

oauthsub

[image: _images/oauthsub.svg]
 [https://travis-ci.com/cheshirekow/oauthsub][image: _images/a02ab2c5ca92c2f6ae9026a59846c76fcc9edbde.svg]
 [https://oauthsub.readthedocs.io]Simple oauth2 subrequest handler for reverse proxy configurations

	Installation
	Install with pip

	Install from source

	Usage
	Configuration

	Examples
	Providers

	NGINX configuration

	Gerrit

	Buildbot Master

	PHPbb

	Jenkins

	Sonatype Nexus

	Discourse

	Systemd Unit

	Changelog
	v0.2 series

	v0.1 series

	TODO

	oauthsub package
	Module contents

Purpose

The goal of oauthsub is to enable simple and secure Single Sign On by
deferring authentication to an oauth2 provider (like google, github,
microsoft, etc).

oauthsub does not provide facilities for access control. The program is
very simple and if you wanted to implement authentication and access control,
feel free to use it as a starting point. It was created, however, to provide
authentication for existing services that already do their own access control.

Details

oauthsub implements client authentication subrequest handling for reverse
proxies, and provides oauth2 redirect endpoints for doing the whole
oauth2 dance. It can provide authentication services for:

	NGINX (via http_auth_request [http://nginx.org/en/docs/http/ngx_http_auth_request_module.html])

	Apache (via mod_perl and Authen::Simple::HTTP [https://metacpan.org/pod/release/CHANSEN/Authen-Simple-HTTP-0.2/lib/Authen/Simple/HTTP.pm], backup link [https://stackoverflow.com/a/38033113/141023])

	HA-Proxy (via a lua extension [https://bl.duesterhus.eu/20180119/], backup link [https://serverfault.com/a/898145])

The design is basically this:

	For each request, the reverse proxy makes a subrequest to oauthsub
with the original requested URI

	oauthsub uses a session cookie to keep track of authenticated users.
If the user’s session has a valid authentication token, it returns HTTP
status 200. Otherwise it returns HTTP status 401.

	If the user is not authenticated, the reverse proxy redirects them to the
oauthsub login page, where they can start the dance with an oauth2
provider. You can choose to enable multiple providers if you’d like.

	The oauth2 provider bounces the user back to the oauthsub callback
page where the authentication dance is completed and the users credentials
are stored. oauthsub sets a session cookie and redirects the user back
to the original URL they were trying to access.

	This time when they access the URL the subrequest handler will return
status 200.

Oauthsub will also pass the authenticated username back to the reverse-proxy
through a response header. This can be forwarded to the proxied service as a
Remote User Token for access control.

Application Specifics

oauthsub is a flask application with the following routes:

	/auth/login: start of oauth dance

	/auth/callback: oauth redirect handler

	/auth/logout: clears user session

	/auth/query_auth: subrequest handler

	/auth/forbidden: optional redirect target for 401’s

The /auth/ route prefix can be changed via configuration.

oauthsub uses the flask session interface. You can configure the session
backend however you like (see configuration options). If you share the session
key between oauthsub and another flask application behind the same nginx
instance then you can access the oauthsub session variables directly
(including the oauth token object).

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install with pip

The easiest way to install oauthsub is from pypi.org [https://pypi.org/project/oauthsub/]
using pip [https://pip.pypa.io/en/stable/]. For example:

pip install oauthsub

If you’re on a linux-type system (such as ubuntu) the above command might not
work if it would install into a system-wide location. If that’s what you
really want you might need to use sudo, e.g.:

sudo pip install oauthsub

In general though I wouldn’t really recommend doing that though since things
can get pretty messy between your system python distributions and your
pip managed directories. Alternatively you can install it for your user
with:

pip install --user oauthsub

which I would probably recommend for most users.

Install from source

You can also install from source with pip. You can download a release [https://github.com/cheshirekow/oauthsub/releases] package
from github and then install it directly with pip. For example:

pip install v0.1.0.tar.gz

Note that the release packages are automatically generated from git tags which
are the same commit used to generate the corresponding version package on
pypi.org. So whether you install a particular version from github or
pypi shouldn’t matter.

Pip can also install directly from github. For example:

pip install git+https://github.com/cheshirekow/oauthsub.git

If you wish to test a pre-release or dev package from a branch called
foobar you can install it with:

pip install "git+https://github.com/cheshirekow/oauthsub.git@foobar"

Usage

usage: oauthsub [-h] [--dump-config] [-v] [-l {debug,info,warning,error}]
 [-c CONFIG_FILE] [-s {flask,gevent,twisted}]
 [--rooturl ROOTURL] [--flask-debug [FLASK_DEBUG]]
 [--flask-privkey FLASK_PRIVKEY]
 [--response-header RESPONSE_HEADER]
 [--allowed-domains [ALLOWED_DOMAINS [ALLOWED_DOMAINS ...]]]
 [--host HOST] [--port PORT] [--logdir LOGDIR]
 [--route-prefix ROUTE_PREFIX]
 [--session-key-prefix SESSION_KEY_PREFIX]
 [--bypass-key BYPASS_KEY] [--custom-template CUSTOM_TEMPLATE]
 [--enable-forbidden [ENABLE_FORBIDDEN]]

This lightweight web service performs authentication. All requests that reach
this service should be proxied through nginx. See:
https://developers.google.com/api-client-library/python/auth/web-app

optional arguments:
 -h, --help show this help message and exit
 --dump-config Dump configuration and exit
 -v, --version show program's version number and exit
 -l {debug,info,warning,error}, --log-level {debug,info,warning,error}
 Increase log level to include info/debug
 -c CONFIG_FILE, --config-file CONFIG_FILE
 use a configuration file
 -s {flask,gevent,twisted}, --server {flask,gevent,twisted}
 Which WGSI server to use
 --rooturl ROOTURL The root URL for browser redirects
 --flask-debug [FLASK_DEBUG]
 Enable flask debugging for testing
 --flask-privkey FLASK_PRIVKEY
 Secret key used to sign cookies
 --response-header RESPONSE_HEADER
 If specified, the authenticated user's ``username``
 will be passed as a response header with this key.
 --allowed-domains [ALLOWED_DOMAINS [ALLOWED_DOMAINS ...]]
 List of domains that we allow in the `hd` field of
 thegoogle response. Set this to your company gsuite
 domains.
 --host HOST The address to listening on
 --port PORT The port to listen on
 --logdir LOGDIR Directory where we store resource files
 --route-prefix ROUTE_PREFIX
 All flask routes (endpoints) are prefixed with this
 --session-key-prefix SESSION_KEY_PREFIX
 All session keys are prefixed with this
 --bypass-key BYPASS_KEY
 Secret string which can be used to bypass
 authorization if provided in an HTTP header
 `X-OAuthSub-Bypass`
 --custom-template CUSTOM_TEMPLATE
 Path to custom jinja template
 --enable-forbidden [ENABLE_FORBIDDEN]
 If true, enables the /forbidden endpoint, to which you
 can redirect 401 errors from your reverse proxy. This
 page is a simple message with active template but
 includes login links that will redirect back to the
 forbidden page after a successful auth.

Configuration

oauthsub is configurable through a configuration file in python (the file
is exec``ed). Each configuration variable can also be specified on the
command line (use ``oauthsub --help to see a list of options). If you’d
like to dump a configuration file containing default values use:

oauthsub --dump-config

Which outputs something like:

.. dynamic: config-begin

The root URL for browser redirects
rooturl = 'http://localhost'

Enable flask debugging for testing
flask_debug = False

Secret key used to sign cookies
flask_privkey = 'KALJE0Unas2dd8ao3p/T55htwbL5RrKX'

If specified, the authenticated user's ``username`` will be passed as a
response header with this key.
response_header = None

List of domains that we allow in the `hd` field of thegoogle response. Set
this to your company gsuite domains.
allowed_domains = ['gmail.com']

The address to listening on
host = '0.0.0.0'

The port to listen on
port = 8081

Directory where we store resource files
logdir = '/tmp/oauthsub/logs'

Flask configuration options. Set session config here.
flaskopt = {
 "PERMANENT_SESSION_LIFETIME": 864000,
 "SESSION_FILE_DIR": "/tmp/oauthsub/session_data",
 "SESSION_TYPE": "filesystem"
}

All flask routes (endpoints) are prefixed with this
route_prefix = '/auth'

All session keys are prefixed with this
session_key_prefix = 'oauthsub-'

Secret string which can be used to bypass authorization if provided in an HTTP
header `X-OAuthSub-Bypass`
bypass_key = None

Dictionary mapping oauth privider names to the client secrets for that
provider.
client_secrets = {}

Path to custom jinja template
custom_template = None

If true, enables the /forbidden endpoint, to which you can redirect 401 errors
from your reverse proxy. This page is a simple message with active template
but includes login links that will redirect back to the forbidden page after a
successful auth.
enable_forbidden = True

Which WGSI server to use (flask, gevent, twisted)
server = 'flask'

This is not used internally, but is used to implement our user lookup
callback below
_user_map = {
 "alice@example.com": "alice",
 "bob@example.com": "bob"
}

This is a callback used to lookup the user identity based on the credentials
provided by the authenticator.
def user_lookup(authenticator, parsed_response):
 if authenticator.type == "GOOGLE":
 # Could also use `id` to lookup based on google user id
 return _user_map.get(parsed_response.get("email"))

 return None

Examples

This section will demonstrate how to use oauthsub to secure various
services behind NGINX as a reverse proxy, with authentication provided by
one of many popular providers. The basic setup for each service is shown
in figure Fig. 1.

[image: ../_images/small_flow.svg]Fig. 1 The basic authentication setup.

Before proceeding with these examples, you’ll need to setup at least one
oauth2 provider. See the tutorials below on how to do that.
Then you can create a basic nginx configuration before finally configuring
your backend service integration.

	Providers
	Google

	Github

	Microsoft

	Atlassian

	NGINX configuration
	Basic setup

	Remote User Tokens

	Testing the service

	Executing

	Gerrit

	Buildbot Master

	PHPbb

	Jenkins

	Sonatype Nexus

	Discourse

Providers

In order to take advantage of a public oauth2 provider you must do some
setup. This usually involves registering an application and getting an
API token (a client_secret). This section will walk you through the
process of registering with various popular providers.

In order to be explicit, we’ll configure the client information for the
test setup that we’ve configured:

	nginx on localhost:8080

	oauthsub on localhost:8081

You will need to adapt these instructions for your production setup.

	Google

	Github

	Microsoft

	Atlassian

Google

Go to the Google Developer Dashboard [https://console.developers.google.com/apis/credentials] and create a new project.

[image: ../_images/google-01.svg]

Give it a name.

[image: ../_images/google-02.png]

Select the project in the top left next to the GoogleAPIs logo.
Click “Credentials” under the menu on the left of the screen.

[image: ../_images/google-03.svg]

Click “Create credentials”:

[image: ../_images/google-04.svg]

Select “Web Application”. Give it a name. Then fill in the Javascript origins:

	http://lvh.me:8080/

	http://lvh.me:8081/

	https://lvh.me:8443/

and authorized redirects:

	http://lvh.me:8080/auth/callback?provider=google

	http://lvh.me:8081/auth/callback?provider=google

	https://lvh.me:8443/auth/callback?provider=google

[image: ../_images/google-05.png]

Then click “create” and copy out the client id and secret from the popup.

[image: ../_images/google-06.png]

The client id is also available on the dashboard after you create it:

[image: ../_images/google-07.png]

Note

We add three authorized domains for different testing scenarios. The 8081
port will be the raw service. 8080 will be an nginx reverse proxy listening
over unencrypted http. 8443 will be an nginx reverse proxy listening over
encrypted https (with a self-signed certificate).

Note

As of January 2019 Google has recently changed their developer
settings and requirements for OAUTH access. They used to allow localhost
and now they do not. An alternative is to use lvh.me which currently
resolves through DNS to 127.0.0.1. Be careful, however, as this is a
common solution cited on the interwebs but no one seems to know who
controls this domain and they may be nefarious actors.

For deployment you’ll want to add a redirect like this:

https://server.yoursite.com/auth/callback?provider=google

Github

Go to the Github Developer Settings [https://github.com/settings/developers].

[image: ../_images/github-01.png]

Click “New OAuth App”. Fill out the form. Set the “Authorization Callback URL”
to:

http://lvh.me:8080/auth/callback?provider=github

for testing, or your real server for deployment. Note that, unlike google,
we do not need to use the full exact URL (in particular, we can leave off
the ?provider= bits.

[image: ../_images/github-02.png]

Warning

Github does not allow you to authorize multiple redirects for an application.
If you wish to test multiple configurations, you will need to update the
Authorized Callback URL each time, or register multiple applications.

Copy down the “Client ID” and “Client Secret” and add them to your
config.py.

[image: ../_images/github-03.png]

Microsoft

Go to the Azure Active Directory [https://aad.portal.azure.com/] admin center.

Click “Azure Active Directory” on the left, and then “App registrations”.
On the top of the page click “New registration”.

[image: ../_images/microsoft-01.svg]

Give it a name and set the redirect uri to
“http://localhost:8080/auth/callback”. Then click “Register” at the bottom.

Note

Microsoft does not allow http:// for anything other than localhost, so
we can’t use http://lvh.me:8080 like we can with the other providers.

[image: ../_images/microsoft-02.png]

On the next page copy off the “Application (client) ID”.

[image: ../_images/microsoft-03.png]

Then click “Certificates & secrets” and click “New client secret”.

[image: ../_images/microsoft-04.svg]

Give it a name, set an expiration, then click “Add”.

[image: ../_images/microsoft-05.png]

Then copy the newly created client secret.

[image: ../_images/microsoft-06.svg]

Atlassian

First, go to the Atlassian Apps [https://developer.atlassian.com/apps/] management page. Click “Create new App”:

[image: ../_images/atlassian-01.png]

Give your app a name, agree to terms, then click “Create”:

[image: ../_images/atlassian-02.png]

On the app info page, copy out the client id and client secret. Then click
“OAuth 2.0 (3LO)” on the left panel.

[image: ../_images/atlassian-03.png]

Enter “https://lvh.me:443/auth/callback?provider=atlassian” in the field and
click “Save changes”.

[image: ../_images/atlassian-04.png]

Note

Like github, you can only enter one callback, so you’ll need a separate app
for testing purposes.

Note

Atlassian will not allow you to register an http:// URL… even for testing
so you’ll need something listening with https.

Documentation coming soon. See also the atlassian page [https://developer.atlassian.com/cloud/jira/platform/oauth-2-authorization-code-grants-3lo-for-apps/].

NGINX configuration

Here is an nginx configuration that should illustrate the foundation
of working with oauthsub. See the comments inline for additional
information.

Basic setup

The nginx server will serve anything under public or auth without
authentication or authorization. For any other request, nginx will forward
the http headers to the authentication service over http. The authentication
service will return an HTTP status code of 200 if the user is
authenticated/authorized, and 401 if they are not. All users with who login
with an account that is within the authorized domain list is authorized.

The nginx server proxies all requests rooted at auth/ to the authentication
service which is a python flask application. The auth service uses a session
(persisted through a cookie) to store the user’s authenticated credentials
(email address reported by google). If the user is not authenticated or
is not authorized, the 401 error page is served by the authentication service
to provide some info about why the request was denied (i.e. what they are
currently logged in as). There is also a link on that page to login if they are
not.

location / {
 # Use ngx_http_auth_request_module to auth the user, sending the
 # request to the /auth/query_auth URI which will return an http
 # error code of 200 if approved or 401 if denied.
 auth_request /auth/query_auth;

 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 try_files $uri $uri/ =404;
}

Whether we have one or not, browsers are going to ask for this so we
probably shouldn't plumb it through auth.
location = /favicon.ico {
 auth_request off;
 try_files $uri $uri/ =404;
}

The authentication service exposes a few other endpoints, all starting
with the uri prefix /auth. These endpoints are for the oauth2 login page,
callback, logout, etc
location /auth {
 auth_request off;
 proxy_pass http://localhost:8081;
 proxy_pass_request_body on;
 proxy_set_header X-Original-URI $request_uri;
}

the /auth/query URI is proxied to the authentication service, which will
return an http code 200 if the user is authorized, or 401 if they are
not
location = /auth/query_auth {
 proxy_pass http://localhost:8081;
 proxy_pass_request_body off;
 proxy_set_header Content-Length "";
 proxy_set_header X-Original-URI $request_uri;
 proxy_pass_header X-OAuthSub-Bypass-Key;
 proxy_pass_header X-OAuthSub-Bypass-User;
}

if the server is using letsencrypt certbot then we'll want this
directory to be accessible publicly
location /.well-known {
 auth_request off;
}

we may want to keep some uri's available without authentication
location /public {
 auth_request off;
}

for 401 (not authorized) redirect to the auth service which will include
the original URI in it's oauthflow and redirect back to the originally
requested page after auth
error_page 401 /auth/forbidden;

Remote User Tokens

If you want oauthsub to forward the username through a header variable then
set the request_header configuration variable for oauthsub and add the
following to your nginx [https://www.nginx.com/resources/admin-guide/restricting-access-auth-request/] configuration. In this example the
request_header is X-User and the protected service service listening on
8082.:

location / {
 auth_request /auth/query_auth;
 auth_request_set $user $upstream_x_user;
 proxy_set_header x-user $user;
 proxy_pass http://localhost:8082;
}

In this case the protected service will need to be configure to accept the
username in the X-User request header.

Warning

Pay particular attention to such protected services when making changes
to your nginx configuration. If you remove the auth_request but don’t
change the underlying service configuration anyone will be able to spoof
arbitrary user identities by simply providing the correct X-User
header.

Testing the service

While doing development and testing it can be troublesome to edit system level
configurations and start/stop root-owned services. You can run NGINX in the
foreground as an unpriviledged user.

To execute in foreground add the following to the nginx config:

daemon off;

On an ubuntu system, for example, you can copy /etc/nginx/nginx.conf and
then add daemon off; to the top. You can then embed your testing site
configuration, in which case you will end up with a file like this

daemon off;
worker_processes auto;
pid /tmp/nginx.pid;

events {
 worker_connections 768;
}

http {
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 types_hash_max_size 2048;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2; # Dropping SSLv3, ref: POODLE
 ssl_prefer_server_ciphers on;
 access_log /tmp/nginx-access.log;
 error_log /tmp/nginx-error.log;
 gzip on;
 gzip_disable "msie6";

 server {

 listen 8080 default_server;
 listen [::]:8080 default_server;

 index index.html index.htm index.nginx-debian.html;
 server_name cheshiresoft;
 root /tmp/webroot;

 location / {
 auth_request /auth/query_auth;
 try_files $uri $uri/ =404;
 }

 location = /favicon.ico {
 auth_request off;
 try_files $uri $uri/ =404;
 }

 location /auth {
 auth_request off;
 proxy_pass http://localhost:8081;
 proxy_pass_request_body on;
 proxy_set_header X-Original-URI $request_uri;
 }

 location = /auth/query_auth {
 proxy_pass http://localhost:8081;
 proxy_pass_request_body off;
 proxy_set_header Content-Length "";
 proxy_set_header X-Original-URI $request_uri;
 proxy_pass_header X-OAuthSub-Bypass-Key;
 proxy_pass_header X-OAuthSub-Bypass-User;
 }

 location /public {
 auth_request off;
 }

 error_page 401 /auth/forbidden;
 }
}

You can then run nginx as follows:

nginx -p <prefix> -c <prefix>/nginx.conf \
 -g "error_log <prefix>/nginx-error-log"

Note that the -g "error_log... part is required to work-around the fact
that nginx tries to write the error log to a root-owned location even before
reading in the configuration file.

Executing

Write your client secrets to /tmp/config.py and then start simple auth
with:

oauthsub --flask-debug \
 --config /tmp/config.py \
 --port 8081 \
 --rooturl http://localhost:8080

Write the above configuration to /tmp/nginx.conf and start nginx with:

nginx -c /tmp/nginx.conf -g "error_log /tmp/nginx-error.log;"

And navigate to “http://localhost:8080/” with your browser. You should be
initially denied, required to login, and then directed to the default
“welcome to nginx” page (unless you’ve written something else to your
default webroot).

Gerrit

Gerrit provides git-based code hosting and code review services. It can be
configured to accept the Remote User Token from oauthsub. There are a few
relevant sections of gerrit.config. First, with gerrit sitting behind
a reverse proxy you must tell gerrit what it’s URL is so that it can properly
contruct links. For our testing configuration we’ll use the following:

[gerrit]
 canonicalWebUrl = http://lvh.me:8080/gerrit/

Secondly, we need to tell gerrit which port to listen on for http connections.
We’ll setup gerrit to listen on 8082:

[httpd]
 listenUrl = http://*:8082/gerrit/

Note

For a production server, consider using
proxy-http://127.0.0.1:8082/gerrit/ instead of http://

Lastly, we need to tell gerrit to enable HTTP header authentication, and
which header to look in. For our example setup, that gives us:

[auth]
 type = HTTP
 httpHeader = X-Gsuite-User
 emailFormat = {0}@example.com

And now that gerrit is configured, we need to update the nginx configuration
to proxy it. Add the following to your nginx site configuration:

location = /gerrit {
 return 302 /gerrit/;
}

location /gerrit/ {
 auth_request /auth/query_auth;
 auth_request_set $user $upstream_http_x_gsuite_user;
 proxy_set_header X-Gsuite-User $user;

 proxy_pass http://localhost:8082;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
}

Note that nginx behaves differently depending on whether or not the
proxy_pass URL ends in a slash. Without the trailing slash, as we have
done here, will forward the whole URI down to the proxied service. In this
case that means that all requests that gerrit sees will be prefixed by the
gerrit/ path. As alternative configuration, we could configure nginx to
forward only the relative URI (i.e. strip the gerrit/ prefix) and then
we would change the gerrit config to listenUrl = http://*:8082/.

Buildbot Master

Buildbot is a continuous integration framework in python. We can configure
the master to run behind nginx and to consume Remote User Tokens from
oauthsub.

In our example setup we will have buildbot listen on port 8083. In your
buildbot master configuration (master.cfg) add the following:

c['www'] = {
 "port": 8083,
 "plugins": {
 "waterfall_view": {},
 "console_view": {},
 "grid_view": {},
 },
 "auth": util.RemoteUserAuth(
 header="X-Gsuite-User",
 headerRegex=r"(?P<username>[^ @]+)@?(?P<realm>[^ @]+)?"),
}

Then in your nginx configuration:

location = /buildbot {
 return 302 /buildbot/;
}

location /buildbot/ {
 auth_request /auth/query_auth;
 auth_request_set $user $upstream_http_x_gsuite_user;
 proxy_set_header X-Gsuite-User $user;

 proxy_pass http://localhost:8083/;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Forwarded-Server $host;
 proxy_set_header X-Forwarded-Host $host;
}

location /buildbot/sse/ {
 # proxy buffering will prevent sse to work
 proxy_buffering off;
 proxy_pass http://localhost:8083/sse/;
}

required for websocket
location /buildbot/ws {
 proxy_pass http://localhost:8083/ws/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Origin "";

 # raise the proxy timeout for the websocket
 proxy_read_timeout 6000s;
}

PHPbb

phpbb is a bulletin board service written in php. In our example setup we will
run it through fpm as a fast-cgi gateway.

Add the following to your nginx configuration:

location ~ \.php(/|$) {
 auth_request /auth/query_auth;

 auth_request_set $user $upstream_http_x_gsuite_user;
 fastcgi_param REMOTE_USER $user;

 # -- include /etc/nginx/snippets/fastcgi-php.conf;
 fastcgi_split_path_info ^(.+\.php)(/?.+)$;
 try_files $fastcgi_script_name =404;
 set $path_info $fastcgi_path_info;
 fastcgi_param PATH_INFO $path_info;
 fastcgi_index index.php;
 include /etc/nginx/fastcgi.conf;
 # -- end of snippets/fastcgi-php.conf

 fastcgi_pass unix:/workdir/php7.0-fpm.sock;
}

In order to take advantage of oauthsub as the authenticator, we need to
install the Remote User [https://github.com/cheshirekow/phpbb_remoteuser] plugin (phpbb forum page [https://www.phpbb.com/community/viewtopic.php?f=456&t=2503666&p=15205231#p15205231]).

Download the zip file, and extract it to
phpBB/ext/cheshirekow/remoteuseauth. Once installed, go to the
administrator control panel and activate it (see the github README for
screenshots).

Jenkins

Documentation coming soon!

Sonatype Nexus

Documentation coming soon!

Discourse

Documentation coming soon

Systemd Unit

For linux servers using systemd, you can add
/etc/systemd/system/oauthsub.service, an example which is given below
assuming we want the service to run as user ubuntu and the configuration
file is in /etc/oauthsub.py.

[Unit]
Description=oauthsub service
After=nginx.service

[Service]
Type=simple
ExecStart=/usr/local/bin/oauthsub --config /etc/oauthsub.py
User=ubuntu
Restart=on-abort

[Install]
WantedBy=multi-user.target

Changelog

v0.2 series

v0.2.1

	Almost no code changes other than minor formatting

	Added a bunch of new documentation including how to register an app with
many common providers, and how to configure many common services to work
behind oauthsub.

v0.2.0

	ported to from oauth2client (deprecated) to oauthlib

	slight refactoring into utils/appliation

	refactored application logic into a more flask-familiar layout

v0.1 series

v0.1.3

	python3 compatability

	add bypass option for debugging in a local environment

	cleanup package organization a bit

	add github provider support

	allow custom jinja template

	use gevent or twisted for production mode

v0.1.2

	Fix setup.py pointing to wrong main module, wrong keywords, missing
package data

	Add Manifest.in

	Fix wrong config variable in main()

v0.1.1

	Fix setup.py description string

v0.1.0

Initial public commit

	Authenticates with google, authorizes anyone who has an email address
that is part of a configurable list of domains.

	Only works with google as an identity provider

	Configuration through python config file, or command line arguments

	Includes example nginx and oauthsub configuration files

	Module directory can be zipped into an executable zipfile and distributed
as a single file.

TODO

	Use the base url configuration parameter in the layout template, rather than
hardcoding auth/.

	Decide whether or not to support custom redirects. Instead of serving up
jinja renderings we could redirect to user-configured webpages. We can
provide messages or additional data in cookies by adding the Set-Cookie
header to the response before sending it out. The user defined pages can
then do whatever they want with the cookie information.

oauthsub package

Module contents

This lightweight web service performs authentication. All requests that reach
this service should be proxied through nginx.

See: https://developers.google.com/api-client-library/python/auth/web-app

	
class oauthsub.auth_service.Application(app_config)

	Bases: flask.app.Flask

Main application context. Exists as a class to keep things local… even
though flask is all about the global state.

	
render_message(message, *args, **kwargs)

	

	
route(rule, **options)

	A decorator that is used to register a view function for a
given URL rule. This does the same thing as add_url_rule()
but is intended for decorator usage:

@app.route('/')
def index():
 return 'Hello World'

For more information refer to url-route-registrations.

	Parameters

	
	rule – the URL rule as string

	endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as
endpoint

	options – the options to be forwarded to the underlying
Rule object. A change
to Werkzeug is handling of method options. methods
is a list of methods this rule should be limited
to (GET, POST etc.). By default a rule
just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

	
session_get(key, default=None)

	Return the value of the session variable key, using the prefix-qualifed
name for key

	
session_set(key, value)

	Set the value of the session variable key, using the prefix-qualifed
name for key

	
oauthsub.auth_service.callback()

	Handle oauth bounce-back.

	
oauthsub.auth_service.forbidden()

	The page served when a user isn’t authorized. We’ll just set the return
path if it’s available and then kick them through oauth2.

	
oauthsub.auth_service.get_session()

	Return the user’s session as a json object. Can be used to retrieve user
identity within other frontend services, or for debugging.

	
oauthsub.auth_service.login()

	The login page. Start of the oauth dance. Construct a flow, get redirect,
bounce the user.

	
oauthsub.auth_service.logout()

	Delete the user’s session, effectively logging them out.

	
oauthsub.auth_service.query_auth()

	This is the main endpoint used by nginx to check authorization. If this
is an nginx request the X-Original-URI will be passed as an http header.

	
oauthsub.auth_service.strip_settings(settings_dict)

	Return a copy of the settings dictionary including only the kwargs
expected by OAuth2Session

	
class oauthsub.configuration.Configuration(rooturl=None, flask_debug=False, flask_privkey=None, response_header=None, allowed_domains=None, host=None, port=None, logdir=None, flaskopt=None, route_prefix=None, session_key_prefix=None, bypass_key=None, user_lookup=None, client_secrets=None, custom_template=None, enable_forbidden=True, server=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple configuration object. Holds named members for different configuration
options. Can be serialized to a dictionary which would be a valid kwargs
for the constructor.

	
classmethod get_fields()

	Return a list of field names in constructor order.

	
serialize()

	Return a dictionary describing the configuration.

	
oauthsub.configuration.default_user_lookup(_, parsed_content)

	Default username resolution just returns the email address reported by
the provider.

	
oauthsub.configuration.get_default(obj, default)

	If obj is not None then return it. Otherwise return default.

	
class oauthsub.util.ZipfileLoader(zipfile_path, directory)

	Bases: jinja2.loaders.BaseLoader

Jinja template loader capable of loading templates from a zipfile

	
get_source(environment, template)

	Get the template source, filename and reload helper for a template.
It’s passed the environment and template name and has to return a
tuple in the form (source, filename, uptodate) or raise a
TemplateNotFound error if it can’t locate the template.

The source part of the returned tuple must be the source of the
template as unicode string or a ASCII bytestring. The filename should
be the name of the file on the filesystem if it was loaded from there,
otherwise None. The filename is used by python for the tracebacks
if no loader extension is used.

The last item in the tuple is the uptodate function. If auto
reloading is enabled it’s always called to check if the template
changed. No arguments are passed so the function must store the
old state somewhere (for example in a closure). If it returns False
the template will be reloaded.

	
oauthsub.util.get_zipfile_path(modparent)

	If our module is loaded from a zipfile (e.g. a wheel or egg) then return
the pair (zipfile_path, module_relpath) where zipfile_path is the path to
the zipfile and module_relpath is the relative path within that zipfile.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oauthsub	

 	
 	
 oauthsub.auth_service	

 	
 	
 oauthsub.configuration	

 	
 	
 oauthsub.util	

Index

 A
 | C
 | D
 | F
 | G
 | L
 | O
 | Q
 | R
 | S
 | Z

A

 	
 	Application (class in oauthsub.auth_service)

C

 	
 	callback() (in module oauthsub.auth_service)

 	
 	Configuration (class in oauthsub.configuration)

D

 	
 	default_user_lookup() (in module oauthsub.configuration)

F

 	
 	forbidden() (in module oauthsub.auth_service)

G

 	
 	get_default() (in module oauthsub.configuration)

 	get_fields() (oauthsub.configuration.Configuration class method)

 	
 	get_session() (in module oauthsub.auth_service)

 	get_source() (oauthsub.util.ZipfileLoader method)

 	get_zipfile_path() (in module oauthsub.util)

L

 	
 	login() (in module oauthsub.auth_service)

 	
 	logout() (in module oauthsub.auth_service)

O

 	
 	oauthsub (module)

 	oauthsub.auth_service (module)

 	
 	oauthsub.configuration (module)

 	oauthsub.util (module)

Q

 	
 	query_auth() (in module oauthsub.auth_service)

R

 	
 	render_message() (oauthsub.auth_service.Application method)

 	
 	route() (oauthsub.auth_service.Application method)

S

 	
 	serialize() (oauthsub.configuration.Configuration method)

 	session_get() (oauthsub.auth_service.Application method)

 	
 	session_set() (oauthsub.auth_service.Application method)

 	strip_settings() (in module oauthsub.auth_service)

Z

 	
 	ZipfileLoader (class in oauthsub.util)

oauthsub

[image: _images/oauthsub.svg]
 [https://travis-ci.com/cheshirekow/oauthsub][image: _images/a02ab2c5ca92c2f6ae9026a59846c76fcc9edbde.svg]
 [https://oauthsub.rtfd.io]Simple oauth2 subrequest handler for reverse proxies

Purpose

The goal of oauthsub is to enable simple and secure Single Sign On by
deferring authentication to an oauth2 provider (like google, github,
microsoft, etc).

See the examples in the documentation [https://oauthsub.rtfd.io] for ideas on how best to use it.

Installation

Install through pip:

pip install oauthsub

or see the documentation [https://oauthsub.rtfd.io] for more options.

Usage

usage: oauthsub [-h] [--dump-config] [-v] [-l {debug,info,warning,error}]
 [-c CONFIG_FILE] [-s {flask,gevent,twisted}]
 [--rooturl ROOTURL] [--flask-debug [FLASK_DEBUG]]
 [--flask-privkey FLASK_PRIVKEY]
 [--response-header RESPONSE_HEADER]
 [--allowed-domains [ALLOWED_DOMAINS [ALLOWED_DOMAINS ...]]]
 [--host HOST] [--port PORT] [--logdir LOGDIR]
 [--route-prefix ROUTE_PREFIX]
 [--session-key-prefix SESSION_KEY_PREFIX]
 [--bypass-key BYPASS_KEY] [--custom-template CUSTOM_TEMPLATE]
 [--enable-forbidden [ENABLE_FORBIDDEN]]

This lightweight web service performs authentication. All requests that reach
this service should be proxied through nginx. See:
https://developers.google.com/api-client-library/python/auth/web-app

optional arguments:
 -h, --help show this help message and exit
 --dump-config Dump configuration and exit
 -v, --version show program's version number and exit
 -l {debug,info,warning,error}, --log-level {debug,info,warning,error}
 Increase log level to include info/debug
 -c CONFIG_FILE, --config-file CONFIG_FILE
 use a configuration file
 -s {flask,gevent,twisted}, --server {flask,gevent,twisted}
 Which WGSI server to use
 --rooturl ROOTURL The root URL for browser redirects
 --flask-debug [FLASK_DEBUG]
 Enable flask debugging for testing
 --flask-privkey FLASK_PRIVKEY
 Secret key used to sign cookies
 --response-header RESPONSE_HEADER
 If specified, the authenticated user's ``username``
 will be passed as a response header with this key.
 --allowed-domains [ALLOWED_DOMAINS [ALLOWED_DOMAINS ...]]
 List of domains that we allow in the `hd` field of
 thegoogle response. Set this to your company gsuite
 domains.
 --host HOST The address to listening on
 --port PORT The port to listen on
 --logdir LOGDIR Directory where we store resource files
 --route-prefix ROUTE_PREFIX
 All flask routes (endpoints) are prefixed with this
 --session-key-prefix SESSION_KEY_PREFIX
 All session keys are prefixed with this
 --bypass-key BYPASS_KEY
 Secret string which can be used to bypass
 authorization if provided in an HTTP header
 `X-OAuthSub-Bypass`
 --custom-template CUSTOM_TEMPLATE
 Path to custom jinja template
 --enable-forbidden [ENABLE_FORBIDDEN]
 If true, enables the /forbidden endpoint, to which you
 can redirect 401 errors from your reverse proxy. This
 page is a simple message with active template but
 includes login links that will redirect back to the
 forbidden page after a successful auth.

Configuration

oauthsub is configurable through a configuration file in python (the file
is exec``ed). Each configuration variable can also be specified on the
command line (use ``oauthsub --help to see a list of options). If you’d
like to dump a configuration file containing default values use:

oauthsub --dump-config

Which outputs something like:

The root URL for browser redirects
rooturl = 'http://localhost'

Enable flask debugging for testing
flask_debug = False

Secret key used to sign cookies
flask_privkey = 'KALJE0Unas2dd8ao3p/T55htwbL5RrKX'

If specified, the authenticated user's ``username`` will be passed as a
response header with this key.
response_header = None

List of domains that we allow in the `hd` field of thegoogle response. Set
this to your company gsuite domains.
allowed_domains = ['gmail.com']

The address to listening on
host = '0.0.0.0'

The port to listen on
port = 8081

Directory where we store resource files
logdir = '/tmp/oauthsub/logs'

Flask configuration options. Set session config here.
flaskopt = {
 "PERMANENT_SESSION_LIFETIME": 864000,
 "SESSION_FILE_DIR": "/tmp/oauthsub/session_data",
 "SESSION_TYPE": "filesystem"
}

All flask routes (endpoints) are prefixed with this
route_prefix = '/auth'

All session keys are prefixed with this
session_key_prefix = 'oauthsub-'

Secret string which can be used to bypass authorization if provided in an HTTP
header `X-OAuthSub-Bypass`
bypass_key = None

Dictionary mapping oauth privider names to the client secrets for that
provider.
client_secrets = {}

Path to custom jinja template
custom_template = None

If true, enables the /forbidden endpoint, to which you can redirect 401 errors
from your reverse proxy. This page is a simple message with active template
but includes login links that will redirect back to the forbidden page after a
successful auth.
enable_forbidden = True

Which WGSI server to use (flask, gevent, twisted)
server = 'flask'

This is not used internally, but is used to implement our user lookup
callback below
_user_map = {
 "alice@example.com": "alice",
 "bob@example.com": "bob"
}

This is a callback used to lookup the user identity based on the credentials
provided by the authenticator.
def user_lookup(authenticator, parsed_response):
 if authenticator.type == "GOOGLE":
 # Could also use `id` to lookup based on google user id
 return _user_map.get(parsed_response.get("email"))

 return None

Testing the service

Test the service directly on localhost, put your client secrets in a
configuration file and (assuming you’ve enabled
http://lvh.me:8081/auth/callback as an authorized redirect on google)
run with:

oauthsub --flask-debug \
 --config /path/to/your/config.py

And then navigate to http://localhost:8081/auth from your browser.

See the documentation for more detailed testing instructions including how
to test with NGINX.

 _images/atlassian-02.png
Create a new app

An app provides API credentials for Atlassian products and services,
as well as features such as OAuth 2.0 (3LO).

Name *
CheshireAuth

Name your app according to its purpose, for example, Dropbox integration or
Timesheets for Jira.

| agree to be bound by Atlassian's developer terms.

_images/atlassian-03.png
App details Q@ Givef

Name *

CheshireAuth

C

Description

Tell customers what your app does

Change avatar
Your app description will appear in the user's app directory

Save changes

Client ID

ccKxvDhrNdLczKo9ML1FWCanEKBsY Copy

Secret

©00: Copy .o

Use the Client ID and Secret for authentication. See the OAuth 2.0 (3LO) guide to learn more.

_images/atlassian-01.png
A ATLASSIAN Developer

Create your first app

App management is our new developer portal. It's in beta, but you can create apps for Jira (OAuth 2.0 authorization code
grants only). If you're not building one of these types of apps, see the documentation for your product instead.

Create new app

_images/github-02.png
Register a new OAuth application

Application name *
deleteme
Something users will recognize and trust.
Homepage URL *
https://github.com/cheshirekow
The full URL to your application homepage.
Application description

Application description is optional

N y

This is displayed to all users of your application.

Authorization callback URL *

http:/fivh.me:8080/auth/callback

Your application’s callback URL. Read our OAuth documentation for more information.

Register applicat Cancel

_images/github-03.png
Client ID %
0cf93ced4e5ad8f60el3d

Client Secret
dfeb471d346c0c2967b35b9c8c802abda690698d

Revoke all user tokens Reset client secret

_images/atlassian-04.png
OAuth 2.0 authorization code grants (3LO) For apps Q Give feed

Configure OAuth 2.0 authorization code grants to allow your app to access data (within specific scopes) from
Atlassian APIs on the user’s behalf. Learn more about OAuth 2.0 authorization code grants.

Callback URL *

https://lvh.me:8443/auth/callback

Discard changes

_images/github-01.png
Settings Developer settings

GitHub Apps OAuth Apps New OAuth App

OAuth Apps
CheshireAuth

. - - CheshireAuth-testing
Personal access tokens Cheshiresoft Authentication

These are applications you have registered to use the GitHub API.

© 2019 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub ~ Pricing APl Training Blog About

_images/google-02.png
[Project name *

]
Project D: driven-slice-241617. It cannot be changed later. EDIT
Location*
F) No organization BROWSE

Parent organization or folder

nav.xhtml

 Table of Contents

 		
 oauthsub

 		
 Installation

 		
 Install with pip

 		
 Install from source

 		
 Usage

 		
 Configuration

 		
 Examples

 		
 Providers

 		
 Google

 		
 Github

 		
 Microsoft

 		
 Atlassian

 		
 NGINX configuration

 		
 Basic setup

 		
 Remote User Tokens

 		
 Testing the service

 		
 Executing

 		
 Gerrit

 		
 Buildbot Master

 		
 PHPbb

 		
 Jenkins

 		
 Sonatype Nexus

 		
 Discourse

 		
 Systemd Unit

 		
 Changelog

 		
 v0.2 series

 		
 v0.2.1

 		
 v0.2.0

 		
 v0.1 series

 		
 v0.1.3

 		
 v0.1.2

 		
 v0.1.1

 		
 v0.1.0

 		
 TODO

 		
 oauthsub package

 		
 Module contents

_images/google-06.png
OAuth client

‘The client ID and secret can always be accessed from Credentials in APIS &
Services

@ oAuthislimited to 100 sensitive scope logins untilthe OAuth cansent
screen s published. This may require a verification process that can take
several days.

Here is your client ID
Ls}
Here is your client secret
Ls}

0K

_images/google-07.png
Credentials OAuth consent screen Domain verification

Create credentials to access your enabled APIs. For more information, see the authentication documentation.

OAuth 2.0 client IDs
Name Creation date v Type Client D

oauthsub-client May 24,2019 Web application @

_images/google-05.png
& Create OAuth client ID

For applications that use the OAuth 2.0 protocol to call Google APIs, you can use an OAuth 2.0 client ID to
generate an access token. The token contains a unique identife. See Setting up OAuth 2.0 for more information.
Application type:
® Web application

Android Leam more

Chrome App Leam more

108 Learn more

Other

Name
oauthsub-client

Restrictions
Enter JavaScript origin, redirect URIs, o both Learn More:
Origins and redirect domains must be added tothe st of Authorized Domains in the OAuth consent settings.
Authorized JavaScriptorigins
For use with requests from a browser. This s the origin URI of the client application. It can' contain a wildcard
(nttps:/* example.com) or path (hitps:/example.comy/sub). f you're using a nonstandard port, you must include it

n the origin URL
http://vh.me:8080]
http://vh. me:8081]
https:/ivh me:8443

https://www example.com

Type in the domain and press Enter o add it

Authorzed redirect URls

For use with requests fom a web server. Tis i the path in your applicaion tht users are redirectec 10 afte they have:

‘authenticated with Google. The path will be appendie with the autharization code for access. Must have a protocal.

‘Gannot contain URL fragments of relative paths. Cannot be a public P adress.
hitp://lvh.me:8080/auth/callbackprovider=google: s
hitp://ivh.me:8081/auth/callbackprovider=google:]

hitps:/ivh.me:8443/authycallback?provider=google

https://www example.com
Type in the domain and press Enter o add it

B3 o

_images/microsoft-03.png
oauthsub-client

Overview
“ Quickstart
Manage

B Branding

D Authentication

© Certificates & secrets

Application (client) ID

Object ID

»

Redirect URIs
1 web, 0 public client

_images/microsoft-02.png
K

The user-facing display name for this application (this can be changed later).

* Name

oatthsub-client

Supported account types

Who can use this application or access this API?

Accounts in any organizational directory

Accounts in any organizational directory and personal Microsoft accounts (e.g. Skype, Xbox, Outlook.com)

Help me choose.

Redirect URI (optional)

We'll return the authentication response to this URI after successfully authenticating the user. Providing this now is
‘optional and it can be changed later, but a value is required for most authentication scenarios.

web v

By proceeding, you agree to the Microsoft Platform Policies [

_images/microsoft-05.png
Add a client secret

Description

In 2 years

Never

Add Cancel

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

