

    
      Navigation

      
        	
          index

        	
          next |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Odo: Shapeshifting for your data

odo takes two arguments, a source and a target for a data transfer.

>>> from odo import odo
>>> odo(source, target)  # load source into target





It efficiently migrates data from the source to the target through a network
of conversions.


[image: odo network of conversions]



Example

>>> from odo import odo
>>> import pandas as pd

>>> odo('accounts.csv', pd.DataFrame)  # Load csv file into DataFrame
      name  balance
0    Alice      100
1      Bob      200
2  Charlie      300

>>> # Load CSV file into Hive database
>>> odo('accounts.csv', 'hive://user:password@hostname/db::accounts')








Contents


General



	Project Information

	Overview

	URI strings

	Data Types

	Drop

	Loading CSVs into SQL Databases

	Adding a new Backend

	Release Notes








Formats



	AWS

	CSV

	JSON

	HDF5

	Hadoop File System

	Hive Metastore

	Mongo

	Spark/SparkSQL

	SAS

	SQL

	SSH








Developer Documentation



	Type Modifiers

	Four Operations





Odo is part of the Open Source Blaze [http://continuum.io/open-source/blaze] projects supported by Continuum Analytics [http://continuum.io]









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Project Information


Getting Odo


	Releases

$ conda install odo







	Development Packages

$ conda install odo -c blaze







	PIP

$ pip install odo





$ pip install git+git://github.com/blaze/odo












Source

Odo development takes place on GitHub: https://github.com/blaze/odo.




Reporting Issues


	Bugs and feature requests can be filed here [https://github.com/blaze/odo/issues].

	The blaze development mailing list [https://groups.google.com/a/continuum.io/d/forum/blaze-dev] is good place to discuss ideas and ask questions about odo.









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Overview

Odo migrates between many formats.  These include
in-memory structures like list, pd.DataFrame and np.ndarray and
also data outside of Python like CSV/JSON/HDF5 files, SQL databases,
data on remote machines, and the Hadoop File System.


The odo function

odo takes two arguments, a source and a target for a data transfer.

>>> from odo import odo
>>> odo(source, target)  # load source into target





It efficiently migrates data from the source to the target.

The target and source can take on the following forms








	Source
	Target
	Example




	Object
	Object
	An instance of a DataFrame or list


	String
	String
Type
	'file.csv', 'postgresql://hostname::tablename'
list, DataFrame





So the following lines would be valid inputs to odo

>>> odo(df, list)  # create new list from Pandas DataFrame
>>> odo(df, [])  # append onto existing list
>>> odo(df, 'myfile.json')  # Dump dataframe to line-delimited JSON
>>> odo('myfiles.*.csv', Iterator) # Stream through many CSV files
>>> odo(df, 'postgresql://hostname::tablename')  # Migrate dataframe to Postgres
>>> odo('myfile.*.csv', 'postgresql://hostname::tablename')  # Load CSVs to Postgres
>>> odo('postgresql://hostname::tablename', 'myfile.json') # Dump Postgres to JSON
>>> odo('mongodb://hostname/db::collection', pd.DataFrame) # Dump Mongo to DataFrame






Warning

If the target in odo(source, target) already exists, it must be of a type that
supports in-place append.

>>> odo('myfile.csv', df) # this will raise TypeError because DataFrame is not appendable










Network Effects

To convert data any pair of formats odo.odo relies on a network of
pairwise conversions.  We visualize that network below


[image: odo network of conversions]
Each node represents a data format. Each directed edge represents a function
to transform data between two formats. A single call to odo may
traverse multiple edges and multiple intermediate formats.  Red nodes
support larger-than-memory data.



A single call to odo may traverse several intermediate formats calling on
several conversion functions.  These functions are chosen because they are
fast, often far faster than converting through a central serialization format.







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
URI strings

Odo uses strings refer to data outside of Python.

Some example uris include the following:

myfile.json
myfiles.*.csv'
postgresql://hostname::tablename
mongodb://hostname/db::collection
ssh://user@host:/path/to/myfile.csv
hdfs://user@host:/path/to/myfile.csv






What sorts of URI’s does odo support?


	
	Paths to files on disk

	
	.csv

	.json

	.txt/log

	.csv.gz/json.gz

	.hdf5

	.hdf5::/datapath

	.bcolz

	.xls(x)

	.sas7bdat









	
	Collections of files on disk

	
	*.csv









	
	SQLAlchemy strings

	
	sqlite:////absolute/path/to/myfile.db::tablename

	sqlite:////absolute/path/to/myfile.db  (specify a particular table)

	postgresql://username:password@hostname:port

	impala://hostname (uses impyla)

	anything supported by SQLAlchemy









	
	MongoDB Connection strings

	
	mongodb://username:password@hostname:port/database_name::collection_name









	
	Remote locations via SSH, HDFS and Amazon’s S3

	
	ssh://user@hostname:/path/to/data

	hdfs://user@hostname:/path/to/data

	s3://path/to/data














Separating parts with ::

Many forms of data have two paths, the path to the file and then the path
within the file.  For example we refer to the table accounts in a Postgres database like so:

postgresql://localhost::accounts





In this case the separator :: separates the database
postgreqsl://localhost from the table within the database, accounts.

This also occurs in HDF5 files which have an internal datapath:

myfile.hdf5::/path/to/data








Specifying protocols with ://

The database string sqlite:///data/my.db is specific to SQLAlchemy, but
follows a common format, notably:

Protocol:  sqlite://
Filename:  data/my.db





Odo also uses protocols in many cases to give extra hints on how to
handle your data.  For example Python has a few different libraries to
handle HDF5 files (h5py, pytables, pandas.HDFStore).  By default
when we see a URI like myfile.hdf5 we currently use h5py.  To
override this behavior you can specify a protocol string like:

hdfstore://myfile.hdf5





to specify that you want to use the special pandas.HDFStore format.

Note: sqlite strings are a little odd in that they use three
slashes by default (e.g. sqlite:///my.db) and four slashes when
using absolute paths (e.g. sqlite:////Users/Alice/data/my.db).




How it works

We match URIs by to a collection of regular expressions.  This is handled by
the resource function.

>>> from odo import resource
>>> resource('sqlite:///data.db::iris')
Table('iris', MetaData(bind=Engine(sqlite:///myfile.db)), ...)





When we use a string in odo this is actually just shorthand for calling
resource.

>>> from odo import odo
>>> odo('some-uri', list)            # When you write this
>>> odo(resource('some-uri'), list)  # actually this happens





Notably, URIs are just syntactic sugar, you don’t have to use them.  You can
always construct the object explicitly.  Odo invents very few types,
preferring instead to use standard projects within the Python ecosystem like
sqlalchemy.Table or pymongo.Collection.  If your application also uses
these types then it’s likely that odo already works with your data.




Can I extend this to my own types?

Absolutely.  Lets make a little resource function to load pickle files.

import pickle
from odo import resource

@resource.register('.*\.pkl')  # match anything ending in .pkl
def resource_pickle(uri, **kwargs):
    with open(uri) as f:
        result = pickle.load(f)
    return result





You can implement this kind of function for your own data type.  Here we just
loaded whatever the object was into memory and returned it, a rather simplistic
solution.  Usually we return an object with a particular type that represents
that data well.







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Data Types

We can resolve errors and increase efficiency by explicitly specifying data
types.  Odo uses DataShape [http://datashape.pydata.org/] to specify datatypes across all of the formats
that it supports.

First we motivate the use of datatypes with two examples, then we talk about
how to use DataShape.


Datatypes prevent errors

Consider the following CSV file:

name,balance
Alice,100
Bob,200
...
<many more lines>
...
Zelda,100.25





When odo loads this file into a new container (DataFrame, new SQL Table,
etc.) it needs to know the datatypes of the source so that it can create a
matching target.  If the CSV file is large then it looks only at the first few
hundred lines and guesses a datatype from that.  In this case it might
incorrectly guess that the balance column is of integer type because it doesn’t
see a decimal value until very late in the file with the line Zelda,100.25.
This will cause odo to create a target with the wrong datatypes which will
foul up the transfer.

Odo will err unless we provide an explicit datatype.  So we had this
datashape:

var * {name: string, balance: int64)





But we want this one:

var * {name: string, balance: float64)








Datatypes increase efficiency

If we move that same CSV file into a binary store like HDF5 then we can
significantly increase efficiency if we use fixed-length strings rather than
variable length.  So we might choose to push all of the names into strings of
length 100 instead of leaving their lengths variable.  Even with the wasted
space this is often more efficient.  Good binary stores can often compress away
the added space but have trouble managing things of indeterminate length.

So we had this datashape:

var * {name: string, balance: float64}





But we want this one:

var * {name: string[100], balance: float64}








What is DataShape?

DataShape is a datatype system that includes scalar types:

string, int32, float64, datetime, ...





Option / missing value types:

?string, ?int32, ?float64, ?datetime, ...





Fixed length Collections:

10 * int64





Variable length Collections:

var * int64





Record types:

{name: string, balance: float64}





And any composition of the above:

10 * 10 * {x: int32, y: int32}

var * {name: string,
       payments: var * {when: ?datetime, amount: float32}}








DataShape and odo

If you want to be explicit you can add a datashape to an odo call with the
dshape= keyword

>>> odo('accounts.csv', pd.DataFrame,
...      dshape='var * {name: string, balance: float64}')





This removes all of the guesswork from the odo heuristics.  This can
be necessary in tricky cases.




Use discover to get approximate datashapes

We rarely write out a full datashape by hand.  Instead, use the discover
function to get the datashape of an object.

>>> import numpy as np
>>> from odo import discover

>>> x = np.ones((5, 6), dtype='f4')
>>> discover(x)
dshape("5 * 6 * float32")





In self describing formats like numpy arrays this datashape is guaranteed to be
correct and will return very quickly.  In other cases like CSV files this
datashape is only a guess and might need to be tweaked.

>>> from odo import odo, resource, discover
>>> csv = resource('accounts.csv')  # Have to use resource to discover URIs
>>> discover(csv)
dshape("var * {name: string, balance: int64}")

>>> ds = dshape("var * {name: string, balance: float64")  # copy-paste-modify
>>> odo('accounts.csv', pd.DataFrame, dshape=ds)





In these cases we can copy-paste the datashape and modify the parts that we
need to change.  In the example above we couldn’t call discover directly on the
URI, 'accounts.csv', so instead we called resource on the URI first.
discover returns the datashape string on all strings, regardless of whether
or not we intend them to be URIs.




Learn More

DataShape is a separate project from odo.  You can learn more about it
at http://datashape.pydata.org/







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Drop

The odo.drop function deletes a data resource.  That data resource may
live outside of Python.


Examples

>>> from odo import drop
>>> drop('myfile.csv')                 # Removes file
>>> drop('sqlite:///my.db::accounts')  # Drops table 'accounts'
>>> drop('myfile.hdf5::/data/path')    # Deletes dataset from file
>>> drop('myfile.hdf5')                # Deletes file











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Loading CSVs into SQL Databases

When faced with the problem of loading a larger-than-RAM CSV into a SQL
database from within Python, many people will jump to pandas. The workflow goes
something like this:

>>> import sqlalchemy as sa
>>> import pandas as pd
>>> con = sa.create_engine('postgresql://localhost/db')
>>> chunks = pd.read_csv('filename.csv', chunksize=100000)
>>> for chunk in chunks:
...     chunk.to_sql(name='table', if_exist='append', con=con)





There is an unnecessary and very expensive amount of data conversion going on
here. First we convert our CSV into an iterator of DataFrames, then those
DataFrames are converted into Python data structures compatible with
SQLAlchemy. Those Python objects then need to be serialized in a way that’s
compatible with the database they are being sent to. Before you know it, more
time is spent converting data and serializing Python data structures than on
reading data from disk.


Use the technology that has already solved your problem well

Loading CSV files into databases is a solved problem. It’s a problem that has
been solved well. Instead of rolling our own loader every time we need to do
this and wasting computational resources, we should use the native loaders in
the database of our choosing. Odo lets you do this with a single line of code.




How does odo achieve native database loading speed?

Odo uses the native CSV loading capabilities of the databases it supports.
These loaders are extremely fast. Odo will beat any other pure Python approach
when loading large datasets. The following is a performance comparison of
loading the entire NYC taxi trip and fare combined dataset (about 33GB of text)
into PostgreSQL, MySQL, and SQLite3 using odo. Our baseline for comparison is
pandas.

NB: I’m happy to hear about other optimizations that I may not be taking
advantage of.




Timings


CSV → PostgreSQL (22m 64s)


	READS: ~50 MB/s

	WRITES: ~50 MB/s



The COPY command built into postgresql is quite fast. Odo generates code
for the COPY command using a custom SQLAlchemy expression.

In [1]: %time t = odo('all.csv', 'postgresql://localhost::nyc')
CPU times: user 1.43 s, sys: 330 ms, total: 1.76 s
Wall time: 22min 46s








PostgreSQL → CSV (21m 32s)

Getting data out of the database takes roughly the same amount of time as
loading it in.




pg_bulkload Command Line Utility (13m 17s)


	READS: ~50 MB/s

	WRITES: ~50 MB/s



A special command line tool called pg_bulkload exists solely for the
purpose of loading files into a postgresql table. It achieves its speedups by
disabling WAL (write ahead logging) and buffering. Odo doesn’t use this (yet)
because the installation requires several steps. There are also implications
for data integrity when turning off WAL.

$ time ./pg_bulkload nyc2.ctl < all.csv
NOTICE: BULK LOAD START
NOTICE: BULK LOAD END
        1 Rows skipped.
        173179759 Rows successfully loaded.
        0 Rows not loaded due to parse errors.
        0 Rows not loaded due to duplicate errors.
        0 Rows replaced with new rows.
./pg_bulkload nyc2.ctl < all.csv  26.14s user 33.31s system 7% cpu 13:17.31 total








CSV → MySQL (20m 49s)

In [1]: %time t = odo('all.csv', 'mysql+pymysql://localhost/test::nyc')
CPU times: user 1.32 s, sys: 304 ms, total: 1.63 s
Wall time: 20min 49s






	READS: ~30 MB/s

	WRITES: ~150 MB/s






MySQL → CSV (17m 47s)

In [1]: %time csv = odo('mysql+pymysql://localhost/test::nyc', 'nyc.csv')
CPU times: user 1.03 s, sys: 259 ms, total: 1.29 s
Wall time: 17min 47s






	READS: ~30 MB/s

	WRITES: ~30 MB/s



Similar to PostgreSQL, MySQL takes roughly the same amount of time to write a
CSV as it does to load it into a table.




CSV → SQLite3 (57m 31s*)

In [1]: dshape = discover(resource('all.csv'))

In [2]: %time t = odo('all.no.header.csv', 'sqlite:///db.db::nyc',
   ...:               dshape=dshape)
CPU times: user 3.09 s, sys: 819 ms, total: 3.91 s
Wall time: 57min 31s





* Here, we call discover on a version of the dataset that has the header
in the first line and we use a version of the dataset without the header line
in the sqlite3 .import command. This is sort of cheating, but I wanted to
see what the loading time of sqlite3’s import command was without the overhead
of creating a new file without the header line.




SQLite3 → CSV (46m 43s)


	READS: ~15 MB/s

	WRITES: ~13 MB/s



In [1]: %time t = odo('sqlite:///db.db::nyc', 'nyc.csv')
CPU times: user 2.7 s, sys: 841 ms, total: 3.55 s
Wall time: 46min 43s








Pandas


	READS: ~60 MB/s

	WRITES: ~3-5 MB/s



I didn’t actually finish this timing because a single iteration of inserting
1,000,000 rows took about 4 minutes and there would be 174 such iterations
bringing the total loading time to:

.. code-block:: python





>>> 175 * 4 / 60.0  
11.66...





11.66 hours!

Nearly 12 hours to insert 175 million rows into a postgresql database. The
next slowest database (SQLite) is still 11x faster than reading your CSV
file into pandas and then sending that DataFrame to PostgreSQL with the
to_pandas method.




Final Thoughts

For getting CSV files into the major open source databases from within Python,
nothing is faster than odo since it takes advantage of the capabilities of the
underlying database.

Don’t use pandas for loading CSV files into a database.









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Adding a new Backend

Q: How do I add new nodes to the odo graph?


Extend Functions

We extend Odo by implementing a few functions for each new type


	discover - Return the DataShape of an object

	convert - Convert data to new type

	append - Append data on to existing data source

	resource - Identify data by a string URI



We extend each of these by writing new small functions that we decorate with
types.  Odo will then pick these up, integrate them in to the network, and use
them when appropriate.




Discover

Discover returns the DataShape of an object.  Datashape is a potentially
nested combination of shape and datatype.  It helps us to migrate metadata
consistently as we migrate the data itself.  This enables us to emerge with the
right dtypes even if we have to transform through potentially lossy formats.


Example

>>> discover([1, 2, 3])
dshape("3 * int32")

>>> import numpy as np
>>> x = np.empty(shape=(3, 5), dtype=[('name', 'O'), ('balance', 'f8')])
>>> discover(x)
dshape("3 * 5 * {name: string, balance: float64}")








Extend

We import discover from the datashape library and extend it with a
type.

from datashape import discover, from_numpy

@discover(pd.DataFrame)
def discover_dataframe(df, **kwargs):
    shape = (len(df),)
    dtype = df.values.dtype
    return from_numpy(shape, dtype)





In this simple example we rely on convenience functions within datashape to
form a datashape from a numpy shape and dtype.  For more complex situations
(e.g. databases) it may be necessary to construct datashapes manually.






Convert

Convert copies your data in to a new object with a different type.


Example

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> convert(list, x)
[0, 1, 2, 3, 4]

>>> import pandas as pd
>>> convert(pd.Series, x)
0    0
1    1
2    2
3    3
4    4
dtype: int64








Extend

Import convert from odo and register it with two types, one for the target
and one for the source

from odo import convert

@convert.register(list, np.ndarray)
def array_to_list(x, **kwargs):
    return x.tolist()

@convert.register(pd.Series, np.ndarray)
def array_to_series(x, **kwargs):
    return pd.Series(x)










Append

Append copies your data in to an existing dataset.


Example

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> L = [10, 20, 30]
>>> _ = append(L, x)
>>> L
[10, 20, 30, 0, 1, 2, 3, 4]








Extend

Import append from odo and register it with two types, one for the target
and one for the source.  Usually we teach odo how to append from one
preferred type and then use convert for all others

from odo import append

@append.register(list, list)
def append_list_to_list(tgt, src, **kwargs):
    tgt.extend(src)
    return tgt

@append.register(list, object)  # anything else
def append_anything_to_list(tgt, src, **kwargs):
    source_as_list = convert(list, src, **kwargs)
    return append(tgt, source_as_list, **kwargs)










Resource

Resource creates objects from string URIs matched against regular expressions.


Example

>>> resource('myfile.hdf5')
<HDF5 file "myfile.hdf5" (mode r+)>

>>> resource('myfile.hdf5::/data', dshape='10 * 10 * int32')
<HDF5 dataset "data": shape (10, 10), type "<i4">





The objects it returns are h5py.File and h5py.Dataset respectively.  In
the second case resource found that the dataset did not exist so it created it.




Extend

We import resource from odo and register it with regular expressions

from odo import resource

import h5py

@resource.register('.*\.hdf5')
def resource(uri, **kwargs):
    return h5py.File(uri)










General Notes

We pass all keyword arguments from the top-level call to odo to all
functions.  This allows special keyword arguments to trickle down to the right
place, e.g. delimiter=';' makes it to the pd.read_csv call when
interacting with CSV files, but also means that all functions that you write
must expect and handle unwanted keyword arguments.  This often requires some
filtering on your part.

Even though all four of our abstract functions have a .register method they
operate in very different ways.  Convert is managed by networkx and path
finding, append and discover are managed by multipledispatch [http://github.com/mrocklin/multipledispatch], and
resource is managed by regular expressions.

Examples are useful.  You may want to look at some of the odo source for
simple backends for help


https://github.com/blaze/odo/tree/master/odo/backends








          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Release Notes


Release 0.3.4





	Release:	0.3.4


	Date:	September 15, 2015








New Features


	Added support for Spark 1.4 on Python 2.7 and Python 3.4 (#294 [https://github.com/blaze/odo/issues/294])






Experimental Features


Warning

Experimental features are subject to change.




	Add support for specifying primary and foreign key relationships in the SQL
backend (#274 [https://github.com/blaze/odo/issues/274]).






New Backends

None




Improved Backends


	Dialect discovery on CSV files now samples a subset of the file. This allows
S3(CSV) to have correct values for its dialect (#293 [https://github.com/blaze/odo/issues/293]).

	Loading a set of files on a s3 bucket with a prefix into a redshift database
now works (#293 [https://github.com/blaze/odo/issues/293]).






API Changes

None




Bug Fixes


	Cope with Dask and bcolz API changes (#270 [https://github.com/blaze/odo/issues/270]).

	Fixed a bug where columns in dshape were being ignored when converting
a numpy array to a DataFrame (#273 [https://github.com/blaze/odo/issues/273]).

	Fix appending into a sql table from chunks not returning the table.
(#278 [https://github.com/blaze/odo/issues/278]).

	Fix a bug where 'pytables://' wasn’t being properly stripped off the URI
(#292 [https://github.com/blaze/odo/issues/292])

	Fix a bug where a non-existent header row was being removed from an S3(CSV)
because the dialect was set incorrectly (#293 [https://github.com/blaze/odo/issues/293])

	Fix a bug where the SparkSQL backend wouldn’t work if we didn’t have paramiko installed (#300 [https://github.com/blaze/odo/issues/300])

	Fix a testing bug where the endlines were being compared and they
shouldn’t have been (#312 [https://github.com/blaze/odo/issues/312]).

	Fix a bug where sniffing multibyte encodings potentially chopped off
part of the encoded string (#309 [https://github.com/blaze/odo/issues/309], #311 [https://github.com/blaze/odo/issues/311]).






Miscellaneous


	Adds copydoc() function to copy docstrings from one object
onto another. This helps with the pattern of explicitly setting the
__doc__ attribute to the __doc__ of another function or class. This
function can be used as a decorator like: @copydoc(FromThisClass) or as a
function like: copydoc(FromThisClass, to_this_function). (#277 [https://github.com/blaze/odo/issues/277]).






Release 0.3.3





	Release:	0.3.3


	Date:	July 7th, 2015








New Backends

None




Improved Backends


	Implement SQL databases to CSV conversion using native the database dump (#174 [https://github.com/blaze/odo/issues/174], #189 [https://github.com/blaze/odo/issues/189], #191 [https://github.com/blaze/odo/issues/191], #199 [https://github.com/blaze/odo/issues/199]).

	Improve CSV header existence inference (#192 [https://github.com/blaze/odo/issues/192]).

	Non-standard schemas can be passed into resource() with the schema argument (#223 [https://github.com/blaze/odo/issues/223]).






API Changes


	unicode strings can be passed in as URIs to resource() (#212 [https://github.com/blaze/odo/issues/212]).






Bug Fixes


	Fixed writing compressed CSVs in Python 3 and Windows (#188 [https://github.com/blaze/odo/issues/188], #190 [https://github.com/blaze/odo/issues/190]).

	Dask API changes (#226 [https://github.com/blaze/odo/issues/226]).

	Fix some tests that would fail on binstar because they weren’t properly skipped (#216 [https://github.com/blaze/odo/issues/216]).

	PyTables API compatibility when given a integer valued float (#236 [https://github.com/blaze/odo/issues/236]).

	Default to None when plucking and a key isn’t found (#228 [https://github.com/blaze/odo/issues/228]).

	Fix gzip dispatching on JSON discovery (#243 [https://github.com/blaze/odo/issues/243]).

	~odo.chunks.Chunks wrapping iterators can now be discovered without
consuming the first element.









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
AWS


Dependencies


	boto [http://boto.readthedocs.org]

	sqlalchemy [http://docs.sqlalchemy.org/en/rel_0_9]

	psycopg2 [http://initd.org/psycopg]

	redshift_sqlalchemy [https://github.com/cpcloud/redshift_sqlalchemy]






Setup

First, you’ll need some AWS credentials. Without these you can only access
public S3 buckets. Once you have those, S3 interaction will work. For other
services such as Redshift, the setup is a bit more involved [http://docs.aws.amazon.com/redshift/latest/gsg/getting-started.html].

Once you have some AWS credentials, you’ll need to put those in a config file.
Boto has a nice doc page [http://boto.readthedocs.org/en/latest/boto_config_tut.html]
on how to set this up.

Now that you have a boto config, we’re ready to interact with AWS.




Interface

odo provides access to the following AWS services:


	S3 [http://aws.amazon.com/s3] via boto.

	Redshift [http://aws.amazon.com/redshift] via a SQLAlchemy dialect [https://github.com/cpcloud/redshift_sqlalchemy]






URIs

To access an S3 bucket, simply provide the path to the S3 bucket prefixed with
s3://


>>> csvfile = resource('s3://bucket/key.csv')








Accessing a Redshift database is the same as accessing it through SQLAlchemy


>>> db = resource('redshift://user:pass@host:port/database')








To access an individual table simply append :: plus the table name


>>> table = resource('redshift://user:pass@host:port/database::table')











Conversions

odo can take advantage of Redshift’s fast S3 COPY command. It works
transparently. For example, to upload a local CSV file called users.csv to a
Redshift table


>>> table = odo('users.csv', 'redshift://user:pass@host:port/db::users')








Remember that these are just additional nodes in the odo network, and as
such, they are able to take advantage of conversions to types that don’t have
an explicit path defined for them. This allows us to do things like convert an
S3 CSV to a pandas DataFrame


>>> import pandas as pd
>>> from odo import odo
>>> df = odo('s3://mybucket/myfile.csv', pd.DataFrame)











TODO


	Multipart uploads for huge files

	GZIP’d files

	JSON to Redshift (JSONLines would be easy)

	boto get_bucket hangs on Windows









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
CSV

Odo interacts with local CSV files through Pandas.


URIs

CSV URI’s are their paths/filenames

Simple examples of CSV uris:

myfile.csv
/path/to/myfile.csv.gz








Keyword Arguments

The standard csv dialect terms are usually supported:

has_header=True/False/None
encoding

delimiter
doublequote
escapechar
lineterminator
quotechar
quoting
skipinitialspace





However these or others may be in effect depending on what library is
interacting with your file.  Oftentimes this is the pandas.read_csv
function, which has an extensive list of keyword arguments [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html]




Conversions

The default paths in and out of CSV files is through Pandas DataFrames.
Because CSV files might be quite large it is dangerous to read them directly
into a single DataFrame.  Instead we convert them to a stream of medium sized
DataFrames.  We call this type chunks(DataFrame).:

chunks(DataFrame) <-> CSV





CSVs can also be efficiently loaded into SQL Databases:

CSV -> SQL











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
JSON

Odo interacts with local JSON files through the standard json library.


URIs

JSON URI’s are their paths/filenames

Simple examples of JSON uris:

myfile.json
/path/to/myfile.json.gz








Line Delimited JSON

Internally odo can deal with both traditional “single blob per file” JSON
as well as line-delimited “one blob per line” JSON.  We inspect existing files
to see which format it is.  On new files we default to line-delimited however
this can be overruled by using the following protocols:

json://myfile.json       # traditional JSON
jsonlines://myfile.json  # line delimited JSON








Conversions

The default paths in and out of JSON files is through Python iterators of dicts.:

JSON <-> Iterator











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
HDF5

The Hierarchical Data Format is a binary, self-describing format, supporting
regular strided and random access.  There are three main options in Python to
interact with HDF5


	h5py [http://www.h5py.org/] - an unopinionated reflection of the HDF5 library

	pytables [http://pytables.github.io/index.html] - an opinionated version, adding extra features and conventions

	pandas.HDFStore [http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables] - a commonly used format among Pandas users.



All of these libraries create and read HDF5 files.  Unfortunately some of them
have special conventions that can only be understood by their library.  So a
given HDF5 file created some of these libraries may not be well understood by
the others.


Protocols

If given an explicit object (not a string uri), like an h5py.Dataset,
pytables.Table or pandas.HDFStore then the odo project can
intelligently decide what to do.  If given a string, like
myfile.hdf5::/data/path then odo defaults to using the vanilla
h5py solution, the least opinionated of the three.

You can specify that you want a particular format with one of the following protocols


	h5py://

	pytables://

	hdfstore://






Limitations

Each library has limitations.


	H5Py does not like datetimes

	PyTables does not like variable length strings,

	Pandas does not like non-tabular data (like ndarrays) and, if users
don’t select the format='table' keyword argument, creates HDF5 files
that are not well understood by other libraries.



Our support for PyTables is admittedly weak.  We would love contributions here.




URIs

A URI to an HDF5 dataset includes a filename, and a datapath within that file.
Optionally it can include a protocol

Examples of HDF5 uris:

myfile.hdf5::/data/path
hdfstore://myfile.h5::/data/path








Conversions

The default paths in and out of HDF5 files include sequences of Pandas
DataFrames and sequences of NumPy ndarrays.:

h5py.Dataset <-> chunks(np.ndarray)
tables.Table <-> chunks(pd.DataFrame)
pandas.AppendableFrameTable <-> chunks(pd.DataFrame)
pandas.FrameFixed <-> DataFrame











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Hadoop File System

Odo interacts with the Hadoop File System using WebHDFS and the pywebhdfs
Python lirary.

[image: odo and hdfs]

URIs

HDFS uris consist of the hdfs:// protocol, a hostname, and a filename.
Simple and complex examples follow:

hdfs://hostname:myfile.csv
hdfs://username@hostname:/path/to/myfile.csv





Alternatively you may want to pass authentication information through keyword
arguments to the odo function as in the following example

>>> from odo import odo
>>> odo('localfile.csv', 'hdfs://hostname:myfile.csv',
...     port=14000, user='hdfs')





We pass through authentication keyword arguments to the
pywebhdfs.webhdfs.PyWebHdfsClient class, using the following defaults:

user_name='hdfs'
host=None
port='14000'








Constructing HDFS Objects explicitly

Most users usually interact with odo using URI strings.

Alternatively you can construct objects programmatically.  HDFS uses the
HDFS type modifier

>>> auth = {'user': 'hdfs', 'port': 14000, 'host': 'hostname'}
>>> data = HDFS(CSV)('/user/hdfs/data/accounts.csv', **auth)
>>> data = HDFS(JSONLines)('/user/hdfs/data/accounts.json', **auth)
>>> data = HDFS(Directory(CSV))('/user/hdfs/data/', **auth)








Conversions

We can convert any text type (CSV, JSON, JSONLines, TextFile) to its
equivalent on HDFS (HDFS(CSV), HDFS(JSON), ...).  The odo network
allows conversions from other types, like a pandas dataframe to a CSV file on
HDFS, by routing through a temporary local csv file.:

HDFS(*) <-> *





Additionally we know how to load HDFS files into the Hive metastore:

HDFS(Directory(CSV)) -> Hive





The network also allows conversions from other types, like a pandas
DataFrame to an HDFS CSV file, by routing through a temporary local csv
file.:

Foo <-> Temp(*) <-> HDFS(*)











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Hive Metastore

The Hive metastore relates SQL metadata to files on the Hadoop File System
(HDFS).  It is similar to a SQL database in that it contains information about
SQL tables but dissimilar in that data isn’t stored in Hive but remains
ordinary files on HDFS.

Odo interacts with Hive mostly through sqlalchemy and also with a bit
of custom code due to its peculiarities.


URIs

Hive uris match exactly SQLAlchemy connection strings with the hive://
protocol.  Additionally, Impala, another SQL database on HDFS can also connect
to the same tables.

hive://hostname
hive://user@hostname:port/database-name
hive://user@hostname:port/database-name::table-name

impala://hostname::table-name





Additionally you should probably inspect docs on HDFS due to the tight
integration between the two.




Options

Hive tables have a few non-standard options on top of normal SQL:

stored_as - File format on disk like TEXTFILE, PARQUET, ORC
path - Absolute path to file location on HDFS
external=True - Whether to keep the file external or move it to Hive
    directory





See Hive DDL [https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL] docs for more information.




Conversions

We commonly load CSV files in to Hive, either from HDFS or from local disk on
one of the machines that comprise the HDFS cluster:

HDFS(Directory(CSV)) -> Hive
SSH(Directory(CSV)) -> Hive
SSH(CSV) -> Hive





Additionally we can use Hive to efficiently migrate this data to new data in a
different format:

Hive -> Hive





And as with all SQL systems through SQLAlchemy we can convert a Hive table to a
Python Iterator, though this is somewhat slow:

Hive -> Iterator








Impala

Impala operates on the same data as Hive, is generally faster, though also has
a couple of quirks.

While Impala connects to the same metastore it must connect to one of the
worker nodes, not the same head node to which Hive connects.  After you load
data in to hive you need to send the invalidate metadata to Impala.

>>> odo('hdfs://hostname::/path/to/data/*.csv', 'hive://hostname::table')

>>> imp = resource('impala://workernode')
>>> imp.connect().execute('invalidate metadata')





This is arguably something that odo should handle in the future.  After
this, all tables in Hive are also available to Impala.

You may want to transform your data in to Parquet format for efficient
querying.  A two minute query on Hive in CSV might take one minute on Hive in
Parquet and only three seconds in Impala in Parquet.

>>> odo('hive://hostname::table', 'hive://hostname::table_parquet',
...     external=False, stored_as='PARQUET')











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Mongo

Odo interacts with Mongo databases through PyMongo.


URIs

Simple and complex examples of MongoDB uris:

mongodb://localhost/mydb::mycollection
mongodb://user:password@localhost:port/mydb::mycollection








Conversions

The default path in and out of a Mongo database is to use the PyMongo library
to produce and consume iterators of Python dictionaries.:

pymongo.Collection <-> Iterator











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Spark/SparkSQL


Dependencies


	spark [https://spark.apache.org/docs/1.2.0/index.html]

	pyhive [https://github.com/dropbox/PyHive]

	sqlalchemy [http://docs.sqlalchemy.org/en/rel_0_9]






Setup

We recommend you install Spark via conda from the blaze
binstar [http://www.binstar.org] channel:

$ conda install pyhive spark -c blaze





The package works well on Ubuntu Linux and Mac OS X. Other issues may arise
when installing this package on a non-Ubuntu Linux distro. There’s a
known issue [https://github.com/quasiben/backend-recipes/issues/1] with
Arch Linux.




Interface

Spark diverges a bit from other areas of odo due to the way it works. With
Spark, all objects are attached to a special object called SparkContext.
There can only be one of these running at a time. In contrast, SparkSQL
objects all live inside of one or more SQLContext objects. SQLContext
objects must be attached to a SparkContext.

Here’s an example of how to setup a SparkContext:

>>> from pyspark import SparkContext
>>> sc = SparkContext('app', 'local')





Next we create a SQLContext:

>>> from pyspark.sql import SQLContext
>>> sql = SQLContext(sc)  # from the previous code block





From here, you can start using odo to create SchemaRDD objects, which
are the SparkSQL version of a table:

>>> from odo import odo
>>> data = [('Alice', 300.0), ('Bob', 200.0), ('Donatello', -100.0)]
>>> type(sql)
<class 'pyspark.sql.SQLContext'>
>>> srdd = odo(data, sql, dshape='var * {name: string, amount: float64}')
>>> type(srdd)
<class 'pyspark.sql.SchemaRDD'>





Note the type of srdd. Usually odo(A, B) will return an instance of
B if B is a type. With Spark and SparkSQL, we need to attach whatever
we make to a context, so we “append” to an existing SparkContext/SQLContext.
Instead of returning the context object, odo will return the SchemaRDD
that we just created. This makes it more convenient to do things with the result.

This functionality is nascent, so try it out and don’t hesitate to
report a bug or request a feature [https://github.com/blaze/into/issues/new]!




URIs

URI syntax isn’t currently implemented for Spark objects.




Conversions

The main paths into and out of RDD and SchemaRDD are through Python
list objects:

RDD <-> list
SchemaRDD <-> list





Additionally, there’s a specialized one-way path for going directly to
SchemaRDD from RDD:

RDD -> SchemaRDD








TODO


	Resource/URIs

	Native loaders for JSON and possibly CSV

	HDFS integration









          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
SAS

Odo interacts with local sas7bdat files through sas7bdat [https://pypi.python.org/pypi/sas7bdat].


URIs

SAS URI’s are their paths/filenames

Simple examples of SAS uris:

myfile.sas7bdat
/path/to/myfile.sas7bdat








Conversions

The default paths out of SAS files is through Python iterators and Pandas DataFrames.


SAS7BDAT -> Iterator
SAS7BDAT -> pd.DataFrame


This is a closed file format with nice but incomplete support from the
sas7bdat [https://pypi.python.org/pypi/sas7bdat] Python library.  You should not expect comprehensive coverage.







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
SQL

Odo interacts with SQL databases through SQLAlchemy.  As a result, odo
supports all databases that SQLAlchemy supports.  Through third-party
extensions, SQLAlchemy supports most databases.


Warning

When putting an array-like object such as a NumPy array into a database you
must provide the column names in the form of a Record datashape.


Note

Without column names, it doesn’t make sense to put an array into a
database table, since a database table doesn’t make sense without named
columns. The inability to put an array with unnamed columns into a
database is intentional.



Here’s a failing example:

>>> import numpy as np
>>> from odo import odo
>>> x = np.zeros((10, 2))
>>> t = odo(x, 'sqlite:///db.db::x')  # this will NOT work
Traceback (most recent call last):
    ...
TypeError: dshape measure must be a record type e.g., "{a: int64, b: int64}". Input measure is ctype("float64")





Here’s what to do instead:

>>> t = odo(x, 'sqlite:///db.db::x',  # works because columns are named
>>> ...     dshape='var * {a: float64, b: float64}')








URIs

Simple and complex examples of SQL uris:

postgresql://localhost::accounts
postgresql://username:password@54.252.14.53:10000/default::accounts





SQL uris consist of the following


	dialect protocol:  postgresql://

	Optional authentication information:  username:password@

	A hostname or network location with optional port:  54.252.14.53:10000

	Optional database/schema name:  /default

	A table name with the :: separator:  ::accounts






Executing Odo Against Databases

Sqlalchemy allows objects to be bound to a particular database connection. This
is known as the ‘bind’ of the object, or that the object is ‘bound’.

By default, odo expects to be working with either bound sqlalchemy objects or
uris to tables.

For example, when working with a sqlalchemy object, one must be sure to pass a
bound metadata to the construction of your tables.

>>> import sqlalchemy as sa
>>> sa.MetaData()
>>> tbl = sa.Table(
...     'tbl',
...     metadata,
...     sa.Column('a', sa.Integer, primary_key=True),
... )
>>> odo([[1], [2], [3]], tbl, dshape='var * {a: int}')  # this will NOT work
Traceback (most recent call last):
     ...
UnboundExecutionError: Table object 'tbl' is not bound to an Engine or Connection.  Execution can not proceed without a database to execute against.





We have two options for binding metadata to objects, we can explicitly bind our
tables, or we can pass it to odo as a keyword argument.

Here is an example of constructing the table with a bound metadata:

>>> import sqlalchemy as sa
>>> metadata = sa.MetaData(bind='sqlite:///db.db')  # NOTE: pass the uri to the db here
>>> tbl = sa.Table(
...     'tbl',
...     metadata,
...     sa.Column('a', sa.Integer, primary_key=True),
... )
>>> odo([[1], [2], [3]], tbl)  # this know knows where to field the table.





Here is an example of passing the bind to odo:

>>> import sqlalchemy as sa
>>> sa.MetaData()
>>> tbl = sa.Table(
...     'tbl',
...     metadata,
...     sa.Column('a', sa.Integer, primary_key=True),
... )
>>> bind = 'sqlite:///db.db'
>>> odo([[1], [2], [3]], tbl, dshape='var * {a: int}', bind=bind)  # pass the bind to odo here





Here, the bind may be either a uri to a database, or a sqlalchemy Engine object.




Conversions

The default path in and out of a SQL database is to use the SQLAlchemy library
to consume iterators of Python dictionaries.  This method is robust but slow.:

sqlalchemy.Table <-> Iterator
sqlalchemy.Select <-> Iterator





For a growing subset of databases (sqlite, MySQL, PostgreSQL, Hive,
Redshift) we also use the CSV or JSON tools that come with those databases.
These are often an order of magnitude faster than the Python->SQLAlchemy
route when they are available.:

sqlalchemy.Table <- CSV








Primary and Foreign Key Relationships


New in version 0.3.4.




Warning

Primary and foreign key relationship handling is an experimental feature and
is subject to change.



Odo has experimental support for creating and discovering relational database
tables with primary keys and foreign key relationships.


Creating a new resource with a primary key

We create a new sqlalchemy.Table object with the resource function,
specifying the primary key in the primary_key argument


>>> from odo import resource
>>> dshape = 'var * {id: int64, name: string}'
>>> products = resource(
...     'sqlite:///db.db::products',
...     dshape=dshape,
...     primary_key=['id'],
... )
>>> products.c.id.primary_key
True








Compound primary keys are created by passing the list of columns that form the
primary key. For example


>>> dshape = """
... var * {
...     product_no: int32,
...     product_sku: string,
...     name: ?string,
...     price: ?float64
... }
... """
>>> products = resource(
...     'sqlite:///%s::products' % fn,
...     dshape=dshape,
...     primary_key=['product_no', 'product_sku']
... )








Here, the column pair product_no, product_sku make up the compound primary
key of the products table.




Creating resources with foreign key relationships

Creating a new resource with a foreign key relationship is only slightly more
complex.

As a motivating example, consider two tables products and orders. The
products table will be the table from the primary key example. The
orders table will have a many-to-one relationship to the products
table. We can create this like so


>>> orders_dshape = """
... var * {
...    order_id: int64,
...    product_id: map[int64, {id: int64, name: string}]
... }
... """
>>> orders = resource(
...     'sqlite:///db.db::orders',
...     dshape=orders_dshape,
...     primary_key=['order_id'],
...     foreign_keys={
...         'product_id': products.c.id,
...     }
... )
>>> products.c.id in orders.c.product_id.foreign_keys
True








There are two important things to note here.



	The general syntax for specifying the type of referring column is

map[<referring column type>, <measure of the table being referred to>]







	Knowing the type isn’t enough to specify a foreign key relationship. We
also need to know the table that has the columns we want to refer to. The
foreign_keys argument to the resource() function
fills this need. It accepts a dictionary mapping referring column
names to referred to sqlalchemy.Column instances or strings such as
products.id.








There’s also a shortcut syntax using type variables for specifying foreign
key relationships whose referred-to tables have very complex datashapes.

Instead of writing our orders table above as


var * {order_id: int64, product_id: map[int64, {id: int64, name: string}]}








We can replace the value part of the map type with any word starting with a
capital letter. Often this is a single capital letter, such as T


var * {order_id: int64, product_id: map[int64, T]}








Odo will automatically fill in the datashape for T by calling
discover() on the columns passed into the foreign_keys keyword
argument.

Finally, note that discovery of primary and foreign keys is done automatically
if the relationships already exist in the database so it isn’t necessary to
specify them if they’ve already been created elsewhere.




More Complex Foreign Key Relationships

Odo supports creation and discovery of self referential foreign key
relationships as well as foreign keys that are elements of a compound primary
key. The latter are usually seen when creating a many-to-many relationship via
a junction table [https://en.wikipedia.org/wiki/Junction_table].

Self referential relationships are most easily specified using type variables
(see the previous section for a description of how that works). Using the
example of a management hierarchy:


>>> dshape = 'var * {eid: int64, name: ?string, mgr_eid: map[int64, T]}'
>>> t = resource(
...     'sqlite:///%s::employees' % fn,
...     dshape=dshape,
...     primary_key=['eid'],
...     foreign_keys={'mgr_eid': 'employees.eid'}
... )






Note

Currently odo only recurses one level before terminating as we don’t yet
have a syntax for truly expressing recursive types in datashape






Here’s an example of creating a junction table (whose foreign keys form a
compound primary key) using a modified version of the traditional
suppliers and parts database [https://en.wikipedia.org/wiki/Suppliers_and_Parts_database]:


>>> suppliers = resource(
...     'sqlite:///%s::suppliers' % fn,
...     dshape='var * {id: int64, name: string}',
...     primary_key=['id']
... )
>>> parts = resource(
...     'sqlite:///%s::parts' % fn,
...     dshape='var * {id: int64, name: string, region: string}',
...     primary_key=['id']
... )
>>> suppart = resource(
...     'sqlite:///%s::suppart' % fn,
...     dshape='var * {supp_id: map[int64, T], part_id: map[int64, U]}',
...     primary_key=['supp_id', 'part_id'],
...     foreign_keys={
...         'supp_id': suppliers.c.id,
...         'part_id': parts.c.id
...     }
... )
>>> from odo import discover
>>> print(discover(suppart))
var * {
    supp_id: map[int64, {id: int64, name: string}],
    part_id: map[int64, {id: int64, name: string, region: string}]
}











Foreign Key Relationship Failure Modes

Some databases support the notion of having a foreign key reference one column
from another table’s compound primary key. For example


>>> product_dshape = """
... var * {
...     product_no: int32,
...     product_sku: string,
...     name: ?string,
...     price: ?float64
... }
... """
>>> products = resource(
...     'sqlite:///%s::products' % fn,
...     dshape=product_dshape,
...     primary_key=['product_no', 'product_sku']
... )
>>> orders_dshape = """
... var * {
...   order_id: int32,
...   product_no: map[int32, T],
...   quantity: ?int32
... }
... """
>>> orders = resource(
...     'sqlite:///%s::orders' % fn,
...     dshape=orders_dshape,
...     primary_key=['order_id'],
...     foreign_keys={
...         'product_no': products.c.product_no
...         # no reference to product_sku, okay for sqlite, but not postgres
...     }
... )








Here we see that when the orders table is constructed, only one of the
columns contained in the primary key of the products table is included.

SQLite is an example of one database that allows this. Other databases such as
PostgreSQL will raise an error if the table containing the foreign keys doesn’t
have a reference to all of the columns of the compound primary key.

Odo has no opinion on this, so if the database allows it, then odo will allow
it. This is an intentional choice.

However, it can also lead to confusing situations where something works with
SQLite, but not with PostgreSQL. These are not bugs in odo, they are an
explicit choice to allow flexibility with potentially large already-existing
systems.






Amazon Redshift

When using Amazon Redshift the error reporting leaves much to be desired.
Many errors look like this:

InternalError: (psycopg2.InternalError) Load into table 'tmp0' failed.  Check 'stl_load_errors' system table for details.





If you’re reading in CSV data from S3, check to make sure that



	The delimiter is correct. We can’t correctly infer everything, so you may
have to pass that value in as e.g., delimiter='|'.

	You passed in the compression='gzip' keyword argument if your data
are compressed as gzip files.






If you’re still getting an error and you’re sure both of the above are
correct, please report a bug on
the odo issue tracker [https://github.com/blaze/odo/issues]

We have an open issue (#298 [https://github.com/blaze/odo/issues/298]) to discuss how to better handle the
problem of error reporting when using Redshift.







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
SSH

Odo interacts with remote data over ssh using the paramiko library.


URIs

SSH uris consist of the ssh:// protocol, a hostname, and a filename.
Simple and complex examples follow:

ssh://hostname:myfile.csv
ssh://username@hostname:/path/to/myfile.csv





Additionally you may want to pass authentication information through keyword
arguments to the odo function as in the following example

>>> from odo import odo
>>> odo('localfile.csv', 'ssh://hostname:myfile.csv',
...     username='user', key_filename='.ssh/id_rsa', port=22)





We pass through authentication keyword arguments to the
paramiko.SSHClient.connect method.  That method takes the following
options:

port=22
username=None
password=None
pkey=None
key_filename=None
timeout=None
allow_agent=True
look_for_keys=True
compress=False
sock=None








Constructing SSH Objects explicitly

Most users usually interact with odo using URI strings.

Alternatively you can construct objects programmatically.  SSH uses the
SSH type modifier

>>> from odo import SSH, CSV, JSON
>>> auth = {'user': 'ubuntu',
...         'host': 'hostname',
...         'key_filename': '.ssh/id_rsa'}
>>> data = SSH(CSV)('data/accounts.csv', **auth)
>>> data = SSH(JSONLines)('accounts.json', **auth)








Conversions

We’re able to convert any text type (CSV, JSON, JSONLines, TextFile) to its
equivalent on the remote server (SSH(CSV), SSH(JSON), ...).:

SSH(*) <-> *





The network also allows conversions from other types, like a pandas
DataFrame to a remote CSV file, by routing through a temporary local csv
file.:

Foo <-> Temp(*) <-> SSH(*)











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Type Modifiers

Odo decides what conversion functions to run based on the type (e.g.
pd.DataFrame, sqlalchemy.Table, odo.CSV of the input.  In many cases we
want slight variations to signify different circumstances such as the
difference between the following CSV files


	A local CSV file

	A sequence of CSV files

	A CSV file on a remote machine

	A CSV file on HDFS

	A CSV file on S3

	A temporary CSV file that should be deleted when we’re done



In principle we need to create subclasses for each of these and for their
JSON, TextFile, etc. equivalents.  To assist with this we create
functions to create these subclasses for us.  These functions are named the
following:

chunks - a sequence of data in chunks
SSH - data living on a remote machine
HDFS - data living on Hadoop File system
S3 - data living on Amazon's S3
Directory - a directory of data
Temp - a temporary piece of data to be garbage collected





We use these functions on types to construct new types.

>>> SSH(CSV)('/path/to/data', delimiter=',', user='ubuntu')
>>> Directory(JSON)('/path/to/data/')





We compose these functions to specify more complex situations like a temporary
directory of JSON data living on S3

>>> Temp(S3(Directory(JSONLines)))






Use URIs

Most users don’t interact with these types.  They are for internal use by
developers to specify the situations in which a function should be called.




chunks

A particularly important type modifier is chunks, which signifies an
iterable of some other type.  For example chunks(list) means an iterable of
Python lists and chunks(pd.DataFrame) an iterable of DataFrames.  The
chunks modifier is often used to convert between two out-of-core formats
via an in-core format.  This is also a nice mechanism to interact with data in
an online fashion

>>> from odo import odo, chunks
>>> import pandas as pd
>>> seq = odo('postgresql://localhost::mytable', chunks(pd.DataFrame))
>>> for df in seq:
...    # work on each dataframe sequentially





chunks may also be used to write an iterable of chunks into another
resource. For example, we may use chunks to write a sequence of numpy arrays
into a postgres table while only ever holding one whole array in memory like so:

>>> import numpy as np
>>> from odo import odo, chunks
>>> seq = (np.random.randn(5, 3) for _ in range(3))
>>> odo(chunks(np.ndarray)(seq), 'postgresql://localhost::mytable')





chunks(type_)(seq) is merely a small box wrapping the inner sequence that
allows odo to know the types of the elements in the sequence. We may still use
this sequence as we would any other, including looping over it.

Because this is wrapping the inner sequence, we may only iterate over the
chunks multiple times if the inner sequence supports being iterated over
more than once. For example:

>>> from odo import chunks
>>> CL = chunks(list)
>>> multuple_iteration_seq = CL([[0, 1, 2], [3, 4, 5])
>>> tuple(multuple_iteration_seq)
([0, 1, 2], [3, 4, 5])
>>> tuple(multuple_iteration_seq)
([0, 1, 2], [3, 4, 5])
>>> single_iteration_seq = CL(iter([[0, 1, 2], [3, 4, 5]]))
>>> tuple(single_iteraton_seq)
([0, 1, 2], [3, 4, 5])
>>> tuple(single_iteration_seq)
()











          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            
  
Four Operations

The Blaze project originally included odo.odo as a magic function that
moved data between containers.  This function was both sufficiently
useful and sufficiently magical that it was moved to a separate project, its
functionality separated into three operations


	convert: Transform dataset to a new type.
convert(list, (1, 2, 3))

	append: Append a dataset to another.
append([], (1, 2, 3))

	resource: Obtain or create dataset from a URI string
resource('myfile.csv')



These are magically tied together as the original odo function


	odo: Put stuff into other stuff (deliberately vague/magical.)







          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	odo 0.4.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  _static/comment-close.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





_static/down.png





_images/conversions.png


_static/plus.png





_static/down-pressed.png





search.html


    
      Navigation


      
        		
          index


        		odo 0.4.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Continuum Analytics.
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





_static/minus.png





_static/comment.png





_static/up.png





