
Cloud Test Suite - CERN IT
Documentation

CERN IT-DI-EFP

Feb 10, 2020

Cloud Test Suite Documentation

1 1. Getting started 3
1.1 1.1 Dependencies . 3

1.1.1 Terraform . 3
1.1.2 Kubernetes client . 3
1.1.3 Python . 3

1.2 1.2 SSH key . 4
1.3 1.3 Security groups . 4
1.4 1.4 Networking and IPs . 4
1.5 1.5 Download and preparation . 4

1.5.1 Cloning repository . 4
1.5.2 Configuration . 4
1.5.3 Main clouds: additional support . 6

1.6 1.6 Using Docker . 10

2 2. Tests Catalog 11
2.1 Deep Learning using GPUs . 11
2.2 S3 endpoint tests . 12
2.3 Data Export: From the commercial cloud provider to Zenodo . 12
2.4 Containerised CPU Benchmarking . 12
2.5 Networking performance measurements . 12
2.6 FDMNES: Simulation of X-ray spectroscopies . 13
2.7 DODAS: Dynamic On Demand Analysis Services test . 13

3 3. Run the test-suite 15
3.1 Options . 15
3.2 Other commands . 15

4 4. Using existing clusters 17

5 5. Results 19

6 6. Verification 21

7 7. Cost of run calculation 23

8 Release notes 25

9 Contact 27

i

10 License 29

ii

Cloud Test Suite - CERN IT Documentation

THE SUITE HAS BEEN MOVED OVER TO . THIS DOCUMENTATION IS NO LONGER UPDATED

This tool is intended to be used to test and validate commercial cloud services across the stack for research and
education environments. This Test-Suite is being used as a validation tool for commercial cloud services procurement
in OCRE (Open Clouds for Research Environments) project sponsored by the European Commission.

More information at: http://ocre-project.eu.

Please find the the repository here: https://github.com/cern-it-efp/OCRE-Testsuite

Cloud Test Suite Documentation 1

http://ocre-project.eu
https://github.com/cern-it-efp/OCRE-Testsuite

Cloud Test Suite - CERN IT Documentation

2 Cloud Test Suite Documentation

CHAPTER 1

1. Getting started

Please follow the steps below in order to deploy tests in a cloud provider:

Refer to section “Using Docker” to use the Docker image we provide to avoid dealing with required packages and
dependencies.

1.1 1.1 Dependencies

This test-suite requires some packages to work properly and these must be installed by yourself directly. Please see
below.

1.1.1 Terraform

Terraform is the tool that creates the VMs that will later become a Kubernetes cluster. The test-suite makes use of it so
download and install on your machine. In some cases, providers are not fully supported by Terraform, however they
might provide plugins to bridge this gap. In such cases, please refer to the documentation of the provider to download
the plugin. Once downloaded, this must be placed at ~/.terraform.d/plugins and execution permissions must be given
to it (+x).

1.1.2 Kubernetes client

In order to manage the Kubernetes cluster locally instead of using the master node, install on your machine.

1.1.3 Python

Python version 3 is required. The following python packages are required:

• pyyaml

• jsonschema

3

Cloud Test Suite - CERN IT Documentation

• kubernetes

• requests

Please install them with pip3.

1.2 1.2 SSH key

A ssh key pair is needed to establish connections to the VMs to be created later. Therefore, you must create (or import)
this key on your provider beforehand and place the private key at ~/.ssh/id_rsa. Note errors may occur if your key
doesn’t have the right permissions. Set these to the right value using the following command:

$ chmod 600 path/to/key

1.3 1.3 Security groups

The following ports have to be opened:

Port Protocol Functionality
22 TCP SSH
6443 TCP Kubernetes API
10250 TCP API which allows node access
8472 UDP Flannel overlay network, k8s pods communication

1.4 1.4 Networking and IPs

Some providers do not allocate public IPs to the VMs but use NAT. Hence the VM can be reached from outside but
that IP is not really residing on the VM. This causes conflicts when creating the Kubernetes cluster. If one wants to
run the Test-Suite on a provider of this case, then the suite must be launched from within the network the nodes will
be connected to, this is a private network. In other words, a VM will have to be created first manually and the Test
Suite will have to be triggered from there.

1.5 1.5 Download and preparation

1.5.1 Cloning repository

Please clone the repository as follows and cd into it:

$ git clone https://github.com/cern-it-efp/OCRE-Testsuite.git
$ cd OCRE-Testsuite

1.5.2 Configuration

While completing this task, please refer to in order to complete it successfully as some parts are provider specific and
differ from one provider to another.

4 Chapter 1. 1. Getting started

Cloud Test Suite - CERN IT Documentation

You will find in the root of the cloned repository a folder named configurations. That folder must containing the
following files:

testsCatalog.yaml (required)

Refer to the section “Test Catalog” to learn how to fill this file.

configs.yaml (required)

[NOTE: For running on Azure, AWS, GCP, OpenStack, CloudStack and Exoscale refer to the section “Main clouds”
below. In those cases, only configs.yaml and testsCatalog.yaml are needed.]

Its variables:

Name Explanation / Values
providerName Name of the provider for Terraform. (required)
providerInstanceName Compute instance name for Terraform. This is provider

specific. (required)
pathToKey Path to the location of your private key (required)
flavor

Flavor to be used for the main cluster. This has to be
specified as a key-value
pair according to the provider. (required)

openUser

User to be used in case the provider doesn’t allow root
ssh. If not specified,
root will be used for ssh connections.

dockerCE Version of docker-ce to be installed. Leave empty for
latest.

dockerEngine Version of docker-engine to be installed. Leave empty
for latest.

kubernetes Version of Kubernetes to be installed. Leave empty for
latest.

Note that it’s possible to choose between “Docker Community Edition” and “Docker Engine” (older Docker packages).
However it’s highly recommended to leave these variables empty to create a cluster with the latest stack.

The file also contains a section named costCalculation. Refer to the section “Cost of run calculation” to understand
how to fill that part.

credentials

This file must contains .tf (HCL) code for authentication that goes on the provider definition section of a Terraform
configuration file (i.e AWS) In case this file is empty, the TS assumes an external authentication method: like env
variables (i.e OpenStack) or CLI (i.e Azure). Note that if you aim to use external authentication but you need something
inside the provider section of the Terraform configuration file (i.e AWS region), this file is the place to define that.

instanceDefinition (required)

In this file one should write all the key-pair values that would be written on the body of an instance definition resource
on Terraform, according to the cloud one wants to test. Please refer to the documentation of the cloud provider to

1.5. 1.5 Download and preparation 5

Cloud Test Suite - CERN IT Documentation

check which pairs you need to specify. In any case, you can run the Test-Suite (next steps) and if there is any missing
pair a message will be shown in the terminal telling you which ones these are. This is how you must specify each pair:

<YOUR_PROVIDER'S_STRING_FOR_A_KEY> = "<VALUE_GIVEN_FOR_THAT_KEY>"

An example:

display_name = "NAME_PH"
template = "Linux CentOS 7.5 64-bit"
key_pair = "k_cl"
security_groups = ["kgroup"]
disk_size = 50
zone = "ch-gva-2"

One of the properties specified on the block that defines a compute node (VM) is the flavor or machine type. This
property must not be specified on instanceDefinition but on configs.yaml’s flavor.

Please pay attention in this section to the name for the instance, which will be set by the Test-Suite containing:

• The string “kubenode”

• A string indicating the purpose of the cluster to which the VM belongs

• A random, 4 character string to avoid DNS issues

• An integer. 0 would be the master node, 1+ would be the slaves

To achieve this, your instance definition must contain the ‘NAME_PH’ placeholder. When specifying the name for
the instance, please follow this structure:

<YOUR_PROVIDER'S_STRING_FOR_NAME> = "NAME_PH"

Now, let’s assume your provider’s string for the instance name is “display_name”, then you should write:

display_name = "NAME_PH"

As an example let’s assume the suite comes up with the name “kubenode-hpcTest-aws-0”, Then it would switch that
name with the NAME_PH placeholder:

display_name = "kubenode-hpcTest-aws-0"

[NOTE 1: This will be taken as a whole block and placed directly on a .tf file]
[NOTE 2: Clouds that don’t support resource creation with Terraform or k8saaS can’t currently be tested with this
Test-Suite]

Dependencies

This file takes also HCL code. There are providers for which dependencies are required, for example Azure: Terraform
can’t create a VM if there is no NIC for it. Then this is the file to define those dependencies needed by the VMs.

1.5.3 Main clouds: additional support

Writing Terraform files is not needed when running the suite on Azure, AWS, GCP, OpenStack, CloudStack and
Exoscale. In those cases the suite will create itself the Terraform files on the fly according to the configuration
provided. Find below these lines details on how to run the suite on these providers:

6 Chapter 1. 1. Getting started

Cloud Test Suite - CERN IT Documentation

Azure

(Find the example files at examples/azure. It is also possible to use AKS to provision the cluster, for this refer to
section “Using existing clusters”.)

Install az CLI and configure credentials with ‘az login’.

Variables for configs.yaml:

Name Explanation / Values
providerName It’s value must be “azurerm”. (required)
pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster.
openUser User to be used for ssh connections.
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
location The region in which to create the compute instances. (required)
subscriptionId ID of the subscription. (required)
resourceGroup-
Name

Specifies the name of the Resource Group in which the Virtual Machine should exist. (re-
quired)

pubSSH Public SSH key of the key specified at configs.yaml’s pathToKey. (required)
securityGroupID The ID of the Network Security Group to associate with the VMs’s network interfaces (re-

quired)
subnetId Reference to a subnet in which the NIC for the VM has been created. (required)
image.publisher Specifies the publisher of the image used to create the virtual machines. (required)
image.offer Specifies the offer of the image used to create the virtual machines. (required)
image.sku Specifies the SKU of the image used to create the virtual machines. (required)
image.version Specifies the version of the image used to create the virtual machines. (required)

Note: the security group and subnet -virtual network too- have to be created beforehand and their ID’s used at con-
figs.yaml. Also, if image’s publisher, offer, sku and version are omitted, the following defaults will be used:

• publisher = OpenLogic

• offer = CentOS

• sku = 7.5

• version = latest

AWS

(Find the example files at examples/aws. It is also possible to use EKS to provision the cluster, for this refer to section
“Using existing clusters”.)

Variables for configs.yaml:

1.5. 1.5 Download and preparation 7

Cloud Test Suite - CERN IT Documentation

Name Explanation / Values
providerName It’s value must be “aws”. (required)
pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster. (required)
openUser User to be used for ssh connections. (required)
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
region The region in which to create the compute instances. (required)
sharedCreden-
tialsFile

The authentication method supported is AWS shared credential file. Specify here the absolute
path to such file. (required)

ami AMI for the instances. (required)
keyName Name of the key for the instances. (required)

GCP

(Example files at examples/gcp. It is also possible to use GKE to provision the cluster, for this refer to section “Using
existing clusters”. You will have to too.)

Variables for configs.yaml:

Name Explanation / Values
providerName It’s value must be “google”. (required)
pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster. (required)
openUser User to be used for ssh connections. (required)
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
zone The zone in which to create the compute instances. (required)
pathToCre-
dentials

Path to the GCP JSON credentials file (note this file has to be downloaded in advance from the
GCP console). (required)

image Image for the instances. (required)
project Google project under which the infrastructure has to be provisioned. (required)
gpuType Type of GPU to be used. Needed if the Deep Learning test was selected at testsCatalog.yaml.

OpenStack

Regarding authentication, download the OpenStack RC File containing the credentials from the Horizon dashboard
and source it.

Variables for configs.yaml:

8 Chapter 1. 1. Getting started

Cloud Test Suite - CERN IT Documentation

Name Explanation / Values
provider-
Name

It’s value must be “openstack”. (required)

pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster. (required)
openUser User to be used for ssh connections. Root user will be used by default.
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
imageName OS Image to be used for the VMs. (required)
keyPair Name of the key to be used. Has to be created or imported beforehand. (required)
security-
Groups

Security groups array. Must be a String, example: “[“default”,”allow_ping_ssh_rdp”]”

region The region in which to create the compute instances. If omitted, the region specified in the cre-
dentials file is used.

availability-
Zone

The availability zone in which to create the compute instances.

CloudStack

Variables for configs.yaml:

Name Explanation / Values
providerName It’s value must be “cloudstack”. (required)
pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster. (required)
openUser User to be used for ssh connections. Root user will be used by default.
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
keyPair Name of the key to be used. Has to be created or imported beforehand. (required)
security-
Groups

Security groups array. Must be a String, example: “[“default”,”allow_ping_ssh_rdp”]”

zone The zone in which to create the compute instances. (required)
template OS Image to be used for the VMs. (required)
diskSize VM’s disk size.
configPath Path to the file containing the CloudStack credentials. See below the structure of such file. (re-

quired)

CloudStack credentials file’s structure:

[cloudstack]
url = your_api_url
apikey = your_api_key
secretkey = your_secret_key

Exoscale

Variables for configs.yaml:

1.5. 1.5 Download and preparation 9

Cloud Test Suite - CERN IT Documentation

Name Explanation / Values
providerName It’s value must be “exoscale”. (required)
pathToKey Path to the location of your private key (required)
flavor Flavor to be used for the main cluster. (required)
dockerCE Version of docker-ce to be installed. Leave empty for latest.
dockerEngine Version of docker-engine to be installed. Leave empty for latest.
kubernetes Version of Kubernetes to be installed. Leave empty for latest.
keyPair Name of the key to be used. Has to be created or imported beforehand. (required)
security-
Groups

Security groups array. Must be a String, example: “[“default”,”allow_ping_ssh_rdp”]”

zone The zone in which to create the compute instances. (required)
template OS Image to be used for the VMs. (required)
diskSize VM’s disk size. (required)
configPath Path to the file containing the Exoscale credentials. See below the structure of such file. (re-

quired)

Exoscale credentials file’s structure:

[exoscale]
key = EXOe3ca3e7621b7cd7a20f7e0de
secret = 2_JvzFcZQL_Rg1nZSRNVheYQh9oYlL5aX3zX-eILiL4

1.6 1.6 Using Docker

A Docker image has been built and pushed to Docker hub. This image allows you to skip section “1.1 Dependencies”
and jump to “1.2 SSH key”.

Run the container (pulls the image first):

$ docker run --net=host -it cernefp/tslauncher

Note the option ‘–net=host’. Without it, the container wouldn’t be able to connect to the nodes, as it would not be in
the same network as them and it is likely the nodes will not have public IPs. With that option, the container will use
the network used by its host, which will be sharing the network with the nodes.

You will get a session on the container, directly inside the cloned repository.

10 Chapter 1. 1. Getting started

CHAPTER 2

2. Tests Catalog

In the root of the cloned repository, you will find a file named testsCatalog.yaml, in which you have to specify the
tests you want to run. To run a certain test simply set its run variable to the True Boolean value. On the other hand, if
you don’t want it to be run set this value to False. Please find below, a description of each test that has already been
integrated in the Test-Suite:

2.1 Deep Learning using GPUs

(This test is currently under development and will be available if following versions)

The 3DGAN application is a prototype developed to investigate the possibility to use a Deep Learning approach to
speed-up the simulation of particle physics detectors. The benchmark measures the total time needed to train a 3D
convolutional Generative Adversarial Network (GAN) using a data-parallel approach on distributed systems. It is
based on MPI for communication. As such, it tests the performance of single nodes (GPUs cards) but also latency
and bandwidth of nodes interconnects and data access. The training uses a Kubernetes cluster (GPU flavored) with
Kubeflow and MPI.

If selected, the suite will provision a Kubernetes cluster -GPU flavored- specifically for this test. For this test, apart
from the run variable, the following can be set in the testsCatalog.yaml file:

Name Explanation / Values
nodes Number of nodes to be used for the deployment. Default: max number of nodes available.
flavor Terraform definition of the flavor to be used for this test’s cluster. (required)

• Contributors/Owners: Sofia Vallecorsa (CERN) - sofia.vallecorsa AT cern.ch; Jean-Roch Vlimant (Caltech)

•

11

Cloud Test Suite - CERN IT Documentation

2.2 S3 endpoint tests

A simple S3 test script to test functionality of S3-like endpoints, checking the following: S3 authentication (access
key + secret key), PUT, GET, GET with prefix matching, GET chunk, GET multiple chunks.

For this test, apart from the run variable, the following ones must be set on the testsCatalog.yaml file:

Name Explanation / Values
endpoint

Endpoint under which your S3 bucket is reachable.
This URL must not include the bucket name but only
the host.

accessKey Access key for S3 resource management.
secretKey Secret key for S3 resource management.

• Contributors/Owners: Oliver Keeble (CERN) - oliver.keeble AT cern.ch

•

2.3 Data Export: From the commercial cloud provider to Zenodo

When using cloud credits, when the credit is exhausted, data can be repatriated or moved to a long-term data storage
service. The example used in this test uses service maintained by CERN, verifying that the output data can be taken
from the cloud provider to Zenodo.

• Contributors/Owners: Ignacio Peluaga (CERN) - ignacio.peluaga.lozada AT cern.ch

•

2.4 Containerised CPU Benchmarking

Suite containing several CPU benchmarks used for High Energy Physics (HEP). The following benchmarks are run
on the cloud provider, using a containerised approach:

• DIRAC Benchmark

• ATLAS Kit Validation

• Whetstone: from the UnixBench benchmark suite.

• Hyper-benchmark: A pre-defined sequence of measurements and fast benchmarks.

• Contributors/Owners: Domenico Giordano (CERN) - domenico.giordano AT cern.ch

•

2.5 Networking performance measurements

perfSONAR is a network measurement toolkit designed to provide federated coverage of paths, and help to establish
end-to-end usage expectations.

12 Chapter 2. 2. Tests Catalog

Cloud Test Suite - CERN IT Documentation

In this test, a perfSONAR testpoint is created using a containerised approach on the cloud provider infrastructure. The
following tests are launched end to end:

• throughput: A test to measure the observed speed of a data transfer and associated statistics between two end-
points.

• rtt: Measure the round trip time and related statistics between hosts.

• trace: Trace the path between IP hosts.

• latencybg: Continuously measure one-way latency and associated statistics between hosts and report back results
periodically.

The endpoint for these tests must be specified at testsCatalog.yaml’s perfsonarTest.endpoint variable. Use endpoints
from:

•

•

•

• Contributors/Owners: Shawn Mckee (University of Michigan) - smckee AT umich.edu; Marian Babik CERN) -
marian.babik AT cern.ch

•

2.6 FDMNES: Simulation of X-ray spectroscopies

(This test is currently under development and will be available if following versions)

The FDMNES project provides the research the community a user friendly code to simulate x-ray spectroscopies,
linked to the real absorption (XANES, XMCD) or resonant scattering (RXD in bulk or SRXRD for surfaces) of
synchrotron radiation. It uses parallel calculations using OpenMPI. As an HPC test FDMNES is rather heavy on CPU
and Memory and light on I/O. The objective of this test is to understand which configuration of FDMNES is the most
efficient and which type of tasks and calculations can be done in a give cloud provider.

If selected, the suite will provision a Kubernetes cluster -HPC flavored- specifically for this test. For this test, apart
from the run variable, the following can be set in the testsCatalog.yaml file:

Name Explanation / Values
nodes Number of nodes to be used for the deployment.
flavor Terraform definition of the flavor to be used for this test’s cluster. (required)

• Contributors/Owners: Rainer Wilcke (ESRF) - wilcke AT esrf.fr

•

2.7 DODAS: Dynamic On Demand Analysis Services test

DODAS is a system designed to provide a high level of automation in terms of provisioning, creating, managing
and accessing a pool of heterogeneous computing and storage resources, by generating clusters on demand for the
execution of HTCondor workload management system. DODAS allows to seamlessly join the HTCondor Global Pool
of CMS to enable the dynamic extension of existing computing resources. A benefit of such an architecture is that it
provides high scaling capabilities and self-healing support that results in a drastic reduction of time and cost, through
setup and operational efficiency increases.

2.6. FDMNES: Simulation of X-ray spectroscopies 13

Cloud Test Suite - CERN IT Documentation

If one wants to deploy this test, the machines in the general cluster (to which such test is deployed), should have at
least 50 gb disk as the image for this test is 16GB.

• Contributors/Owners: Daniele Spiga (INFN) - daniele.spiga@pg.infn.it ; Diego Ciangottini (INFN) -
diego.ciangottini@cern.ch

•

14 Chapter 2. 2. Tests Catalog

mailto:daniele.spiga@pg.infn.it
mailto:diego.ciangottini@cern.ch

CHAPTER 3

3. Run the test-suite

Once the configuration steps are completed, the Test-Suite is ready to be run:

$./test_suite <options>

3.1 Options

The following table describes all the available options:

Name Explanation / Values
–only-test

Run without creating the infrastructure (VMs and
cluster), only deploy tests.
Not valid for the first run.

–retry

In case of errors on the first run, use this option for
retrying. This will make the test-suite
try and reuse already provisioned infrastructure.
Not valid for the first run, use only when VMs were
provisioned but kubernetes
bootstrapping failed.

3.2 Other commands

Once the test suite is running, you can view the Terraform logs by doing:

15

Cloud Test Suite - CERN IT Documentation

$ tail -f logs

Once the provisioning has completed and tests are deployed, you can see the pods statuses by doing:

$ watch kubectl get pods

If GPU and HPC tests were deployed, see their pods by doing:

$ watch kubectl --kubeconfig src/tests/dlTest/config get pods # For GPU cluster
$ watch kubectl --kubeconfig src/tests/hpcTest/config get pods # For HPC cluster

16 Chapter 3. 3. Run the test-suite

CHAPTER 4

4. Using existing clusters

It’s possible to use this tool for testing providers that support Kubernetes as a Service. This means the provider offers
the user a way for simply creating a cluster. In case one wants to validate a provider that offers this and want to take
advantage of it, simply skip steps 1.1 and 1.2 (install Terraform and manage ssh keys) and when running the test-suite,
use option –only-test.

Note that you must have the file *~/.kube/config* for the previously provisioned cluster on your local machine
so that it can be managed from there.

17

Cloud Test Suite - CERN IT Documentation

18 Chapter 4. 4. Using existing clusters

CHAPTER 5

5. Results

Once all the selected tests finish the run, the test-suite has completed its execution. The results and logs of the validation
exercise can be seen at /results (JSON format). Prior to completing the runs, a message will be printed to the console
showing the exact path to the results. There you will find a file general.json containing general information such as
IPs of the provisioned VMs, estimated cost and brief test results information and also a directory detailed containing
more detailed information for each test.

19

Cloud Test Suite - CERN IT Documentation

20 Chapter 5. 5. Results

CHAPTER 6

6. Verification

In order to verify results, please run using –via-backend so that the proxy at CERN runs the Test-Suite (only deploys
tests, no provisioning), harvests results and push them to CERN’s S3 bucket. Before starting the run, a message will
be shown asking for yes/no answer. It warns the user that backend runs publish results to the CERN bucket.

Note that this feature is still under development and testing and will be available on next releases.

21

Cloud Test Suite - CERN IT Documentation

22 Chapter 6. 6. Verification

CHAPTER 7

7. Cost of run calculation

An approximative cost of running the test-suite will be calculated in case the prices are specified at configs.yaml under
the costCalculation section. In this configuration file, one must specify the price per hour for the different resources:

Name Explanation / Values
generalInstancePrice Price per hour of VM with the flavor chosen for the general cluster.
GPUInstancePrice Price per hour of VM with the flavor chosen for the GPU cluster.
HPCInstancePrice Price per hour of VM with the flavor chosen for the HPC cluster.
s3bucketPrice S3 bucket price.

If a price value is required for the cost calculation but the costCalculation section is not properly filled (For example,
S3 Endpoint test was set to True but s3bucketPrice was not set), no approximation will be given at all.

At the end of the run, the resulting approximated cost will be added to the file containing general test suit run results.
In case this information isn’t needed, simply leave the values on the section costCalculation empty. Note that this is a
cost estimate and not an exact price.

The formula used is as follows:

(Number of VMs created) x (Price of a VM per hour) x (Time in hours the VMs were used for the test-suite run) +
(Cost of other resources)

Where “Cost of other resources” are the cost of resources which are not simple compute, like storage. For example in
the case of the S3 Endpoint test:

(Price of a S3 bucket per hour) x (Time in hours the bucket was used for the test)

Note that the price per request or data amount (GB) are not considered here as these are not significant since less than
10 requests are done for this test and for very small data sets. Note also that only the cost of the running time of the
VM is considered, so if your provider charges for VM creation and not only for the time it is running, the cost obtained
will vary to the real one.

The test-suite executes four main steps:

1) Infrastructure provisioning: VMs are created using Terraform and then Kubernetes and Docker are installed on
them to create several k8s cluster according to the selected tests.

23

Cloud Test Suite - CERN IT Documentation

2) Deploy the tests: Kubernetes resource definition files (YAML) are used to deploy the tests, either as single pods
or deployments.

3) Harvest results: at the end of each test run a result file -written in JSON- is created. This file is harvested from
the cluster and stored locally.

4) Through a verification system, the Test-Suite can also be triggered from a service running at CERN. In this case,
results are then pushed to a S3 Bucket at CERN. (Under development)

The test set described below is based on the tests used in Helix Nebula The Science Cloud PCP project funded by the
European Commission.

The developers would like to thank all test owners and contributors to this project.

This test-suite has been tested on:

OS on launcher machine Ubuntu, CentOS, CoreOS, Debian, RedHat, Fedora
OS running on provider’s VMs CentOS7
Providers / clouds

AWS
Google Cloud
Microsoft Azure
Exoscale (CloudStack)
CERN Private Cloud (OpenStack)
CloudFerro (OpenStack)
Cloudscale (OpenStack)
CloudStack
OpenStack

The test suite is being tested in several additional cloud providers. As tests are concluded the cloud providers names
will be added in the table above.

24 Chapter 7. 7. Cost of run calculation

https://www.hnscicloud.eu/

CHAPTER 8

Release notes

(Note the versions are numbered with the date of the release: YEAR.MONTH)

19.12

-Project restructured.

-Improved support for running on Google, AWS, Azure, Exoscale, OpenStack and CloudStack.

19.8

-Parallel creation of clusters, with different flavors according to tests needs.

-New logging system to keep parallel running tests logs sorted.

-Restructured configuration: moved configuration files to /configurations and created new files taking HCL code
(terraform configuration code) to keep configs.yaml clean.

-Automated allowance of root ssh by copying open user’s authorized_keys to root’s ~/.ssh as well as sshd_config
modification.

-Usage of Kubernetes API instead of Kubernetes CLI.

-For network test (perfSONAR), usage of API instead of pscheduler CLI.

-New test: Dynamic On Demand Analysis Service, provided by INFN.

-Added configurations validation with jsonschema.

-Created Docker image to run a Test-Suite launcher container: rapidly creates a ready to use Test-Suite launcher.

19.4

-New tests: perfsonar and cpu-benchmarking

19.2

-First release.

25

Cloud Test Suite - CERN IT Documentation

26 Chapter 8. Release notes

CHAPTER 9

Contact

For more information contact ignacio.peluaga.lozada AT cern.ch

27

Cloud Test Suite - CERN IT Documentation

28 Chapter 9. Contact

CHAPTER 10

License

Copyright (C) CERN.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see
gnu.org/licenses.

29

https://www.gnu.org/licenses/

	1. Getting started
	1.1 Dependencies
	Terraform
	Kubernetes client
	Python

	1.2 SSH key
	1.3 Security groups
	1.4 Networking and IPs
	1.5 Download and preparation
	Cloning repository
	Configuration
	Main clouds: additional support

	1.6 Using Docker

	2. Tests Catalog
	Deep Learning using GPUs
	S3 endpoint tests
	Data Export: From the commercial cloud provider to Zenodo
	Containerised CPU Benchmarking
	Networking performance measurements
	FDMNES: Simulation of X-ray spectroscopies
	DODAS: Dynamic On Demand Analysis Services test

	3. Run the test-suite
	Options
	Other commands

	4. Using existing clusters
	5. Results
	6. Verification
	7. Cost of run calculation
	Release notes
	Contact
	License

