
ODST Documentation
Release

Bryson Tyrrell

Jan 15, 2018





Admin Guide

1 Features 3

2 The Open Distribution Server 5

3 Completed Features and Notes 17

4 Contributing to ODST 19

HTTP Routing Table 21

i



ii



ODST Documentation, Release

The ODST project aims to deliver an open and automated file distribution solution for IT administrators. The core
application of this solution is the Open Distribution Server (ODS).

Warning: This project is currently in an Alpha state and is being actively developed and tested. See Contributing
to ODST below to learn more about how you can help!

Admin Guide 1



ODST Documentation, Release

2 Admin Guide



CHAPTER 1

Features

• Secure and Automatic Bi-Directional File Syncing

• Web Interface

• Admin API for Integrations

• File and Server Stage Taging

• Webhook and Email Notification Options

• Support for Jamf Pro

• And More...

Note: If you use a management solution other than Jamf Pro and would like to see integration features between
ODST and your solution, please open a GitHub issue with a description!

3



ODST Documentation, Release

4 Chapter 1. Features



CHAPTER 2

The Open Distribution Server

The ODS is a Flask application and Celery worker that connect to a Redis server (for worker queues), a database server
(SQLite and MySQL currently supported with MSSQL and PostgreSQL planned), and fronted by a web server (Nginx
or Apache).

While single-server installers are planned for Linux (Ubuntu/RHEL), Windows, and macOS, the ODS application
can be deployed in many different models, such as the application and worker server connecting to remote Redis and
database servers, or running as a containerized server in Docker or Kubernetes.

Note: See the Docker documentation to read more about using the included docker-compose.yml example to
launch a development/test instance.

2.1 Initial Setup

2.1.1 Login

During first time initialization, the ODS application will set an initial administrator user account to access the web UI
and Admin API.

Username: admin Password: ods1234!

5



ODST Documentation, Release

Warning: You will be able to change this account, and add others with restricted permissions, in a later update.

2.1.2 Server Administration

Under the Admin tab you can view the current server settings and information on the system’s resources and activities.

Before you can register the ODS to another ODS you must set the Name and URL. Click the Edit button on the right
to open the settings modal to make your modifications.

6 Chapter 2. The Open Distribution Server



ODST Documentation, Release

2.2 ODS Registration

Under the Network tab you will have options for registering with other ODS applications. Registration allows ODS
instances to communicate with each other and sync files and changes to those files.

To perform the registration you will need the URL, ISS ID, and Key of the remote ODS you are registering with. Enter
the values into the provided fields and click Register.

Upon a successful registration you will see the remote ODS appear in the list of registered instances. If not, an error
message banner will be displayed on the page.

2.2. ODS Registration 7



ODST Documentation, Release

2.3 Package Management

Under the Packages tab you will be able to upload files to the ODS to make available for download. If you have
registered with other ODS instances they will receive notifications to sync the package.

Click the Select File button and browse for the file to upload. Select a Stage to associate with the file and click Upload.
The Upload button will become grayed out during this process.

Upon a successful upload the page will reload and display the new file.

If the server is syncing a file from another ODS it will appear in this list with a Downloading status. Upon completion
this will change to display Public meaning the file is available for download.

2.4 Known Issues

Note: The ODST Project is currently in an Alpha state. Known issues as they are reported by users and admins
testing the iterative builds that won’t be immediately addressed will be recorded here with links to the GitHub issue
and information on what is planned to address them.

2.4.1 File Syncing

• There is likely an issue with the concurrent connections to the database causing the ORM to throw InternalError
and InterfaceError exceptions as it attempts to handle multiple simultaneous requests and tasks. File sync
operations currently are not performing adequate error handling to prevent the data from entering an invalid
state in the event an error occurs, nor are there any mechanisms in place to initiate an automatic retry. Those
items, as well as vastly improved logging, will be implemented to begin addressing these issues. (discovered
during testing)

8 Chapter 2. The Open Distribution Server



ODST Documentation, Release

• It has been reported that upload operations can consume up to 3x the disk space of the uploaded file until
complete. (reported in Slack #odst)

2.5 Admin API

2.5.1 Endpoints

Resource Operation Description
About POST /api/admin/about/update Updates ODS application settings.

GET /api/admin/about Returns ODS application settings.
ODS GET /api/admin/registered_ods Returns a list of all registered ODS instances.

POST /api/admin/register Register with another ODS instance.
Packages GET /api/admin/packages Returns a list of all packages on the server.

GET /api/admin/packages/(package_id_or_name) Returns a single package by the database ID or
System GET /api/admin/system Returns system information.
Upload POST /api/admin/upload Upload a file to the ODS.

2.5.2 Reference

GET /api/admin/about
Returns ODS application settings.

Example Request:

GET /api/admin/about HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"firewalled_mode": false,
"iss": "e7becdda9a9046f6a78f69ef591e9835",
"key": "r3Yt354eDTY0JkaiObpsM4krfkDzdZD9NNYwDr9aSk0=",
"name": "Example ODS",
"stage": "Prod",
"url": "http://192.168.99.100"

}

POST /api/admin/about/update
Updates ODS application information and settings.

Note: You cannot update the iss or key values!

Accepted values for stage are: Dev, Test, Prod

Accepted values for firewalled_mode are: Enabled, Disabled

Example Request:

2.5. Admin API 9



ODST Documentation, Release

POST /api/admin/about HTTP/1.1
Content-Type: application/json

{
"name": "Example ODS",
"url": "http://192.168.99.100",
"firewalled_mode": "Disabled",
"stage": "Prod"

}

Example Response:

HTTP/1.1 201 OK
Content-Type: text/html

GET /api/admin/packages
Returns a list of all packages on the server. The package objects are nested under an items key.

created value is in ISO 8601 format (without microseconds).

created_ts value is a Unix timestamp (time since Epoch).

file_size value is represented in total bytes.

file_size_hr is a human readable representation.

Example Request:

GET /api/admin/packages HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"items": [

{
"created": "2017-11-11T03:15:54",
"created_ts": 1510370154,
"file_size": 3438044,
"file_size_hr": "3.3 MB",
"filename": "NoMAD.pkg",
"id": 1,
"sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816",
"stage": "Prod",
"status": "Public",
"uuid": "28f7adde4f674873807a4c8c69b641d0"

}
]

}

GET /api/admin/packages/(package_id_or_name)
Returns a single package by the database ID or filename.

created value is in ISO 8601 format (without microseconds).

created_ts value is a Unix timestamp (time since Epoch).

file_size value is represented in total bytes.

10 Chapter 2. The Open Distribution Server



ODST Documentation, Release

file_size_hr is a human readable representation.

chunks is an array of indexed hashes for each 1 MB block of the file.

Example Request:

GET /api/admin/packages/1 HTTP/1.1
Accept: application/json

GET /api/admin/packages/NoMAD.pkg HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"created": "2017-11-11T03:15:54",
"created_ts": 1510370154,
"file_size": 3438044,
"file_size_hr": "3.3 MB",
"filename": "NoMAD.pkg",
"id": 1,
"sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816",
"stage": "Prod",
"status": "Public",
"uuid": "28f7adde4f674873807a4c8c69b641d0"
"chunks": [

{
"index": 0,
"sha1": "f34fef9be0364d92424106c19596d3fcd1676635"

},
{

"index": 1,
"sha1": "93633f00f71d3b5494b23b74b37777bc07f9d713"

},
{

"index": 2,
"sha1": "9e0ca33c872fb9b5d7aa46fbd865c309db792c12"

},
{

"index": 3,
"sha1": "468521469da7fd40ee72f18e70bf578f055b3878"

}
],

}

POST /api/admin/register
Register with another ODS instance.

Example Request:

POST /api/admin/register HTTP/1.1
Content-Type: application/json

{
"url":"http://192.168.99.101",
"iss_id":"e7becdda9a9046f6a78f69ef591e9835",

2.5. Admin API 11



ODST Documentation, Release

"key":"r3Yt354eDTY0JkaiObpsM4krfkDzdZD9NNYwDr9aSk0="
}

Example Response:

HTTP/1.1 201 OK
Content-Type: text/html

GET /api/admin/registered_ods
Returns a list of all registered ODS instances. The ods server objects are nested under an items key.

registered_on value is in ISO 8601 format (without microseconds).

registered_on_ts value is a Unix timestamp (time since Epoch).

Example Request:

GET /api/admin/registered_ods HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"items": [

{
"firewalled_mode": false,
"id": 1,
"name": "Example ODS 2",
"registered_on": "2017-11-10T04:45:47",
"registered_on_ts": 1510289147,
"stage": "Prod",
"url": "http://192.168.99.101"

}
]

}

GET /api/admin/system
Returns system information.

disk_, mem_, and network_ values are represented in total bytes.

uptime is represented in total seconds.

Human readable values are denoted by the _hr suffix.

Example Request:

GET /api/admin/system HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"cpu_count": 2,

12 Chapter 2. The Open Distribution Server



ODST Documentation, Release

"disk_free": 60352081920,
"disk_free_hr": "56.2 GB",
"disk_total": 67371577344,
"disk_total_hr": "62.7 GB",
"disk_used": 3566796800,
"disk_used_hr": "3.3 GB",
"mem_available": 936255488,
"mem_available_hr": "892.9 MB",
"mem_total": 1567678464,
"mem_total_hr": "1.5 GB",
"mem_used": 444342272,
"mem_used_hr": "423.8 MB",
"network_bytes_received": 54346,
"network_bytes_received_hr": "53.1 KB",
"network_bytes_sent": 45694,
"network_bytes_sent_hr": "44.6 KB",
"uptime": 30806,
"uptime_hr": "8:33:26"

}

POST /api/admin/upload
Upload a file to the ODS.

Accepted values for stage are: Dev, Test, Prod

Example Request:

POST /api/admin/register HTTP/1.1
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryvvcON8g8Lh1D16BS

------WebKitFormBoundaryvvcON8g8Lh1D16BS
Content-Disposition: form-data; name="file"; filename="NoMAD.pkg"
Content-Type: application/octet-stream

------WebKitFormBoundaryvvcON8g8Lh1D16BS
Content-Disposition: form-data; name="stage"

Prod
------WebKitFormBoundaryvvcON8g8Lh1D16BS--

Example Response:

HTTP/1.1 201 OK
Content-Type: application/json

{
"filename": "NoMAD.pkg",
"sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816"

}

2.6 The Python Environment

In a custom installation of the ODS application, the configuration of your Python environment may depend upon where
and/or how you are doing the deployment.

2.6. The Python Environment 13



ODST Documentation, Release

In a containerized or similar deployment, you may install the package dependencies directly to the provided system
Python or the one that is installed as a part of building the container.

If deploying to a VM or other server, it would be consindered best practice to create a Python virtual environment
separate from the system’s Python and install the package dependencies there.

2.6.1 Pipenv

The ODST Project uses Pipenv for managing the project dependencies. Pipenv uses Pipfiles for managing project
dependencies and is the officially recommended Python packaging tool from Python.org.

You can learn more about the Pipfile specification on the Python Packaging Authority’s GitHub page for the project at
https://github.com/pypa/pipfile.

If you are new to using Pipenv please read the documentation available at https://docs.pipenv.org/.

2.6.2 Installing Package Dependencies

Install Pipenv using pip:

pip install pipenv

To install the project’s package dependencies to the system Python run:

pipenv install --system

To create a virtual environment for the project, run the following commands to build the virtual environment, install
the packages, and read back the virtual environment’s path:

pipenv install --two
pipenv --venv

Note: If you are building a development environment for running tests and building documentation, you must run the
following command to also install the development packages:

pipenv install --dev

2.7 Application Configuration

The ODS application has variable requirements depending upon the environment.

The application code is contained within the ods directory. When deploying with a WSGI server you can use the
application.py file and the application object within it for your WSGI congfiguration.

Warning: The ODS APIs use token authentication and your production ODS instances should use TLS encryption
for all traffic!

14 Chapter 2. The Open Distribution Server

https://packaging.python.org/new-tutorials/installing-and-using-packages/
https://github.com/pypa/pipfile
https://docs.pipenv.org/


ODST Documentation, Release

Note: An example WSGI configuration file for deploying the ODS application with uWSGI can be found in /
docker/webapp/web-app.ini.

There are a number of options available for deploying the ODS application. See http://flask.pocoo.org/docs/0.12/
deploying/ for more information.

In a single server installation (a standard, minimal install), the ODS is capable of using a local SQLite database for
server data. ODS also supports connecting to a MySQL server. MySQL can be running locally on the same server as
the ODS application or remotely.

Note: PostgreSQL and MSSQL support are planned for future support.

The ODS uses Redis for queuing tasks and Celery for processing those tasks. Redis can be running locally on the
same server as the ODS application or remotely.

To start the Celery worker run the following command from the application directory:

celery worker --app ods_worker.celery --workdir /path/to/ODS-dir/

2.7.1 Environment Variables

The ODS application will read environment variables from the system to configure itself at runtime.

Required Env
Vars

Description

ODS_CONF The path to a configuration file written in Python that contains any of the described environment
variables listed here. It is recommended that your SECRET_KEY and DATABASE_KEY be
populated using this file.

SECRET_KEY A cryptographically random key used to secure user sessions.
DATABASE_KEYA cryptographically random 32-byte key used to encrypt sensitive data within the ODS

database.
CELERY_BROKER_URLThe URL to the Redis server. If not provided the value will default to

redis://localhost:6379.
CELERY_BACKEND_URL(optional) An alternative URL to the Redis backend. If not provided it will default to the value

of CELERY_BROKER_URL.
UPLOAD_STAGING_DIR(optional) You may specify the staging directory where file uploads are cached. If not provided,

a randomized temp directory will be created.
DEBUG (optional) Runs the server in Debug mode providing additional logging output.

The following code will generate a randomized 32-byte key:

>> import os
>>> os.urandom(32)

2.7.2 Database Configuration

By default, the ODS will create a local SQLite database located within the application’s directory on the system. To
use a database server, set the appropriate environment variables as shown below.

2.7. Application Configuration 15

http://flask.pocoo.org/docs/0.12/deploying/
http://flask.pocoo.org/docs/0.12/deploying/


ODST Documentation, Release

MySQL Server Configuration
MYSQL_SERVER The URL to the MySQL server (with port).
MYSQL_DATABASE The name of the MySQL database to connect to.
MYSQL_USER The user to authenticate to the database.
MYSQL_PASSWORD The password to the user.

2.8 Example Docker Compose Setup

Note: This option as provided is primarily meant to serve as a development and testing environment.

You can create a full ODS instance using the provided docker-compose.yml file on a running Docker host. This
Docker Compose configuration will create and launch the following containers on your host:

• Nginx

• MySQL

• Redis

• ODS Web App

• ODS Worker

The containers are isolated by three networks: proxy connects Nginx (the externally accessible service) to the ODS
web app. The db network connects MySQL to both the web app and the worker, and the same is true for the cache
network. Nginx cannot contact the MySQL, Redis, or worker containers in this configuration.

There will be two data volumes for persisting the MySQL database as well as the file share directory located at /opt/
odst/ods/static/share. The file share volume is shared between the ODS application and Nginx containers.
In this configuration Nginx takes over for serving the packages.

Use the following commands to launch the containers on a Docker host from the ODST repository’s directory:

docker-compose build
docker-compose up -d

Navigate to the IP address of your Docker host in a web browser to begin using the ODS web UI.

Note: Launch the containers on multiple Docker hosts to test syncing features.

16 Chapter 2. The Open Distribution Server



CHAPTER 3

Completed Features and Notes

• Admin Web UI Logins

Default username: admin

Default password: ods1234!

• Server Admin page (UI)

• Package Management (UI)

• ODS Network (UI) ODS registration is functional, instances can make API requests to each other, and one-way
syncing is implemented.

• Admin API Endpoints

– GET /api/admin/about Returns application information.

– GET /api/admin/system Returns system information.

– GET /api/admin/packages Returns all files that have been uploaded.

– POST /api/admin/packages Upload a file to the server. The content-type must be
multipart/form-data containing file and stage attributes.

17



ODST Documentation, Release

18 Chapter 3. Completed Features and Notes



CHAPTER 4

Contributing to ODST

The ODST project originated with the Mac Admins community. If you have not, please join the Mac Admins Slack
and join the #odst channel to join the conversation. Feedback and putting up feature requests for discussion are entirely
welcome and desired!

You can also contribute to the development of the ODST project in any of the following ways:

• Build Testing Run the latest version as features are committed and test them. Submit issues, provide logs, and
provide details on the application deployment. Testing and submitting issues will ensure quality!

• Optimal Configurations Administrators and developers experienced with Redis, Nginx, Apache, MySQL, or
any of the other technologies that comprise the ODST stack, can help define the baseline configuration of
these services for documentation and to be set as a part of the planned installers.

• Installers The ODS application can be custom setup for almost any kind of deployment, but an easy option
where an administrator can run an installer on a single server is a goal for the project. If you have experi-
ence building installers on any platform please reach out!

• Documentation Read and scrutinize this documentation. Feel free to make a pull request to correct errors -
spelling and grammatical - and incorrect information.

19

http://macadmins.org
https://macadmins.slack.com/messages/C7FRXLNQM


ODST Documentation, Release

20 Chapter 4. Contributing to ODST



HTTP Routing Table

/api
GET /api/admin/about, 9
GET /api/admin/packages, 10
GET /api/admin/packages/(package_id_or_name),

10
GET /api/admin/registered_ods, 12
GET /api/admin/system, 12
POST /api/admin/about/update, 9
POST /api/admin/register, 11
POST /api/admin/upload, 13

21


	Features
	The Open Distribution Server
	Completed Features and Notes
	Contributing to ODST
	HTTP Routing Table

