
oedes Documentation
Release 0.0.18

Marek Zdzislaw Szymanski

Apr 13, 2019

Contents:

1 Introduction 1

2 Features 3

3 Installation 5

4 Tutorial: PN junction 7

5 Physical models 13

6 Optical models 21

7 Examples 23

8 Indices and tables 25

Bibliography 27

i

ii

CHAPTER 1

Introduction

oedes (Open Electronic DEvice Simulator) is a Python software package for modeling of electronic devices. It is
primarily focused on emerging electronic devices. It is applicable to organic electronic, electrochemical, bioelectronic,
and Peroskvite based devices.

oedes was written to take into account both the special aspects of non-conventional electronic devices, and modern
trends in software development. The result a small but powerful package, which is tightly integrated with standard
scientific software stack. This simplifies both running and sharing the simulations.

oedes mission is to:

• enable open science research in emerging electronic devices, by enabling full disclosure of numerical simula-
tions;

• allow reuse of established device models, which were usually published without a runnanble implementation;

• accelerate research by providing a platform for parameter extraction from measurements and for device opti-
mization driven by simulation;

• simplify development of new simulation models and tools, by providing a library of robust components;

• provide a standard way of running and sharing device simulations.

oedes is released as open-source under GNU Affero General Public License v3. It is free to use and distributed with
complete source code.

1.1 Conventions

Code which is intended to execute in system command-line starts with $, for example:

$ python

All code which is indendent to be run in Python starts with >>> or ..., for example:

>>> print('hello world')

1

oedes Documentation, Release 0.0.18

Sequences of characters which can be copied into code in current context are emphasized as print or 1+2+3.
oedes formatted in that way refers to name of Python software package, or to Python symbol in current example.

General concepts are emphasized as params. oedes written in that way refers to the software project.

2 Chapter 1. Introduction

CHAPTER 2

Features

General

• Pure Python implementation

• Reliable fully implicit solver

• Flexible precision

Electric

• Cell centered finite-volume with arbitrary mesh spacing

• Scharfetter-Gummel discretization

• Conservation of charge guaranteed in a converged solution

• Arbitrary number of layers

• Ramo-Shockley calculation of terminal current

• Arbitrary temperature

• Support for multidimensional discretizations

• Arbitrary number of transported species

Optical

• Transfer matrix approach

• Arbitrary illumination

Analysis

• DC

• Transient

• AC small signal

• Sensitivity analysis

Models

3

oedes Documentation, Release 0.0.18

• Gaussian DOS

• Extended Gaussian Disorder Model

• Generalized Einstein’s relation

• Transient traps

• Shockley-Read-Hall recombination

• Langevin recombination

• Image-force barrier lowering

• Doping (also position dependent)

• Generation (also position dependent)

• Onsager-Braun model of exciton dissociation

• User supplied mobility model

• User supplied DOS

Outputs

• Current-voltage

• Current-voltage-light

• SCL

• Transient SCL

• Capacitance-voltage

• Impedance spectroscopy

• Efficiency (photovoltaic)

• Fill factor (photovoltaic)

• Dark current (photodetector)

• Responsivity (photodetector)

• Light output (light emitting diodes)

4 Chapter 2. Features

CHAPTER 3

Installation

3.1 Requirements

• Python 2.7 or Python 3.4+

• sparsegrad

• Python scientific stack

3.2 Installation from PyPI

It is recommended to use Python Package Index (PyPI) to install oedes package. This is done using command-line
by pip program, which is normally installed together with Python. Using this method, all dependencies are resolved
automatically.

Two variants of the installation are possible:

• system wide installation:

$ pip install oedes

• local installation not requiring administrator’s rights:

$ pip install oedes --user

In the case of local installation, oedes is installed inside user’s home directory. In Linux, this defaults to $HOME/.
local.

3.3 Verifying the installation

After installing, it is advised to run the test suite to ensure that oedes works correctly on your system:

5

https://pypi.org/

oedes Documentation, Release 0.0.18

>>> import oedes
>>> oedes.test()
Running unit tests for oedes...
OK
<nose.result.TextTestResult run=15 errors=0 failures=0>

If any errors are found, oedes is not compatible with your system. Either your Python scientific stack is too old, or
there is a bug.

oedes is evolving, and backward compatibility is not yet offered. It is recommended to check which version is in use
by running:

>>> import oedes
>>> oedes.version
'0.0.18'

3.4 Upgrading/downgrading

By default, pip does not upgrade packages unless required. To change this behavior, option --upgrade should be
used. For example, oedes is updated to the most recent version by running

$ pip install oedes --upgrade

It is also possible to upgrade/downgrade oedes by specifying an exact version to be installed. For example, to ensure
that installed version is 0.0.18, run

$ pip install oedes==0.0.18

Again, --user option can be given to restrict changes to users’ home directory.

3.5 Development installation (advanced)

Current development version of sparsegrad can be installed from the development repository by running

$ git clone https://github.com/mzszym/oedes.git
$ cd oedes
$ pip install -e .

The option -e tells that oedes code should be loaded from git controlled directory, instead of being copied to the
Python libraries directory. As with the regular installation, --user option should be appended for local installation.

3.6 Building documentation

Documentation of oedes is generated by sphinx. Its source files are placed in doc folder.

To produce HTML and PDF documentation, run

$ cd doc
$ make html
$ make latexpdf

6 Chapter 3. Installation

http://www.sphinx-doc.org/en/master/

CHAPTER 4

Tutorial: PN junction

In this tutorial a simple model of PN junction will be constructed. The same model is used in example included in
oedes distribution in file examples/interactive/pn.ipynb.

oedes contains models of typical devices. However, in this tutorial, the model will be constructed equation-by-
equation to demonstrate basic functionality.

4.1 Importing oedes

Before starting, oedes package must be imported

>>> import oedes

4.2 The drift-diffusion system

For simulating transport, a model of temperature distribution must be assumed. In the simplest case of isothermal
simulation, the same effective temperature is assumed equal everywhere inside the device. The model is created as
follows:

>>> temperature = oedes.models.ConstTemperature()

The specification of model is separated from the specification of parameter values. The actual value of temperature, in
Kelvins, will be given later.

The next step is to create Poisson’s equation of electrostatics

>>> poisson = oedes.models.PoissonEquation()

Constructed objects poisson and temperature must are passed as arguments when creating transport equations:

7

oedes Documentation, Release 0.0.18

>>> electron = oedes.models.equations.BandTransport(poisson=poisson, name='electron',
→˓z=-1, thermal=temperature)
>>> hole = oedes.models.equations.BandTransport(poisson=poisson, name='hole', z=1,
→˓thermal=temperature)

Above creates two conventional drift-diffusion equations for electrons and holes respectively. By default, the mobility
is assumed constant and the DOS is modeled by using the Boltzmann approximation. name arguments are names
which are used to identify parameters and outputs. z are charges of species expressed in units of elementary charge.
oedes allows arbitrary number of species, and arbitrary values of name and z. This allows to construct complicated
models with, for example, mixed ionic-electronic transport.

4.3 The doping profile

To model the PN junction, a doping profile must be defined. In the example, left half of the device is doped with
ionized donor concentration given by parameter Nd, and right half of device is doped with doped with ionized acceptor
concentration given by parameter Na.

The pn_doping function is called during model evaluation and is given as parameters the mesh, the evaluation
context object ctx, and the discretized equation object eq. In the example, it uses ctx object to access parameters
values of the dopant concentations ('Na', ''Nd').

>>> def pn_doping(mesh, ctx, eq):
... return oedes.ad.where(mesh.x<mesh.length*0.5,ctx.param(eq, 'Nd'),- ctx.
→˓param(eq, 'Na'))
>>> doping = oedes.models.FixedCharge(poisson, density=pn_doping)

The dopants are assumed to be fully ionized and therefore it is modeled as fixed charge. The FixedCharge adds
calculated doping profile to the previously created Poisson’s equation poisson.

Above code uses a specialized version of function where is used instead of version from numpy. This is required for
support of sensitivity analysis with respect to parameter values.

4.4 The Ohmic contacts

To keep the example simple, Ohmic contacts are assumed on both sides of the device. They are created as follows:

>>> semiconductor = oedes.models.Electroneutrality([electron, hole, doping],name=
→˓'semiconductor')
>>> anode = oedes.models.OhmicContact(poisson, semiconductor, 'electrode0')
>>> cathode = oedes.models.OhmicContact(poisson, semiconductor, 'electrode1')

Ohmic contacts require knowledge of equilibrium charge carrier concentrations in semiconductor. This is calculated by
Electroneutrality. Note that since concentrations in doped semiconductor are of interest, all charged species
are passed to Electroneutrality. 'electrode0' and 'electrode1' refers to names of boundaries in the mesh.

4.5 Putting all together

To avoid divergence of the simulation due to infinitely large lifetime of electrons and holes, recombination should be
added. Duirecrecombination model is created by

8 Chapter 4. Tutorial: PN junction

oedes Documentation, Release 0.0.18

>>> recombination = oedes.models.DirectRecombination(semiconductor)

The calculation of terminal current is a non-trivial post-processing step. It is recommended to use Ramo-Shockley
current calculation in most cases, which is created by

>>> current = oedes.models.RamoShockleyCurrentCalculation([poisson])

The discrete model is constructed and initialized by calling oedes.fvm.discretize. It takes two arguments: the
system of equations and terms to solve, and the specification of domain. Below oedes.fvm.mesh1d creates a 1-D
domain with length specified as argument.

>>> all_equations_and_terms = [poisson, temperature, electron, hole, doping, current,
→˓ semiconductor, anode, cathode, recombination]
>>> domain = oedes.fvm.mesh1d(100e-9)
>>> model = oedes.fvm.discretize(all_equations_and_terms, domain)

4.6 Parameters

The physical parameters are provided as dict.

>>> params={
... 'T':300,
... 'epsilon_r':12,
... 'Na':1e24,
... 'Nd':1e24,
... 'hole.mu':1,
... 'electron.mu':1,
... 'hole.energy':-1.1,
... 'electron.energy':0,
... 'electrode0.voltage':0,
... 'electrode1.voltage':0,
... 'hole.N0':1e27,
... 'electron.N0':1e27,
... 'beta':1e-9
... }

Above, 'T' key is used to specify temperature in Kelvins. It is used by ConstTemperature object.
'epsilon_r' specifies the relative dielectric permittivity. It is used by discretized PoissonEquation object.
'Na' and 'Nd' are parameters accessed by pn_doping function, the concentrations of dopants. 'beta' is used
by DirectRecombination.

Other parameters are in form name.parameter. name is passed to the equation, and they can be nested. For
example, if a transport equation were created as

something = oedes.models.BandTransport(name='zzz',...)

then the corresponding mobility parameter would be identified by key 'zzz.mu'.

The mobilities electron.mu and hole.mu are given in m2V−1s−1, therefore are equal to 1000 cm2V−1s−1 each.
In the example above, instead of specifying electron affinity and band-gap, the energies of both bands are specified
directly by energy parameters, in eV. The voltages are applied to Ohmic contacts are specified by 'electrode0.
voltage' and 'electrode1.voltage', in Volts. N0 denotes the total density of states, in m−3.

4.6. Parameters 9

oedes Documentation, Release 0.0.18

4.6.1 params

By convention, values of physical parameters are specified in dict object named params, with string keys, and
float values. All values of given in SI base units, except for small energies which are specified in eV. oedes currently
does not assume default values of parameters. If any necessary parameter is not specified in params, exception
KeyError is raised.

4.7 Solving

oedes.context objects binds models with their parameters and solutions. It also provides convenience functions
for solving, post-processing and plotting the data.

The following calculates soltuion for parameters specified in dict params

>>> c = oedes.context(model)
>>> c.solve(params)

4.8 Examining output

The solution can be investigated by calling output function, which returns a dict of available outputs:

>>> out=c.output()
>>> print(sorted(out.keys()))
['.meta', 'D', 'Dt', 'E', 'Et', 'J', 'R', 'c', 'charge', 'electrode0.J', 'electrode1.J
→˓', 'electron.Eband', 'electron.Ef', 'electron.J', 'electron.Jdiff', 'electron.Jdrift
→˓', 'electron.c', 'electron.charge', 'electron.ct', 'electron.j', 'electron.jdiff',
→˓'electron.jdrift', 'electron.phi_band', 'electron.phi_f', 'hole.Eband', 'hole.Ef',
→˓'hole.J', 'hole.Jdiff', 'hole.Jdrift', 'hole.c', 'hole.charge', 'hole.ct', 'hole.j',
→˓ 'hole.jdiff', 'hole.jdrift', 'hole.phi_band', 'hole.phi_f', 'potential',
→˓'semiconductor.Ef', 'semiconductor.electron.c', 'semiconductor.hole.c',
→˓'semiconductor.phi', 'total_charge_density']

The outputs are numpy arrays. For example, the electrostatic potential is

>>> print(out['potential'])
[-0.17857923 -0.17858006 -0.17858115 -0.17858258 -0.17858445 -0.17858693

-0.17859023 -0.17859468 -0.1785994 -0.17860442 -0.17860982 -0.17861567
...
-0.92141696 -0.92141772]

To access additional information about output (such as its mesh), use .meta subdictionary.

>>> out['.meta']['potential']
OutputMeta(mesh=<oedes.fvm.mesh.mesh1d object at ...>, face=False, unit='V')

4.8.1 outputs

Most useful outputs are given below. Just as for params, all values are in SI base units, except for small energies in
eV. * denotes prefix identifying the equation, such as electron or hole.

• *.c: concentration of particles, in m−3

• *.j: flux of particles, in m−2s−1

10 Chapter 4. Tutorial: PN junction

oedes Documentation, Release 0.0.18

• *.Ef: quasi Fermi level, in eV

• *.Eband: band energy, in eV

• R: recombination density, in m−3s−1

• J: total electric current density, in Am−2

• E: electric field, in V/m

• potential: electrostatic potential, V

4.9 Plotting

oedes.context object simplifies plotting results using matplotlib. For example, bands and quasi Fermi levels
are plotted as

>>> import matplotlib.pylab as plt
>>> fig,ax = plt.subplots()
>>> p=c.mpl(fig, ax)
>>> p.plot(['electron.Eband'],label='E_c')
>>> p.plot(['hole.Eband'],label='E_v')
>>> p.plot(['electron.Ef'],linestyle='--',label='E_{Fn}')
>>> p.plot(['hole.Ef'],linestyle='-.',label='E_{Fp}')
>>> p.apply_settings({'xunit':'n','xlabel':'nm'})

4.9. Plotting 11

oedes Documentation, Release 0.0.18

12 Chapter 4. Tutorial: PN junction

CHAPTER 5

Physical models

5.1 Concentrations of charges in thermal equilibrium

Probability 𝑓𝐹𝐷 that an electronic state with energy 𝐸 is occupied is given by the Fermi-Dirac distribution:

𝑓𝐹𝐷 (𝐸 − 𝐸𝐹) =
1

1 + exp 𝐸−𝐸𝐹

𝑘𝐵𝑇

with 𝐸𝐹 denoting the Fermi energy, 𝑘𝐵 denoting the Boltzmann constant and 𝑇 denoting the temperature.

The states in the conduction band are distributed in energy according to the density of states function
𝐷𝑂𝑆𝑛 (𝜖 = 𝐸 − 𝐸𝑐). The total concentration 𝑛 of electrons is given by integral

𝑛 (𝐸𝐹) =

∫︁ +∞

−∞
𝐷𝑂𝑆𝑛 (𝐸 − 𝐸𝑐) 𝑓𝐹𝐷(𝐸 − 𝐸𝐹)𝑑𝐸

In the valence band, almost all states are occupied by the electrons. It is therefore useful to track unoccupied states,
holes, instead of the occupied states. The concentration of holes is given by:

𝑝 (𝐸𝐹) =

∫︁ +∞

−∞
𝐷𝑂𝑆𝑝 (𝐸𝑣 − 𝐸) [1 − 𝑓𝐹𝐷(𝐸 − 𝐸𝐹)] 𝑑𝐸

Noting that

1 − 𝑓𝐹𝐷(𝐸 − 𝐸𝐹) = 𝑓𝐹𝐷(𝐸𝐹 − 𝐸)

and changing the integration variable, both concentrations can be written in a common form as:

𝑐𝑖 (𝜂) =

+∞∫︁
−∞

𝐷𝑂𝑆𝑖 (𝜖) 𝑓𝐹𝐷 (𝜖− 𝜂) 𝑑𝜖

𝑛 = 𝑐𝑛 (𝜂 = 𝐸𝐹 − 𝐸𝑐)

𝑝 = 𝑐𝑝 (𝜂 = 𝐸𝑣 − 𝐸𝐹)

(5.1)

Practical note: The SI base unit of energy is Joule (J), however the energies such as 𝐸𝐹 are very small and should be
expressed in electronvolts (eV). The SI basic unit of concentration is meter−3, although cm−3 is often encountered.
The value of 𝑘𝐵𝑇 at the room temperature is approximately 26 meV. The SI unit of temperature is Kelvin, 27∘C ≈
300K.

13

oedes Documentation, Release 0.0.18

5.2 Band energies

In an idealized case, the energies 𝐸𝑐 and 𝐸𝑣 of the conduction and valence bands are

𝐸𝑐 = −𝑞𝜓 − 𝜒

𝐸𝑣 = 𝐸𝑐 − 𝐸𝑔

(5.2)

where 𝜒 > 0 is the electron affinity energy, and 𝐸𝑔 > 0 is the bandgap energy. 𝜓 is the electrostatic potential. q is the
elementary charge.

5.3 Electrostatic potential

The electric field E is related to the elestrostatic potential 𝜓 as

E = −∇𝜓 (5.3)

In linear, isotropic, homogeneous medium the electric displacement field is

D = 𝜀E

with permittivity

𝜀 = 𝜀0𝜀𝑟

where 𝜀0 is the vacuum permittivity, and 𝜀𝑟 is the relative permittivity of the material.

The electric displacement field satisfies the electric the Gauss’s equation

∇ ·D = 𝜌𝑓 (5.4)

where 𝜌𝑓 is the density of free charge

𝜌𝑓 = 𝑞 (𝑝− 𝑛+ . . .)

with 𝑞 denoting the elementary charge. Above, . . . denotes other charges, such as ionized dopants.

Combining the above equations gives the usual Poisson’s equation for electrostatics:

∇2𝜓 = −𝑞
𝜀

(𝑝− 𝑛+ . . .) (5.5)

The SI unit of electrostatic potential is Volt, and the unit of electric field is Volt/meter. The unit of permittivity is
Farad/meter. The unit of charge density is Coulomb/meter3.

5.4 Approximation for low concentrations

If the concentration of charge carriers is low enough, only states on the edge of band gap are important. In such case,
the density of states can be assumed as a sharp energetic level,

𝐷𝑂𝑆𝑛 (𝜖) = 𝑁𝑐𝛿 (𝜖)

in case of electrons and

𝐷𝑂𝑆𝑝 (𝜖) = 𝑁𝑣𝛿 (𝜖)

14 Chapter 5. Physical models

oedes Documentation, Release 0.0.18

in case of holes. Substiting into (5.1) gives

𝑛 = 𝑁𝑐 𝑓𝐹𝐷 (𝐸𝑐 − 𝐸𝐹)

𝑝 = 𝑁𝑣 𝑓𝐹𝐷 (𝐸𝐹 − 𝐸𝑣)

At low charge carrier concentrations, Fermi-Dirac distribution 𝑓𝐹𝐷 is simplified as

𝑓𝐹𝐷(𝑥) =
1

1 + exp 𝑥
𝑘𝐵𝑇

≈ exp− 𝑥

𝑘𝐵𝑇

The approximation is considered valid when 𝑥 > 4𝑘𝐵𝑇 .

Approximate charge carrier concentrations are

𝑛 = 𝑁𝑐 exp
𝐸𝐹 − 𝐸𝑐

𝑘𝐵𝑇

𝑝 = 𝑁𝑣 exp
𝐸𝑣 − 𝐸𝐹

𝑘𝐵𝑇

(5.6)

5.5 Gaussian density of states

In the case of Gaussian DOS, the density of states shape function 𝐷𝑂𝑆𝑖 is the Gaussian distribution function scaled
by total density of states 𝑁𝑖:

𝐷𝑂𝑆𝑖 (𝜖) = 𝑁𝑖
1√

2𝜎2𝜋
exp

−𝜖2

2𝜎2

Concentrations of species are given by integral

𝑐𝑖 (𝜂) = 𝑁𝑖
1√

2𝜎2𝜋

+∞∫︁
−∞

exp
−𝜖2

2𝜎2
𝑓𝐹𝐷(𝜖− 𝜂)𝑑𝜖

5.6 Conservation equation

The conservation equation is:

𝜕𝑐𝑖
𝜕𝑡

+ ∇ · ji = 𝑆𝑖

where 𝑐𝑖 denotes the concentration, 𝑡 is time, and 𝑗𝑖 is the flux density. 𝑆𝑖 denotes source term, which is positive for
generating particles, and negative for sinking particles of type i. The SI unit of source term is 1/

(︀
meter3second

)︀
.

The conservation equation must be satisfied for each species separately. In the case of transport of electrons and holes,
this gives

𝜕𝑛

𝜕𝑡
+ ∇ · jn = 𝑆𝑛

𝜕𝑝

𝜕𝑡
+ ∇ · jp = 𝑆𝑝

(5.7)

where the source S term contains for example generation 𝐺 and recombination 𝑅 terms

𝑆𝑛,𝑝 = 𝐺−𝑅

The conservation of electric charge must be satisfied everywhere. Therefore, the source terms acting at given point
must not create a net electric charge. In the case of system of electron and holes, this requires

𝑆𝑛 = 𝑆𝑝

5.5. Gaussian density of states 15

oedes Documentation, Release 0.0.18

5.7 Current density

Current density Ji is related to the density flux ji by the charge of single particle 𝑧𝑖𝑞. Obviously, for electrons 𝑧 = −1
and for holes 𝑧 = 1, therefore

Jn = −𝑞jn
Jp = 𝑞jp

(5.8)

Note that a convention is adopted to denote the electric current with uppercase letter J, and the flux density with
lowercase letter j. The SI unit of density flux ji is 1/(meter2 second), while the unit of electric current density Ji is
Amper/meter2.

5.8 Equilibrium conditions

In the equilibrium conditions, Fermi level energy 𝐸𝐹 has the same value everywhere. The electrostatic potential
𝜓 can vary, and the density of free charge 𝜌𝑓 does not need to be zero. Equations (5.1), (5.2), (5.4) are satisfied
simultaneously. The current flux, the source terms, and the time dependence are all zeros, so conservation (5.7) is
trivially satisfied.

5.9 Nonequilibrium conditions

In the non-equilibrium conditions, the transport is introduced as a perturbation from equilibrium. The Fermi energy
level is replaced with quasi Fermi level, which is different for each species. In (5.1), the equilibrium Fermi level for
electrons 𝐸𝐹 is replaced with a quasi Fermi level 𝐸𝐹𝑛. Similarly„ the equilibrium Fermi level for holes is replaced
wuth quasi Fermi level for holes 𝐸𝐹𝑝, giving

𝑛 = 𝑐𝑛 (𝐸𝐹𝑛 − 𝐸𝑐)

𝑝 = 𝑐𝑝 (𝐸𝑣 − 𝐸𝐹𝑝)
(5.9)

Quasi Fermi levels have associated quasi Fermi potential according to the formula for energy of an electron in electro-
static field 𝐸𝐹 = −𝑞𝜑:

𝐸𝐹𝑛 = −𝑞𝜑𝑛
𝐸𝐹𝑝 = −𝑞𝜑𝑣

(5.10)

The transport is modeled by approximating electric current density as

Jn = 𝜇𝑛𝑛∇𝐸𝐹𝑛

Jp = 𝜇𝑝𝑝∇𝐸𝐹𝑝

(5.11)

where 𝜇 denotes the respective mobilities. The SI unit of mobility is meter2/(Volt second), although cm2/(V s) is
often used.

Equations (5.2), (5.5), (5.9), (5.11), (5.7) are simultaneously satisfied in non-equilibrium conditions.

5.10 Drift-diffusion system

Standard form of density fluxes in the drift-diffusion system is

jn = −𝜇𝑛𝑛E−𝐷𝑛∇𝑛
jp = 𝜇𝑝𝑝E−𝐷𝑝∇𝑝

(5.12)

16 Chapter 5. Physical models

oedes Documentation, Release 0.0.18

or more generally, allowing arbitrary charge 𝑧𝑖𝑞 per particle

ji = 𝑧𝑖𝜇𝑖𝑐𝑖E−𝐷𝑖∇𝑐𝑖 (5.13)

𝐷𝑖 is the diffusion coefficient, with SI unit meter2second−1.

5.11 Drift-diffusion system: low concentration limit

To obtain the conventional drift-diffusion formulation (5.12), the the low concentration approximation (5.6) should be
used. After introducing quasi Fermi levels, as it is done in (5.9), one obtains

𝑛 = 𝑁𝑐 exp
𝐸𝐹𝑛 − 𝐸𝑐

𝑘𝐵𝑇

𝑝 = 𝑁𝑣 exp
𝐸𝑣 − 𝐸𝐹𝑝

𝑘𝐵𝑇

From that, the quasi Fermi energies are calculated as

𝐸𝐹𝑛 = 𝐸𝑐 + 𝑘𝐵𝑇 log
𝑛

𝑁𝑐

𝐸𝐹𝑝 = 𝐸𝑣 − 𝑘𝐵𝑇 log
𝑝

𝑁𝑣

Using (5.2), and assuming constant ionization potential ∇𝜒 = 0, bandgap ∇𝐸𝑔 = 0, constant total densities of states
∇𝑁𝑐 = ∇𝑁𝑉 = 0, and constant temperature ∇𝑇 = 0, substituting into (5.11), and using (5.3)

Jn = 𝑞𝜇𝑛𝑛E + 𝜇𝑛𝑘𝐵𝑇∇𝑛
Jp = 𝑞𝜇𝑝𝑝E− 𝜇𝑝𝑘𝐵𝑇∇𝑝

In terms of density flux (5.8), this reads

jn = −𝜇𝑛𝑛E− 𝜇𝑛𝑉𝑇∇𝑛
jp = 𝜇𝑛𝑛E− 𝜇𝑝𝑉𝑇∇𝑝

(5.14)

where thermal voltage

𝑉𝑇 =
𝑘𝐵𝑇

𝑞

5.12 Einstein’s relation

Equation (5.14) is written in the standard drift-diffusion form (5.12) when the diffusion coefficient satisfies

𝐷𝑛,𝑝

𝜇𝑛,𝑝
= 𝑉𝑇 (5.15)

This is called Einstein’s relation.

5.13 Drift-diffusion system: general case

Using functions defined in (5.1), bands (5.2) and approximation (5.9)

𝐸𝐹𝑛 = −𝑞𝜑− 𝜒+ 𝑐−1
𝑛 (𝑛)

𝐸𝐹𝑝 = −𝑞𝜑− 𝜒− 𝐸𝑔 − 𝑐−1
𝑝 (𝑝)

5.11. Drift-diffusion system: low concentration limit 17

oedes Documentation, Release 0.0.18

current densities under assumptions ∇𝜒 = ∇𝐸𝑔 = 0 are

Jn = 𝜇𝑛𝑛E + 𝜇𝑛𝑛∇𝑐−1
𝑛 (𝑛)

Jp = 𝜇𝑝𝑝E− 𝜇𝑝𝑝∇𝑐−1
𝑝 (𝑝)

(5.16)

5.14 Generalized Einstein’s relation

In equation (5.16), assuming ∇𝑇 = ∇𝑁𝑐 = ∇𝑁𝑣 = 0

𝑛∇𝑐−1
𝑛 (𝑛) =

𝑛
𝜕𝑐𝑛
𝜕𝜂𝑛

∇𝑛

𝑝∇𝑐−1
𝑝 (𝑝) =

𝑝
𝜕𝑐𝑝
𝜕𝜂𝑝

∇𝑝

In order to express equation (5.16) in the standard drift-diffusion form (5.12), the diffusion coefficient must satisfy

𝐷𝑖

𝜇𝑖
=

1

𝑞

𝑐𝑖
𝜕𝑐𝑖
𝜕𝜂𝑖

This is so called generalized Einstein’s relation .

5.15 Intrinsic concentrations

Intrinsic concentrations 𝑛𝑖, 𝑝𝑖, and intrinsic Fermi level 𝐸𝐹𝑖 satisfy electric neutrality conditions

𝑛𝑖 = 𝑐𝑛 (𝐸𝐹𝑖 − 𝐸𝑐)

𝑝𝑖 = 𝑐𝑝 (𝐸𝑣 − 𝐸𝐹𝑖)

𝑛𝑖 = 𝑝𝑖

5.16 Direct recombination

Direct recombination introduces source term

𝑅 = 𝛽 (𝑛𝑝− 𝑛𝑖𝑝𝑖)

where 𝛽 can be chosen freely.

18 Chapter 5. Physical models

oedes Documentation, Release 0.0.18

5.17 Unidimensional form

By substituting ∇ → 𝜕
𝜕𝑥 and ∇2 → 𝜕2

𝜕𝑥2 , the equations (5.5), (5.7), (5.12) of the basic drift-diffusion device model are

𝜕2𝜓

𝜕𝑥2
= −𝑞

𝜀
(𝑝− 𝑛+ . . .)

𝐸 = −𝜕𝜓
𝜕𝑥

𝑗𝑛 = −𝜇𝑛𝑛𝐸 −𝐷𝑛∇
𝜕𝑛

𝜕𝑥

𝑗𝑝 = 𝜇𝑝𝑝𝐸 −𝐷𝑝∇
𝜕𝑝

𝜕𝑥
𝜕𝑛

𝜕𝑡
+
𝜕𝑗𝑛
𝜕𝑥

= 𝐺−𝑅

𝜕𝑝

𝜕𝑡
+
𝜕𝑗𝑝
𝜕𝑥

= 𝐺−𝑅

5.18 Total electric current density

Total electric current J is a sum of currents due to transport of each species and the displacement current Jd

J = Jn + Jp + Jd + . . .

Jd =
𝜕D

𝜕𝑡

Total electric current satisfies the conservation law

∇ · J = 0

This can be verified by taking time derivative (5.4), using (5.7) and considering that the sum of all charge created by
the source terms must be zero.

5.19 Electrode current

Current 𝐼𝛼 passing through a surface Γ𝛼 of electrode 𝛼 is

𝐼𝛼 =

∫︁
Γ𝛼

𝐽 · 𝑑S (5.17)

5.20 Metal

In metal, the relation between the electrostatic potential 𝜓, the workfunction energy 𝑊𝐹 > 0 and the Fermi level 𝐸𝐹

is

𝐸𝐹 = −𝑞𝜓 −𝑊𝐹

On the other hand, the Fermi potential corresponds to the applied voltage 𝑉𝑎𝑝𝑝𝑙

𝐸𝐹 = −𝑞𝑉𝑎𝑝𝑝𝑙

This leads to electrostatic potential at metal surface

𝜓 = 𝑉𝑎𝑝𝑝𝑙 −𝑊𝐹 /𝑞

5.17. Unidimensional form 19

oedes Documentation, Release 0.0.18

5.21 Ohmic contact

Ohmic contact is an idealization assuming that there is no charge accumulation at the contact, and the applied voltage
𝑉𝑎𝑝𝑝𝑙 is equal to quasi Fermi potentials (5.10) of charged species

𝜑𝑛 = 𝑉𝑎𝑝𝑝𝑙

𝜑𝑝 = 𝑉𝑎𝑝𝑝𝑙

𝑛+𝑁−
𝐴 = 𝑝+𝑁+

𝐷

Above three conditions uniquely determine the charge concentrations 𝑛, 𝑝, and the electrostatic potential 𝜓 at the
contact.

5.22 Electrochemical transport

Electrochemical potential for ionic species is

𝜇𝑒𝑙
𝑖 = 𝑧𝑖𝑞𝜓 + 𝑘𝐵𝑇 log 𝑐𝑖 + . . .

It should be noticed that so defined “potential” has the unit of energy, unlike the electrostatic potential and quasi Fermi
potentials. Above . . . denote corrections, for example due to steric interactions. Electrochemical potential 𝜇𝑒𝑙

𝑖 should
not be confused with mobility 𝜇𝑖.

Density flux is approximated as

ji = −1

𝑞
𝜇𝑖𝑐𝑖∇𝜇𝑒𝑙

𝑖

yielding the standard form (5.13) using Einstein’s relation (5.15).

Electrochemical species should be included in Poisson’s equation, by including proper source terms of form 𝑞𝑧𝑖𝑐𝑖. A
variant of Poisson’s equation (5.5) where are free charges are ions can be written as

∇2𝜓 = −𝑞
𝜀

∑︁
𝑧𝑖𝑐𝑖

5.23 Steric corrections

To account for finite size of ions, the electrochemical potential in the form introduced in [LE13] is useful

𝜇𝑒𝑙
𝑖 = 𝑧𝑖𝑞𝜓 + 𝑘𝐵𝑇 log

𝑣𝑖𝑐𝑖
Γ

where 𝑣𝑖 denotes volume of particle of type 𝑖. Γ is the unoccupied fraction of space

Γ = 1 −
∑︁
𝑘

𝑣𝑘𝑐𝑘

where summing is taken over all species occupying space, including solvent.

20 Chapter 5. Physical models

CHAPTER 6

Optical models

6.1 Photon energy

𝐸𝑝 = ℎ𝜈

with ℎ Planck constant and 𝜈 is photon frequency.

6.2 Coherent transfer matrix method

Transfer matrix method a convenient way of modeling thin film stacks. It is assumed that layers are stacked along
𝑥 axis, with 𝑥𝑖,𝑖+1 being interface between layer 𝑖 and layer 𝑖 + 1. Optical properties of each layer are specified by
wavelength dependent complex refraction coefficient �̃�𝑖(𝜆).

Optical field inside layer 𝑖 at given point along 𝑥 axis is specified by column vector
[︀
𝐸+

𝑖 (𝑥), 𝐸−
𝑖 (𝑥)

]︀𝑇
, with 𝐸+

𝑖 (𝑥)

being complex amplitude of forward traveling wave, and𝐸−
𝑖 (𝑥) being complex amplitude of backward traveling wave.

Snell law is determines angles of propagation in each layer

𝑛0 sin 𝜃0 = 𝑛𝑖 sin 𝜃𝑖

where index 0 refers to medium before first layer. 𝜃0 is angle of illuminating wave. All angles can be complex
numbers. Since arcsin is multivalued function, angle of forward traveling wave is found from conditions that forward
wave has forward pointing Poynting vector, or alternatively, that the amplitude of forward wave decays in absorbing
medium.

In this convention, interface between layers is described by matrix M as[︂
𝐸+

𝑖 (𝑥)
𝐸−

𝑖 (𝑥)

]︂
= Mi,i+1

[︂
𝐸+

𝑖+1(𝑥)
𝐸−

𝑖+1(𝑥)

]︂
with entries of matrix M specified as

Mi,i+1 =
1

𝑡𝑖,𝑖+1

[︂
1 𝑟𝑖,𝑖+1

𝑟𝑖,𝑖+1 1

]︂

21

oedes Documentation, Release 0.0.18

where transmission coefficient 𝑡𝑖,𝑖+1 and reflection coefficient 𝑟𝑖,𝑖+1 are given by Fresnel equations for complex
amplitudes of light passing from layer i to layer i+1. Coefficients for backward propagating wave 𝑡𝑖+1,𝑖 and 𝑟𝑖+1,𝑖 are
eliminated using Stokes relations.

For s-polarized wave:

𝑟𝑖,𝑖+1 =
𝑛𝑖 cos 𝜃𝑖 − 𝑛𝑖+1 cos 𝜃𝑖+1

𝑛𝑖 cos 𝜃𝑖 + 𝑛𝑖+1 cos 𝜃𝑖+1

𝑡𝑖,𝑖+1 =
2𝑛𝑖 cos 𝜃𝑖

𝑛𝑖 cos 𝜃𝑖 + 𝑛𝑖+1 cos 𝜃𝑖+1

For p-polarized wave:

𝑟𝑖,𝑖+1 =
𝑛𝑖+1 cos 𝜃𝑖 − 𝑛𝑖 cos 𝜃𝑖+1

𝑛𝑖+1 cos 𝜃𝑖 + 𝑛𝑖 cos 𝜃𝑖+1

𝑡𝑖,𝑖+1 =
2𝑛𝑖 cos 𝜃𝑖

𝑛𝑖+1 cos 𝜃𝑖 + 𝑛𝑖 cos 𝜃𝑖+1

Propagation inside layer is described by matrix P as[︂
𝐸+

𝑖 (𝑥)
𝐸−

𝑖 (𝑥)

]︂
= Pi(x)

[︂
𝐸+

𝑖 (𝑥 = 𝑥𝑖,𝑖+1)
𝐸−

𝑖 (𝑥 = 𝑥𝑖,𝑖+1)

]︂

Pi(x) =

[︂
exp−𝑖𝛿𝑖(𝑥) 0

0 exp 𝑖𝛿𝑖(𝑥)

]︂
with phase-shift

𝛿𝑖(𝑥) =

(︂
2𝜋

𝜆0
�̃�𝑖 cos 𝜃𝑖

)︂
(𝑥𝑖,𝑖+1 − 𝑥)

Light entering layer 𝑖, on side of layer 𝑖− 1 has vector of complex amplitudes

vk (𝑥 = 𝑥𝑘−1,𝑘) = (Π𝑘≤𝑖≤𝑛Mi−1,iPi(𝑥𝑖−1,𝑖))Mn,n+1

[︂
𝑡
0

]︂
with vector [𝑡, 0] denoting light leaving the device on the side opposite to illumination, with 𝑡 being complex amplitude
of transmitted wave.

Applying above to whole device gives [︂
1
𝑟

]︂
= v1

with amplitude of illuminating wave set arbitrarily to 1 and 𝑟 being complex amplitude of reflected wave.

When analyzing stack, firstly, solution 𝑡, 𝑟 is found. Then intensity of light anywhere inside the device is calculated
using found vectors vi and propagation matrices Pi. Total intensity is found by applying Poynting formula. Absorbed
energy is found by differentiating with respect to 𝑥.

6.3 Incoherent light

Incoherent light is described by spectrum 𝑆(𝜆). Absorption of incoherent light is calculated as

𝐴 =

∫︁
𝐴coherent (𝜆)𝑆 (𝜆) 𝑑𝜆

where 𝐴coherent (𝜆) is calculated using coherent transfer matrix method.

22 Chapter 6. Optical models

CHAPTER 7

Examples

oedes comes with examples demonstrating typical use. Each example shows usage of oedes and is used as a test
suite to check for correctness. Many examples additionally partially or completely reproduce published papers. They
therefore allow to experiment with published models.

The examples provided as files with extension .ipynb run in Jupyter Notebook. Before running the examples, oedes
should be installed.

The examples are included in oedes source distribution, and can also be downloaded from oedes repository on github.
Also, they can be browsed on oedes website.

23

oedes Documentation, Release 0.0.18

24 Chapter 7. Examples

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

25

oedes Documentation, Release 0.0.18

26 Chapter 8. Indices and tables

Bibliography

[LE13] Jinn-Liang Liu and Bob Eisenberg. Correlated Ions in a Calcium Channel Model: A Poisson–Fermi Theory.
The Journal of Physical Chemistry B, 117(40):12051–12058, 2013. PMID: 24024558. URL: https://doi.org/
10.1021/jp408330f, arXiv:https://doi.org/10.1021/jp408330f, doi:10.1021/jp408330f.

27

https://doi.org/10.1021/jp408330f
https://doi.org/10.1021/jp408330f
https://arxiv.org/abs/https://doi.org/10.1021/jp408330f
https://doi.org/10.1021/jp408330f

	Introduction
	Features
	Installation
	Tutorial: PN junction
	Physical models
	Optical models
	Examples
	Indices and tables
	Bibliography

