

 Navigation

 	
 index

 	
 next |

 	Odoo Documentation 8.0rc1 documentation

Odoo Documentation

Welcome to the Odoo Documentation Homebase. Any question that might be left unanswered, you can ask the experts at forum.odoo.com. When you feel ready don’t hesitate to contact your nearby implementation partner. (Link)
Below, we gathered together the most interesting articles for you. Enjoy the steep learning curve with which we aim to provide you here!

Note

If you consider yourself a user, pleas note, that we have built in great walk-through into the software itself. You can just explore:

	For Playing: Clean Database (link: demo.odoo.com/clean)

	For Exploring: Full Demo-Database (link: demo.odoo.com/full)

	Customers
	PwrUser/Consultant
	Web-Designer
	Developer

	Welcome to Odoo
	Welcome to Odoo
	Welcome to Odoo
	Welcome to Odoo

	Installation
	Installation
	Installation
	Installation

	Apps Docu
	Apps Docu
	Apps Docu
	Apps Docu

	
	Tutorial: PowerUser
	Tutorial: Web-Designer
	Tutorial: Developper

Table is better than the following structure, right?

Customers

	Welcome to Odoo

	Installation

	Apps Docu

Power Users / Consultants

	Welcome to Odoo

	Installation

	Apps Docu

	Tutorial: PowerUser

Web-Designers

	Welcome to Odoo

	Installation

	Apps Docu

	Tutorial: Web-Designer

Developers

	Welcome to Odoo

	Installation

	Apps Docu

	Tutorial: Developper

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Welcome to Odoo

Overview

[General Onboearding Video for Customers and PowerUsers/Developers alike]

Audiences

The target audience of this documentation are Customers, PowerUsers and Developers alike.
For your ease, we will give you a hint on top of every page, if it is meant for your audience.
If you want to get answers about the actual how-to-this’, how-to-thats you will have a great learning experience
with our walk-throughs built into the software.

Structure

The structure of the whole documentation (not this document, but the whole documentation topic)

	This “Homebase”

	Forum

	Implementation Partners / Bilateral

	Walk-Trhough

	Code

(By now the structure of this documentation should be clear already, so - althoug the title - not a topic here)

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Installation

Overview

Installation of Odoo is really easy. We built a comprehensive library of best
practices coded into a human readable installation protocol language called Ansible.
Those protocols are well commented so you might find all the information you need right at the source.

What you need for a kickstart is:

	1
2
3
4
5

	ubuntu 14.04 LTS # A local Virtual Machine is recommended, you can find some preconfigured boxes at vagrant.com/odoo
if Windows == True: Oracle VirtualBox
sudo apt-get install ansible # you cann browse available protocols ("playbooks") here: www.github.com/odoo/playbooks
Probably you should adapt them to your needs, they are all very well commented
ansible go # that's it

Dev-Tools

If you want start coding, we collected here some tools we love:

	Pycharm

	Vim

	Vagrant/Docker Environment

	A collection of useful and approved code snippets for your IDE: link here to a github

	Xpath browser

(with links to further information)

Security and Performance

Advanced section, which is written in a way that lets the customer know, that this is all very secure and very performant, cutting edge technology

Scalability

Here some vps, opennebula, amazon, private serverfarm, etc... stuff to guide (professionals) AND impress (customers)

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Apps Docu

Accounting

Features & Limitations

	Odoo
	SAP
	Header 3

	lila
	blue
	column 3

	easy
	Very difficult.

	Fast
	Slow and
costly.
	
	Cells

	contain

	blocks.

	Affordable

The Odoo Way

Typical highlevel workflows explained to let customers/powerusers quickly know if it is compliant with their needs, or where they need to dig further

-> prominent and highlighted link to walk-through

Module Index

module 1

autogenerated with short description (from sourcecode)

	Feature
	Description

	lila
	blue column 3

	easy
	Very difflt.

	Fast
	Slow and - Cells
costly. - contain

	blocks.

	Affordable

class1

	English Name
	Python Name
	Type
	Help String
	visible

	Is Company?
	is_company
	bol
	blablabla
	yes

	Category
	category_id
	m2m
	blablabla
	yes/no

Field glossary (sic!) with english name, technical name, help string - should be somewhat grouped per class and should be indicated if it is visible or not.

class2

class3

module 2

...

module 3

...

Manufacturing

[...]

etcetera

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Tutorial: PowerUser

(really needed?)

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Tutorial: Web-Designer

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Odoo Documentation 8.0rc1 documentation

Tutorial: Developper

All basic concepts explained generically. For detailed understanding provide commented/”hinted” links to source code.

Module-Design

Viewdesign

explain clearly every concept (such as: xpath (with tools), inheritance, priority, client side vs backend execution (!!!), available xml-tags)
but let views itself unexplained (refer probably to field glossary in the apps documentation and see visibility there)

Reports/Output

QWeb

Security

Odoo-Inheritance

Api-Documentation

(link to structured, searchable documentation)

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Odoo Documentation 8.0rc1 documentation

Index

 Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/down.png

_static/02_mvc_diagram.png
aaaaaaaaaa

_images/hellobootstrap.png
Hello, worid!

_static/ajax-loader.gif

_images/helloworld.png
Hello, world!

_static/minus.png

_static/02_openerp_architecture.png
GTK client

Web Web
browser browser
OpenERP OpenERP

Web Web
HTTPI
HTTPS
< > =] =
XMLRPC/ urrpy | load
XMLRPCS HTTPS | balance

Web

Web

OpenERP Server OpenERP Server

ORM ORM

Database
PostgreSQL

_static/comment.png

howto/howto_website.html

 Navigation

 		
 index

 		Odoo Documentation 8.0rc1 documentation »

Howto: build a website with OpenERP

Warning

This guide assumes basic knowledge of python [http://docs.python.org/2/tutorial/].

This guide assumes an OpenERP installed and ready for development.

For production deployment, see the dedicated guides using-gunicorn
and using-mod-wsgi.

Creating a basic module

In OpenERP, doing things takes the form of creating modules, and these modules
customize the behavior of the OpenERP installation. The first step is thus to
create a module: at the command-line, go to your server’s directory and enter

$./oe scaffold Academy ../my-modules

This will build a basic module for you in a directory called my-modules
right next to your server’s directory:

academy
├── __init__.py
├── __openerp__.py
├── controllers
│ ├── __init__.py
│ └── academy.py
├── models
│ ├── __init__.py
│ └── academy.py
└── security
 └── ir.model.access.csv

		academy is the root directory of your module

		__init__.py tells Python that it is a valid package, and imports
sub-packages and sub-modules

		__openerp__.py provides various meta-information about your module to
OpenERP (a short description, the module’s dependencies, its author, its
version, ...)

		controllers holds the object responding to web (browser) requests
- academy.py is where a default controller has been created for you

		models holds OpenERP stored objects, ignore it for now, we’ll dive into
it when storing data in OpenERP

		ir.model.access.csv defines basic access rights to the models, you can
also ignore it for now

Now we can create a database, start your OpenERP server and install your new
module in it:

$ createdb academy
$./openerp-server --addons-path=addons,../my-modules \
 -d academy -i academy --db-filter=academy

		--addons-path tells OpenERP where it can find its modules. By default it
will only look into openerp/addons, this adds the web client modules,
the “standard” business modules (not needed yet) and the place where your
own academy module lives.

		-i installs the provided module name in the database specified via
-d

		--db-filter means the specified database will be selected by default in
the web interface, and will be the only one selectable (makes starting
things up simpler)

Once the installation is finished you should see HTTP service (werkzeug)
running on 0.0.0.0:8069 and nothing more happening in the log. You can now
open a web browser and navigate to http://localhost:8069. A page should
appear with just the words “Hello, world!” on it:

[image: ../_images/helloworld.png]
This page is generated by the index method in
academy/controllers/academy.py, which just returns some text. Let’s
make it prettier by returning HTML and using bootstrap [http://getbootstrap.com] to get a nicer default
rendering:

controllers/academy.py
class academy(main.Home):
 @http.route('/', auth='none')
 def index(self):
 return """<!doctype html>
<link href="/web/static/lib/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<body class="container">
 Hello, world!
</body>
"""

Restart the server, refresh the page

[image: ../_images/hellobootstrap.png]
Although it is subtle for so little text and markup, the font has changed and
margins have been added to the page.

Note

this example requires internet access as we’re accessing a CDN-hosted file.

Note

At this point, the OpenERP server has no autoreloader. Every time you
Python code (and later templates or data files), you should restart the
server using the original startup instruction (without the re-creation of
the database)

Controller Parameters

For dynamic pages, query parameters are passed as string parameters to the
controller method. For instance the index page can display a list of teaching
assistants, and link to each assistant’s page using an index (in a global
array for now):

controllers/academy.py
from openerp import http
from openerp.addons.web.controllers import main

teaching_assistants = [
 {'name': "Diana Padilla"},
 {'name': "Jody Carroll"},
 {'name': "Lester Vaughn"},
 {'name': "Paul Jimenez"},
 {'name': "Tanya Harris"},
]

class academy(main.Home):
 @http.route('/', auth='none')
 def index(self):
 tas = [
 '%s' % (i, ta['name'])
 for i, ta in enumerate(teaching_assistants)
]

 return """<!doctype html>
<link href="/web/static/lib/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<body class="container">
 <h1>Introduction to something</h1>
 <h2>Teaching Assistants</h2>

 %(tas)s

</body>
""" % {
 'tas': '\n'.join(tas)
 }

 @http.route('/tas', auth='none')
 def ta(self, id):
 return """<!doctype html>
<html>
 <head>
 <title>AcademyAcademy TA %(name)s</title>
 <link href="/web/static/lib/bootstrap/css/bootstrap.min.css" rel="stylesheet">
 </head>
 <body class="container">
 <h1>%(name)s</h1>
 </body>
</html>
""" % teaching_assistants[int(id)]

No validation is performed on query input values, it could be missing
altogether (if a user accesses /tas/ directly) or it could be incorrectly
formatted. For this reason, query parameters are generally used to provide
“options” to a given page, and “required” data tends (when possible) to be
inserted directly in the URL.

This we can do by adding converter patterns [http://werkzeug.pocoo.org/docs/routing/#rule-format] to the URL in @http.route:

controllers/academy.py
 @http.route('/', auth='none')
 def index(self):
 tas = [
 '%s' % (i, ta['name'])
 for i, ta in enumerate(teaching_assistants)
]

 'tas': '\n'.join(tas)
 }

 @http.route('/tas/<int:id>/', auth='none')
 def ta(self, id):
 return """<!doctype html>
<html>

 <h1>%(name)s</h1>
 </body>
</html>
""" % teaching_assistants[id]

These patterns will generally do some validation (e.g. if the id is not
a valid integer the converter will result in a 404 Not Found page instead
of a 500 server error when the conversion failed in our own code) and may
perform some parsing or type conversion (in this case the conversion from a
URL section — a string — to a Python integer).

Basic templates

So far we’ve output HTML by munging strings. It works, but is not exactly fun
to edit (and somewhat unsafe to boot) as even advanced text editors have a
hard time understanding they’re dealing with HTML embedded in Python code.

The usual solution is to use templates [http://en.wikipedia.org/wiki/Web_template], documents with placeholders which can
be “rendered” to produce final pages (or others). OpenERP lets you use any
Python templating system you want, but bundles its own QWeb templating system which we’ll later see offers some useful
features.

Let’s move our 2 pseudo-templates from inline strings to actual templates:

__openerp__.py
 # any module necessary for this one to work correctly
 'depends': ['web'],
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',
],
 'tests': [
],
}

controllers/academy.py
 '%s' % (i, ta['name'])
 for i, ta in enumerate(teaching_assistants)
]
 return http.request.render('academy.index', {
 'tas': '\n'.join(tas)
 })

 @http.route('/tas/<int:id>/', auth='none')
 def ta(self, id):
 return http.request.render('academy.ta', teaching_assistants[id])

views/templates.xml
<openerp>
 <data>
<template id="index" name="Index">
 <html>
 <head>
 <title>AcademyAcademy</title>
 <link href="/web/static/lib/bootstrap/css/bootstrap.min.css" rel="stylesheet"/>
 </head>
 <body class="container">
 <h1>Introduction to a thing</h1>
 <h2>Course description</h2>
 <p>
 This course will provide a basic introduction to a thing, for
 motivated students with no prior experience in things. The course
 will focus on the discovery of things and the planning and
 organization necessary to handle things.
 </p>
 <h2>Teaching Assistants</h2>

 <t t-raw="tas"/>

 </body>
 </html>
</template>

<template id="ta" name="Teaching Assistant">
 <html>
 <head>
 <title>AcademyAcademy TA <t t-esc="name"/></title>
 <link href="/web/static/lib/bootstrap/css/bootstrap.min.css" rel="stylesheet"/>
 </head>
 <body class="container">
 <h1><t t-esc="name"/></h1>
 </body>
 </html>
</template>

 </data>
</openerp>

This simplifies the controller code by moving data formatting out of it, and
generally makes it simpler for designers to edit the markup.

Note

You’ll need to update the module to install the new templates

OpenERP’s Website support

OpenERP 8 is bundled with new modules dedicated specifically to building
websites (whether it be simply sets of pages or more complex components such
as blogs).

First, we’ll install the website module: restart your server with

$./openerp-server --addons-path=addons,../my-modules \
 -d academy -i website --db-filter=academy

If you navigate to your openerp [http://localhost:8069/], your basic page may have been replaced by
the generic index page of the website module. Don’t panic! (if it has not
been replaced, don’t panic either). The problem here is that both website
and academy try to handle the / (root) URL, and which one gets it
depends on the order in which they’re loaded (the last loaded module gets the
last say), which itself depends on a bunch of irrelevant stuff and is
essentially non-deterministic at this point.

To make loading order deterministic, we can add website as a dependency
to academy:

__openerp__.py
 'version': '0.1',

 # any module necessary for this one to work correctly
 'depends': ['website'],
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',

controllers/academy.py
class academy(main.Home):
 @http.route('/', auth='none')
 def index(self):
 return http.request.render('academy.index', {
 'tas': teaching_assistants,
 })

 @http.route('/tas/<int:id>/', auth='none')

views/templates.xml
 </p>
 <h2>Teaching Assistants</h2>

 <li t-foreach="tas" t-as="ta">
 <a t-att-href="url_for('/tas/%d/' % ta_index)">
 <t t-esc="ta['name']"/>

 </body>
 </html>

This tells OpenERP that academy needs website to work correctly, and
that it must only be loaded after website has already been loaded. This
ensures academy‘s index page overwrites website‘s.

Note

because a change in dependencies is a metadata alteration, you’ll need
to force an update to your module: restart your server with

$./openerp-server --addons-path=addons,../my-modules \
 -d academy -u academy --db-filter=academy

instead of the previous command (note: -i was replaced by -u)

If you reload your openerp [http://localhost:8069/], you can see that your old index page hasn’t
changed at all. Which is odd since we wanted to use the new website
tools.

That is because much of these tools are inserted and enabled by the “layout
template” provided by website. Let’s use that layout instead of our own
page structure:

controllers/academy.py
]

class academy(main.Home):
 @http.route('/', auth='public', website=True)
 def index(self):
 return http.request.render('academy.index', {
 'tas': teaching_assistants,
 })

 @http.route('/tas/<int:id>/', auth='public', website=True)
 def ta(self, id):
 return http.request.render('academy.ta', teaching_assistants[id])

views/templates.xml
<openerp>
 <data>
<template id="academy.index" name="Index">
 <t t-call="website.layout">
 <div id="wrap">
 <div class="oe_structure"/>
 <div class="oe_structure">
 <div class="container">
 <h1>Introduction to a thing</h1>
 <h2>Course description</h2>
 <p>
 This course will provide a basic introduction to a thing, for
 motivated students with no prior experience in things. The course
 will focus on the discovery of things and the planning and
 organization necessary to handle things.
 </p>
 <h2>Teaching Assistants</h2>

 <li t-foreach="tas" t-as="ta">
 <a t-att-href="url_for('/tas/%d/' % ta_index)">
 <t t-esc="ta['name']"/>

 </div>
 </div>
 <div class="oe_structure"/>
 </div>
 </t>
</template>

<template id="academy.ta" name="Teaching Assistant">
 <t t-call="website.layout">
 <div id="wrap">
 <div class="oe_structure"/>
 <div class="oe_structure">
 <div class="container">
 <h1><t t-esc="name"/></h1>
 </div>
 </div>
 <div class="oe_structure"/>
 </div>
 </t>
</template>

 </data>

		website.layout is the main Website layout, it provides standard headers
and footers as well as integration with various customization tools.

		there’s quite a bit of complex markup, used as hooks for various features
(e.g. snippets). Although technically not mandatory, some things will not
work if they’re not there.

Reload your openerp [http://localhost:8069/], the page has changed and new content has appeared
(footer, menus, …) but there’s still no advanced edition tools in sight, as
you are not yet logged-in. Click on the Sign In link, fill in your
credentials (admin/admin by default), click Log in.

You’re now in OpenERP “proper”, the backend/administrative interface. We’ll
deal with it in a latter section. For
now, click on the Website menu item in the top-left of the
browser, between Messaging and Settings.

You’re back to your website, but are now an administrator and thus have access
to the advanced edition features of an OpenERP-built website.

		if you go in the HTML editor (Customize ‣ HTML Editor),
you can see and edit your template

		if you click the Edit button in the top left, you’ll switch
to “Edition Mode” where the blocks (snippets) and rich text edition are
available.

		there are a number of other features in the advanced editor, which we will
not cover here

You can play around and add blocks or edit content on the home page, however
if you go to a TA’s page and edit it things seem to work at first (e.g. insert
a image-text snippet to one of the TAs, as if adding a picture
and a short bio), but if you go to a different TA’s page after saving the
first one… he has the exact same snippet inserted (and the same content, if
you edited the snippet’s content)!

Because snippets are added in the template itself, they’re content which is
the same across all pages using that template, and all the teaching assistants
share the same template (academy.ta).

Thus snippets are mostly for generic content, when a given template is only
used for a single page, or to add content in HTML fields.

Note

When creating a new page (e.g. via Content ‣ New Page),
OpenERP will duplicate a “source” template, and create a new template for
each page. As a result, it’s safe to use dedicated-content snippets for
“static” pages.

Storing data in OpenERP

The conceptual storage model of OpenERP is simple: there are storage tables,
represented by OpenERP models, and inside these tables are records. The first
step, then, is to define a model.

We’ll start by moving our teaching assistants in the database:

controllers/academy.py
from openerp import http
from openerp.addons.web.controllers import main

class academy(main.Home):
 @http.route('/', auth='public', website=True)
 def index(self):
 tas = http.request.env['academy.tas'].search([])
 return http.request.render('academy.index', {
 'tas': tas,
 })

 @http.route('/tas/<int:id>/', auth='public', website=True)

models/academy.py
from openerp.models import Model
from openerp.fields import Char

class TeachingAssistants(Model):
 _name = "academy.tas"

 name = Char()

security/ir.model.access.csv
id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_unlink
access_academy_tas,access_academy_tas,model_academy_tas,,1,0,0,0

views/templates.xml
 <h2>Teaching Assistants</h2>

 <li t-foreach="tas" t-as="ta">
 <a t-att-href="url_for('/tas/%d/' % ta['id'])">
 <t t-esc="ta['name']"/>

We’ve also altered the index method slightly, to retrieve our teaching
assistants from the database instead of storing them in a global list in the
module[1].

Note

ir.model.access.csv is necessary to tell OpenERP that any
user can see the teaching assistants: by default, only the
administrator can see, edit, create or destroy objects. Here, we
only change the read permission to allow any user to list and
browse teaching assistants.

Update the module, reload your openerp [http://localhost:8069/]… and the Teaching Assistants list is
empty since we haven’t put any TA in the database.

Let’s add them in data files:

__openerp__.py
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',
 'data/teaching_assistants.xml',
],
 'tests': [
],

data/teaching_assistants.xml
<openerp>
 <data>
 <record id="padilla" model="academy.tas">
 <field name="name">Diana Padilla</field>
 </record>
 <record id="carroll" model="academy.tas">
 <field name="name">Jody Carroll</field>
 </record>
 <record id="vaughn" model="academy.tas">
 <field name="name">Lester Vaughn</field>
 </record>
 <record id="jimenez" model="academy.tas">
 <field name="name">Paul Jimenez</field>
 </record>
 <record id="harris" model="academy.tas">
 <field name="name">Tanya Harris</field>
 </record>
 </data>
</openerp>

Update the module again, reload your openerp [http://localhost:8069/] and the TAs are back.

Warning

if you can’t see your data, check that you have reloaded the
server with -i academy, not -u academy, new data files
are not installed with -u.

Click on a TA name, and you’ll see an error message. Let’s fix the TA view
now:

controllers/academy.py
 })

 @http.route('/tas/<model("academy.tas"):ta>/', auth='public', website=True)
 def ta(self, ta):
 return http.request.render('academy.ta', {
 'ta': ta,
 })

views/templates.xml
 <div class="oe_structure"/>
 <div class="oe_structure">
 <div class="container">
 <h1><t t-esc="ta.name"/></h1>
 </div>
 </div>
 <div class="oe_structure"/>

There are a few non-obvious things here, so let’s go through them for clarity:

		OpenERP provides a has a special converter pattern [http://werkzeug.pocoo.org/docs/routing/#rule-format], which knows how to
retrieve OpenERP objects by identifier. Instead of an integer or other
similar basic value, ta thus gets a full-blown academy.tas object,
without having to retrieve it by hand (as is done in index).

		However because the model() converter pattern [http://werkzeug.pocoo.org/docs/routing/#rule-format] takes an identifier, we
have to alter the creation of ta‘s URL to include such an identifier,
rather than an index in an array

		Finally, website.render() wants a dict as its rendering context, not an
object, which is why we wrap our ta object into one.

We’re still where we started this section though: if we add snippets to or
edit the text of a TA’s page, these editions will be visible across all TA
pages since they’ll be stored in the shared academy.ta template.

Not only that, but we can not even edit the TA’s name, even though it’s not
shared content.

Let’s fix that first, instead of using the basic “display this content”
template tag t-esc, we’ll use one aware of OpenERP objects and their
fields:

views/templates.xml

 <li t-foreach="tas" t-as="ta">
 <a t-att-href="url_for('/tas/%d/' % ta['id'])">

 <div class="oe_structure"/>
 <div class="oe_structure">
 <div class="container">
 <h1 t-field="ta.name"/>
 </div>
 </div>
 <div class="oe_structure"/>

Update the module, go into a TA page and activate the edition mode. If you
move your mouse over the TA’s name, it is surrounded by a yellow border, and
you can edit its content. If you change the name of a TA and save the page,
the change is correctly stored in the TA’s record, the name is fixed when you
go to the index page but other TAs remain unaffected.

For the issue of customizing our TA profiles, we can expand our model with a
“freeform” HTML field:

models/academy.py
-*- coding: utf-8 -*-
from openerp.models import Model
from openerp.fields import Char, Html

class TeachingAssistants(Model):
 _name = "academy.tas"

 name = Char()
 biography = Html()

Then, insert the new biographical content in the template using the same
object-aware template tag:

views/templates.xml
 <div class="oe_structure">
 <div class="container">
 <h1 t-field="ta.name"/>
 <h2>Biography</h2>
 <div t-field="ta.biography"/>
 </div>
 </div>
 <div class="oe_structure"/>

Update the module, browse to a TA’s page and open the edition mode (using the
Edit button in the window’s top-right). The empty HTML field now
displays a big placeholder image, if you drop snippets in or write some
content for one of the teaching assistants, you will see that other TA
profiles are unaffected.

A more complex model

Up to now, we’ve been working with displaying and manipulating objects
representing teaching assistants. It’s a basic and simple concept, but not one
which allows for much further diving into interesting tools of OpenERP.

We need an object fitting the theme yet allowing for richer interactions and
more interesting extensions. Course lectures seem to fit: they can be
displayed in various manners (e.g. as a list of lectures or as a calendar),
they can be moved around as necessary (cancelled/rescheduled), they can have
numerous pieces of data attached both intrinsic (lecture transcripts) and
extrinsic (attendance records, student discussions, etc…).

__openerp__.py
 'security/ir.model.access.csv',
 'views/templates.xml',
 'data/teaching_assistants.xml',
 'data/lectures.xml',
],
 'tests': [
],

controllers/academy.py
class academy(main.Home):
 @http.route('/', auth='public', website=True)
 def index(self):
 lectures = http.request.env['academy.lectures'].search([])
 tas = http.request.env['academy.tas'].search([])
 return http.request.render('academy.index', {
 'lectures': lectures,
 'tas': tas,
 })

data/lectures.xml
<openerp>
 <data>
 <record model="academy.lectures" id="lecture1">
 <field name="name">Lecture 1</field>
 <field name="date">2014-01-06</field>
 </record>
 <record model="academy.lectures" id="lecture2">
 <field name="name">Lecture 2</field>
 <field name="date">2014-01-08</field>
 </record>
 <record model="academy.lectures" id="lecture3">
 <field name="name">Lecture 3</field>
 <field name="date">2014-01-10</field>
 </record>
 <record model="academy.lectures" id="lecture4">
 <field name="name">Lecture 4</field>
 <field name="date">2014-01-13</field>
 </record>
 <record model="academy.lectures" id="lecture5">
 <field name="name">Lecture 5</field>
 <field name="date">2014-01-15</field>
 </record>
 </data>
</openerp>

models/academy.py
-*- coding: utf-8 -*-
from openerp.models import Model
from openerp.fields import Char, Html, Date

class TeachingAssistants(Model):
 _name = "academy.tas"

 name = Char()
 biography = Html()

class Lectures(Model):
 _name = 'academy.lectures'
 _order = 'date ASC'

 name = Char(required=True)
 date = Date(required=True)

security/ir.model.access.csv
id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_unlink
access_academy_tas,access_academy_tas,model_academy_tas,,1,0,0,0
access_academy_lectures,access_academy_lectures,model_academy_lectures,,1,0,0,0

views/templates.xml

 <h2>Course Calendar</h2>
 <table class="table table-condensed table-hover">
 <tr>
 <th>Date</th>
 <th>Day</th>
 <th>Topic</th>
 </tr>
 <tr t-foreach="lectures" t-as="lecture">
 <td>
 <span t-field="lecture.date"
 t-field-options='{"format": "long"}'/>
 </td>
 <td>
 <span t-field="lecture.date"
 t-field-options='{"format": "EEE"}'/>
 </td>
 <td>

 </td>
 </tr>
 </table>
 </div>
 </div>
 <div class="oe_structure"/>

Note a new feature: t-field tags can take options through
t-field-options. The options must be a JSON [http://www.json.org] object. Available options
depend on the field’s type and potentially the display widget (some types
of fields can be displayed in multiple manners). In this case, the same
date field is displayed using custom date formats, one being the generic
long (which depends on the current user’s locale) and the other being
an explicit format for the weekday in short form [http://babel.pocoo.org/docs/dates/#date-fields].

Note

in edition mode, formatted date and datetime fields revert to a
canonical representation in order to provide all of the field’s
information.

Warning

if you edit the course’s dates, you will notice that the two displays of
the date field are not synchronized, if one is edited the second one
will not change until the edition is saved. This is a limitation of the
current website but may be improved in future releases.

Administration and ERP Integration

In practice, the data we’ve created so far using XML data files is usually
stored as “demo data”, used for testing and demonstrations of modules, and the
actual user data is input via the OpenERP “backend”, which we’re going to try
out now. First let’s move our data set to demo data:

__openerp__.py
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',
],
 'demo': [
 'demo/teaching_assistants.xml',
 'demo/lectures.xml',
],
 'tests': [
],

demo/lectures.xml

demo/teaching_assistants.xml

the difference is simply that new databases can be created either in “demo”
mode or in “no demo” mode. In the former case, the database will be preloaded
with any demo data configured in the installed module.

A brief and incomplete introduction to the OpenERP administration

You’ve already seen it for a very short time in OpenERP’s Website support,
you can go back to it using Administrator ‣ Administration
if you’re already logged-in (which you should be), or go through
Sign In again if you are not.

The conceptual structure of the OpenERP backend is simple:

		first are menus, menus are a tree (they can have sub-menus). To menus
without children is mapped…

		an action. Actions have various types, they can be links, reports (PDF),
code which the server should execute or window actions. Window actions
tell the client to display the OpenERP object according to certain views…

		a view has a type, the broad category to which it corresponds (tree, form,
graph, calendar, …) and its architecture which represents the way the
object is laid out inside the view.

By default, when an OpenERP object is defined it is essentially invisible in
the interface. To make it visible, it needs to be available through an action,
which itself needs to be reachable somehow, usually a through a menu.

Let us, then, create a menu and an action for our lectures:

__openerp__.py
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',
 'data/views.xml',
],
 'demo': [
 'demo/teaching_assistants.xml',

data/views.xml
<openerp>
 <data>
 <record id="action_academy_lecture" model="ir.actions.act_window">
 <field name="name">Academy lectures</field>
 <field name="res_model">academy.lectures</field>
 </record>

 <menuitem sequence="0" id="menu_academy" name="Academy"/>
 <menuitem id="menu_academy_content" parent="menu_academy"
 name="Academy Content"/>
 <menuitem id="menu_academy_content_lectures"
 parent="menu_academy_content"
 action="action_academy_lecture"/>
 </data>
</openerp>

Note

if a requested view does not exist, OpenERP will automatically generate a
very basic one on-the-fly. That is the case here as we have not yet
created a list and a form view for the lectures.

If you reload the backend, you should see a new menu Academy
at the top-left corner, before Messaging. In it is the
submenus we defined via menuitem, and within (the first submenu is
selected by default) opens a list view of the lectures. To the right is a
series of 2 buttons, which lets you toggle between the “list” view (overview
of all records in the object) and the “form” view (view an manipulation of a
single record). The Create button above the list lets you create
new record, you can select records to delete them.

The names of the fields in the search and list view are automatically inferred
from the logical field names, but it’s probably a good idea to specify them
anyway, by adding a string to the model field:

models/academy.py
 _name = 'academy.lectures'
 _order = 'date ASC'

 name = Char(required=True, string="Name")
 date = Date(required=True, string="Date")

An issue is that the list view only displays the name field. To fix this,
we have to create an explicit list view for lectures:

data/views.xml
<openerp>
 <data>
 <record id="list_academy_lecture" model="ir.ui.view">
 <field name="model">academy.lectures</field>
 <field name="arch" type="xml">
 <tree string="Lectures">
 <field name="name"/>
 <field name="date"/>
 </tree>
 </field>
 </record>

 <record id="action_academy_lecture" model="ir.actions.act_window">
 <field name="name">Academy lectures</field>
 <field name="res_model">academy.lectures</field>

Reusing and customizing existing work

OpenERP and its standard modules provide a number of models which may already
solve your problem or part of your problem. Part of being a good OpenERP
developer is having an idea of existing models and how they can be retrofit
to your purposes.

For our courses, instead of developing teaching assistants and lectures from
scratch we could reuse existing OpenERP users (for teaching assistants) and
events (for lectures)[2], as well as the built-in website support
for events.

Install website_event (which will also install events) by restarting
the server as:

$./openerp-server --addons-path=addons,../my-modules \
 -d academy -i website_event --db-filter=academy

We’ll also add it as a dependency to our module:

__openerp__.py
 'version': '0.1',

 # any module necessary for this one to work correctly
 'depends': ['website', 'website_event'],
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',

Reload your openerp [http://localhost:8069/], click on the new Events item which
was added to the menu. This will be our new lectures page, but there are a few
adaptations to perform

Fixing the menu

The menu title is currently a generic Events, we only want lectures so we
will rename it to Lectures. Website menu items are defined through the
website.menu model, Events is defined by website_event and has the
external id website_event.menu_events, renaming it is as simple as
overwriting the name field for that record:

__openerp__.py
 'data': [
 'security/ir.model.access.csv',
 'views/templates.xml',
 'data/records.xml',
 'data/views.xml',
],
 'demo': [

data/records.xml
<openerp>
 <data noupdate="1">
 <record id="website_event.menu_events" model="website.menu">
 <field name="name">Lectures</field>
 </record>
 </data>
</openerp>

Restart the server with

$./openerp-server --addons-path=addons,../my-modules \
 -d academy -i academy --db-filter=academy

and the menu item has been renamed to Lectures.

Removing the sidebar

The filters sidebar is not necessary for our lectures. It can be removed in
the UI via Customize ‣ Filters (and new filters can be
added to the current filtering by date). Template customization is done by
adding and removing extension views, so much like the renaming of the menu,
we simply need to find the right record (here the Filters template view
extending the basic event page) and set its value correctly:

data/records.xml
 <record id="website_event.menu_events" model="website.menu">
 <field name="name">Lectures</field>
 </record>

 <record id="website_event.event_left_column" model="ir.ui.view">
 <field name="inherit_id" eval="False"/>
 </record>
 </data>
</openerp>

Note that the option is still available in Customize, we
have merely flipped the default around.

Simplifying templates

There are still two things to fix in the lectures list. First, remove the
Our Events link in the top-left corner, simply replace the breadcrumb
element by nothing:

views/templates.xml
 </t>
</template>

<template id="remove_events_breadcrumb" inherit_id="website_event.index">
 <xpath expr="//ol[hasclass('breadcrumb')]" position="replace"/>
</template>
 </data>
</openerp>

Second, remove the “organized by” and type rows in the event’s description,
keep only the datetime and location:

views/templates.xml
 </t>
</template>

<template id="simplify_events_list" inherit_id="website_event.index">
 <xpath expr="//ol[hasclass('breadcrumb')]" position="replace"/>
 <xpath expr="//ul[hasclass('media-list')]/li/div/div[1]" position="replace"/>
 <xpath expr="//ul[hasclass('media-list')]/li/div/div[hasclass('text-muted')]" position="replace"/>
</template>

 </data>
</openerp>

Moving lectures and TAs

The gist of the operation is fairly simple, but there are lots of changes:

		The custom models can be removed as we’ll be using standard objects

		The controller has to be altered to fetch from standard objects
(event.event and res.users), we’ll use groups to discriminate
between our academy objects and other demo objects, so that has to be used
as well

		HTML templates have to be slightly edited to match the new objects
(our lecture’s date field is replaced by event.event‘s
date_begin)

		Missing parts of the standard events have to be added (res.partner,
which is where “personal” informations are stored for res.users, does
not have a biographical field. We have to add it)

		Finally demo files must be converted, and existing demo data should be
purged if we do not need it (e.g. existing non-lectures events and event
types can be removed before adding our own)

Note

because we’re reusing the old XIDs on completely different models, we need
to either remove the old reference or (simpler) just drop and re-create
the database

__init__.py
-*- coding: utf-8 -*-
import controllers
import models

__openerp__.py
 # any module necessary for this one to work correctly
 'depends': ['website', 'website_event'],
 'data': [
 'views/templates.xml',
 'data/records.xml',
],
 'demo': [
 'demo/teaching_assistants.xml',

controllers/academy.py
class academy(main.Home):
 @http.route('/', auth='public', website=True)
 def index(self):
 ta_group = http.request.env.ref('academy.tas')
 tas = http.request.env['res.users'].search(
 [('groups_id', '=', [ta_group.id])]
)

 lecture_type = http.request.env.ref('academy.lecture_type')
 lectures = http.request.env['event.event'].search(
 [('type', '=', lecture_type.id)]
)

 return http.request.render('academy.index', {
 'lectures': lectures,
 'tas': tas,
 })

 @http.route('/tas/<model("res.users"):ta>/', auth='public', website=True)
 def ta(self, ta):
 return http.request.render('academy.ta', {
 'ta': ta,

demo/lectures.xml
<openerp>
 <data>
 <delete model="event.registration" search="[]"/>
 <delete model="event.event" search="[]"/>
 <delete model="event.type" search="[]"/>

 <record model="event.type" id="lecture_type">
 <field name="name">Lecture</field>
 </record>

 <record model="event.event" id="lecture1">
 <field name="name">Lecture 1</field>
 <field name="date_begin">2015-01-06 10:00:00</field>
 <field name="date_end">2015-01-06 12:00:00</field>
 <field name="type" ref="lecture_type"/>
 <field name="website_published" eval="True"/>
 </record>
 <record model="event.event" id="lecture2">
 <field name="name">Lecture 2</field>
 <field name="date_begin">2015-01-08 10:00:00</field>
 <field name="date_end">2015-01-08 12:00:00</field>
 <field name="type" ref="lecture_type"/>
 <field name="website_published" eval="True"/>
 </record>
 <record model="event.event" id="lecture3">
 <field name="name">Lecture 3</field>
 <field name="date_begin">2015-01-10 10:00:00</field>
 <field name="date_end">2015-01-10 12:00:00</field>
 <field name="type" ref="lecture_type"/>
 <field name="website_published" eval="True"/>
 </record>
 <record model="event.event" id="lecture4">
 <field name="name">Lecture 4</field>
 <field name="date_begin">2015-01-13 10:00:00</field>
 <field name="date_end">2015-01-13 12:00:00</field>
 <field name="type" ref="lecture_type"/>
 <field name="website_published" eval="True"/>
 </record>
 <record model="event.event" id="lecture5">
 <field name="name">Lecture 5</field>
 <field name="date_begin">2015-01-15 10:00:00</field>
 <field name="date_end">2015-01-15 12:00:00</field>
 <field name="type" ref="lecture_type"/>
 <field name="website_published" eval="True"/>
 </record>
 </data>
</openerp>

demo/teaching_assistants.xml
<openerp>
 <data>
 <record id="padilla_p" model="res.partner">
 <field name="name">Diana Padilla</field>
 </record>
 <record id="padilla" model="res.users">
 <field name="login">padilla</field>
 <field name="partner_id" ref="padilla_p"/>
 </record>

 <record id="carroll_p" model="res.partner">
 <field name="name">Jody Carroll</field>
 </record>
 <record id="carroll" model="res.users">
 <field name="login">carroll</field>
 <field name="partner_id" ref="carroll_p"/>
 </record>

 <record id="vaughn_p" model="res.partner">
 <field name="name">Lester Vaughn</field>
 </record>
 <record id="vaughn" model="res.users">
 <field name="login">vaughn</field>
 <field name="partner_id" ref="vaughn_p"/>
 </record>

 <record id="jimenez_p" model="res.partner">
 <field name="name">Paul Jimenez</field>
 </record>
 <record id="jimenez" model="res.users">
 <field name="login">jimenez</field>
 <field name="partner_id" ref="jimenez_p"/>
 </record>

 <record id="harris_p" model="res.partner">
 <field name="name">Tanya Harris</field>
 </record>
 <record id="harris" model="res.users">
 <field name="login">harris</field>
 <field name="partner_id" ref="harris_p"/>
 </record>

 <record id="tas" model="res.groups">
 <field name="name">Teaching Assistants</field>
 <field name="users" eval="[
 (4, ref('padilla')),
 (4, ref('carroll')),
 (4, ref('vaughn')),
 (4, ref('jimenez')),
 (4, ref('harris')),
]"/>
 </record>
 </data>
</openerp>

models/__init__.py
-*- coding: utf-8 -*-
import res_partner

models/res_partner.py
from openerp.models import Model
from openerp.fields import Html

class Partner(Model):
 _inherit = 'res.partner'

 biography = Html()

views/templates.xml
 </tr>
 <tr t-foreach="lectures" t-as="lecture">
 <td>
 <span t-field="lecture.date_begin"
 t-field-options='{"format": "long"}'/>
 </td>
 <td>
 <span t-field="lecture.date_begin"
 t-field-options='{"format": "EEE"}'/>
 </td>
 <td>

 <div class="oe_structure"/>
 <div class="oe_structure">
 <div class="container">
 <h1 t-field="ta.partner_id.name"/>
 <h2>Biography</h2>
 <div t-field="ta.partner_id.biography"/>
 </div>
 </div>
 <div class="oe_structure"/>

Our data is back in the fontend (site), and in the backend we get
administrative views for free, e.g. a calendar view of our lectures.

		[1]		the teaching assistants profile view ends up broken for now,
but don’t worry we’ll get around to it

		[2]		as a bonus, we get access rights and TA access to the
administrative backend “for free”

 © Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

_static/pull-request-version.png
0

odoo-dev/odoo

forked from odoo/odoo

I odoo|

7.0

17 odoo-dev: 7. 0-opw-602858-nat

® watch ~

100

* Star

15

¥ Forl

Edit

search.html

 Navigation

 		
 index

 		Odoo Documentation 8.0rc1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, OpenERP s.a..
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/03_module_gen_view.png
form B

calendar [l
Gantt B
Diagram [

shortcuts.
Actions

Menu Items

Python Code

OpenOffice Documents

Reports

Wizards |-

Workflows |-

Views -
Objects -

XMLFiles

Python Code

Object Relational Mapping

[} module_name.py -

Business Object

XML Files

(see "Views")
(see "Objects")

_static/file.png

_static/openerp.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

