases we can use feature flags/feature toggle.

A feature toggle can toggled on or off, globally or sometimes according to a specific condition.

You can (and should) read more about the feature toggle pattern in Martin Fowler’s blog [http://martinfowler.com/articles/feature-toggles.html]

Using “waffle” - a feature toggle framework for django

We are currently using Django-Waffle as a feature toggle framework.
It allows using switches and flags (switches that accept the request and allow
configuring the on/off flag according to the user, request, environ and more)
You can use flags, switches and other waffle goodies in templates, views, javascript etc.
You can read more about operating waffle in Waffle docs [http://waffle.readthedocs.org/en/v0.11/index.html]

	Note that when you add a feature toggle in the code without adding in the db (through admin or command) then

	The feature toggle is considered closed

Cleaning up after

A common problem with feature toggles is forgetting to remove them when finished. after some time passes nobody
remembers anymore the original purpose of the toggle and no ones dare removing it. Even worst things can happen [http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/]
Please remove feature toggles when not needed any more.

Project Management

Pull Request Code Review

All code contributions are sent using a GitHub Pull Request, for example: https://github.com/hasadna/Open-Knesset/pull/556

When you start reviewing a pull request, assign it to yourself so that we won’t have 2 people reviewing the same code together.

You should review both the code, but also the change itself, make sure it fits Open Knesset and our needs.

If in doubt, raise the issue on the forum or in slack.

Keep in mind that when dealing with volunteers, you should make sure they feel welcome to contribute more code.

Merging an approved pull request

After a pull request is approved, you can merge it. Currently, this is done right after merging by the same person.

So, to merge, you just click the “Merge” button in the pull request (assuming you have write permissions).

Once it’s merged to master, you should also update the release notes: https://github.com/hasadna/Open-Knesset/releases

If there is an existing “Draft” release - you can add it to that release.

If there is no “draft” release” - you can create a new release, just bump the relevant number in the version.

Look at a few previous releases to see what’s written in the release notes, and how the versions are numbered.

Generally, release notes are meant for non technical people as well, so you should write a few words about the
changes that were introduced. Also, you can write deployment notes if any special actions should be performed
before or after the deployment.

Deploying a release

Once you have some pull requests merged you might want to deploy the release. The release should be published before deployment (click “Publish” button in GitHub edit release page). This allows us to know which version was deployed. For technical details about how to deploy see the DevOps documentation.

Index

 _images/git_shell_icon.png

_images/new_pydev_project.png
Select a wizard

Wizards:

& Project
g=1
> Java
» G Plugin Development
v & PyDev
{0 Pyev Django Project
23 PyDev Google App Engine Project
PyDev Project

=

_images/djdt.png
™ 7R3 N3 21037 737 DNTANT YT .0 1w 1T

_—

nnna noia _MUIIIE

na"n 19 -n No13n

a0 oY/ W/ man a1

noiixn N1yl

31 113N MITON ;13NN DWATIN BNV ADIIN 1PN
0TIy DTV AVIAEA ATV 3370 9V Menn
0137 MVIIBA MWPA NIAYN ;ATTYIN DI DN
)N 3NDIAN MAN %Y MIIZNI T ;AARANN DTV
RV W TV DIWY DWIN DIRY DIMIYAT MUpaa

DiDT

_images/git_shell.png
> C:\Python2?\Seriptsivirtualeny —distribute ——systen-site-packages oknesset]

e python executable in oknesset\Scripts\python.exe
installing diseribute.
Aone
done.
>'cd .Noknesset

oknesset> git clone git@github.con:Meirkriheli/Open—Knesset.git
loning into ‘Open-Knesset’ ..
agning: Pernanently added *github.con.207.97.227.239" CRSA> to the list of knou
osts .
enote: Counting objects: 21898, done.
Conpressing objects: 10z <4839/4839), done.
Total 21098 Cdelta 13771), reused 20878 (deita 13568>
ceiving objects: 180 (21898,21898>, 18.07 MiB ! 255 KiB/s, done.
esolving deltas: 188x (13771/13771>, done.
hecking out files: 1097 (794/794), done.
Coknesset> C:\oknesset> pip install —x Open-Knesset\requirements.txt
Dounloading/unpacking Django==1.4.3 (from -r Open-Knessetwrequirements.txt (linel

_images/pydev_interpreter.png
Enter the name and execttable of your interpreter

Interpreter Name: [/home/meir/devel/Projects/oktest/bin/python]

Interpreter Executable: [/home/meir/devel/Projects/oktest/bin/python | | Browse.

cancel oK

_images/pydev_project_dialog.png
PyDev Project
Create a new Pydev Project.

Project name: [Openknesset

Project contents:
[] Use default

Directory [/home/meir/devel/Projects/oktest/Open-knesset

Project type
Choose the project type
@ Python () jython

Grammar Version

[27

on Python

| [Browse

Interpreter
| thomemeir/devel/Projectsfoktest/bin/python

Click here to configure an interpreter not listed.

@ Add project directory to the PYTHONPATH?
() Create 'src folder and add it to the PYTHONPATH?

) Don't configure PYTHONPATH (to be done manually later on)

@ [<sack | New» || cancel

| [__Fnish

_images/oknesset_fork.png
hasadna / Open-Knesset 1 Pull Request G5 Unwatch ~ % Star < 19

forked ffom offiOpen-Kresset

Code Network Pull Requests 0 Wiki Graphs. Settings

A project aimed at making the israli Knesset more transparent. Python and Django based — Read more
hitp:/ioknesset.org/

_images/pydev_django_settings.png
type filter text 7] pypev - Django vV v

> Resource

Builders Django managepy [manage.py |

Project References
Django settings module [knesset.settings|]

PyDev - Interpreter/Gran

PyDev - PYTHONPATH

Refactoring History

Run/Debug Settings

FEETTRRENE] D

@ Cowes Lo]
B | s

_images/t_github_tools_win.png

_images/t_python27_win.png

nav.xhtml

 Table of Contents

 		
 Welcome to Open-Knesset Developers documentation!

 		
 GitHub and Source Code

 		
 Create a GitHub account

 		
 Forking the Open Knesset project

 		
 Setting up the development environment

 		
 Linux

 		
 Installing Initial Requirements

 		
 Creating and Activating the virtualenv

 		
 Getting the Source Code (a.k.a Cloning)

 		
 Installing requirements

 		
 MS Windows

 		
 Installing Initial Requirements

 		
 git and GitHub tools

 		
 Creating and Activating the virtualenv

 		
 Getting the Source Code (a.k.a Cloning)

 		
 Installing requirements

 		
 OS X

 		
 Command Line Tools

 		
 Install pip and virtualenv

 		
 Install basic dependencies

 		
 Creating and Activating the virtualenv

 		
 Installing PDF Command Line tools (Optional. This is only needed if you want to work on the scrapers)

 		
 Getting the Source Code (a.k.a Cloning)

 		
 Installing requirements

 		
 Initial Testing, Development DB & Server

 		
 Running Tests

 		
 Download the Development DB

 		
 Running the Development server

 		
 Using the debug toolbar

 		
 Development Workflow

 		
 Commits and Pull Requests

 		
 Before Coding

 		
 Update the code and requirements

 		
 Run migrations and tests

 		
 While Coding

 		
 General

 		
 Working on CSS and Documentation

 		
 CSS

 		
 Documentation

 		
 Development Tips

 		
 IDE setup

 		
 Eclipse with PyDev

 		
 Useful bash functions

 		
 Debugging

 		
 Quicker testing

 		
 PASSWORD_HASHERS

 		
 –failfast

 		
 alert

 		
 Browser testing

 		
 Running Browser Tests

 		
 Running tests locally

 		
 Running tests remotely - using SauceLabs

 		
 Writing tests

 		
 Scraping

 		
 Scraping Tasks

 		
 Votes

 		
 Committees

 		
 Presence

 		
 Where and how the tasks are run

 		
 DevOps - Servers, Configuration, Deployment, Common tasks

 		
 Servers

 		
 Configuration

 		
 Deployment

 		
 common deployment tasks

 		
 Common Tasks

 		
 Updating the dev DB

 		
 Feature toggles

 		
 Using “waffle” - a feature toggle framework for django

 		
 Cleaning up after

 		
 Project Management

 		
 Pull Request Code Review

 		
 Merging an approved pull request

 		
 Deploying a release

_static/ajax-loader.gif

_static/comment-bright.png

_static/distribute_win.png
‘Setup distribute-0.6.32

distribute-0.6.32

PVTHON
Powered

No

_static/djdt.png
™ 7R3 N3 21037 737 DNTANT YT .0 1w 1T

_—

nnna noia _MUIIIE

na"n 19 -n No13n

a0 oY/ W/ man a1

noiixn N1yl

31 113N MITON ;13NN DWATIN BNV ADIIN 1PN
0TIy DTV AVIAEA ATV 3370 9V Menn
0137 MVIIBA MWPA NIAYN ;ATTYIN DI DN
)N 3NDIAN MAN %Y MIIZNI T ;AARANN DTV
RV W TV DIWY DWIN DIRY DIMIYAT MUpaa

DiDT

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/github_tools_win.png
|/ [=] NewIntemet Explorer Bro. X { weo Python Extension Packag: X / @ GitHub for Windows x _| = |G [

[Suggested Sites

Jows

libgit2/libgit2

lease notes

libgit2/GitForD)

2/libgit2-backends ST poTTEDTe P e

€« C' [windows.github.com Prs

[} Web Siice Gallry (3 Other bookma

(67%)Installing GitHub

Installing GitHub
“This may take several minutes. You can use your computer to do other tasks

during the installation.

o Name: GitHub

From: github-windowss3.amazonaws.com

Downloading: 25.5 MB of 37.9 MB

¢ Git core metho
linkable library with a solid APL, allowing you to write native speec
any language with bindings.

_static/up-pressed.png

_static/up.png

_static/python27_win.png
@, Python 273 Release

~ EY
© suggestedsites © Other bookmarks

Select whether to install Python 2.7.3
Release Sq for all users of this computer.

Anx ownN
1

" pTn oK © Instal for al users
15.1 7 o

© Instal just for me (not avaiable on Windows Vista)
wy

ac 0S X 10.6
btall to run
(10 Gouge) X 10.3 through
Events C|
nnx ownx py (fingerprint
i S S g) The

410070 DY Yo Windows nstale was signed by Hartin von Lowis'public ke, which hias
15.1 Ty oy awn e '

<[

