

Open Distribution Server Technologies

The ODST project aims to deliver an open and automated file distribution
solution for IT administrators. The core application of this solution is the
Open Distribution Server (ODS).

Warning

This project is currently in an Alpha state and is being actively developed
and tested. See Contributing to ODST below to learn more about how you
can help!

Features

	Secure and Automatic Bi-Directional File Syncing

	Web Interface

	Admin API for Integrations

	File and Server Stage Taging

	Webhook and Email Notification Options

	Support for Jamf Pro

	And More...

Note

If you use a management solution other than Jamf Pro and would like to see
integration features between ODST and your solution, please open a GitHub
issue with a description!

The Open Distribution Server

The ODS is a Flask application and Celery worker that connect to a Redis server
(for worker queues), a database server (SQLite and MySQL currently supported
with MSSQL and PostgreSQL planned), and fronted by a web server (Nginx or
Apache).

While single-server installers are planned for Linux (Ubuntu/RHEL), Windows, and
macOS, the ODS application can be deployed in many different models, such as the
application and worker server connecting to remote Redis and database servers,
or running as a containerized server in Docker or Kubernetes.

Note

See the Docker documentation to read more about using the included
docker-compose.yml example to launch a development/test instance.

Admin Guide

	Initial Setup

	ODS Registration

	Package Management

	Known Issues

API Reference

	Admin API

Installation Guides

	The Python Environment

	Application Configuration

	Example Docker Compose Setup

Completed Features and Notes

	Admin Web UI Logins

Default username: admin

Default password: ods1234!

	Server Admin page (UI)

	Package Management (UI)

	
	ODS Network (UI)

	ODS registration is functional, instances can make API requests to each
other, and one-way syncing is implemented.

	
	Admin API Endpoints

	
	
	GET /api/admin/about

	Returns application information.

	
	GET /api/admin/system

	Returns system information.

	
	GET /api/admin/packages

	Returns all files that have been uploaded.

	
	POST /api/admin/packages

	Upload a file to the server. The content-type must be
multipart/form-data containing file and stage attributes.

Contributing to ODST

The ODST project originated with the Mac Admins community. If you have not,
please join the Mac Admins Slack [http://macadmins.org] and join the
#odst channel [https://macadmins.slack.com/messages/C7FRXLNQM] to join the
conversation. Feedback and putting up feature requests for discussion are
entirely welcome and desired!

You can also contribute to the development of the ODST project in any of the
following ways:

	
	Build Testing

	Run the latest version as features are committed and test them. Submit
issues, provide logs, and provide details on the application deployment.
Testing and submitting issues will ensure quality!

	
	Optimal Configurations

	Administrators and developers experienced with Redis, Nginx, Apache, MySQL,
or any of the other technologies that comprise the ODST stack, can help
define the baseline configuration of these services for documentation and to
be set as a part of the planned installers.

	
	Installers

	The ODS application can be custom setup for almost any kind of deployment,
but an easy option where an administrator can run an installer on a single
server is a goal for the project. If you have experience building installers
on any platform please reach out!

	
	Documentation

	Read and scrutinize this documentation. Feel free to make a pull request to
correct errors - spelling and grammatical - and incorrect information.

Initial Setup

Login

During first time initialization, the ODS application will set an initial
administrator user account to access the web UI and Admin API.

Username: admin
Password: ods1234!

[image: ../_images/login.png]

Warning

You will be able to change this account, and add others with restricted
permissions, in a later update.

Server Administration

Under the Admin tab you can view the current server settings and information
on the system’s resources and activities.

[image: ../_images/admin.png]
Before you can register the ODS to another ODS you must set the Name and
URL. Click the Edit button on the right to open the settings modal to make
your modifications.

[image: ../_images/admin_update_modal.png]

ODS Registration

Under the Network tab you will have options for registering with other ODS
applications. Registration allows ODS instances to communicate with each other
and sync files and changes to those files.

To perform the registration you will need the URL, ISS ID, and Key of the
remote ODS you are registering with. Enter the values into the provided fields
and click Register.

[image: ../_images/register_with.png]
Upon a successful registration you will see the remote ODS appear in the list of
registered instances. If not, an error message banner will be displayed on the
page.

[image: ../_images/register_list.png]

Package Management

Under the Packages tab you will be able to upload files to the ODS to make
available for download. If you have registered with other ODS instances they
will receive notifications to sync the package.

Click the Select File button and browse for the file to upload. Select a
Stage to associate with the file and click Upload. The Upload button will
become grayed out during this process.

[image: ../_images/packages_upload.png]
Upon a successful upload the page will reload and display the new file.

[image: ../_images/packages_list.png]
If the server is syncing a file from another ODS it will appear in this list
with a Downloading status. Upon completion this will change to display
Public meaning the file is available for download.

Known Issues

Note

The ODST Project is currently in an Alpha state. Known issues as they are
reported by users and admins testing the iterative builds that won’t be
immediately addressed will be recorded here with links to the GitHub issue
and information on what is planned to address them.

File Syncing

	There is likely an issue with the concurrent connections to the database
causing the ORM to throw InternalError and InterfaceError exceptions as
it attempts to handle multiple simultaneous requests and tasks. File sync
operations currently are not performing adequate error handling to prevent
the data from entering an invalid state in the event an error occurs, nor
are there any mechanisms in place to initiate an automatic retry. Those
items, as well as vastly improved logging, will be implemented to begin
addressing these issues. (discovered during testing)

	It has been reported that upload operations can consume up to 3x the disk
space of the uploaded file until complete. (reported in Slack #odst)

Admin API

Endpoints

	Resource
	Operation
	Description

	About
	POST /api/admin/about/update
	Updates ODS application settings.

	
	GET /api/admin/about
	Returns ODS application settings.

	ODS
	GET /api/admin/registered_ods
	Returns a list of all registered ODS instances.

	
	POST /api/admin/register
	Register with another ODS instance.

	Packages
	GET /api/admin/packages
	Returns a list of all packages on the server.

	
	GET /api/admin/packages/(package_id_or_name)
	Returns a single package by the database ID or

	System
	GET /api/admin/system
	Returns system information.

	Upload
	POST /api/admin/upload
	Upload a file to the ODS.

Reference

	
GET /api/admin/about

	Returns ODS application settings.

Example Request:

GET /api/admin/about HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "firewalled_mode": false,
 "iss": "e7becdda9a9046f6a78f69ef591e9835",
 "key": "r3Yt354eDTY0JkaiObpsM4krfkDzdZD9NNYwDr9aSk0=",
 "name": "Example ODS",
 "stage": "Prod",
 "url": "http://192.168.99.100"
}

	
POST /api/admin/about/update

	Updates ODS application information and settings.

Note

You cannot update the iss or key values!

Accepted values for stage are: Dev, Test, Prod

Accepted values for firewalled_mode are: Enabled, Disabled

Example Request:

POST /api/admin/about HTTP/1.1
Content-Type: application/json

{
 "name": "Example ODS",
 "url": "http://192.168.99.100",
 "firewalled_mode": "Disabled",
 "stage": "Prod"
}

Example Response:

HTTP/1.1 201 OK
Content-Type: text/html

	
GET /api/admin/packages

	Returns a list of all packages on the server. The package objects are
nested under an items key.

created value is in ISO 8601 format (without microseconds).

created_ts value is a Unix timestamp (time since Epoch).

file_size value is represented in total bytes.

file_size_hr is a human readable representation.

Example Request:

GET /api/admin/packages HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "items": [
 {
 "created": "2017-11-11T03:15:54",
 "created_ts": 1510370154,
 "file_size": 3438044,
 "file_size_hr": "3.3 MB",
 "filename": "NoMAD.pkg",
 "id": 1,
 "sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816",
 "stage": "Prod",
 "status": "Public",
 "uuid": "28f7adde4f674873807a4c8c69b641d0"
 }
]
}

	
GET /api/admin/packages/(package_id_or_name)

	Returns a single package by the database ID or filename.

created value is in ISO 8601 format (without microseconds).

created_ts value is a Unix timestamp (time since Epoch).

file_size value is represented in total bytes.

file_size_hr is a human readable representation.

chunks is an array of indexed hashes for each 1 MB block of the file.

Example Request:

GET /api/admin/packages/1 HTTP/1.1
Accept: application/json

GET /api/admin/packages/NoMAD.pkg HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "created": "2017-11-11T03:15:54",
 "created_ts": 1510370154,
 "file_size": 3438044,
 "file_size_hr": "3.3 MB",
 "filename": "NoMAD.pkg",
 "id": 1,
 "sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816",
 "stage": "Prod",
 "status": "Public",
 "uuid": "28f7adde4f674873807a4c8c69b641d0"
 "chunks": [
 {
 "index": 0,
 "sha1": "f34fef9be0364d92424106c19596d3fcd1676635"
 },
 {
 "index": 1,
 "sha1": "93633f00f71d3b5494b23b74b37777bc07f9d713"
 },
 {
 "index": 2,
 "sha1": "9e0ca33c872fb9b5d7aa46fbd865c309db792c12"
 },
 {
 "index": 3,
 "sha1": "468521469da7fd40ee72f18e70bf578f055b3878"
 }
],
}

	
POST /api/admin/register

	Register with another ODS instance.

Example Request:

POST /api/admin/register HTTP/1.1
Content-Type: application/json

{
 "url":"http://192.168.99.101",
 "iss_id":"e7becdda9a9046f6a78f69ef591e9835",
 "key":"r3Yt354eDTY0JkaiObpsM4krfkDzdZD9NNYwDr9aSk0="
}

Example Response:

HTTP/1.1 201 OK
Content-Type: text/html

	
GET /api/admin/registered_ods

	Returns a list of all registered ODS instances. The ods server
objects are nested under an items key.

registered_on value is in ISO 8601 format (without microseconds).

registered_on_ts value is a Unix timestamp (time since Epoch).

Example Request:

GET /api/admin/registered_ods HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "items": [
 {
 "firewalled_mode": false,
 "id": 1,
 "name": "Example ODS 2",
 "registered_on": "2017-11-10T04:45:47",
 "registered_on_ts": 1510289147,
 "stage": "Prod",
 "url": "http://192.168.99.101"
 }
]
}

	
GET /api/admin/system

	Returns system information.

disk_, mem_, and network_ values are represented in total bytes.

uptime is represented in total seconds.

Human readable values are denoted by the _hr suffix.

Example Request:

GET /api/admin/system HTTP/1.1
Accept: application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "cpu_count": 2,
 "disk_free": 60352081920,
 "disk_free_hr": "56.2 GB",
 "disk_total": 67371577344,
 "disk_total_hr": "62.7 GB",
 "disk_used": 3566796800,
 "disk_used_hr": "3.3 GB",
 "mem_available": 936255488,
 "mem_available_hr": "892.9 MB",
 "mem_total": 1567678464,
 "mem_total_hr": "1.5 GB",
 "mem_used": 444342272,
 "mem_used_hr": "423.8 MB",
 "network_bytes_received": 54346,
 "network_bytes_received_hr": "53.1 KB",
 "network_bytes_sent": 45694,
 "network_bytes_sent_hr": "44.6 KB",
 "uptime": 30806,
 "uptime_hr": "8:33:26"
}

	
POST /api/admin/upload

	Upload a file to the ODS.

Accepted values for stage are: Dev, Test, Prod

Example Request:

POST /api/admin/register HTTP/1.1
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryvvcON8g8Lh1D16BS

------WebKitFormBoundaryvvcON8g8Lh1D16BS
Content-Disposition: form-data; name="file"; filename="NoMAD.pkg"
Content-Type: application/octet-stream

------WebKitFormBoundaryvvcON8g8Lh1D16BS
Content-Disposition: form-data; name="stage"

Prod
------WebKitFormBoundaryvvcON8g8Lh1D16BS--

Example Response:

HTTP/1.1 201 OK
Content-Type: application/json

{
 "filename": "NoMAD.pkg",
 "sha1": "3fab53c6f12e3d4621b17f728e9b3c522bb90816"
}

The Python Environment

In a custom installation of the ODS application, the configuration of your
Python environment may depend upon where and/or how you are doing the
deployment.

In a containerized or similar deployment, you may install the package
dependencies directly to the provided system Python or the one that is installed
as a part of building the container.

If deploying to a VM or other server, it would be consindered best practice to
create a Python virtual environment separate from the system’s Python and
install the package dependencies there.

Pipenv

The ODST Project uses Pipenv for managing the project dependencies. Pipenv
uses Pipfiles for managing project dependencies and is the officially
recommended Python packaging tool from
Python.org [https://packaging.python.org/new-tutorials/installing-and-using-packages/].

You can learn more about the Pipfile specification on the Python Packaging
Authority’s GitHub page for the project at https://github.com/pypa/pipfile.

If you are new to using Pipenv please read the documentation available at
https://docs.pipenv.org/.

Installing Package Dependencies

Install Pipenv using pip:

pip install pipenv

To install the project’s package dependencies to the system Python run:

pipenv install --system

To create a virtual environment for the project, run the following commands to
build the virtual environment, install the packages, and read back the virtual
environment’s path:

pipenv install --two
pipenv --venv

Note

If you are building a development environment for running tests and building
documentation, you must run the following command to also install the
development packages:

pipenv install --dev

Application Configuration

The ODS application has variable requirements depending upon the environment.

The application code is contained within the ods directory. When deploying
with a WSGI server you can use the application.py file and the
application object within it for your WSGI congfiguration.

Warning

The ODS APIs use token authentication and your production ODS
instances should use TLS encryption for all traffic!

Note

An example WSGI configuration file for deploying the ODS
application with uWSGI can be found in /docker/webapp/web-app.ini.

There are a number of options available for deploying the ODS application. See
http://flask.pocoo.org/docs/0.12/deploying/ for more information.

In a single server installation (a standard, minimal install), the ODS is
capable of using a local SQLite database for server data. ODS also supports
connecting to a MySQL server. MySQL can be running locally on the same server as
the ODS application or remotely.

Note

PostgreSQL and MSSQL support are planned for future support.

The ODS uses Redis for queuing tasks and Celery for processing those tasks.
Redis can be running locally on the same server as the ODS application or
remotely.

To start the Celery worker run the following command from the application
directory:

celery worker --app ods_worker.celery --workdir /path/to/ODS-dir/

Environment Variables

The ODS application will read environment variables from the system to configure
itself at runtime.

	Required Env Vars
	Description

	ODS_CONF
	The path to a configuration file written in Python
that contains any of the described environment
variables listed here. It is recommended that your
SECRET_KEY and DATABASE_KEY be populated using
this file.

	SECRET_KEY
	A cryptographically random key used to secure user
sessions.

	DATABASE_KEY
	A cryptographically random 32-byte key used to encrypt
sensitive data within the ODS database.

	CELERY_BROKER_URL
	The URL to the Redis server. If not provided the value
will default to redis://localhost:6379.

	CELERY_BACKEND_URL
	(optional) An alternative URL to the Redis backend.
If not provided it will default to the value of
CELERY_BROKER_URL.

	UPLOAD_STAGING_DIR
	(optional) You may specify the staging directory
where file uploads are cached. If not provided, a
randomized temp directory will be created.

	DEBUG
	(optional) Runs the server in Debug mode
providing additional logging output.

The following code will generate a randomized 32-byte key:

>> import os
>>> os.urandom(32)

Database Configuration

By default, the ODS will create a local SQLite database located within the
application’s directory on the system. To use a database server, set the
appropriate environment variables as shown below.

	MySQL Server Configuration

	MYSQL_SERVER
	The URL to the MySQL server (with port).

	MYSQL_DATABASE
	The name of the MySQL database to connect to.

	MYSQL_USER
	The user to authenticate to the database.

	MYSQL_PASSWORD
	The password to the user.

Example Docker Compose Setup

Note

This option as provided is primarily meant to serve as a development
and testing environment.

You can create a full ODS instance using the provided docker-compose.yml
file on a running Docker host. This Docker Compose configuration will create and
launch the following containers on your host:

	Nginx

	MySQL

	Redis

	ODS Web App

	ODS Worker

The containers are isolated by three networks: proxy connects Nginx (the
externally accessible service) to the ODS web app. The db network connects
MySQL to both the web app and the worker, and the same is true for the cache
network. Nginx cannot contact the MySQL, Redis, or worker containers in this
configuration.

There will be two data volumes for persisting the MySQL database as well as the
file share directory located at /opt/odst/ods/static/share. The file share
volume is shared between the ODS application and Nginx containers. In this
configuration Nginx takes over for serving the packages.

Use the following commands to launch the containers on a Docker host from the
ODST repository’s directory:

docker-compose build
docker-compose up -d

Navigate to the IP address of your Docker host in a web browser to begin using
the ODS web UI.

Note

Launch the containers on multiple Docker hosts to test syncing features.

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/admin/about	

 	
 	
 GET /api/admin/packages	

 	
 	
 GET /api/admin/packages/(package_id_or_name)	

 	
 	
 GET /api/admin/registered_ods	

 	
 	
 GET /api/admin/system	

 	
 	
 POST /api/admin/about/update	

 	
 	
 POST /api/admin/register	

 	
 	
 POST /api/admin/upload	

Index

 _images/login.png
ee0e <> m [localhost o) o @

Welcome to the ODS

_images/packages_list.png
Available Packages

Filename Size

NoMAD.pkg 33MB

SHAT1 Hash

3fab53c6112e3d4621b1717289b3c522bb90816

Public

Stage

_images/register_list.png
Registered ODSs

Name URL Date Registered Stage Firewalled Mode

oDs 1 http:/192.168.99.100/ 2017-11-09 10:48 PM Prod Disabled

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_images/register_with.png
ODS : Network

Register with a ODS

R

http://192.168.99.100

| s

bS6eebbb-64aa-4382-bE H Key

Admin

Register

_images/admin_update_modal.png
Name
| Docker oDs
URL

‘ http:/iocalhost
Deploy Stage

| Prod
Firewalled Mode

| Disabled

- Sor

_images/packages_upload.png
<[> @ [localhost 3! ER=

ODS : Package Manager Admin

Upload a Package

‘ Select File | NoMAD.pkg ”Prnd

_images/admin.png
e0e <> m localhost ¢ o) a

Packages Network LogoutCe

Name URL I1sSID Key stage Firewalled Mode
ops null e7becdda9ad046i6a78i69ef59169835 Prod Disabled

System Information

CPU Total Used Available DiskSpace DiskSpace DiskSpace Network Bytes Network Bytes System
Count Memory Memory Memory Total Used Free sent Received Uptime

2 15GB 4289MB 887.7MB 62.7GB 33GB 56.2GB 221KB 16.2KB 6:48:12

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Open Distribution Server Technologies

 		Initial Setup

 		Login

 		Server Administration

 		ODS Registration

 		Package Management

 		Known Issues

 		File Syncing

 		Admin API

 		Endpoints

 		Reference

 		The Python Environment

 		Pipenv

 		Installing Package Dependencies

 		Application Configuration

 		Environment Variables

 		Database Configuration

 		Example Docker Compose Setup

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

