

    
      
          
            
  
opt_einsum

einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum] is a powerful function for contracting tensors of arbitrary
dimension and index. However, it is only optimized to contract two terms
at a time resulting in non-optimal scaling.

For example, consider the following index transformation:


\[M_{pqrs} = C_{pi} C_{qj} I_{ijkl} C_{rk} C_{sl}\]

Consider two different algorithms:

import numpy as np

dim = 10
I = np.random.rand(dim, dim, dim, dim)
C = np.random.rand(dim, dim)

def naive(I, C):
    # N^8 scaling
    return np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

def optimized(I, C):
    # N^5 scaling
    K = np.einsum('pi,ijkl->pjkl', C, I)
    K = np.einsum('qj,pjkl->pqkl', C, K)
    K = np.einsum('rk,pqkl->pqrl', C, K)
    K = np.einsum('sl,pqrl->pqrs', C, K)
    return K





The einsum function does not consider building intermediate arrays;
therefore, helping einsum out by creating these intermediate arrays can result
in considerable cost savings even for small N (N=10):

>> np.allclose(naive(I, C), optimized(I, C))
True

%timeit naive(I, C)
1 loops, best of 3: 829 ms per loop

%timeit optimized(I, C)
1000 loops, best of 3: 445 µs per loop





The index transformation is a well-known contraction that leads to
straightforward intermediates. This contraction can be further
complicated by considering that the shape of the C matrices need not be
the same, in this case, the ordering in which the indices are transformed
matters significantly. Logic can be built that optimizes the order;
however, this is a lot of time and effort for a single expression.

The opt_einsum package is a drop-in replacement for the np.einsum function
and can handle all of the logic for you:

from opt_einsum import contract

dim = 30
I = np.random.rand(dim, dim, dim, dim)
C = np.random.rand(dim, dim)

%timeit optimized(I, C)
10 loops, best of 3: 65.8 ms per loop

%timeit contract('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)
100 loops, best of 3: 16.2 ms per loop





The above will automatically find the optimal contraction order, in this case, identical to that of the optimized function above, and compute the products for
you. In this case, it even uses np.dot under the hood to exploit any vendor
BLAS functionality that your NumPy build has!

We can then view more details about the optimized contraction order:

>>> from opt_einsum import contract_path

>>> path_info = oe.contract_path('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

>>> print(path_info[0])
[(0, 2), (0, 3), (0, 2), (0, 1)]

>>> print(path_info[1])
  Complete contraction:  pi,qj,ijkl,rk,sl->pqrs
         Naive scaling:  8
     Optimized scaling:  5
      Naive FLOP count:  8.000e+08
  Optimized FLOP count:  8.000e+05
   Theoretical speedup:  1000.000
  Largest intermediate:  1.000e+04 elements
--------------------------------------------------------------------------------
scaling   BLAS                  current                                remaining
--------------------------------------------------------------------------------
   5      GEMM            ijkl,pi->jklp                      qj,rk,sl,jklp->pqrs
   5      GEMM            jklp,qj->klpq                         rk,sl,klpq->pqrs
   5      GEMM            klpq,rk->lpqr                            sl,lpqr->pqrs
   5      GEMM            lpqr,sl->pqrs                               pqrs->pqrs
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Install opt_einsum

You can install opt_einsum with conda, with pip, or by installing from source.


Conda

You can update opt_einsum using conda [https://www.anaconda.com/download/]:

conda install opt_einsum -c conda-forge





This installs opt_einsum and the NumPy dependancy.

The opt_einsum package is maintained on the
conda-forge channel [https://conda-forge.github.io/].




Pip

To install opt_einsum with pip there are a few options, depending on which
dependencies you would like to keep up to date:


	pip install opt_einsum







Install from Source

To install opt_einsum from source, clone the repository from github [https://github.com/dgasmith/opt_einsum]:

git clone https://github.com/dgasmith/opt_einsum.git
cd opt_einsum
python setup.py install





or use pip locally if you want to install all dependencies as well:

pip install -e .








Test

Test opt_einsum with py.test:

cd opt_einsum
py.test











          

      

      

    

  

    
      
          
            
  
Input Format

The opt_einsum package is a drop-in replacement for the np.einsum
function and supports all input formats that np.einsum supports. There are
two styles of input accepted, a basic introduction to which can be found in the
documentation for numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum]. In addition to this, opt_einsum
extends the allowed index labels to unicode or arbitrary hashable, comparable
objects in order to handle large contractions with many indices.


‘Equation’ Input

As with numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum], here you specify an equation as a string,
followed by the array arguments:

>>> eq = 'ijk,jkl->li'
>>> x, y = np.random.rand(2, 3, 4), np.random.rand(3, 4, 5)
>>> z = oe.contract(eq, x, y)
>>> z.shape
(5, 2)





However, in addition to the standard alphabet, opt_einsum also supports
unicode characters:

>>> eq = "αβγ,βγδ->δα"
>>> oe.contract(eq, x, y).shape
(5, 2)





This enables access to thousands of possible index labels. One way to access
these programmatically is through the function
get_symbol():

>>> oe.get_symbol(805)
'α'





which maps an int to a unicode characater. Note that as with
numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum] if the output is not specified with -> it will default
to the sorted order of all indices appearing once:

>>> eq = "αβγ,βγδ"  # "->αδ" is implicit
>>> oe.contract(eq, x, y).shape
(2, 5)








‘Interleaved’ Input

The other input format is to ‘interleave’ the array arguments with their index
labels (‘subscripts’) in pairs, optionally specifying the output indices as a
final argument. As with numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum], integers are allowed as these
index labels:

>>> oe.contract(x, [1, 2, 3], y, [2, 3, 4], [4, 1]).shape
>>> (5, 2)





with the default output order again specified by the sorted order of indices
appearing once. However, unlike numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum], in opt_einsum you can
also put anything hashable and comparable such as str in the subscript list.
A simple example of this syntax is:

>>> x, y, z = np.ones((1, 2)), np.ones((2, 2)), np.ones((2, 1))
>>> oe.contract(x, ('left', 'bond1'), y, ('bond1', 'bond2'), z, ('bond2', 'right'), ('left', 'right'))
array([[4.]])





The subscripts need to be hashable so that opt_einsum can efficiently process them, and
they should also be comparable so as to allow a default sorted output. For example:

>>> x = np.array([[0, 1], [2, 0]])
>>> oe.contract(x, (0, 1))  # original matrix
array([[0, 1],
       [2, 0]])
>>> oe.contract(x, (1, 0)) # the transpose
array([[0, 2],
       [1, 0]])
>>> oe.contract(x, ('a', 'b'))  # original matrix, consistent behavior
array([[0, 1],
       [2, 0]])
>>> oe.contract(x, ('b', 'a')) # the transpose, consistent behavior
array([[0, 2],
       [1, 0]])
>>> oe.contract(x, (0, 'a')) # relative sequence undefined, can't determine output
TypeError: For this input type lists must contain either Ellipsis or hashable and comparable object (e.g. int, str)











          

      

      

    

  

    
      
          
            
  
Backends & GPU Support

The following is a brief overview of libraries which have been tested with
opt_einsum:



	tensorflow [https://www.tensorflow.org/]: compiled tensor expressions
that can run on GPU.


	theano [http://deeplearning.net/software/theano/]: compiled tensor
expressions that can run on GPU.


	cupy [https://cupy.chainer.org/]: numpy-like api for GPU tensors.


	dask [https://dask.pydata.org/]: larger-than-memory tensor
computations, distributed scheduling, and potential reuse of
intermediaries.


	sparse [https://sparse.pydata.org/]: sparse tensors.


	pytorch [https://pytorch.org]: numpy-like api for GPU tensors.







opt_einsum is quite agnostic to the type of n-dimensional arrays (tensors)
it uses, since finding the contraction path only relies on getting the shape
attribute of each array supplied.
It can perform the underlying tensor contractions with various
libraries. In fact, any library that provides a tensordot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot] and
transpose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose] implementation can perform most normal contractions.
While more special functionality such as axes reduction is reliant on a
einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum] implementation.


Note

For a contraction to be possible without using a backend einsum, it must
satisfy the following rule: in the full expression (so including output
indices) each index must appear twice. In other words, each dimension
must be contracted with one other dimension, or left alone.




General backend for any ndarray

This ‘duck-typing’ support just requires specifying the correct backend
argument for the type of arrays supplied when calling
contract(). For example, if you had a library installed
called 'foo' which provided an ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] like object with a
.shape attribute as well as foo.tensordot and foo.transpose then
you could contract then with something like:

contract(einsum_str, *foo_arrays, backend='foo')





Behind the scenes opt_einsum will find the contraction path, perform
pairwise contractions using e.g. foo.tensordot and finally return whatever
type those functions return.


Dask

dask [https://dask.pydata.org/] is an example of a library which satisfies
these requirements. For example:

>>> import opt_einsum as oe
>>> import dask.array as da
>>> shapes = (3, 200), (200, 300), (300, 4)
>>> dxs = [da.random.normal(0, 1, shp, chunks=(100, 100)) for shp in shapes]
>>> dxs
[dask.array<da.random.normal, shape=(3, 200), dtype=float64, chunksize=(3, 100)>,
 dask.array<da.random.normal, shape=(200, 300), dtype=float64, chunksize=(100, 100)>,
 dask.array<da.random.normal, shape=(300, 4), dtype=float64, chunksize=(100, 4)>]


>>> dy = oe.contract("ab,bc,cd", *dxs, backend='dask')
>>> dy
dask.array<transpose, shape=(3, 4), dtype=float64, chunksize=(3, 4)>

>>> dy.compute()
array([[ 470.71404665,    2.44931372,  -28.47577265,  424.37716615],
       [  64.38328345, -287.40753131,  144.46515642,  324.88169821],
       [-142.07153553, -180.41739259,  125.0973783 , -239.16754541]])





In this case, dask arrays in = dask array out, since dask arrays have a shape
attribute, and opt_einsum can find dask.array.tensordot and
dask.array.transpose.




Sparse

The sparse [https://sparse.pydata.org/] library also fits the bill and is
supported. An example:

>>> import opt_einsum as oe
>>> import sparse as sp
>>> shapes = (3, 200), (200, 300), (300, 4)
>>> sxs = [sp.random(shp) for shp in shapes]
[<COO: shape=(3, 200), dtype=float64, nnz=6, sorted=False, duplicates=True>,
 <COO: shape=(200, 300), dtype=float64, nnz=600, sorted=False, duplicates=True>,
 <COO: shape=(300, 4), dtype=float64, nnz=12, sorted=False, duplicates=True>]

>>> sy = oe.contract("ab,bc,cd", *sxs, backend='sparse')
<COO: shape=(3, 4), dtype=float64, nnz=0, sorted=False, duplicates=False>










Special (GPU) backends for numpy arrays

A special case is if you want to supply numpy arrays and get numpy arrays back,
but use a different backend, such as performing a contraction on a GPU.
Unless the specified backend works on numpy arrays this requires converting to
and from the backend array type. Currently opt_einsum can handle this
automatically for:



	tensorflow [https://www.tensorflow.org/]


	theano [http://deeplearning.net/software/theano/]


	cupy [https://cupy.chainer.org/]


	pytorch [https://pytorch.org]







which all offer GPU support. Since tensorflow and theano both require
compiling the expression, this functionality is encapsulated in generating a
ContractExpression using
contract_expression(), which can then be called using numpy
arrays whilst specifiying backend='tensorflow' etc.
Additionally, if arrays are marked as constant
(see Specifying Constants), then these arrays will be kept on the device
for optimal performance.


Theano

If theano is installed, using it as backend is as simple as specifiying
backend='theano':

>>> import opt_einsum as oe
>>> shapes = (3, 200), (200, 300), (300, 4)
>>> expr = oe.contract_expression("ab,bc,cd", *shapes)
>>> expr
<ContractExpression('ab,bc,cd')>

>>> import numpy as np
>>> # GPU advantage mainly for low precision numbers
>>> xs = [np.random.randn(*shp).astype(np.float32) for shp in shapes]
>>> expr(*xs, backend='theano')  # might see some fluff on first run
...
array([[ 129.28352  , -128.00702  , -164.62917  , -335.11682  ],
       [-462.52344  , -121.12657  ,  -67.847626 ,  624.5457   ],
       [   5.2838974,   36.441578 ,   81.62851  ,  703.1576   ]],
      dtype=float32)





Note that you can still supply theano.tensor.TensorType directly to
opt_einsum (with backend='theano'), and it will return the
relevant theano type.




Tensorflow

To run the expression with tensorflow, you need to register a default
session:

>>> import tensorflow as tf
>>> sess = tf.Session()  # might see some fluff
...

>>> with sess.as_default(): out = expr(*xs, backend='tensorflow')
>>> out
array([[ 129.28357  , -128.00684  , -164.62903  , -335.1167   ],
       [-462.52362  , -121.12659  ,  -67.84769  ,  624.5455   ],
       [   5.2839584,   36.44155  ,   81.62852  ,  703.15784  ]],
      dtype=float32)





Note that you can still supply this expression with, for example, a
tensorflow.placeholder using backend='tensorflow', and then no
conversion would take place, instead you’d get a tensorflow.Tensor back.

Version 1.9 of tensorflow also added support for eager execution of
computations. If compilation of the contraction expression tensorflow graph is
taking a substantial amount of time up then it can be advantageous to use this,
especially since tensor contractions are quite compute-bound. This is achieved
by running the following snippet:

import tensorflow as tf
tf.enable_eager_execution()





After which opt_einsum will automatically detect eager mode if
backend='tensorflow' is supplied to a
ContractExpression.




Pytorch & Cupy

Both pytorch [https://pytorch.org] and cupy [https://cupy.chainer.org/]
offer numpy-like, GPU-enabled arrays which execute eagerly rather than
requiring any compilation. If they are installed, no steps are required to
utilize them other than specifiying the backend keyword:

>>> expr(*xs, backend='torch')
array([[ 129.28357  , -128.00684  , -164.62903  , -335.1167   ],
       [-462.52362  , -121.12659  ,  -67.84769  ,  624.5455   ],
       [   5.2839584,   36.44155  ,   81.62852  ,  703.15784  ]],
      dtype=float32)

>>> expr(*xs, backend='cupy')
array([[ 129.28357  , -128.00684  , -164.62903  , -335.1167   ],
       [-462.52362  , -121.12659  ,  -67.84769  ,  624.5455   ],
       [   5.2839584,   36.44155  ,   81.62852  ,  703.15784  ]],
      dtype=float32)





And as with the other GPU backends, if raw cupy or pytorch arrays are
supplied the returned array will be of the same type, with no conversion
to or from numpy arrays.









          

      

      

    

  

    
      
          
            
  
Reusing Paths

If you expect to use a particular contraction repeatedly, it can make things simpler and more efficient not to compute the path each time. Instead, supplying contract_expression() with the contraction string and the shapes of the tensors generates a ContractExpression which can then be repeatedly called with any matching set of arrays. For example:

>>> my_expr = oe.contract_expression("abc,cd,dbe->ea", (2, 3, 4), (4, 5), (5, 3, 6))
>>> print(my_expr)
<ContractExpression('abc,cd,dbe->ea')>
  1.  'dbe,cd->bce' [GEMM]
  2.  'bce,abc->ea' [GEMM]





The ContractExpression can be called with 3 arrays that match the original shapes without having to recompute the path:

>>> x, y, z = (np.random.rand(*s) for s in [(2, 3, 4), (4, 5), (5, 3, 6)])
>>> my_expr(x, y, z)
array([[ 3.08331541,  4.13708916],
       [ 2.92793729,  4.57945185],
       [ 3.55679457,  5.56304115],
       [ 2.6208398 ,  4.39024187],
       [ 3.66736543,  5.41450334],
       [ 3.67772272,  5.46727192]])





Note that few checks are performed when calling the expression, and while it will work for a set of arrays with the same ranks as the original shapes but differing sizes, it might no longer be optimal.


Specifying Constants

Often one generates contraction expressions where some of the tensor arguments
will remain constant across many calls.
contract_expression() allows you to specify the indices of
these constant arguments, allowing opt_einsum to build and then reuse as
many constant contractions as possible. Take for example the equation:

>>> eq = "ij,jk,kl,lm,mn->ni"





where we know that only the first and last tensors will vary between calls.
We can specify this by marking the middle three as constant - we then need to
supply the actual arrays rather than just the shapes to
contract_expression():

>>> #           A       B       C       D       E
>>> shapes = [(9, 5), (5, 5), (5, 5), (5, 5), (5, 8)]

>>> # mark the middle three arrays as constant
>>> constants = [1, 2, 3]

>>> # generate the constant arrays
>>> B, C, D = [np.random.randn(*shapes[i]) for i in constants]

>>> # supplied ops are now mix of shapes and arrays
>>> ops = (9, 5), B, C, D, (5, 8)

>>> expr = oe.contract_expression(eq, *ops, constants=constants)
>>> expr
<ContractExpression('ij,[jk,kl,lm],mn->ni', constants=[1, 2, 3])>





The expression now only takes the remaining two arrays as arguments (the
tensors with 'ij' and 'mn' indices), and will store as many reusable
constant contractions as possible.

>>> A1, E1 = np.random.rand(*shapes[0]), np.random.rand(*shapes[-1])
>>> out1 = expr(A1, E1)
>>> out1.shap
(8, 9)

>>> A2, E2 = np.random.rand(*shapes[0]), np.random.rand(*shapes[-1])
>>> out2 = expr(A2, E2)
>>> out2.shape
(8, 9)

>>> np.allclose(out1, out2)
False

>>> print(expr)
<ContractExpression('ij,[jk,kl,lm],mn->ni', constants=[1, 2, 3])>
  1.  'jm,mn->jn' [GEMM]
  2.  'jn,ij->ni' [GEMM]





Where we can see that the expression now only has to perform
two contractions to compute the output.


Note

The constant part of an expression is lazily generated upon the first call
(specific to each backend), though it can also be explicitly built by calling
evaluate_constants().



We can confirm the advantage of using expressions and constants by timing the
following scenarios, first setting
A = np.random.rand(*shapes[0]) and E = np.random.rand(*shapes[-1]).


	contract from scratch:




>>> %timeit oe.contract(eq, A, B, C, D, E)
239 µs ± 5.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)






	contraction with an expression but no constants:




>>> expr_no_consts = oe.contract_expression(eq, *shapes)
>>> %timeit expr_no_consts(A, B, C, D, E)
76.7 µs ± 2.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)






	contraction with an expression and constants marked:




>>> %timeit expr(A, E)
40.8 µs ± 1.22 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)





Although this gives us a rough idea, of course the efficiency savings are
hugely dependent on the size of the contraction and number of possible constant
contractions.

We also note that even if there are no constant contractions to perform, it
can be very advantageous to specify constant tensors for particular backends.
For instance, if a GPU backend is used, the constant tensors will be kept on
the device rather than being transferred each time.







          

      

      

    

  

    
      
          
            
  
Sharing Intermediates

If you want to compute multiple similar contractions with common terms, you can embed them in a shared_intermediates() context. Computations of subexpressions in this context will be memoized, and will be garbage collected when the contexts exits.

For example, suppose we want to compute marginals at each point in a factor chain:

inputs = 'ab,bc,cd,de,ef'
factors = [np.random.rand(1000, 1000) for _ in range(5)]

%%timeit
marginals = {output: contract('{}->{}'.format(inputs, output), *factors)
             for output in 'abcdef'}
1 loop, best of 3: 5.82 s per loop





To share this computation, we can perform all contractions in a shared context:

%%timeit
with shared_intermediates():
    marginals = {output: contract('{}->{}'.format(inputs, output), *factors)
                 for output in 'abcdef'}
1 loop, best of 3: 1.55 s per loop





If it is difficult to fit your code into a context, you can instead save the sharing cache for later reuse.

with shared_intermediates() as cache:  # create a cache
    pass
marginals = {}
for output in 'abcdef':
    with shared_intermediates(cache):  # reuse a common cache
        marginals[output] = contract('{}->{}'.format(inputs, output), *factors)
del cache  # garbage collect intermediates





Note that sharing contexts can be nested, so it is safe to to use shared_intermediates() in library code without leaking intermediates into user caches.


Note

By default a cache is thread safe, to share intermediates between threads explicitly pass the same cache to each thread.







          

      

      

    

  

    
      
          
            
  
Introduction

Performing an optimized tensor contraction to speed up einsum involves two
key stages:



	Finding a pairwise contraction order, or ‘path’.


	Performing the sequence of contractions given this path.







The better the quality of path found in the first step, the quicker the actual
contraction in the second step can be – often dramatically. However, finding
the optimal path is an NP-hard problem that can quickly become intractable,
meaning that a  balance must be struck between the time spent finding a path,
and its quality. opt_einsum handles this by using several path finding
algorithms, which can be manually specified using the optimize keyword.
These are:



	The 'optimal' strategy - an exhaustive search of all possible paths


	The 'branch' strategy - a more restricted search of many likely paths


	The 'greedy' strategy - finds a path one step at a time using a cost
heuristic







By default (optimize='auto'), contract() will select the
best of these it can while aiming to keep path finding times below around 1ms.
An analysis of each of these approaches’ performance can be found at the bottom
of this page.

Finally, for large and complex contractions, there is the
'random-greedy' approach, which samples many greedy paths and can be
customized to explicitly spend a maximum amount of time searching.

If you want to find the path separately to performing the
contraction, or just inspect information about the path found, you can use the
function contract_path().


Examining the Path

As an example, consider the following expression found in a perturbation theory (one of ~5,000 such expressions):

'bdik,acaj,ikab,ajac,ikbd'





At first, it would appear that this scales like N^7 as there are 7 unique indices; however, we can define a intermediate to reduce this scaling.

a = 'bdik,ikab,ikbd' (N^5 scaling)

result = 'acaj,ajac,a' (N^4 scaling)





This is a single possible path to the final answer (and notably, not the most optimal) out of many possible paths. Now, let opt_einsum compute the optimal path:

import opt_einsum as oe

# Take a complex string
einsum_string = 'bdik,acaj,ikab,ajac,ikbd->'

# Build random views to represent this contraction
unique_inds = set(einsum_string) - {',', '-', '>'}
index_size = [10, 17, 9, 10, 13, 16, 15, 14, 12]
sizes_dict = dict(zip(unique_inds, index_size))
views = oe.helpers.build_views(einsum_string, sizes_dict)

path, path_info = oe.contract_path(einsum_string, *views)

>>> print(path)
[(0, 4), (1, 3), (0, 1), (0, 1)]

>>> print(path_info)
  Complete contraction:  bdik,acaj,ikab,ajac,ikbd->
         Naive scaling:  7
     Optimized scaling:  4
      Naive FLOP count:  2.387e+8
  Optimized FLOP count:  8.068e+4
   Theoretical speedup:  2958.354
  Largest intermediate:  1.530e+3 elements
--------------------------------------------------------------------------------
scaling        BLAS                current                             remaining
--------------------------------------------------------------------------------
   4              0         ikbd,bdik->ikb                  acaj,ikab,ajac,ikb->
   4    GEMV/EINSUM            ikb,ikab->a                         acaj,ajac,a->
   3              0           ajac,acaj->a                                 a,a->
   1            DOT                  a,a->                                    ->





We can then check that actually performing the contraction produces the expected result:

import numpy as np

einsum_result = np.einsum("bdik,acaj,ikab,ajac,ikbd->", *views)
contract_result = oe.contract("bdik,acaj,ikab,ajac,ikbd->", *views)

>>> np.allclose(einsum_result, contract_result)
True





By contracting terms in the correct order we can see that this expression can be computed with N^4 scaling. Even with the overhead of finding the best order or ‘path’ and small dimensions,
opt_einsum is roughly 3000 times faster than pure einsum for this expression.




Format of the Path

Let us look at the structure of a canonical einsum path found in NumPy and its optimized variant:

einsum_path = [(0, 1, 2, 3, 4)]
opt_path = [(1, 3), (0, 2), (0, 2), (0, 1)]





In opt_einsum each element of the list represents a single contraction.
In the above example the einsum_path would effectively compute the result as a single contraction identical to that of einsum, while the
opt_path would perform four contractions in order to reduce the overall scaling.
The first tuple in the opt_path, (1,3), pops the second and fourth terms, then contracts them together to produce a new term which is then appended to the list of terms, this is continued until all terms are contracted.
An example should illuminate this:

---------------------------------------------------------------------------------
scaling   GEMM                   current                                remaining
---------------------------------------------------------------------------------
terms = ['bdik', 'acaj', 'ikab', 'ajac', 'ikbd'] contraction = (1, 3)
  3     False              ajac,acaj->a                       bdik,ikab,ikbd,a->
terms = ['bdik', 'ikab', 'ikbd', 'a'] contraction = (0, 2)
  4     False            ikbd,bdik->bik                             ikab,a,bik->
terms = ['ikab', 'a', 'bik'] contraction = (0, 2)
  4     False              bik,ikab->a                                    a,a->
terms = ['a', 'a'] contraction = (0, 1)
  1       DOT                    a,a->                                       ->





A path specified in this format can explicitly be supplied directly to
contract() using the optimize keyword:

contract_result = oe.contract("bdik,acaj,ikab,ajac,ikbd->", *views, optimize=opt_path)

>>> np.allclose(einsum_result, contract_result)
True








Performance Comparison

The following graphs should give some indication of the tradeoffs between path
finding time and path quality. They are generated by finding paths with each
possible algorithm for many randomly generated networks of n tensors with
varying connectivity.

First we have the time to find each path as a function of the number of terms
in the expression:

[image: _images/path_finding_time.png]
Clearly the exhaustive ('optimal', 'branch-all') and exponential
('branch-2') searches eventually scale badly, but for modest amounts of
terms they incur only a small overhead. The 'random-greedy' approach is not
shown here as it is simply max_repeats times slower than the 'greedy'
approach - at least if not parallelized.

Next we can look at the average FLOP speedup (as compared to the easiest path
to find, 'greedy'):

[image: _images/path_found_flops.png]
One can see that the heirarchy of path qualities is:


	'optimal' (used by auto for n <= 4)


	'branch-all' (used by auto for n <= 6)


	'branch-2' (used by auto for n <= 8)


	'branch-1' (used by auto for n <= 14)


	'greedy' (used by auto for anything larger)





Note

The performance of the 'random=greedy' approach (which is never used
automatically) can be found separately in The Random-Greedy Path section.



There are a few important caveats to note with this graph. Firstly, the
benefits of more advanced path finding are very dependent on the complexity of
the expression. For ‘simple’ contractions, all the different approaches will
mostly find the same path (as here). However, for ‘tricky’ contractions, there
will be certain cases where the more advanced algorithms will find much better
paths. As such, while this graph gives a good idea of the relative performance
of each algorithm, the ‘average speedup’ is not a perfect indicator since
worst-case performance might be more critical.

Note that the speedups for any of the methods as compared to a standard
einsum or a naively chosen path (such as path=[(0, 1), (0, 1), ...])
are all exponentially large and not shown.







          

      

      

    

  

    
      
          
            
  
The Optimal Path

The most optimal path can be found by searching through every possible way to contract the tensors together, this includes all combinations with the new intermediate tensors as well.
While this algorithm scales like N!, and can often become more costly to compute than the unoptimized contraction itself, it provides an excellent benchmark.
The function that computes this path in opt_einsum is called optimal() and works by performing a recursive, depth-first search. By keeping track of the
best path found so far, in terms of total estimated FLOP count, the search can
then quickly prune many paths as soon as as they exceed this best.
This optimal strategy is used by default with the optimize='auto' mode of
opt_einsum for 4 tensors or less, though it can handle expressions of up to
9-10 tensors in a matter of seconds.

Let us look at an example:

Contraction:  abc,dc,ac->bd





Build a list with tuples that have the following form:

iteration 0:
 "(cost, path,  list of input sets remaining)"
[ (0,    [],    [set(['a', 'c', 'b']), set(['d', 'c']), set(['a', 'c'])] ]





Since this is iteration zero, we have the initial list of input sets.
We can consider three possible combinations where we contract list positions (0, 1), (0, 2), or (1, 2) together:

iteration 1:
[ (9504, [(0, 1)], [set(['a', 'c']), set(['a', 'c', 'b', 'd'])  ]),
  (1584, [(0, 2)], [set(['c', 'd']), set(['c', 'b'])            ]),
  (864,  [(1, 2)], [set(['a', 'c', 'b']), set(['a', 'c', 'd'])  ])]





We have now run through the three possible combinations, computed the cost of the contraction up to this point, and appended the resulting indices from the contraction to the list.
As all contractions only have two remaining input sets the only possible contraction is (0, 1):

iteration 2:
[ (28512, [(0, 1), (0, 1)], [set(['b', 'd'])  ]),
  (3168,  [(0, 2), (0, 1)], [set(['b', 'd'])  ]),
  (19872, [(1, 2), (0, 1)], [set(['b', 'd'])  ])]





The final contraction cost is computed, and we choose the second path from the list as the overall cost is the lowest.





          

      

      

    

  

    
      
          
            
  
The Branching Path

While the optimal path is guaranteed to find the smallest estimate FLOP
cost, it spends a lot of time exploring paths which are not likely to result in
an optimal path. For instance, outer products are usually not advantageous
unless absolutely necessary. Additionally, by trying a ‘good’ path first, it
should be possible to quickly establish a threshold FLOP cost which can then be
used to prune many bad paths.

The branching strategy (provided by branch()) does
this by taking the recursive, depth-first approach of
optimal(), whilst also sorting potential contractions
based on a heuristic cost, as in greedy().

There are two main flavours:



	optimize='branch-all': explore all inner products, starting with
those that look best according to the cost heuristic.


	optimize='branch-2': similar, but at each step only explore the
estimated best two possible contractions, leading to a maximum of
2^N paths assessed.







In both cases, branch() takes an active approach to
pruning paths well before they hit the best total FLOP count, by comparing
them to the FLOP count (times some factor) achieved by the best path at the
same point in the contraction.

There is also 'branch-1', which, since it only explores a single path at
each step does not really ‘branch’ - this is essentially the approach of
'greedy'.
In comparison, 'branch-1' will be slower for large expressions, but for
small to medium expressions it might find slightly higher quality contractions
due to considering individual flop costs at each step.

The default optimize='auto' mode of opt_einsum will use
'branch-all' for 5 or 6 tensors, though it should be able to handle
12-13 tensors in a matter or seconds. Likewise, 'branch-2' will be used for
7 or 8 tensors, though it should be able to handle 20-22 tensors in a matter of
seconds. Finally, 'branch-1' will be used by 'auto' for expressions of
up to 14 tensors.


Customizing the Branching Path

The ‘branch and bound’ path can be customized by creating a custom
BranchBound instance. For example:

optimizer = oe.BranchBound(nbranch=3, minimize='size', cutoff_flops_factor=None)
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)





You could then tweak the settings (e.g. optimizer.nbranch = 4) and the best
bound found so far will persist and be used to prune paths on the next call:

optimizer.nbranch = 4
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)











          

      

      

    

  

    
      
          
            
  
The Greedy Path

The 'greedy' approach provides a very efficient strategy for finding
contraction paths for expressions with large numbers of tensors.
It does this by eagerly choosing contractions in three stages:



	Eagerly compute any Hadamard products (in arbitrary order – this is
commutative).


	Greedily contract pairs of remaining tensors, at each step choosing the
pair that maximizes reduced_size – these are generally inner
products.


	Greedily compute any pairwise outer products, at each step choosing
the pair that minimizes sum(input_sizes).







The cost heuristic reduced_size is simply the size of the pair of potential
tensors to be contracted, minus the size of the resulting tensor.

The greedy algorithm has space and time complexity O(n * k) where n
is the number of input tensors and k is the maximum number of tensors that
share any dimension (excluding dimensions that occur in the output or in every
tensor). As such, the algorithm scales well to very large sparse contractions
of low-rank tensors, and indeed, often finds the optimal, or close to optimal
path in such cases.

The greedy functionality is provided by greedy(),
and is selected by the default optimize='auto' mode of opt_einsum for
expressions with many inputs. Expressions of up to a thousand tensors
should still take well less than a second to find paths for.


Optimal Scaling Misses

The greedy algorithm, while inexpensive, can occasionally miss optimal scaling in some circumstances as seen below. The greedy algorithm prioritizes expressions which remove the largest indices first, in this particular case this is the incorrect choice and it is difficult for any heuristic algorithm to “see ahead” as would be needed here.

It should be stressed these cases are quite rare and by default contract uses the optimal path for four and fewer inputs as the cost of evaluating the optimal path is similar to that of the greedy path. Similarly, for 5-8 inputs, contract uses one of the
branching strategies which can find higher quality paths.

>>> M = np.random.rand(35, 37, 59)
>>> A = np.random.rand(35, 51, 59)
>>> B = np.random.rand(37, 51, 51, 59)
>>> C = np.random.rand(59, 27)

>>> path, desc = oe.contract_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="greedy")
>>> print(desc)
  Complete contraction:  xyf,xtf,ytpf,fr->tpr
         Naive scaling:  6
     Optimized scaling:  5
      Naive FLOP count:  2.146e+10
  Optimized FLOP count:  4.165e+08
   Theoretical speedup:  51.533
  Largest intermediate:  5.371e+06 elements
--------------------------------------------------------------------------------
scaling        BLAS                current                             remaining
--------------------------------------------------------------------------------
   5          False         ytpf,xyf->tpfx                      xtf,fr,tpfx->tpr
   4          False          tpfx,xtf->tpf                           fr,tpf->tpr
   4           GEMM            tpf,fr->tpr                              tpr->tpr

>>> path, desc = oe.contract_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="optimal")
>>> print(desc)

  Complete contraction:  xyf,xtf,ytpf,fr->tpr
         Naive scaling:  6
     Optimized scaling:  4
      Naive FLOP count:  2.146e+10
  Optimized FLOP count:  2.744e+07
   Theoretical speedup:  782.283
  Largest intermediate:  1.535e+05 elements
--------------------------------------------------------------------------------
scaling        BLAS                current                             remaining
--------------------------------------------------------------------------------
   4          False           xtf,xyf->tfy                      ytpf,fr,tfy->tpr
   4          False          tfy,ytpf->tfp                           fr,tfp->tpr
   4           TDOT            tfp,fr->tpr                              tpr->tpr





So we can see that the greedy algorithm finds a path which is about 16
times slower than the optimal one. In such cases, it might be worth using
one of the more exhaustive optimization strategies: 'optimal',
'branch-all' or branch-2 (all of which will find the optimal path in
this example).




Customizing the Greedy Path

The greedy path is a local optimizer in that it only ever assesses pairs of
tensors to contract, assigning each a heuristic ‘cost’ and then choosing the
‘best’ of these. Custom greedy approaches can be implemented by supplying
callables to the cost_fn and choose_fn arguments of
greedy().







          

      

      

    

  

    
      
          
            
  
The Random-Greedy Path

For large and complex contractions the exhaustive approaches will be too slow
while the greedy path might be very far from optimal. In this case you might
want to consider the 'random-greedy' path optimizer. This samples many
greedy paths and selects the best one found, which can often be exponentially
better than the average.

import opt_einsum as oe
import numpy as np
import math

eq, shapes = oe.helpers.rand_equation(40, 5, seed=1, d_max=2)
arrays = list(map(np.ones, shapes))

path_greedy = oe.contract_path(eq, *arrays, optimize='greedy')[1]
print(math.log2(path_greedy.opt_cost))
# 36.04683022558587

path_rand_greedy = oe.contract_path(eq, *arrays, optimize='random-greedy')[1]
print(math.log2(path_rand_greedy.opt_cost))
# 32.203616699170865





So here the random-greedy approach has found a path about
16 times quicker (= 2^(36 - 32)).

This approach works by randomly choosing from the best n contractions at
each step, weighted by a
Boltzmann factor [https://en.wikipedia.org/wiki/Boltzmann_distribution] with
respect to the contraction with the ‘best’ cost. As such, contractions with
very similar costs will be explored with equal probability, whereas those with
higher costs will be less likely, but still possible. In this way, the
optimizer can randomly explore the huge space of possible paths, but in a
guided manner.

The following graph roughly demonstrates the potential benefits of the
'random-greedy' algorithm, here for large randomly generated contractions,
with either 8, 32 (the default), or 128 repeats:

[image: _images/path_found_flops_random.png]

Note

Bear in mind that such speed-ups are not guaranteed - it very much depends
on how structured or complex your contractions are.




Customizing the Random-Greedy Path

The random-greedy optimizer can be customized by instantiating your own
RandomGreedy object. Here you can control:


	temperature - how far to stray from the locally ‘best’ contractions


	rel_temperature - whether to normalize the temperature


	nbranch - how many contractions (branches) to consider at each step


	cost_fn - how to cost potential contractions




There are also the main RandomOptimizer
options:


	max_repeats - the maximum number of repeats


	max_time - the maximum amount of time to run for (in seconds)


	minimize - whether to minimize for total 'flops' or 'size' of the
largest intermediate




For example, here we’ll create an optimizer, then change its temperature
whilst reusing it. We’ll also set a high max_repeats and instead use a
maximum time to terminate the search:

optimizer = oe.RandomGreedy(max_time=2, max_repeats=1_000_000)

for T in [1000, 100, 10, 1, 0.1]:
    optimizer.temperature = T
    path_rand_greedy = oe.contract_path(eq, *arrays, optimize=optimizer)[1]
    print(math.log2(optimizer.best['flops']))

# 32.81709395639357
# 32.67625007170783
# 31.719756871539033
# 31.62043317835677
# 31.253305891247

print(len(optimizer.costs))  # the total number of trials so far
# 2555





So we have improved a bit on the standard 'random-greedy' (which does 32
repeats by default). The optimizer object now stores both the best path
found so far - optimizer.path - as well as the list of flop-costs and
maximum sizes found for each trial - optimizer.costs and
optimizer.sizes respectively.




Parallelizing the Random-Greedy Search

Since each greedy attempt is independent, the random-greedy approach is
naturally suited to parallelization. This can be automatically handled by
specifying the parallel keyword like so:

# use same number of processes as cores
optimizer = oe.RandomGreedy(parallel=True)

# or use specific number of processes
optimizer = oe.RandomGreedy(parallel=4)






Warning

The pool-executor used to perform this parallelization is the
ProcessPoolExecutor from the concurrent.futures
module [https://docs.python.org/3/library/concurrent.futures.html]. This
is only part of the standard library in Python 3. For Python 2 consider
installing the
backport of this module [https://pypi.org/project/futures/] or see below.



For full control over the parallelization you can supply any
pool-executor like object, which should have an API matching the Python 3
concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html]
module:

from concurrent.futures import ProcessPoolExecutor

pool = ProcessPoolExecutor()
optimizer = oe.RandomGreedy(parallel=pool, max_repeats=128)
path_rand_greedy = oe.contract_path(eq, *arrays, optimize=optimizer)[1]

print(math.log2(optimizer.best['flops']))
# 31.64992600300931





Other examples of such pools include:


	loky [https://loky.readthedocs.io/en/latest/]


	dask.distributed [http://distributed.dask.org/en/latest/]


	mpi4py [https://mpi4py.readthedocs.io/en/latest/]










          

      

      

    

  

    
      
          
            
  
Custom Path Optimizers

If you want to implement or just experiment with custom contaction paths then
you can easily by subclassing the PathOptimizer
object. For example, imagine we want to test the path that just blindly
contracts the first pair of tensors again and again. We would implement this
as:

import opt_einsum as oe

class MyOptimizer(oe.paths.PathOptimizer):

    def __call__(self, inputs, output, size_dict, memory_limit=None):
        return [(0, 1)] * (len(inputs) - 1)





Once defined we can use this as:

import numpy as np

# set-up a random contraction
eq, shapes = oe.helpers.rand_equation(10, 3, seed=42)
arrays = list(map(np.ones, shapes))

# set-up our optimizer and use it
optimizer = MyOptimizer()
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

print(path)
# [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]

print(path_info.speedup)
# 133.21363671496357





Note that though we still get a considerable speedup over einsum this is
of course not a good strategy to take in general.


Custom Random Optimizers

If your custom path optimizer is inherently random, then you can reuse all the
machinery of the random-greedy approach. Namely:


	A max-repeats or max-time approach


	Minimization with respect to total flops or largest intermediate size


	Parallelization using a pool-executor




This is done by subclassing the
RandomOptimizer object and implementing a
setup method. Here’s an example where we just randomly select any path
(again, although we get a considerable speedup over einsum this is
not a good strategy to take in general):

from opt_einsum.path_random import ssa_path_compute_cost

class MyRandomOptimizer(oe.path_random.RandomOptimizer):

    @staticmethod
    def random_path(r, n, inputs, output, size_dict):
        """Picks a completely random contraction order.
        """
        np.random.seed(r)
        ssa_path = []
        remaining = set(range(n))
        while len(remaining) > 1:
            i, j = np.random.choice(list(remaining), size=2, replace=False)
            remaining.add(n + len(ssa_path))
            remaining.remove(i)
            remaining.remove(j)
            ssa_path.append((i, j))
        cost, size = ssa_path_compute_cost(ssa_path, inputs, output, size_dict)
        return ssa_path, cost, size

    def setup(self, inputs, output, size_dict):
        """Prepares the function and arguments to repeatedly call.
        """
        n = len(inputs)
        trial_fn = self.random_path
        trial_args = (n, inputs, output, size_dict)
        return trial_fn, trial_args





Which we can now instantiate using various other options:

optimizer = MyRandomOptimizer(max_repeats=1000, max_time=10,
                              parallel=True, minimize='size')
path, path_info = oe.contract_path(eq, *arrays, optimize=optimizer)

print(path)
# [(3, 4), (1, 3), (0, 3), (3, 5), (3, 4), (3, 4), (1, 0), (0, 1), (0, 1)]

print(path_info.speedup)
# 712829.9451056132





There are a few things to note here:


	The core function (MyRandomOptimizer.random_path here), should take a
trial number r as it first argument


	It should return a ssa_path (see opt_einsum.paths.ssa_to_linear and
opt_einsum.paths.linear_to_ssa) as well as a flops-cost and max-size.


	The setup method prepares this function, as well as any input to it,
so that the trials will look roughly like
[trial_fn(r, *trial_args) for r in range(max_repeats)]. If you need to
parse the standard arguments (into a network for example), it thus only
needs to be done once per optimization




More details about RandomOptimizer options can
be found in The Random-Greedy Path section.







          

      

      

    

  

    
      
          
            
  
Large Expressions with Greedy

Using the greedy method allows the contraction of hundreds of tensors. Here’s
an example from quantum of computing the inner product between two ‘Matrix
Product States’ [https://en.wikipedia.org/wiki/Matrix_product_state].
Graphically, if we represent each tensor as an O, give it
the same number of ‘legs’ as it has indices, and join those legs when that
index is summed with another tensor, we get an expression for n particles
that looks like:

O-O-O-O-O-O-     -O-O-O-O-O-O
| | | | | |  ...  | | | | | |
O-O-O-O-O-O-     -O-O-O-O-O-O

0 1 2 3 4 5 ........... n-2 n-1





The meaning of this is not that important other than its a large, useful
contraction. For n=100 it involves 200 different tensors and about 300
unique indices. With this many indices it can be useful to generate them with
the function get_symbol().

Let’s set up the required einsum string:

>>> import numpy as np
>>> import opt_einsum as oe

>>> n = 100
>>> phys_dim = 3
>>> bond_dim = 10

>>> # start with first site
... # O--
... # |
... # O--
>>> einsum_str = "ab,ac,"

>>> for i in range(1, n - 1):
...     # set the upper left/right, middle and lower left/right indices
...     # --O--
...     #   |
...     # --O--
...     j = 3 * i
...     ul, ur, m, ll, lr = (oe.get_symbol(i)
...                          for i in (j - 1, j + 2, j, j - 2, j + 1))
>>>     einsum_str += "{}{}{},{}{}{},".format(m, ul, ur, m, ll, lr)

>>> # finish with last site
... # --O
... #   |
... # --O
>>> i = n - 1
>>> j = 3 * i
>>> ul, m, ll, =  (oe.get_symbol(i) for i in (j - 1, j, j - 2))
>>> einsum_str += "{}{},{}{}".format(m, ul, m, ll)





Generate the shapes:

>>> def gen_shapes():
...     yield (phys_dim, bond_dim)
...     yield (phys_dim, bond_dim)
...     for i in range(1, n - 1):
...         yield(phys_dim, bond_dim, bond_dim)
...         yield(phys_dim, bond_dim, bond_dim)
...     yield (phys_dim, bond_dim)
...     yield (phys_dim, bond_dim)

>>> shapes = tuple(gen_shapes())





Let’s time how long it takes to generate the expression ('greedy' is used
by default, and we turn off the memory_limit):

%timeit expr = oe.contract_expression(einsum_str, *shapes, memory_limit=-1)
76.2 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)





This is pretty manageable, though we might want to think about splitting the
expression up if we go a lot bigger.
Importantly, we can then use this repeatedly with any set of matching arrays:

>>> arrays = [np.random.randn(*shp) / 4 for shp in shapes]
>>> expr(*arrays)
array(23.23628116)

>>> arrays = [np.random.randn(*shp) / 4 for shp in shapes]
>>> expr(*arrays)
array(-12.21091879)





And if we really want we can generate the full contraction path info:

>>> print(oe.contract_path(einsum_str, *arrays, memory_limit=-1)[1])
  Complete contraction:  ab,ac,dcf,dbe,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ->
         Naive scaling:  298
     Optimized scaling:  5
      Naive FLOP count:  1.031e+248
  Optimized FLOP count:  1.168e+06
   Theoretical speedup:  88264689284468460017580864156865782413140936705854966013600065426858041248009637246968036807489558012989638169986640870276510490846199301907401763236976204166215471281505344088317454144870323271826022036197984172898402324699098341524952317952.000
  Largest intermediate:  3.000e+02 elements
--------------------------------------------------------------------------------
scaling        BLAS                current                             remaining
--------------------------------------------------------------------------------
   4           TDOT            dbe,ab->ade ac,dcf,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade->
   4           TDOT            dcf,ac->adf gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade,adf->
   4           GEMM            ƶƵ,ƳƲƵ->ƳƶƲ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƱƴ,ƶƴ,ade,adf,ƳƶƲ->
   4           GEMM            ƶƴ,ƳƱƴ->ƳƶƱ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ade,adf,ƳƶƲ,ƳƶƱ->
   5           TDOT          ade,geh->adgh gfi,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,ĲıĴ,Ĳİĳ,ĵĴķ,ĵĳĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņŉ,ŇŅň,ŊŉŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,adf,ƳƶƲ,ƳƶƱ,adgh->

   ...

   4           TDOT            Ğğ,ĠğĢ->ĠĞĢ                  ĠĞġ,ģĢĥ,ģġĤ,Ĥĥ,ĠĞĢ->
   4           GEMM            ĠĞĢ,ĠĞġ->ġĢ                       ģĢĥ,ģġĤ,Ĥĥ,ġĢ->
   4           GEMM            Ĥĥ,ģĢĥ->ģĢĤ                          ģġĤ,ġĢ,ģĢĤ->
   4           TDOT            ģĢĤ,ģġĤ->ġĢ                               ġĢ,ġĢ->
   2            DOT                ġĢ,ġĢ->                                    ->





Where we can see the speedup over a naive einsum is about 10^241, not bad!





          

      

      

    

  

    
      
          
            
  
Reusing Intermediaries with Dask

Dask [https://dask.pydata.org/] provides a computational framework where
arrays and the computations on them are built up into a ‘task graph’ before
computation. Since opt_einsum is compatible with dask arrays this
means that multiple contractions can be built into the same task graph, which
then automatically reuses any shared arrays and contractions.

For example, imagine the two expressions:

>>> contraction1 = 'ab,dca,eb,cde'
>>> contraction2 = 'ab,cda,eb,cde'
>>> sizes = {l: 10 for l in 'abcde'}





The contraction 'ab,eb' is shared between them and could only be done once.
First, let’s set up some numpy arrays:

>>> terms1, terms2 = contraction1.split(','), contraction2.split(',')
>>> terms = set((*terms1, *terms2))
>>> terms
{'ab', 'cda', 'cde', 'dca', 'eb'}

>>> import numpy as np
>>> np_arrays = {s: np.random.randn(*(sizes[c] for c in s)) for s in terms}
>>> # filter the arrays needed for each expression
>>> np_ops1 = [np_arrays[s] for s in terms1]
>>> np_ops2 = [np_arrays[s] for s in terms2]





Typically we would compute these expressions separately:

>>> oe.contract(contraction1, *np_ops1)
array(114.78314052)

>>> oe.contract(contraction2, *np_ops2)
array(-75.55902751)





However, if we use dask arrays we can combine the two operations, so let’s set those
up:

>>> import dask.array as da
>>> da_arrays = {s: da.from_array(np_arrays[s], chunks=1000, name=s) for s in inputs}
>>> da_arrays
{'ab': dask.array<ab, shape=(10, 10), dtype=float64, chunksize=(10, 10)>,
 'cda': dask.array<cda, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
 'cde': dask.array<cde, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
 'dca': dask.array<dca, shape=(10, 10, 10), dtype=float64, chunksize=(10, 10, 10)>,
 'eb': dask.array<eb, shape=(10, 10), dtype=float64, chunksize=(10, 10)>}

>>> da_ops1  = [da_arrays[s] for s in terms1]
>>> da_ops2  = [da_arrays[s] for s in terms2]





Note chunks is a required argument relating to how the arrays are stored (see array-creation [http://dask.pydata.org/en/latest/array-creation.html]). Now we can perform the contraction:

>>> # these won't be immediately evaluated
>>> dy1 = oe.contract(contraction1, *da_ops1, backend='dask')
>>> dy2 = oe.contract(contraction2, *da_ops2, backend='dask')

>>> # wrap them in delayed to combine them into the same computation
>>> from dask import delayed
>>> dy = delayed([dy1, dy2])
>>> dy
Delayed('list-3af82335-b75e-47d6-b800-68490fc865fd')





As suggested by the name Delayed, we have a placeholder for the result
so far. When we want to perform the computation we can call:

>>> dy.compute()
[114.78314052155015, -75.55902750513113]





The above matches the canonical numpy result. The computation can even be handled by various
schedulers - see scheduling [http://dask.pydata.org/en/latest/scheduling.html].
Finally, to check we are reusing intermediaries, we can view the task
graph generated for the computation:

>>> dy.visualize(optimize_graph=True)





[image: _images/ex_dask_reuse_graph.png]

Note

For sharing intermediates with other backends see Sharing Intermediates. Dask graphs are particularly useful for reusing intermediates beyond just contractions and can allow additional parallelization.







          

      

      

    

  

    
      
          
            
  
Function Reference







	opt_einsum.contract(subscripts, *operands[, …])

	Evaluates the Einstein summation convention on the operands.



	opt_einsum.contract_path(*operands, **kwargs)

	Find a contraction order ‘path’, without performing the contraction.



	opt_einsum.contract_expression(subscripts, …)

	Generate a reusable expression for a given contraction with specific shapes, which can, for example, be cached.



	opt_einsum.contract.ContractExpression(…)

	Helper class for storing an explicit contraction_list which can then be repeatedly called solely with the array arguments.



	opt_einsum.contract.PathInfo(…)

	A printable object to contain information about a contraction path.



	opt_einsum.paths.optimal(inputs, output, …)

	Computes all possible pair contractions in a depth-first recursive manner, sieving results based on memory_limit and the best path found so far.



	opt_einsum.paths.greedy(inputs, output, …)

	Finds the path by a three stage algorithm:



	opt_einsum.paths.branch(inputs, output, …)

	



	opt_einsum.parser.get_symbol(i)

	Get the symbol corresponding to int i - runs through the usual 52 letters before resorting to unicode characters, starting at chr(192).



	opt_einsum.sharing.shared_intermediates([cache])

	Context in which contract intermediate results are shared.



	opt_einsum.paths.PathOptimizer

	Base class for different path optimizers to inherit from.



	opt_einsum.paths.BranchBound([nbranch, …])

	Explores possible pair contractions in a depth-first recursive manner like the optimal approach, but with extra heuristic early pruning of branches as well sieving by memory_limit and the best path found so far.



	opt_einsum.path_random.RandomOptimizer([…])

	Base class for running any random path finder that benefits from repeated calling, possibly in a parallel fashion.



	opt_einsum.path_random.RandomGreedy([…])

	
	Parameters

	
	cost_fn (callable, optional) – A function that returns a heuristic ‘cost’ of a potential contraction



















          

      

      

    

  

    
      
          
            
  
opt_einsum.contract


	
opt_einsum.contract(subscripts, *operands, out=None, dtype=None, order='K', casting='safe', use_blas=True, optimize=True, memory_limit=None, backend='numpy')

	Evaluates the Einstein summation convention on the operands. A drop in
replacement for NumPy’s einsum function that optimizes the order of contraction
to reduce overall scaling at the cost of several intermediate arrays.


	Parameters

	
	subscripts (str) – Specifies the subscripts for summation.


	*operands (list of array_like) – These are the arrays for the operation.


	out (array_like) – A output array in which set the resulting output.


	dtype (str) – The dtype of the given contraction, see np.einsum.


	order (str) – The order of the resulting contraction, see np.einsum.


	casting (str) – The casting procedure for operations of different dtype, see np.einsum.


	use_blas (bool) – Do you use BLAS for valid operations, may use extra memory for more intermediates.


	optimize (str, list or bool, optional (default: auto)) – Choose the type of path.


	if a list is given uses this as the path.


	'optimal' An algorithm that explores all possible ways of
contracting the listed tensors. Scales factorially with the number of
terms in the contraction.


	'branch-all' An algorithm like optimal but that restricts itself
to searching ‘likely’ paths. Still scales factorially.


	'branch-2' An even more restricted version of ‘branch-all’ that
only searches the best two options at each step. Scales exponentially
with the number of terms in the contraction.


	'greedy' An algorithm that heuristically chooses the best pair
contraction at each step.


	'auto' Choose the best of the above algorithms whilst aiming to
keep the path finding time below 1ms.






	memory_limit ({None, int, ‘max_input’} (default: None)) – Give the upper bound of the largest intermediate tensor contract will build.


	None or -1 means there is no limit


	‘max_input’ means the limit is set as largest input tensor


	a positive integer is taken as an explicit limit on the number of elements




The default is None. Note that imposing a limit can make contractions
exponentially slower to perform.



	backend (str, optional (default: numpy)) – Which library to use to perform the required tensordot, transpose
and einsum calls. Should match the types of arrays supplied, See
contract_expression() for generating expressions which convert
numpy arrays to and from the backend library automatically.






	Returns

	out – The result of the einsum expression.



	Return type

	array_like





Notes

This function should produce a result identical to that of NumPy’s einsum
function. The primary difference is contract will attempt to form
intermediates which reduce the overall scaling of the given einsum contraction.
By default the worst intermediate formed will be equal to that of the largest
input array. For large einsum expressions with many input arrays this can
provide arbitrarily large (1000 fold+) speed improvements.

For contractions with just two tensors this function will attempt to use
NumPy’s built-in BLAS functionality to ensure that the given operation is
preformed optimally. When NumPy is linked to a threaded BLAS, potential
speedups are on the order of 20-100 for a six core machine.

Examples

See opt_einsum.contract_path() or numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum]









          

      

      

    

  

    
      
          
            
  
opt_einsum.contract_path


	
opt_einsum.contract_path(*operands, **kwargs)

	Find a contraction order ‘path’, without performing the contraction.


	Parameters

	
	subscripts (str) – Specifies the subscripts for summation.


	*operands (list of array_like) – These are the arrays for the operation.


	optimize (str, list or bool, optional (default: auto)) – Choose the type of path.


	if a list is given uses this as the path.


	'optimal' An algorithm that explores all possible ways of
contracting the listed tensors. Scales factorially with the number of
terms in the contraction.


	'branch-all' An algorithm like optimal but that restricts itself
to searching ‘likely’ paths. Still scales factorially.


	'branch-2' An even more restricted version of ‘branch-all’ that
only searches the best two options at each step. Scales exponentially
with the number of terms in the contraction.


	'greedy' An algorithm that heuristically chooses the best pair
contraction at each step.


	'auto' Choose the best of the above algorithms whilst aiming to
keep the path finding time below 1ms.






	use_blas (bool) – Use BLAS functions or not


	memory_limit (int, optional (default: None)) – Maximum number of elements allowed in intermediate arrays.






	Returns

	
	path (list of tuples) – The einsum path


	PathInfo (str) – A printable object containing various information about the path found.










Notes

The resulting path indicates which terms of the input contraction should be
contracted first, the result of this contraction is then appended to the end of
the contraction list.

Examples

We can begin with a chain dot example. In this case, it is optimal to
contract the b and c tensors represented by the first element of the path (1,
2). The resulting tensor is added to the end of the contraction and the
remaining contraction, (0, 1), is then executed.

>>> a = np.random.rand(2, 2)
>>> b = np.random.rand(2, 5)
>>> c = np.random.rand(5, 2)
>>> path_info = opt_einsum.contract_path('ij,jk,kl->il', a, b, c)
>>> print(path_info[0])
[(1, 2), (0, 1)]
>>> print(path_info[1])
  Complete contraction:  ij,jk,kl->il
         Naive scaling:  4
     Optimized scaling:  3
      Naive FLOP count:  1.600e+02
  Optimized FLOP count:  5.600e+01
   Theoretical speedup:  2.857
  Largest intermediate:  4.000e+00 elements
-------------------------------------------------------------------------
scaling                  current                                remaining
-------------------------------------------------------------------------
   3                   kl,jk->jl                                ij,jl->il
   3                   jl,ij->il                                   il->il





A more complex index transformation example.

>>> I = np.random.rand(10, 10, 10, 10)
>>> C = np.random.rand(10, 10)
>>> path_info = oe.contract_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C)





>>> print(path_info[0])
[(0, 2), (0, 3), (0, 2), (0, 1)]
>>> print(path_info[1])
  Complete contraction:  ea,fb,abcd,gc,hd->efgh
         Naive scaling:  8
     Optimized scaling:  5
      Naive FLOP count:  8.000e+08
  Optimized FLOP count:  8.000e+05
   Theoretical speedup:  1000.000
  Largest intermediate:  1.000e+04 elements
--------------------------------------------------------------------------
scaling                  current                                remaining
--------------------------------------------------------------------------
   5               abcd,ea->bcde                      fb,gc,hd,bcde->efgh
   5               bcde,fb->cdef                         gc,hd,cdef->efgh
   5               cdef,gc->defg                            hd,defg->efgh
   5               defg,hd->efgh                               efgh->efgh













          

      

      

    

  

    
      
          
            
  
opt_einsum.contract_expression


	
opt_einsum.contract_expression(subscripts, *shapes, **kwargs)

	Generate a reusable expression for a given contraction with
specific shapes, which can, for example, be cached.


	Parameters

	
	subscripts (str) – Specifies the subscripts for summation.


	shapes (sequence of integer tuples) – Shapes of the arrays to optimize the contraction for.


	constants (sequence of int, optional) – The indices of any constant arguments in shapes, in which case the
actual array should be supplied at that position rather than just a
shape. If these are specified, then constant parts of the contraction
between calls will be reused. Additionally, if a GPU-enabled backend is
used for example, then the constant tensors will be kept on the GPU,
minimizing transfers.


	kwargs – Passed on to contract_path or einsum. See contract.






	Returns

	expr – Callable with signature expr(*arrays, out=None, backend='numpy')
where the array’s shapes should match shapes.



	Return type

	ContractExpression





Notes


	The out keyword argument should be supplied to the generated expression
rather than this function.


	The backend keyword argument should also be supplied to the generated
expression. If numpy arrays are supplied, if possible they will be
converted to and back from the correct backend array type.


	The generated expression will work with any arrays which have
the same rank (number of dimensions) as the original shapes, however, if
the actual sizes are different, the expression may no longer be optimal.


	Constant operations will be computed upon the first call with a particular
backend, then subsequently reused.




Examples

Basic usage:

>>> expr = contract_expression("ab,bc->ac", (3, 4), (4, 5))
>>> a, b = np.random.rand(3, 4), np.random.rand(4, 5)
>>> c = expr(a, b)
>>> np.allclose(c, a @ b)
True





Supply a as a constant:

>>> expr = contract_expression("ab,bc->ac", a, (4, 5), constants=[0])
>>> expr
<ContractExpression('[ab],bc->ac', constants=[0])>





>>> c = expr(b)
>>> np.allclose(c, a @ b)
True













          

      

      

    

  

    
      
          
            
  
opt_einsum.contract.ContractExpression


	
class opt_einsum.contract.ContractExpression(contraction, contraction_list, constants_dict, **einsum_kwargs)

	Helper class for storing an explicit contraction_list which can
then be repeatedly called solely with the array arguments.


	
__init__(contraction, contraction_list, constants_dict, **einsum_kwargs)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(contraction, contraction_list, …)

	Initialize self.



	evaluate_constants([backend])

	Convert any constant operands to the correct backend form, and perform as many contractions as possible to create a new list of operands, stored in self._evaluated_constants[backend].







	
evaluate_constants(backend='numpy')

	Convert any constant operands to the correct backend form, and
perform as many contractions as possible to create a new list of
operands, stored in self._evaluated_constants[backend]. This also
makes sure self.contraction_list only contains the remaining,
non-const operations.













          

      

      

    

  

    
      
          
            
  
opt_einsum.contract.PathInfo


	
class opt_einsum.contract.PathInfo(contraction_list, input_subscripts, output_subscript, indices, path, scale_list, naive_cost, opt_cost, size_list, size_dict)

	A printable object to contain information about a contraction path.


	Variables

	
	naive_cost (int [https://docs.python.org/3.6/library/functions.html#int]) – The estimate FLOP cost of a naive einsum contraction.


	opt_cost (int [https://docs.python.org/3.6/library/functions.html#int]) – The estimate FLOP cost of this optimized contraction path.


	largest_intermediate (int [https://docs.python.org/3.6/library/functions.html#int]) – The number of elements in the largest intermediate array that will be
produced during the contraction.









	
__init__(contraction_list, input_subscripts, output_subscript, indices, path, scale_list, naive_cost, opt_cost, size_list, size_dict)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(contraction_list, input_subscripts, …)

	Initialize self.














          

      

      

    

  

    
      
          
            
  
opt_einsum.paths.optimal


	
opt_einsum.paths.optimal(inputs, output, size_dict, memory_limit=None)

	Computes all possible pair contractions in a depth-first recursive manner,
sieving results based on memory_limit and the best path found so far.
Returns the lowest cost path. This algorithm scales factoriallly with
respect to the elements in the list input_sets.


	Parameters

	
	inputs (list) – List of sets that represent the lhs side of the einsum subscript.


	output (set) – Set that represents the rhs side of the overall einsum subscript.


	size_dict (dictionary) – Dictionary of index sizes.


	memory_limit (int) – The maximum number of elements in a temporary array.






	Returns

	path – The optimal contraction order within the memory limit constraint.



	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]





Examples

>>> isets = [set('abd'), set('ac'), set('bdc')]
>>> oset = set('')
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
>>> optimal(isets, oset, idx_sizes, 5000)
[(0, 2), (0, 1)]













          

      

      

    

  

    
      
          
            
  
opt_einsum.paths.greedy


	
opt_einsum.paths.greedy(inputs, output, size_dict, memory_limit=None, choose_fn=None, cost_fn='memory-removed')

	Finds the path by a three stage algorithm:


	Eagerly compute Hadamard products.


	Greedily compute contractions to maximize removed_size


	Greedily compute outer products.




This algorithm scales quadratically with respect to the
maximum number of elements sharing a common dim.


	Parameters

	
	inputs (list) – List of sets that represent the lhs side of the einsum subscript


	output (set) – Set that represents the rhs side of the overall einsum subscript


	size_dict (dictionary) – Dictionary of index sizes


	memory_limit (int) – The maximum number of elements in a temporary array


	choose_fn (callable, optional) – A function that chooses which contraction to perform from the queu


	cost_fn (callable, optional) – A function that assigns a potential contraction a cost.






	Returns

	path – The contraction order (a list of tuples of ints).



	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]





Examples

>>> isets = [set('abd'), set('ac'), set('bdc')]
>>> oset = set('')
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
>>> greedy(isets, oset, idx_sizes)
[(0, 2), (0, 1)]













          

      

      

    

  

    
      
          
            
  
opt_einsum.paths.branch


	
opt_einsum.paths.branch(inputs, output, size_dict, memory_limit=None, **optimizer_kwargs)

	







          

      

      

    

  

    
      
          
            
  
opt_einsum.parser.get_symbol


	
opt_einsum.parser.get_symbol(i)

	Get the symbol corresponding to int i - runs through the usual 52
letters before resorting to unicode characters, starting at chr(192).

Examples

>>> get_symbol(2)
'c'





>>> get_symbol(200)
'Ŕ'





>>> get_symbol(20000)
'京'













          

      

      

    

  

    
      
          
            
  
opt_einsum.sharing.shared_intermediates


	
opt_einsum.sharing.shared_intermediates(cache=None)

	Context in which contract intermediate results are shared.

Note that intermediate computations will not be garbage collected until
1. this context exits, and
2. the yielded cache is garbage collected (if it was captured).


	Parameters

	cache (dict) – If specified, a user-stored dict in which intermediate results will
be stored. This can be used to interleave sharing contexts.



	Returns

	cache – A dictionary in which sharing results are stored. If ignored,
sharing results will be garbage collected when this context is
exited. This dict can be passed to another context to resume
sharing.



	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]













          

      

      

    

  

    
      
          
            
  
opt_einsum.paths.PathOptimizer


	
class opt_einsum.paths.PathOptimizer

	Base class for different path optimizers to inherit from.

Subclassed optimizers should define a call method with signature:

def __call__(self, inputs, output, size_dict, memory_limit=None):
    """
    Parameters
    ----------
    inputs : list[set[str]]
        The indices of each input array.
    outputs : set[str]
        The output indices
    size_dict : dict[str, int]
        The size of each index
    memory_limit : int, optional
        If given, the maximum allowed memory.
    """
    # ... compute path here ...
    return path





where path is a list of int-tuples specifiying a contraction order.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.













          

      

      

    

  

    
      
          
            
  
opt_einsum.paths.BranchBound


	
class opt_einsum.paths.BranchBound(nbranch=None, cutoff_flops_factor=4, minimize='flops', cost_fn='memory-removed')

	Explores possible pair contractions in a depth-first recursive manner like
the optimal approach, but with extra heuristic early pruning of branches
as well sieving by memory_limit and the best path found so far. Returns
the lowest cost path. This algorithm still scales factorially with respect
to the elements in the list input_sets if nbranch is not set, but it
scales exponentially like nbranch**len(input_sets) otherwise.


	Parameters

	
	nbranch (None or int, optional) – How many branches to explore at each contraction step. If None, explore
all possible branches. If an integer, branch into this many paths at
each step. Defaults to None.


	cutoff_flops_factor (float, optional) – If at any point, a path is doing this much worse than the best path
found so far was, terminate it. The larger this is made, the more paths
will be fully explored and the slower the algorithm. Defaults to 4.


	minimize ({‘flops’, ‘size’}, optional) – Whether to optimize the path with regard primarily to the total
estimated flop-count, or the size of the largest intermediate. The
option not chosen will still be used as a secondary criterion.


	cost_fn (callable, optional) – A function that returns a heuristic ‘cost’ of a potential contraction
with which to sort candidates. Should have signature
cost_fn(size12, size1, size2, k12, k1, k2).









	
__init__(nbranch=None, cutoff_flops_factor=4, minimize='flops', cost_fn='memory-removed')

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([nbranch, cutoff_flops_factor, …])

	Initialize self.






Attributes







	path

	














          

      

      

    

  

    
      
          
            
  
opt_einsum.path_random.RandomOptimizer


	
class opt_einsum.path_random.RandomOptimizer(max_repeats=32, max_time=None, minimize='flops', parallel=False, pre_dispatch=128)

	Base class for running any random path finder that benefits
from repeated calling, possibly in a parallel fashion. Custom random
optimizers should subclass this, and the setup method should be
implemented with the following signature:

def setup(self, inputs, output, size_dict):
    # custom preparation here ...
    return trial_fn, trial_args





Where trial_fn itself should have the signature:

def trial_fn(r, *trial_args):
    # custom computation of path here
    return ssa_path, cost, size





Where r is the run number and could for example be used to seed a
random number generator. See RandomGreedy for an example.


	Parameters

	
	max_repeats (int, optional) – The maximum number of repeat trials to have.


	max_time (float, optional) – The maximum amount of time to run the algorithm for.


	minimize ({‘flops’, ‘size’}, optional) – Whether to favour paths that minimize the total estimated flop-count or
the size of the largest intermediate created.


	parallel ({bool, int, or executor-pool like}, optional) – Whether to parallelize the random trials, by default False. If
True, use a concurrent.futures.ProcessPoolExecutor with the same
number of processes as cores. If an integer is specified, use that many
processes instead. Finally, you can supply a custom executor-pool which
should have an API matching that of the python 3 standard library
module concurrent.futures. Namely, a submit method that returns
Future objects, themselves with result and cancel methods.


	pre_dispatch (int, optional) – If running in parallel, how many jobs to pre-dispatch so as to avoid
submitting all jobs at once. Should also be more than twice the number
of workers to avoid under-subscription. Default: 128.






	Variables

	
	path (list [https://docs.python.org/3.6/library/stdtypes.html#list][tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][int [https://docs.python.org/3.6/library/functions.html#int]]]) – The best path found so far.


	costs (list [https://docs.python.org/3.6/library/stdtypes.html#list][int [https://docs.python.org/3.6/library/functions.html#int]]) – The list of each trial’s costs found so far.


	sizes (list [https://docs.python.org/3.6/library/stdtypes.html#list][int [https://docs.python.org/3.6/library/functions.html#int]]) – The list of each trial’s largest intermediate size so far.









See also

RandomGreedy




	
__init__(max_repeats=32, max_time=None, minimize='flops', parallel=False, pre_dispatch=128)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([max_repeats, max_time, minimize, …])

	Initialize self.






Attributes







	path

	The best path found so far.







	
path

	The best path found so far.













          

      

      

    

  

    
      
          
            
  
opt_einsum.path_random.RandomGreedy


	
class opt_einsum.path_random.RandomGreedy(cost_fn='memory-removed-jitter', temperature=1.0, rel_temperature=True, nbranch=8, **kwargs)

	
	Parameters

	
	cost_fn (callable, optional) – A function that returns a heuristic ‘cost’ of a potential contraction
with which to sort candidates. Should have signature
cost_fn(size12, size1, size2, k12, k1, k2).


	temperature (float, optional) – When choosing a possible contraction, its relative probability will be
proportional to exp(-cost / temperature). Thus the larger
temperature is, the further random paths will stray from the normal
‘greedy’ path. Conversely, if set to zero, only paths with exactly the
same cost as the best at each step will be explored.


	rel_temperature (bool, optional) – Whether to normalize the temperature at each step to the scale of
the best cost. This is generally beneficial as the magnitude of costs
can vary significantly throughout a contraction. If False, the
algorithm will end up branching when the absolute cost is low, but
stick to the ‘greedy’ path when the cost is high - this can also be
beneficial.


	nbranch (int, optional) – How many potential paths to calculate probability for and choose from
at each step.


	kwargs – Supplied to RandomOptimizer.









See also

RandomOptimizer




	
__init__(cost_fn='memory-removed-jitter', temperature=1.0, rel_temperature=True, nbranch=8, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([cost_fn, temperature, …])

	Initialize self.



	setup(inputs, output, size_dict)

	






Attributes







	choose_fn

	The function that chooses which contraction to take - make this a property so that temperature and nbranch etc.



	path

	The best path found so far.







	
choose_fn

	The function that chooses which contraction to take - make this a
property so that temperature and nbranch etc. can be updated
between runs.













          

      

      

    

  

    
      
          
            
  
Changelog


2.3.0 / 2018-12-01

This release primarily focuses on expanding the suite of available path
technologies to provide better optimization characistics for 4-20 tensors while
decreasing the time to find paths for 50-200+ tensors. See Path Overview for more information.


New Features


	(GH#60 [https://github.com/dgasmith/opt_einsum/pull/60]) A new greedy implementation has been added which is up to two orders of magnitude faster for 200 tensors.


	(GH#73 [https://github.com/dgasmith/opt_einsum/pull/73]) Adds a new branch path that uses greedy ideas to prune the optimal exploration space to provide a better path than greedy at sub optimal cost.


	(GH#73 [https://github.com/dgasmith/opt_einsum/pull/73]) Adds a new auto keyword to the opt_einsum.contract() path option. This keyword automatically chooses the best path technology that takes under 1ms to execute.







Enhancements


	(GH#61 [https://github.com/dgasmith/opt_einsum/pull/61]) The opt_einsum.contract() path keyword has been changed to optimize to more closely match NumPy. path will be deprecated in the future.


	(GH#61 [https://github.com/dgasmith/opt_einsum/pull/61]) The opt_einsum.contract_path() now returns a opt_einsum.contract.PathInfo() object that can be queried for the scaling, flops, and intermediates of the path. The print representation of this object is identical to before.


	(GH#61 [https://github.com/dgasmith/opt_einsum/pull/61]) The default memory_limit is now unlimited by default based on community feedback.


	(GH#66 [https://github.com/dgasmith/opt_einsum/pull/66]) The Torch backend will now use tensordot when using a version of Torch which includes this functionality.


	(GH#68 [https://github.com/dgasmith/opt_einsum/pull/68]) Indices can now be any hashable object when provided in the “Interleaved Input” syntax.


	(GH#74 [https://github.com/dgasmith/opt_einsum/pull/74]) Allows the default transpose operation to be overridden to take advantage of more advanced tensor transpose libraries.


	(GH#73 [https://github.com/dgasmith/opt_einsum/pull/73]) The optimal path is now significantly faster.







Bug fixes


	(GH#72 [https://github.com/dgasmith/opt_einsum/pull/72]) Fixes the “Interleaved Input” syntax and adds documentation.









2.2.0 / 2018-07-29


New Features


	(GH#48 [https://github.com/dgasmith/opt_einsum/pull/48]) Intermediates can now be shared between contractions, see here for more details.


	(GH#53 [https://github.com/dgasmith/opt_einsum/pull/53]) Intermediate caching is thread safe.







Enhancements


	(GH#48 [https://github.com/dgasmith/opt_einsum/pull/48]) Expressions are now mapped to non-unicode index set so that unicode input is support for all backends.


	(GH#54 [https://github.com/dgasmith/opt_einsum/pull/54]) General documenation update.







Bug fixes


	(GH#41 [https://github.com/dgasmith/opt_einsum/pull/41]) PyTorch indices are mapped back to a small a-z subset valid for PyTorch’s einsum implementation.









2.1.3 / 2018-8-23


Bug fixes


	Fixes unicode issue for large numbers of tensors in Python 2.7.


	Fixes unicode install bug in README.md.









2.1.2 / 2018-8-16


Bug fixes


	Ensures versioneer.py is in MANIFEST.in for a clean pip install.









2.1.1 / 2018-8-15


Bug fixes


	Corrected Markdown display on PyPi.









2.1.0 / 2018-8-15

opt_einsum continues to improve its support for additional backends beyond NumPy with PyTorch.

We have also published the opt_einsum package in the Journal of Open Source Software. If you use this package in your work, please consider citing us!


New features


	PyTorch backend support


	Tensorflow eager-mode execution backend support







Enhancements


	Intermediate tensordot-like expressions are now ordered to avoid transposes.


	CI now uses conda backend to better support GPU and tensor libraries.


	Now accepts arbitrary unicode indices rather than a subset.


	New auto path option which switches between optimal and greedy at four tensors.







Bug fixes


	Fixed issue where broadcast indices were incorrectly locked out of tensordot-like evaluations even after their dimension was broadcast.









2.0.1 / 2018-6-28


New Features


	Allows unlimited Unicode indices.


	Adds a Journal of Open-Source Software paper.


	Minor documentation improvements.









2.0.0 / 2018-5-17

opt_einsum is a powerful tensor contraction order optimizer for NumPy and related ecosystems.


New Features


	Expressions can be precompiled so that the expression optimization need not happen multiple times.


	The greedy order optimization algorithm has been tuned to be able to handle hundreds of tensors in several seconds.


	Input indices can now be unicode so that expressions can have many thousands of indices.


	GPU and distributed computing backends have been added such as Dask, TensorFlow, CUPy, Theano, and Sparse.







Bug Fixes


	An error affecting cases where opt_einsum mistook broadcasting operations for matrix multiply has been fixed.


	Most error messages are now more expressive.









1.0.0 / 2016-10-14

Einsum is a very powerful function for contracting tensors of arbitrary
dimension and index. However, it is only optimized to contract two terms at a
time resulting in non-optimal scaling for contractions with many terms.
Opt_einsum aims to fix this by optimizing the contraction order which can lead
to arbitrarily large speed ups at the cost of additional intermediate tensors.

Opt_einsum is also implemented into the np.einsum function as of NumPy v1.12.


New Features


	Tensor contraction order optimizer.


	opt_einsum.contract() as a drop-in replacement for numpy.einsum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum].
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