

Welcome to the documentation for odi-tools

odi-tools is a suite of tools written in Pyraf, Astropy,
Scipy, and Numpy to process individual QuickReduced images
into single stacked images using a set of “best practices” for ODI data.

In this documentation we will provide descriptions of how to obtain and run
the software, as well as a brief tutorial on using QuickReduced images.

Getting started with odi-tools

	Installation

	QuickReduce, ODI-PPA, and odi-tools
	Running QuickReduce

	An Introduction to working with Quick Reduced Images
	Navigating a QR image
	Opening the fits file

	Accessing the extensions

	The odi-tools scheme

	The other extensions

	Basic usage
	Preparing your data

	Running the code (a broad overview)

	Example configuration file

Individual modules and tasks

	Modules
	Python configuration to run odi-tools

	Reading configuration files

	ODI helper functions

	Calculating background statistics

	Source catalogs

	Measuring Stellar FWHM

	Creating an OTA bad pixel mask

	Create OTA gaps bad pixel masks

	Improving WCS solutions

	Find sources for OTA scaling

	Full Calibrate

	Full Phot

Indices and tables

	Index

	Module Index

	Search Page

Installation

To use this code simply fork this repository and clone it onto your
local machine:

$ git clone https://github.com/bjanesh/odi-tools.git
$ cd odi-tools

Optionally add this folder to your $PATH so the odi-scripts maybe
used in any current working directory.

To run the scripts you will need to install a number of dependencies:

$ pip install numpy scipy astropy photutils pyraf tqdm matplotlib pandas

It is possible to install these packages without root access by using the
--user option:

$ pip install --user package-name

As noted on the astropy website [http://astropy.readthedocs.org/en/stable/install.html], it might also be beneficial to use the --no-deps
option when installing astropy to stop pip from automatically upgrading any
of your previously installed packages, such as numpy:

$ pip install --no-deps astropy

QuickReduce, ODI-PPA, and odi-tools

QuickReduce is a set of pure python tools to reduce data from ODI. QuickReduce
was created by Ralf Kotulla (UW Milwaukee, UW Madison) for the WIYN Observatory.
The source code for QuickReduce is now on github [https://github.com/WIYN-ODI/QuickReduce]. Documenation for the QuickReduce
pipeline is available at this link. [http://members.galev.org/rkotulla/research/podi-pipeline/]

The ODI-PPA [https://portal.odi.iu.edu/index/front] is the online portal
used to access, sort, and run QuickReduce on your ODI data.
Information for gaining access and using the portal can be found at these
help pages. [https://help.odi.iu.edu/display/help/ODI+Pipeline%2C+Portal+and+Archive+-+Quick+Guide]

odi-tools is designed to work on images that have been processed using
QuickReduce and downloaded from the ODI-PPA.

Running QuickReduce

After you become familiar with the layout and operation of the ODI-PPA, you can
use these following steps to process your data. The options we list here are
what we have determined to be the best practices for running QuickReduce. It is
important to remember that these options can be data dependent. We will update
these options should the change.

	Add the images you wish to reduce to a collection in the ODI-PPA and from
the collection action menu, choose QuickReduce. See the PPA help pages for
information about creating collections.

	Run QuickReduce with the following options. The [X] denotes that the
option is selected.

	[X] WCS

	[X] Photometry

	[X] Fringe (i- and z-band only)

	[X] Persistency

	[X] Nonlinearity

	[X] Pupil Ghost (calibrations)

	[] Pupil Ghost (science)

	[X] Use Bad Pixel Masks

	[X] Cosmic Ray Removal, 3 iteration(s)

	You should give this job a meaningful name and check the Email me when
when finished box.

	When you receive the email letting you know your job is complete, download
the QuickReduce data to your hard drive using the Download Results button
on the QuickReduce job page. You don’t need to select any of the optional boxes,
just name the job and click submit. Eventually a wget command will pop up.
Copy it to your clipboard, navigate to the folder you want the data to go into,
then paste the wget command in your command line.

	At this point you are ready to start running odi-tools. See the
Basic usage documentation for information on starting this
process. See
An Introduction to working with Quick Reduced Images for a brief tutorial on getting to know a QuickReduced image.

An Introduction to working with Quick Reduced Images

	Navigating a QR image
	Opening the fits file

	Accessing the extensions

	The odi-tools scheme

	The other extensions

Navigating a QR image

Opening the fits file

odi-tools utilizes the fits.io module in the astropy package to
open the multi-extension QR fits files:

>>> from astropy.io import fits
>>> img = '20140406T214040.2_GCPair-F1_odi_g.6183.fits'
>>> hdulist = fits.open(img)

Accessing the extensions

hdulist is now an astropy HDUlist where each element
cooresponds to an extension of the fits file.

>>> print hdulist.info()
Filename: 20140406T214040.2_GCPair-F1_odi_g.6183.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 294 ()
1 OTA33.SCI ImageHDU 285 (4096, 4096) float32
2 OTA34.SCI ImageHDU 285 (4096, 4096) float32
3 OTA44.SCI ImageHDU 285 (4096, 4096) float32
4 OTA43.SCI ImageHDU 285 (4096, 4096) float32
5 OTA42.SCI ImageHDU 285 (4096, 4096) float32
6 OTA32.SCI ImageHDU 285 (4096, 4096) float32
7 OTA22.SCI ImageHDU 285 (4096, 4096) float32
8 OTA23.SCI ImageHDU 285 (4096, 4096) float32
9 OTA24.SCI ImageHDU 321 (4096, 4096) float32
10 CAT.2MASS BinTableHDU 15 680R x 2C [D, D]
11 CAT.ODI BinTableHDU 138 562R x 33C [D, D, E, E, E, E, E, I, I, E]
12 CAT.ODI+2MASS BinTableHDU 31 165R x 5C [D, D, D, D, E]
13 CAT.PHOTCALIB BinTableHDU 172 251R x 36C [D, D, D, D, E, E, E, E, E, E, E, E, E, E, D, E]
14 SKYLEVEL BinTableHDU 50 1663R x 7C [D, D, D, D, D, D, I]
15 ASSOCIATIONS BinTableHDU 17 16R x 3C [25A, 375A, 100A]

This particular image is from podi meaning there are a total of 9 OTAs in
the focal plane. In the hdulist the extensions for each of the OTAs are
given in rows 1-9 and have names with the following convention OTAxy.SCI.
For a 5x6 ODI image, there would be 30 of these extensions.

The hdulist allows us to access each of the extensions by the its name
give in the Name column, or by its number. If, for example, we wanted to only
look at OTA33 we can do the following:

>>> hdu_ota = hdulist['OTA33.SCI']
or using the number
>>> hdu_ota = hdulist[1]

Now that we have isolated this single OTA we can pick out its individual
header and data:

>>> ota_header = hdu_ota.header
>>> ota_data = hdu_ota.data

ota_header and ota_data are now easily accessible to use in other
scripts and modules. It is also easy to access header keywords:

>>> print ota_header['CRVAL1']
198.750082573
>>> print ota_header['CRVAL2']
18.4113084341

It is also convenient to pass individual OTAs to pyraf tasks based on the
name of the extension. If we wanted to run daofind on OTA33 we could do
the following:

>>> from pyraf import iraf
>>> img = '20140406T214040.2_GCPair-F1_odi_g.6183.fits'
>>> iraf.unlearn(iraf.apphot.daofind)
>>> iraf.datapars.setParam('fwhmpsf',fwhm,check=1)
>>> iraf.datapars.setParam('datamin',-900,check=1)
>>> iraf.datapars.setParam('datamax',60000,check=1)
>>> iraf.datapars.setParam('sigma',25.,check=1)
>>> iraf.findpars.setParam('threshold',2.5)
>>> iraf.apphot.daofind.setParam('output',output.txt)
>>> iraf.apphot.daofind(image=img+'['+'OTA33.SCI'+']', verbose="no", verify='no')

The odi-tools scheme

The modules in odi-tools are designed to work over lists of images while
stepping through each of the OTA extensions in a given image. This will
discussed in further detail in other parts of the documentation. An pseudo
code of this scheme would be:

>>> imglist = ['img1.fits','img2.fits','img3.fits']
>>> ota_dictionary = {1:'OTA33.SCI',2: 'OTA34.SCI',3 :'OTA44.SCI',
... 4:'OTA43.SCI',5:'OTA42.SCI', 6:'OTA32.SCI',
... 7:'OTA22.SCI' ,8:'OTA23.SCI',9:'OTA24.SCI'}
>>> for img in imglist:
... for key in ota_dictionary:
... ota = ota_dictionary[key]
... perform tasks on img[ota]

The other extensions

In addition to the extensions for each OTA, the hdulist also contains
extensions linking to fits tables with useful information. They are
CAT.2MASS, CAT.ODI, CAT.ODI+2MASS, CAT.PHOTCATLIB, SKYLEVEL,
ASSOCIATIONS. The header and data in each of these tables are easily accessed.

>>> photcat_data = hdulist['CAT.PHOTCATLIB'].data
>>> photcat_header = hdulist['CAT.PHOTCATLIB'].header

Some of the information in these tables is used by odi-tools during the
image processing.

Basic usage

All you need to do to get started is download your QR-ed data from the ODI-PPA
using the wget download command, then follow these steps. An explination of
running quick reduce from ODI-PPA will be given in other sections of the
documentation:

Preparing your data

	move all individual .fz files into the top level folder:
mv calibrated/**/*.fz .

	unpack the compressed fits files using funpack [https://heasarc.gsfc.nasa.gov/fitsio/fpack/]

	you need to rename your files to match the appropriate dither
pointing identification. for example, QR files are named by the pattern
OBSID_OBJECT_FILTER.JOBID.fits. The final digit of the OBSID e.g.
20151008T195949.1 needs to match the number sequence of the dithers 1-9.
Your data may not match this pattern due to restarted observations, multiple
night observations, etc.

Running the code (a broad overview)

	copy example_config.yaml to your data directory as config.yaml and edit the
file to match your preferences/data. Make sure that the number for each image
matches the correct number in the dither sequence!

	run odi_process.py in the folder containing the unpacked/renamed fits images.
This will (optionally) illumination correct the images, fix their WCS,
reproject them to a common pixel scale, and perform background subtraction on them.

	this will take a while, so make sure nothing bad happened

	run odi_scalestack_process.py in the folder containing the unpacked/renamed
fits images. This will detect bright stellar sources in the images and use
them to calculate a scaling factor relative to the image in the sequence
with the lowest airmass, then apply the scale, stack the images,
then add in a common background value.

	finished! check your images to make sure everything went okay.

Example configuration file

Here are the contents of example_config.yaml available on the odi-tools
GitHub repo [https://github.com/bjanesh/odi-tools/blob/master/example_config.yaml]

odi-tools configuration file
basic:
 object: M13 # the name of your object
 filters: [odi_g, odi_r, odi_i] # correct filter strings required
 instrument: 5odi # podi | 5odi | mosaic; script will
 # verify using image header info

processing: # optional steps performed in odi_process.py
 illumination_correction: yes # if yes, set dark sky flat source below
 dark_sky_flat_source: object # object | master
 wcs_correction: yes
 reproject: yes
 scale_images: yes
 stack_images: yes

list the images you want to process
be sure to associate the filename with the correct dither pointing!
OBSID and image header are NOT always an accurate reflection of the absolute dither position
so you must use your notes / observing log to define them here
sections must be named according to the filter names

odi_g:
 1: 20130510T002928.1_m13-9_odi_g.5869.fits
 2: 20130510T002928.2_m13-9_odi_g.5869.fits
 3: 20130510T002928.3_m13-9_odi_g.5869.fits
 4: 20130510T002928.4_m13-9_odi_g.5869.fits
 5: 20130510T002928.5_m13-9_odi_g.5869.fits
 6: 20130510T002928.6_m13-9_odi_g.5869.fits
 7: 20130510T002928.7_m13-9_odi_g.5869.fits
 8: 20130510T002928.8_m13-9_odi_g.5869.fits
 9: 20130510T002928.9_m13-9_odi_g.5869.fits

odi_r:
 1: 20130510T002928.1_m13-9_odi_r.5869.fits
 2: 20130510T002928.2_m13-9_odi_r.5869.fits
 3: 20130510T002928.3_m13-9_odi_r.5869.fits
 4: 20130510T002928.4_m13-9_odi_r.5869.fits
 5: 20130510T002928.5_m13-9_odi_r.5869.fits
 6: 20130510T002928.6_m13-9_odi_r.5869.fits
 7: 20130510T002928.7_m13-9_odi_r.5869.fits
 8: 20130510T002928.8_m13-9_odi_r.5869.fits
 9: 20130510T002928.9_m13-9_odi_r.5869.fits

odi_i:
 1: 20130510T002928.1_m13-9_odi_i.5869.fits
 2: 20130510T002928.2_m13-9_odi_i.5869.fits
 3: 20130510T002928.3_m13-9_odi_i.5869.fits
 4: 20130510T002928.4_m13-9_odi_i.5869.fits
 5: 20130510T002928.5_m13-9_odi_i.5869.fits
 6: 20130510T002928.6_m13-9_odi_i.5869.fits
 7: 20130510T002928.7_m13-9_odi_i.5869.fits
 8: 20130510T002928.8_m13-9_odi_i.5869.fits
 9: 20130510T002928.9_m13-9_odi_i.5869.fits

Modules

	Python configuration to run odi-tools
	The OTA dictionaries

	Processing directories

	Reading configuration files

	ODI helper functions

	Calculating background statistics

	Source catalogs

	Measuring Stellar FWHM

	Creating an OTA bad pixel mask

	Create OTA gaps bad pixel masks

	Improving WCS solutions

	Find sources for OTA scaling

	Full Calibrate

	Full Phot

Python configuration to run odi-tools

The function odi_config.py imports all of the modules needed to run
odi-tools as well as sets up the needed dictionaries and directories.
It is imported in the following way in the main odi-tool scripts
(odi_process, odi_scalestack_process, odi_phot_process).

>>> import odi_config as odi

Once it is imported, the dictionaries are directories created in
odi_config.py can be referenced throughout the odi-tools pipeline in
the following manner

>>> example_dict = odi.dictionary
>>> example_directory = odi.directory

Similarly, we can also reference all of the modules and functions imported
in odi_config.py.

>>> gaps = odi.get_gaps(img, ota)

The OTA dictionaries

There are two dictionaries defined by this function that correspond to
different versions of ODI.

	podi_dictionary

	odi5_dictionary

As an example, here are the contents of podi_dictionary:

podi_dictionary = {1: 'OTA33.SCI',
 2: 'OTA34.SCI',
 3: 'OTA44.SCI',
 4: 'OTA43.SCI',
 5: 'OTA42.SCI',
 6: 'OTA32.SCI',
 7: 'OTA22.SCI',
 8: 'OTA23.SCI',
 9: 'OTA24.SCI'
 }

For those that are not familiar with Python, a dictionary is made up of pairs
of keys and values. The keys are to the left of the colon, and the
values are to the right. In our case, the keys are the numbers 1-9, and
the values are the names of the different OTAs, (e.g. OTA33.SCI). The
dictionaries provide a clean way to work through a multi-extension fits image
like those produced by ODI. The simpled code example below provides an
illustration of how this is done in odi-tools.

>>> images = ['img1.fits','img2.fits']
>>> for img in images:
>>> for key in podi_dictionary:
>>> print img, key

This would produce the following output:

'img1.fits' 'OTA33.SCI'
'img1.fits' 'OTA34.SCI'
'img1.fits' 'OTA44.SCI'
'img1.fits' 'OTA43.SCI'
'img1.fits' 'OTA42.SCI'
'img1.fits' 'OTA32.SCI'
'img1.fits' 'OTA22.SCI'
'img1.fits' 'OTA23.SCI'
'img1.fits' 'OTA24.SCI'
'img2.fits' 'OTA33.SCI'
'img2.fits' 'OTA34.SCI'
'img2.fits' 'OTA44.SCI'
'img2.fits' 'OTA43.SCI'
'img2.fits' 'OTA42.SCI'
'img2.fits' 'OTA32.SCI'
'img2.fits' 'OTA22.SCI'
'img2.fits' 'OTA23.SCI'
'img2.fits' 'OTA24.SCI'

Although this is a simple example it illustrates the overall workflow of
odi-tools.

The odi5_dictionary works the same way, but simply has more OTAs. The
correct dictionary is selected by odi_helpers.instrument(). If the
instrument used was 5odi, odi5_dictionary is used for odi-tools,
if it was podi, podi_dictionary is used.

Processing directories

odi_config.py also sets up a number of directories to hold the
intermediate data products during the data processing. Here is an example
of how one of those directories is created

>>> bpmdirectory = 'bpmasks'
>>> if not os.path.exists(bpmdirectory):
>>> print 'Creating directory for bad pixel masks...'
>>> os.makedirs(bpmdirectory)

>>> bppath = bpmdirectory+'/'

The directory in this case is given the name bpmasks. Then, we check if
the directory already exists. If is does not, the directory is created. Once
this directory is created it can be accessed by other odi-tools modules
and scripts using the following

>>> odi.bppath

Here is a full list of the directories created

	bpmasks - directory for bad pixel masks

	illcor - directory for illumination corrected ota images

	reproj - directory for reprojected ota images

	bgsub - directory for background subtracted ota images

	scaled - directory for scaled ota images

	otastack - directory for stacked ota images

	skyflat - directory for sky flats

	coords - directory for coordinate files

	match - directory for match files

	sdssoffline- directory for sdss catalogs

	twomassoffline - directory for 2mass catalogs

	gaiaoffline - directory for gaia catalogs

	sources - directory for detected sources

Reading configuration files

ODI helper functions

These are simple functions used throughout the odi-tools pipeline.

Calculating background statistics

Source catalogs

These functions retrieve and parse the SDSS and Gaia DR1 catalogs to
be used when fixing the WCS solutions of individual OTAs.

Measuring Stellar FWHM

There are a number of steps in odi-tools that require having a measurement
of the stellar fwhm of sources on individual OTAs or on a fully stacked image.
In order to get these measurements we use the pyraf task rimexam on
a list of known x and y positions for SDSS sources on a given field.
Here is how the parameters are set for rimexam:

iraf.tv.rimexam.setParam('radius',radius)
iraf.tv.rimexam.setParam('buffer',buff)
iraf.tv.rimexam.setParam('width',width)
iraf.tv.rimexam.setParam('rplot',20.)
iraf.tv.rimexam.setParam('center','yes')
iraf.tv.rimexam.setParam('fittype','gaussian')
iraf.tv.rimexam.setParam('iterati',1)

Creating an OTA bad pixel mask

Create OTA gaps bad pixel masks

Improving WCS solutions

These are the functions that improve the WCS solutions of otas based on source
catalogs with known Ra and Dec positions.

Find sources for OTA scaling

These functions locate the bright sources on OTAs, runs phot on these sources,
and calculate the scaling factor needed to be applied to each OTA based on
a reference image.

Full Calibrate

Full Phot

Index

A detailed look at odi_process.py

odi_process.py is the script responsible for carrying out all of
the steps in the odi-tools pipeline. Here we will give a detailed
explanation about each step the the script is doing.

Reading the configuration file

The first thing odi_process.py does is try to
read and parse the configuration file that should
also be located in the current working directory. This
is done with the function odi.cfgparse.
This file has to be called config.yaml.
If this file is not found, the program will exit and
the user should ensure their configuration file is present
and been given the right name. These line are responsible
for creating variables that will be needed for the
rest of the pipeline to function.

Here is a list of the variables set by the configuration file.

	object_str

	filters

	instrument

	images

	illcor_flag

	skyflat_src

	wcs_flag

	reproject_flag

	scale_flag

	stack_flag

	gaia_flag

	cluster_flag

	ra_center

	dec_center

	min_radius

Creating the image lists

The next step in odi_process.py is to create
the list of images that will be processed. This list
is given then name images_. The list is populated
by iterating the images dictionary returned
by the previous odi.cfgparse step. The
items in images_ will be in the same order as
they appear in config.yaml and separated by filter.

Setting the reprojection image, source catalog, and instrument

All of the images processed odi_process.py will
be reprojected according to OTA33 in the first image
in the images_ list. This should correspond to the
first image in your dither pattern for the set of
images your are currently processing. The coordinates of
this OTA in this image are rad and decd and they
are returned by the function odi.get_targ_ra_dec.

In order to improve the WCS solution on each OTA, odi_process.py
requires a source catalog with known Ra and Dec values. To set the
desired source catalog, odi_process.py checks if the user has
has set the gaia_flag to yes in config.yaml. If this is
the case then odi_process.py will use the Gaia catalog as
the source list for the fixing the WCS solutions. If the
gaia_flag is set to no, odi_process.py will default
to using the SDSS catalog. This step sets the source variable.

For odi_process.py to run correctly, the pipeline must
also be told if the data being processed are from pODI or
ODI. This is accomplished by the odi.instrument function
that reads the header of the first item in the images_ list
and returns the inst variable.

Creating source catalogs

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to the documentation for odi-tools

 		
 Installation

 		
 QuickReduce, ODI-PPA, and odi-tools

 		
 Running QuickReduce

 		
 An Introduction to working with Quick Reduced Images

 		
 Navigating a QR image

 		
 Opening the fits file

 		
 Accessing the extensions

 		
 The odi-tools scheme

 		
 The other extensions

 		
 Basic usage

 		
 Preparing your data

 		
 Running the code (a broad overview)

 		
 Example configuration file

 		
 Modules

 		
 Python configuration to run odi-tools

 		
 The OTA dictionaries

 		
 Processing directories

 		
 Reading configuration files

 		
 ODI helper functions

 		
 Calculating background statistics

 		
 Source catalogs

 		
 Measuring Stellar FWHM

 		
 Creating an OTA bad pixel mask

 		
 Create OTA gaps bad pixel masks

 		
 Improving WCS solutions

 		
 Find sources for OTA scaling

 		
 Full Calibrate

 		
 Full Phot

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

