OasisPy Documentation
Release 1.0

Andrew Stewart

Sep 10, 2019

Table of Contents:

1 Installing OasisPy
[.1 System Requirements o v i it i e e e e e e e e e e e
1.2 Software Requirements

2 Getting Started

2.1 OasisPy Basics o e e e e e e
22 Using OasisPy L e
2.3 Convenience Methods e e e

3 How It Works
3.1 Overview of the Software e e e
3.2 The OASIS Pipeline e e

4 Tutorial

5 Troubleshooting

6 API
6.1 OASIS Methods e
6.2 Convenience Functions e e
6.3 Auxillary Functions L e e e e e

7 Features

Index

_ -

A~ bW W

2

17

19

21
21
23
24

27

29

CHAPTER 1

Installing OasisPy

Getting QasisPy is easy.

For those with pip, simply fetch the package with:

$ pip install OasisPy

Upon installation you will be prompted with a few questions. The first is the path where OasisPy will place the
OASIS directory, which contains the directory tree in which all of OasisPy’s image proccessing will take place. You
can make this path anything you want, but to make it easier to find later it usually is best to stick with simple location
like your home directory. The second prompt you will recieve will be asking if you would like to install the ISIS
image subtraction program along with your OasisPy installation. The default to this is yes, and should always be so
unless you know for a fact you have this software already installed on your machine.

1.1 System Requirements

OasisPy was developed on a Linux machine and must be run on a POSIX-compliant system.

1.2 Software Requirements

There are a number of outside programs OasisPy calls on that will need to be installed as well. Most of these are
image processessing software written by Emmanuel Bertin and can be fetched from https://www.astromatic.net/.

* SExtractor (astromatic)

* PSFex (astromatic)

* SWarp (astromatic)

* SkyMaker (optional, used for simulations) (astromatic)
e PyRAF (recommended install through Anaconda)

e ISIS (automatically installed during OasisPy setup)

https://www.astromatic.net/

OasisPy Documentation, Release 1.0

2 Chapter 1. Installing OasisPy

CHAPTER 2

Getting Started

2.1

OasisPy Basics

OasisPy is a collection of python modules that facilitate the OASIS difference imaging process. Each module is in
charge of one step in the process. There are a total of 13 modules, and each can either be called individually or in
succession, depending on the project at hand. We call these modules “OASIS methods.”

initialize- Sets up the OASIS environment. Is automatically run during install and will never have to be
run again unless you want to duplicate or move the OASIS file tree.

get- Downloads images from an online archive or finds images on the local hardrive and moves them into the
OASIS file tree to be processed.

mask- Masks cosmic rays, saturated stars, CCD defects, and any other artifacts that will inhibit the difference
imaging process.

psf- Computes a PSF model for each image in the data set. This model will be used in many of the subsequent
steps.

align- Chooses the highest S/N frame to be the “reference image,” then registers all other images to this
reference pointing (to subpixel precision).

combine- Stacks images into a high S/N template frame to be used for subtraction.

subtract- Subtracts the template from each image in the data set to create a set of residual frames. This is
the most complex and computationally expensive step, and will take the longest to execute.

mr- Stands for master residual. The residual images created with subt ract are stacked to for a master residual
frame.

extract- Searches the residual images for sources of significant flux. Filters out non point source-like objects
and other false positives. Outputs a complete source catalog with all detected variable objects, their position,
and their total flux.

test- Tests the installation of QasisPy by fetching a set of images of exoplanet HAT-P-37b and running them
through the OASIS Pipeline.

simulation- Allows further testing of the OASIS Pipeline through two different simulated data sets.

OasisPy Documentation, Release 1.0

¢ run- Master method that facilitates access to all other methods.

e pipeline- The OASIS Pipeline, an all-in-one method that executes the entire difference imaging process,
from get to extract.

For more information on each method and how QasisPy works see How It Works.

2.2 Using OasisPy

OASIS methods can be executed in two ways.

2.2.1 As A Python Module

The simplest way to use OasisPy is to treat each method like a simple python module and import them into directly
into your code. If comfortable with scripting this is the recommended method of operation as it provides the user with
the maximum amount of control over the difference imaging process.

Methods can be called within your python script with the following import:

from OasisPy import methodname

See API for the details on each method.

2.2.2 Shell Execution

Methods can also be run from the shell (ANSI) using the formula

’$ oasis-methodname

For example, to align a set of images one would type

’$ oasis-align

Each method has a certain number of input parameters the user must provide. Often this just consists of the location
of the images being differenced. These parameters are provided by the user through input prompts executed after the
initial calling of the method.

This shell execution of QasisPy was included to allow those not comfortable with scripting in python, specifcally
undergradute or high school students with little or no coding experience, a relatively easy way to access the package’s
main functionalities.

2.3 Convenience Methods

Understanding what each of the 13 methods does is critical for complex projects and will allow you to get the most
out of the software, but it is not mandatory. For many projects, all you may want to do is call a high level function
to do all of the difference imaging steps for you. For this reason we have included several convenience functions for
those that do not want to deal with the inner workings of OASIS.

4 Chapter 2. Getting Started

OasisPy Documentation, Release 1.0

2.3.1 Run

This is the most important convenience function to know. It can be thought of as the “main page” of OASIS, from
which you can execute any other OASIS method. To call run simply type

$ oasis-run

in your terminal. A list of all possible OASIS methods is displayed, and from this list you can pick a command and
type it into the prompt. It is reccommended to users new to linux and python that run be the only method directly
used.

2.3.2 Pipeline

The pipeline convenience function makes up what is called the OASIS Pipeline. This is simply a conglomerate
of every OASIS method into a single master method. Input data are fed into each method one-by-one and then piped
to the next. Using pipeline, a user can send a set of images through the entire difference imaging process with a
single high-level command, without worrying about what is actually being done in the intermediary steps. To execute
it, type oasis-pipeline in the terminal or select ‘pipeline’ if using run.

2.3. Convenience Methods 5

OasisPy Documentation, Release 1.0

6 Chapter 2. Getting Started

CHAPTER 3

How It Works

Here we describe the inner-workings of the OASIS engine.

Note: This section is dedicated to showing the algorithms and theory behind OASIS. For a thorough step-by-step
introduction to using QasisPy to process real images, see this Jupyter notebook (TBW).

3.1 Overview of the Software

3.1.1 OASIS Environment

All of the OASIS image processing takes place in the OASIS environment, a file tree with containers that drive the
OASIS engine. This set of directories is created automatically during install in the user-specified location, with the
root directory being named OASIS. Shown below is a schematic of the file tree.

Warning: Once the OASIS file tree is created, DO NOT move or delete any of the three main directories.
Manipulating these master directories will result in runtime errors.

3.1.2 The Difference Imaging Process

Difference imaging is a photometric techinque in which a high signal-to-noise “template” image is subtracted from
some real “science” frame to reveal residual sources of flux indicative of variable stars, exoplanet transits, supernovae,
etc.

In order to do this successfully, there are a number of image processing steps that need to be done to both the science
and template images in order to guarantee an acceptable residual. This is the achille’s heel of difference imaging. When
the images are prepared correctly, the techinque can be extremely powerful and efficient. When the pre-subtraction
steps are done incorrectly, the technique can produce residuals riddled with false sources and messy flux distributions.

OasisPy Documentation, Release 1.0

: : o . assorted -
bad_images failed_alignments saturated_images configuration files object name

TEMPLATE

exposure time (seco

Fig. 1: Click image to enlarge.

8 Chapter 3. How It Works

OasisPy Documentation, Release 1.0

Thus it is crucial that all steps in the difference imaging process are robust enough to work reliably with any type of
astronomical CCD image. This is the main problem OASIS has attempted to solve.

The following sections will describe each of the aforementioned steps one must complete in order to difference two
astronomical images. Below is a rough schematic of the OASIS Pipeline and its execution order.

| Pre-Processing | | OASIS | Post-Processing

Dark and bias
subtraction

:

Flat-field correction

:

Bad pixel masking

;

Source extraction

l

Construct template from
weighted median stack
of science images
(SWamp)

—»

Subtract template
from science images
(ols)

Register science images

to reference image
(astroalign/chi?_shift)

.

Choose high S/M
reference image

!

Construct master
residual from weighted

max-stack of residual
images [SWarp)

o
Mask cosmic ray
defects in science

Extract sources
(SExtractar)

Filter sources with

Determine ET|
parameters (civilization
class, distance, efc.)

Signal localization

Spectroscopic
analysis

Astrometric solution images detection criteria and Follow—gp
(astrometry.net) (astroscrappy) catalog detections observation

Fig. 2: Note that your “Pre-Processing” section may be different depending where you get your data from. The exam-
ple above assumes the user has fetched data from the Las Cumbres Observatory online archive (LCO data archive).

Note:

A quick word about the language used in the following sections. There are numerous terms that appear often when discussing d

¢ Science image- All images in the data set. The science images contain the objects being sought.

* Template image- An image made by either stacking numerous science images or choosing a specific
science image. This template is subtracted from each science image to look for variable objects.

* Residual image- The resulting image after the Science — T'emplate subtraction. The residual is a FITS

image with identical dimensions, pixel scale, etc. to the original science images.

¢ Source/Detection- These terms refer to groups of adjacent pixels of high flux in the residual image that
are indicative of some variable or transient object.

* Subtraction artifact/false positive- Detections that are the result of poor difference imaging or de-
fects/noise unaccounted for during the calibration steps. Minimization of these artifacts is one of the
foremost problems in difference imaging.

3.1. Overview of the Software

https://archive.lco.global/?q=a&RLEVEL=&PROPID=&INSTRUME=&OBJECT=&SITEID=&TELID=&FILTER=&OBSTYPE=&EXPTIME=&BLKUID=&REQNUM=&basename=&start=2019-06-01%2000%3A00&end=2019-11-30%2023%3A59&id=&public=true

OasisPy Documentation, Release 1.0

3.2 The OASIS Pipeline

3.2.1 Acquire Data

Before getting into the image processing, OASIS must first have images to process. QasisPy supports two data
acquistion methods. The user can manually download their data from some repository and simply tell OasisPy where
they’re located on their local machine, or they can use the built-in get function to download images from Las Cumbres
Observatory’s (LCO) data archive. Of course, the second option is only useful if you are a LCO client or have a desire
to analyze their publically available images

3.2.2 Masking

The first thing OASIS does with the input images is mask any problem areas. These include cosmic rays strikes,
satellite trails, hot pixels, CCD defects, etc. This is a critical step in any difference imaging analysis as even the
smallest artifact or set of bad pixels can inhibit the quality of the residual images.

Many observatories perform some of this masking automatically in their calibration pipelines, on-the-spot as data is
taken. They often store these masks as FITS extensions to the original image. Consequently, before masking OASIS
looks for a “bad pixel mask” (BPM) extension to use as a foundation for the mask building process. If none is found
OASIS searches for another extension that might contain a mask. If this is unsuccessful the foundation is just a zero
mask.

For the masking process OASIS makes use of a modified version of the ast roscrappy python package (C. Mc-
Cully), which itself is based off of the popular LA Cosmic algorithm. Running the ma sk method will mask all cosmic
rays in each image, as well as saturated stars and other problem objects. Later on, edges created during the registration
process are also added to this mask.

Note: There are two types of masks OASIS uses. The first is the common binary image mask, created during this
masking process. In this type each pixel is represented by a 0 or 1, 0 being a good pixel and 1 being a masked one.
The second type is what is usually referred to as a “weight-map.” Here the elements of the map represent the weight
of each pixel. Another way to think about it is as an inverse variance map. The higher a pixel’s weight (or inverse
variance) the more confident we are in the value of that pixel. Thus, bad pixels will have a low weight (usually 0) and
good pixels will have a high weight (usually 1). The weight maps computed by OASIS are normalized on the interval
[0, 1]. After the initial masking process all image masks are converted to weight maps, as these are more accurate and
offer a greater amount of masking control. If you are ever uncertain on what type of mask an image has, just look for
the ‘WEIGHT” header keyword in the primary FITS header. A value of ‘Y’ means it’s a weight map, a value of ‘N’
means it’s a binary mask.

3.2.3 PSF Modeling

A critical step in any difference imaging application is being able to model the point-spread functions (PSFs) of the
dataset quickly and accurately. OASIS does this using the Astromatic program PSFex (E. Bertin). The outputted
models are then used by OASIS for a number of different operations. A preliminary bad image-rejection algorithm
uses the PSF FHWM to clip images exceeding a certain threshold. The reference image selection algorithm also uses
the FWHM to choose the reference image. The source extraction algorithm uses the overall PSF model to distinguish
between stellar sources and galaxies. In the future the PSF model will also be used to optimize the subtraction
parameters more efficiently (section something).

Running the ps £ method will output two files for each image, one .cat file and one .psf file, both into the psf directory.
The .cat file is the source catalog used by PSFex to compute the PSF model. The .psf file is the PSF model itself.

10 Chapter 3. How It Works

OasisPy Documentation, Release 1.0

3.2.4 Image Rejection

After masking and PSF modeling OASIS searches the dataset for poor quality images that will inhibit the difference
imaging process. These usually include images with large defects, focusing issues, extremely poor seeing, low S/N,
etc., that could prove toxic, especially to the construction of the template image. This step is completed automatically
during the registration step and does not need to be called explicitly. Any bad images found are moved into the archive
OASIS subdirectory.

3.2.5 Registration

Before subtracting two images, it is critical to register them to the same astrometric grid (align them), ideally to
subpixel precision. To do this OASIS employs a two-step registration approach. First, an initial non-subpixel trans-
formation is found with the feature-based python package astroalign (M. Beroiz). Once the images are aligned
using astroalign the final subpixel registration is completed using the image_registration (A. Ginsburg)
python package, which uses the cross-correlation method to find the horizontal and vertical pixel offsets between the
two images.

When registering images, a reference image needs to be chosen to which all other frames will be aligned. This is
done automatically by OASIS when the align method is executed. The chosen reference image is the one with the
highest S/N. Another option for choosig the reference is that with the best seeing. This option may be included in a
later version of OASIS.

After the reference frame is chosen and the registration is complete, the last step of the align method is to match the
intensity scales of each image to the reference image. This step utilizes the IRAF routine 1 inmatch. Here flux is
preserved as the intensity offsets are assumed to be linear.

Note: After each image is registered, its filename will change from timeofexposure_N__fits to timeofexposure_A_fits.
The “U” represents “unaligned” and “A” represents “aligned.”

3.2.6 Template Construction

After the images are all masked and registered to the reference field, they are ready to be combined into a template
image. This template image is simply a weighted median stack (according to their weight maps) of the science
images images with the best seeing. The default number of images to include in the stack is top 33% with respect to
seeing, though this can be changed in the OASIS.congig file. The actual stacking is done with the program SWarp
(E. Bertin). The final template image is outputted to the target’s ‘templates’ directory, along with a log of the past
template constructions. This log is titled log.zxt and is located in the templates directory.

3.2.7 Subtraction

Finally we arrive at the heart of OASIS. In this step the images will finally be subtracted from each other to create the
residual frames that will be searched for variable objects.

OASIS handles the subtraction in two different steps. The first is the actual subtraction of the images, and the second is
quality assurance, making sure that all the residual frames represent a successful subtraction. Both steps are included
in the subt ract method, so no explicit calls need to be made to either one.

Step One

The first subtraction step starts with all science frames again having their flux rescaled, this time according to the
template image. This is again done with IRAF’s 1 inmatch routine. After this rescaling each science image’s header

3.2. The OASIS Pipeline 11

OasisPy Documentation, Release 1.0

will have the keyword ‘SCALE’ value changed to ‘Y. Next OASIS calls upon the ISIS program (C. Alard), which
implements the popular Optimal Image Subtraction (OIS) algorithm. The main goal of OIS is to smear the template’s
PSF to exactly match the science’s PSE. This is done through the use of a convolution kernel made up of a set of basis
vectors (found using a least squares approximation), which is then applied to the template image. OIS handles the
matching of both the backgrounds and the PSF, with the option for deriving a spatially-varying kernel. This is crucial
as especially with large-scale survey data, the PSF is almost certain to vary across the image plane. Without this step
there will be significant errors in the residual images and thus false positives in the source extraction step. There are
numerous user-defined parameters OIS uses to complete this. This is OASIS’s most computationaly intensive test. It
takes a few seconds for each PSF to be matched, and up to 45 seconds per image if no optimal configuration setup
is found (see subtraction step two). After the PSFs of the two image are matched the template is subtracted from the
science image and the output residual image is placed in the residuals directory with the _residual_ suffix appended
to the end of the original image name.

Step Two

The second subtraction step (the “optimization”) ensures that each residual created in the first step is the best possible
subtraction. This is done by first checking the quality of the residual obtained in the first step, then repeating the step
with a different OIS configuration set until the optimal residual is created. The OIS configuration set is a text file
defining a number of parameters that will be called by the subtraction algorithm. They define things like the size of
the stamp (the pixel box used to search the image for stars), the degree of PSF variation across the image, the size
of the kernel used to convolve the template PSF, etc. The optimal values for these parameters vary depending on the
type of image being subtracted. For most images, the default values for these parameters will work fine. On some
images though, especially if they’re extremely oversampled or undersampled, a different set of values must be used.
This is where the optimization step comes in. It tries running the subtraction program with a variety (a set of 9) of
common parameter values, checking each time if the subtraction is up to an acceptable quality. When it finds the
correct confguration, that residual is kept and OASIS moves onto the next image. In the unlikely event that no good
configuration is found, the residual is completely masked so as to prevent contaminating the master residual frame.

Residual Quality

The most important part of the “optimization” step described above is the checking of the residual’s quality. Deriving
a rigorous quality-estimation algorithm is paramount to the ability of OASIS to choose the “best” residual.

To calculate the “goodness” of each residual frame, OASIS takes a simple minimization approach. First, the ideal
residual frame is found for the given science and template images. This ideal residual is defined to be the result
of subtracting two Poisson-distributed noise images, each with a mean pixel value equal to the background of the
original input images. These Poissian noise images represent ideal science and template images, free of CCD noise
and defects, and free from any sources. These images are then limited only by the photon shot noise instrinsic to all
astronomical observations. This shot noise follows a Poissonian distribution with a mean approximately equal to the
average background pixel value in photons. Subtracting these two shot noise images results in the “ideal” residual
frame, a shot noise-limited image free of any artifacts, defects, sources, and additional noise.

Mathematically this ideal residual can be decribed by the Skellam distrubtion, which is defined as the probability
distribution of the difference of two random variables that both follow the Poissonian distribution. This probabiltiy
distribution has the form

pik; ps, pry = e S (g /) ¥ 1 (20 2ps iy)

where (1 and pr are the mean background photon counts of the science and template images, respectively, and Iy, is a
modified Bessel function of the first kind. The mean of this Skellam-distributed residual p g is simply ur = ps — pr
and its standard deviation is g = \/us + pr. This is the distribution the real residuals should follow as closely as
possible. Therefore, one way to estimate the quality of a given residual is to measure the residual’s deviation from this
ideal Skellam distrubtion. OASIS does this by using this ideal Skellam image to compute a “quality parameter” ().

12 Chapter 3. How It Works

OasisPy Documentation, Release 1.0

More details on the () metric can be found in the software’s accompanying paper (citation), but briefly it is defined as

Q=1/(1+ [X*/Npia))

where 2 is the standard chi-squared value from the “goodness-of-fit’ test of the ideal Skellam distribution and the real
residual’s pixel distribution, and IV, is the number of pixels used to fit the two distributions. Np;, is included in the
expression as a sort of “normalizing” factor” to keep x? at a reasonable value. The number of pixels used to calculate
Q is often extremely large, usually well over a million, which has the tendancy to inflate x? values for residuals that
otherwise would be considered perfect. Dividing x? by Npiz accounts for this inflation.

The metric () is defined in this way in order to facilitate clipping of poor quality residuals. By definition, ¢} > 0.50
indicates a good residual, and () = 1 indicates an unobtainably perfect one. These are robust values that should be true
for most astronomical data, though the time may come when the user wants to choose theri own thresholding values.

Two thresholds are defined by OASIS in order to choose the best residual, a floor threshold and ceiling threshold.
The floor threshold resresents the minimum () value a residual can have and still be accepted by OASIS. The ceiling
threshold is the) value that when exceeded, the optimization step is stopped and the current residual is taken to be
the best. As a default setting OASIS uses a floor @ value of 0.50 and ceiling of 0.75. These thresholds can be changed
by editing the OASIS_configs.txt file in the configs directory, but be warned, if they are made to be too low the risk of
false sources being included in the final object catalogs increases, and if they are made too high the program’s runtime
may increase to a point of absurdity, possibly up to 5 minutes for a single science-template image set. The default
thresholds represent a good compromise between these two cases. Even so, if your project is exceptionally unique you
may benefit from playing with the @) thresholds.

3.2.8 Source Extraction

The final step in the OASIS Pipeline is to extract any sources from the residual frames created in the previous
subtract step. If the subtraction is done correctly, theoretically the residual images should be photon noise-limited,
meaning that the dominant source of flux is simply the photon noise present in the original science and template im-
ages. This noise cannot be subtracted away and will thus make up a uniform “background” of the residual image.
Source extraction then becomes a trivial process, simply looking for groups of adjacent pixels exceeding a certain
ADU threshold, identical to the problem of source extraction in regular stellar images. Due to this, rather than reinvent
the wheel, OASIS calls on popular source extraction software used for this very purpose-SExtractor (E. Bertin).

SExtractor has a large swath of tunable parameters that can be changed to make the program work for a wide range
of data. Most of these parameters will never need to be changed, and those that do are automatically updated for each
image by OASIS. However, you may wish to change the parameters configuration yourself, especially if your images
are unique in some way. To do this simply edit the default.sex file in the configs directory.

The structure of the ext ract method is as follows:

1. First, the residual frames are all normalized according the a statistic called the poisson deviation. The poisson
deviation is simply the combined photon shot noise of the original science and template image. Mathematically
the normalization can be expressed as Ry,orm = (R — ptr)/v/Bs + Br, where R is the original residual image,
pr is the residual’s mean pixel value, and Bg and Br are the sigma-clipped background estimates for the
science and template images, respectively. If the residual is a quality one, this normalization will result in a
pixel distribution closely resembling a standard normal curve.

2. After normalization, a stack of the residuals is constructed using the weighted average of each pixel value. This
image stack is called the master residual, and it is currently an experimental feature. Stacking residual frames
can be a extrmemely valuable for a number of reasons. For one, it makes quick identification of variable stars
and transient objects easy. Rather than sift through the catalogs of hundreds or thousands of images, one can
simply look at a master residual frame to find all of the sources in question. Of course, this means sacrificing
the source’s temporal information (time of detection), but sometimes just knowing a signal exists is all a user
needs to do. Additionally, creating a master residual is enticing because of the S/N increase that is possible
when stacking astronomical data. Sources that would otherwise be too faint to be detected by SExtractor in

3.2. The OASIS Pipeline 13

OasisPy Documentation, Release 1.0

their individual residual frames could possibly become visible in the master frame due to the minimization of
background noise. However, as good as it is to have a master residual, implementing this stacking successfully
is tricky and has the potential to do more harm than good. The primary difficulty in creating the master residual
is deciding on a stacking algorithm. A historically popular choice has been to stack the residuals according to
the sum of squared pixel values. This is an effective algorithm as it is incredibly sensitive to outliers (sources),
however we have found that it is also prone to false positives. This is because bright stars will sometimes leave
residual flux primarily due to scintillation. This residual is not detected as a signal in the individual residual
image because of its noisy profile, but when the images are all stacked this bright star residual will often combine
to form a point source object, which OASIS then mistakes for a variable star. This was verified using simulated,
non-variable data (see paper for the more gory details). A safer option for stacking is the weighted mean. It is
less sensitive to outliers and thus decreases the source S/N, but it also minimizes the number of false positives
leaking into the master residual. This is the default stacking method OASIS uses, and has proven to be fairly
reliable. However, it is advised to still use caution when looking at your master residuals, and when in doubt as
to whether a certain signal is authentic or not we suggest taking a look at the individual residual source catalogs
for verification.

3. After normalization and residual stacking, SExtractor can finally be run. First SExtractor is run on each
individual residual image, generating a preliminary source catalog for each. SExtractor is then run on the
master residual, outputting another catalog when completed.

4. The final step of the extract method is source rejection. In its first run through the data, SExtractor will
inevitably record many “sources” that are not real sources at all. Most of these will be cosmic rays or hot pixels
that evaded OASIS’s masking step, bright or saturated star residuals, or satellite/asteroid trails. Thankfully, all
of these possess a different profile than a true variable point source, and thus are easly filtered out. To do this
OASIS implements a filtering algorithm, the steps of which will be briefly laid out here.

» Sources that show up in a majority of the residual frames are rejected
* Sources that are diveted (a sign of saturation or subtraction error) are rejected (see paper for details)
* Sources with a spread_model parameter less than O or greater than 0.1 are rejected.

After the initial catalogs are cut down by the above filters, the remaining sources are compiled into one master catalog
titled filtered_sources.txt located in the sources directory. The unfiltered sources can be found in the sources.zxt file.

After the individual residuals are “SExtracted”, filtered, and cataloged, the master residual will undergo the exact same
process. The outputted catalogs for the master residual are MR_filtered_sources.txt and MR_sources.txt.

In addition to these final catalogs OASIS outputs a file called total_sources.txt. This text file includes some basic
statistics of the dataset’s source catalogs. Specifically, it shows the number of initial sources found by SExtractor,
the number that were filtered out, and the number of remaining “confirmed” detections in both the individual residuals
and the master resiudal. It also shows the number of images that were not able to be subtracted, as well as the dataset’s
average () value.

Note: There are other more efficient filtering methods that can and should be included in this step. These include MCA
(morphological component analysis) and a machine learned point-source classifier (DES Difflm pipeline). Another
possible filtering method uses edge and contour deteciton algorithms to distinguish between actual point sources and
those resulting from bright/saturated stars. All of these implementations are under development and at least one will
be included in the next release of OASIS.

3.2.9 Simulations

Included in the OasisPy package is the ability to create simulated data sets to test and visualize QOASIS’s efficacy.
There are two options for running simulations, fakes and zero-point, both of which will be explained here.

14 Chapter 3. How It Works

OasisPy Documentation, Release 1.0

* The fakes simulation superimposes fake point sources (fakes) onto a random image in your dataset, then runs
the data through the OASIS Pipeline. This means of course to run this simulation a user needs to already have
some data at their disposal. The final catalogs are then searched for the original fakes. A log of the detection
statistics of the fakes is kept and used to create a detection efficiency plot at the end of the simulation. The fakes
by nature of the code will be placed at random locations in the image plane with a random flux. The user can
specify how many fakes to create, the range of possible fluxes, how many iterations of the simulation to run
through, etc. The idea behind this simulation is to gauge the minimum flux a signal would need to be detected
in a certain dataset. See paper and AP for more details.

* The zero-point simulation involves taking a real image from a dataset, creating /N simulations of the image,
then running the simulated images through the OASIS Pipeline. The simulated images (zero-point images) are
created using SExtractor and SkyMaker (astromatic simulation software). These zero-point images are made
to all possess the same sources with all the same flux, hence the “zero-point” identifier. The only changes that
are made to the simulations are the following

1. Image is shifted and rotated by a random pixel offset and rotation angle
2. Image seeing is degraded or sharpened slightly by a random seeing factor
3. Image background is rescaled to a different, random value.

These manipulations are meant to mimick the frame-by-frame variations in real astronomical data. Thus the zero-point
simulation tests OASIS’s ability to handle variations in PSF, background, and pointing, while still returning reliable
difference imaging results. Since all zero-point images contain the same sources with the same flux, a successful
simulation run would be one that returns zero variable sources in the filtered_sources.txt file. If the number of detection
is higher than just a few, this is a sign that OASIS is not working properly. Users are encouraged to play with this
feature to test the software’s limits.

3.2.10 Mosaicking

OasisPy has a built in utility for users wanting to stitch together frames of adjacent pointings, likely survey data.
Mosaicking this data into a single image can help uncover large-scale patterns in the difference images—such as distri-
bution of variable stars in a spiral galaxy—or simply help to create pretty, presentation-worthy pictures.

The actual mosaic code is nothing more than a simple Python script written to faciliate the use of Montage, an
astronomical mosaicking engine. Montage is essentially a collection of image processing modules that allow users to
register and resample images, background match them, and create a mosaic (among many other things). The software
is written in C, but interfacing with Python is easy with MontagePy, a collection of Python binary extensions to
the existing Montage modules. Using MontagePy, we have written a simple Python script that takes a dataset and
outputs the corresponding mosaic. The script is fairly robust, with the user being given control over many of the
mosaicking parameters. Still, this is a bare bones mosaickig solution, and for more complicated or niche projects you
are better off building your own personal implementation of Montage. For more info see the Montage documentation
at http://montage.ipac.caltech.edu/.

3.2.11 Testing

To test the installation OasisPy includes a test method. This code downloads publically available data from the
Las Cumbres Observatory’s Science Archive, runs it through the OASIS Pipeline, then compares the obtained results
with a set of control results. The object currently used to conduct the test is exoplanet HAT-P-37b. A total of 30
images are downloaded, and to illustrate QOASIS’s ability to find transient objects three fake sources are added to
image 02:59:10.860_A_fits. Looking at this image’s residual or the data set’s master residual should show these fake
sources clearly. If successful the program will print out “TEST SUCCESSFUL!” at the conclusion of the test. Below
is the control residual used for comparison. Clearly visible are the three fake sources.

3.2. The OASIS Pipeline 15

http://montage.ipac.caltech.edu/

OasisPy Documentation, Release 1.0

16 Chapter 3. How It Works

CHAPTER 4

Tutorial

17

OasisPy Documentation, Release 1.0

18 Chapter 4. Tutorial

CHAPTER B

Troubleshooting

19

OasisPy Documentation, Release 1.0

20 Chapter 5. Troubleshooting

CHAPTER O

API

6.1 OASIS Methods

OasisPy.initialize.INITIALIZE ()

Sets up the OASIS environment on a new machine. Creates the QOASIS file tree and installs Alard’s ISTS
program (see documentation for details).

OasisPy.get.GET ()
Fetches and prepares data for difference imaging. Two get modes:

e dI: used to fetch images from the Las Cumbres Observatory (LCO) data archive.

e unpack: used for non-LCO data. Users acquire images themselves and then call get in unpack mode to
prepare the data for difference imaging.

OasisPy.mask .MASK (path)
Masks all cosmic rays, saturated stars, and other defects in the science images. Combines the cosmic ray mask
with the image’s initial bad pixel mask (set to NULL if no BPM is found) to make a master mask. Uses the
python package astroscrappy (see documentation for details).

Parameters path (str)— Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

Returns All science images are masked. The values of the MASKED keyword in their FITS headers
are changed to ‘Y’ if masking is successful.

OasisPy.align.ALIGN (path, align_method="standard’)
Registers all science images to their reference image. If no reference image exists, one is chosen (see documen-
tation for details).

Parameters

* path (str) — Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

* align_method (default='standard') (str) — Method of alignment. Can be
either standard or fakes. Default is standard. The fakes method should be used only for

21

OasisPy Documentation, Release 1.0

simulations, as it bypasses registration and only performs photometric alignment.

Returns Aligns all science images are aligned to the reference image to subpixel precision. A suc-
cesful alignment changes an image’s suffix from _U_to _A_.

OasisPy.psf.PSF (path)
Computes PSF model of science images. Uses PSFex (Bertin).

Parameters path (st r)— Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

Returns PSF models of each science image are ouputted into the psf directory with the .psf suffix.

OasisPy.combine.COMBINE (path)
Stacks science images into a high S/N template frame. Stacking method is the weighted median value of each
pixel and is done by the AstrOmatic software SWarp (E. Bertin). Only the top third of science images with
respect to seeing are included in the template.

Parameters path (st r)— Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

Returns Weighted median coaddition of all science images is outputted into the templates directory
with the name convention of StackMethod_NumberOflmagesinDataset.fits.

OasisPy.subtract.SUBTRACT (path, method="ois’, use_config_file=True)
Performs difference imaging on the science images. The template image is convolved to match the science
image’s PSF, then the template is subtracted from the science image. This process is repeated for a number of
different parameter configurations until an optimal residual is found. The actual convolution and subtraction is
done with either the TSTIS package (Alard) or hotpants (Becker). See documentation for details.

Parameters

* path (str) — Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

* method (str) - Method of difference imaging.
— ois (default): Optimal Image Subtraction. Christohpe Alard’s ISIS package.

— hotpants: Andrew Becker’s hotpants program. Very similar to Alard’s OIS, but differs
in input parameters. May be useful to try if OIS is returning inadequate results.

* use_config file (default=True) (bool) — If True all input parameters are
fetched from the local OASIS.config file.

Returns All science images are differenced and the corresponding residuals are placed in the resid-
uals directory with the _residual_ suffix.

OasisPy.MR.MR (path, method="swarp’, sig_thresh=4, gauss_sig=3, gauss_filt=False,

use_config_file=True)
Stacks residual frames into a master residual. Extremely useful for identifying faint variables and quick object

detection, but should be used with caution. See documentation for details.
Parameters

e path (str) — Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

* method (str)— Stacking method.

— swarp (default): Uses SWarp (Bertin) to stack the residuals according to the weighted
average of the pixels.

— sos: Sum of squares, pixel-wise.

22 Chapter 6. API

OasisPy Documentation, Release 1.0

— sos_abs: Absolute sum of squares, pixel-wise. Preserves sign. Mathematically, this look
like 3(p; - |p;|) with p; being the ith pixel. For example, a series of pixels [10, 2, -3, -6]
would be stacked according to 100 + 4 + -9 + -36.

— sigma_clip: Takes the median of each pixel, unless there exists a pixel above or below
a certain number of sigmas, in which case this outlying pixel is taken to be the stacked
value.

* sig_thresh (default=4) (float)— Only used for sigma_clip method. Number of
sigmas pixel must exceed to be used as stacked value.

* gauss_sig (default=3) (float) — Only used for sigma_clip method. Number of
sigmas used for gaussian filter.

* gauss_filt (default=False) (bool)— Only used for sigma_clip method. When
True the final master residual will be smoothed with a gaussian filter with a sigma equal to
gauss_sig.

* use_config_file (default=True) (bool) — If True all input parameters are
fetched from the local OASIS.config file.

Returns A stacked master residual frame, located in the residuals directory with the name MR fits.

OasisPy.extract .EXTRACT (path, method="both’)
Extracts sources from individual residual frames located in residuals directory. Automatically filters out false
positives and objects not of interest (see documentation for details). Uses SExtractor to create the initial
sources catalogs, which are outputted to the sources directory.

Parameters

e path (str) — Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

* method (str) — Method of source extraction. Tells OASIS whether to extract sources
from the individual residuals, the master residual, or both.

— both (default): Runs SExt ractor on both residuals and master residual.
— indiv: Runs SExtractor only on residuals.
— MR: Runs SExtractor only on master residual.

Returns A filtered source catalog for each image specified with the method parameter is created and
appended to the text file filtered_sources.txt located in the sources directory. Source extraction
statistics and extra info are located in total_sources.txt.

6.2 Convenience Functions

OasisPy.pipeline.PIPELINE (path)
The OASIS Pipeline. Runs all OASIS functions in succession.

Parameters path (str)— Path of data file tree (contains the configs, data, psf, residuals, sources,
templates directories). Use a comma-separated list for mapping to multiple datasets.

Returns All-in-one difference imaging pipeline. Raw science images are placed in the data di-
rectory, and residual images and source catalogs are outputted into the residuals and sources
directories, respectively.

OasisPy.run.RUN()
Master run function. Allows user to call any of the main OASIS methods. See documentation for details.

6.2. Convenience Functions 23

OasisPy Documentation, Release 1.0

6.3 Auxillary Functions

OasisPy.simulation.sim_fakes (location, n_fakes, iterations, input_mode="flux’, PSF="moffat’,

Simulates transient signals (fakes) and tests OASIS’s ability to detect them. The procedure of the simulation is

as follows:

1.

2
3
4,
5

subtract_method="ois’, f_min=0, f{_max=40000)

Makes a copy of the specified data set and moves it to the simulations directory.

. Chooses a random image out of the data set and adds in fakes.

. Runs the data set through the OASIS Pipeline.

Outputs a catalog of all fakes and whether or not they were detected.

. Simulation is repeated with a different set of fakes.

Parameters

location (str) — Path of data file tree (contains the configs, data, psf, residuals,
sources, templates directories). Use a comma-separated list for mapping to multiple
datasets.

n_fakes (default=20) (int)- Number of fakes added to the chosen image.

iterations (default=50) (int) — Number of iterations the simulation goes
through. The total number of fakes added is then n_fakes - iterations. It is reccom-
mended to choose n_fakes and iterations such that the total number of fakes is high, at least
a few hundred, ideally more than 1000.

input_mode (str)— How to interpret fake’s flux parameter.

— flux (default): Fake’s brightness is assumed to be total flux of the fake in ADU and is
determined by f_min and f_max parameters.

— mag: Fake’s brightness is given in magnitudes instead of ADU flux. f_min and f_max are
then assumed to be apparent magnitudes rather than ADU counts.

PSF (str)— Type of PSF model used for fake construction. See documentation for details.
— moffat (default): Fakes are convolved with a 2D Moffat kernel.
— gaussian: Fakes are convolved with a symmetric 2D Gaussian kernel.

subtract_method (default='ois') (str)-— Subtraction method used, can be ei-
ther ois or hotpants, default is ois. See subt ract method’s documentation for details.

f min (default=0) (float) - Minimum flux for fakes. Assumed to either be given
in ADU counts or apparent magnitudes depending on input_mode.

f max (default=40000) (float)- Maximum flux for fakes. Assumed to either be
given in ADU counts or apparent magnitudes depending on input_mode.

Returns Catalog of all fakes, the image they were added to, iteration, and whether or not they were
detected. See documentation for details.

OasisPy.simulation.sim_sameField (location, numIms=100, bkg mag=22.5, fwhm_min=3,

Test OASIS’s ability to handle frame-by-frame variations in astronomical data and filter out false-positive

fwhm_max=6, rot_min=-2.5, rot_max=2.5, shift_min=-2,
shift_max=2, scale_mult=(0, 1.5), scale_add=(-20, 50),
zero_point=25, mode="gauss’)

sources. The procedure of the simulation is as follows:

24

Chapter 6. API

OasisPy Documentation, Release 1.0

1. Copies a random science image from the specified dataset to the simulations directory.

2. A source catalog of the chosen science image is made, containing information on each source’s centroid
location and total flux.

3. Using this source catalog, simulations of the chosen science image are made, all with constant source flux
and location, but with different backgrounds, seeing, and pointing.

4. The set of simulated images are sent through the OASIS Pipeline.

5. Low numbers of detected sources signifies a successful simulation. There are no variable objects in the
simulated images, so ideally zero sources should be detected by OASIS.
Parameters

* location (str) — Path of data file tree (contains the configs, data, psf, residuals,
sources, templates directories). Use a comma-separated list for mapping to multiple
datasets.

* mode (default='moffat') (str)- Simulation mode. Method by which simulated
images are made. All images are given a uniform background, then smeared according to
Poisson statistics.

molffat (default): Sources are convolved with a 2D Moffat kernel.

gauss: Sources are convolved with a symmetric 2D Gaussian kernel.

real: The actual PSF model of the chosen science image is used as the convolution kernel.

sky: AstrOmatic program SkyMaker (Bertin) is used to make simulated images.
* numIms (default=100) (int)- Number of simulated images to make.

* bkg_mag (default=22.5) (float) — Average background level in mags. Ac-
tual simulated background levels are chosen to be a random value within the interval
[bkg_mag — 1.5,bkg_mag + 1.5].

* fwhm min (default=3) (float)- Minimum FWHM of simulated images in pixels.
* fwhm max (default=6) (float)- Maximum FWHM of simulated images in pixels.
* rot_min (default=-2.5) (float)- Lower bound on angle of rotation in degrees.
* rot_max (default=2.5) (float)- Upper bound on angle of rotation in degrees.

* shift_min (default=-2) (float)- Lower bound on (X,Y) shift in pixels.

* shift_max (default=2) (float)- Upper bound on (X,Y) shift in pixels.

* scale_mult (default=(0,1.5)) (tuple) - Interval of acceptable multiplicative
scale factors.

* scale_add (default=(-20,50)) (tuple) — Interval of acceptable additive scale
factors.

* zero_point (default=25) (float) - Zero point magnitude.
Returns Standard OASIS Pipeline output, residual frames located in residuals and source catalogs

located in sources.

OasisPy.simulation.SIM()
Master simulation function. Allows users to choose simulation type and supply all other simulation parameters.

6.3. Auxillary Functions 25

OasisPy Documentation, Release 1.0

OasisPy.test.TEST ()
Tests the installation of QasisPy by downloading a set of images from an online public archive, adding fake
sources to one of the images, and running the dataset through the OASIS Pipeline. If the fake sources are
recovered, the test is a success. The images used are 118 second exposures of exoplanet HAT-P-37b taken
with telescopes at the Las Cumbres Observatory. Results of the test are compared to control results located in
QOasisPy’s source code directory.

Returns Prints either ‘TEST SUCCESSFUL!’ or ‘Test failure: Results do not match controls’.

OasisPy.montage .MOSAIC ()
Interfaces with MontagePy to build a mosaic from a set of input images. All parameters are supplied through
terminal prompts. See documentation for details.

OASIS is a toolkit for detecting variable objects in astronomical images by means of difference imaging. Includes the
OASIS Pipeline, an all-in-one difference imaging utility that takes a set of input images and performs all necessary
difference imaging steps on them, outputting a set of source catalogs upon completion. Difference imaging is a
notoriously cumbersome task, especially for widely varying data. The OASIS Pipeline was built as a way to largely
automate many of the menial processing steps involved in a difference imaging project.

The code is designed to perform quality difference imaging on data that vary widely in pointing, background, seeing,
etc. Originally used in processing images of large galaxies, OASIS should work well for both extended objects and
simple star fields.

It was developed for use in UC Santa Barbara’s Optical SETI program (project homepage), but can be deployed in any
application involving anomaly detection in astronomical data.

The OasisPy package is a set of Python modules that facilitate access to OASIS’s main functionalities.

26 Chapter 6. API

https://www.deepspace.ucsb.edu/projects/implications-of-directed-energy-for-seti

CHAPTER /

Features

Masking — Masks cosmic rays, hot pixels, saturated stars, CCD defects, etc. Supports the use of weight maps
often used in AstrOmatic programs.

PSF Modeling — Computes PSF models of all input images using the AstrOmatic software PSFex.

Quality Control — Ignores images below a user-defined S/N threshold and/or above a seeing threshold.
Registration — Registers images to a chosen reference frame to subpixel precision.

Photometric Alignment — Linearly rescales each image’s intensity scale to match that of the reference image.

Stacking — Performs a weighted coaddition of the input images to construct a deep, high S/N template image
for use in the image subtraction step.

Background Matching — Matches the background of the input images to the template image, using an image
subtraction method that works well for extended objects with complicated backgrounds.

Image Subtraction — Computes a PSF-matching convolution kernel to convolve with the template image,
then subtracts the template from the input image. Uses the Optimal Image Subtraction (OIS) algorithm from
Christophe Alard (paper).

Parameter Optimization — Iterates over a range of OIS parameter configurations looking for the one that yields
the best residual image. If a residual fails to meet a certain quality threshold for all parameter configurations, it
is masked. Allows for a more robust subtraction that guarantees all residuals in the dataset will be of optimal
quality.

Source Extraction — Uses the AstrOmatic program SExtractor to extract variable objects from residual
frames.

Source Filtering — Filters out subtraction artifacts and other phony variable sources.

27

http://www2.iap.fr/users/alard/package.html

OasisPy Documentation, Release 1.0

28 Chapter 7. Features

Index

A

ALIGN () (in module OasisPy.align), 21

C

COMBINE () (in module OasisPy.combine), 22

E

EXTRACT () (in module OasisPy.extract), 23

G

GET () (in module OasisPy.get), 21

INITIALIZE () (in module OasisPy.initialize), 21

M

MASK () (in module OasisPy.mask), 21
MOSAIC () (in module OasisPy.montage), 26
MR () (in module OasisPy.MR), 22

P

PIPELINE () (in module OasisPy.pipeline), 23
PSF () (in module OasisPy.psf), 22

R

RUN () (in module OasisPy.run), 23

S

SIM () (in module OasisPy.simulation), 25

sim_fakes () (in module OasisPy.simulation), 24
sim_sameField () (in module OasisPy.simulation),

24
SUBTRACT () (in module OasisPy.subtract), 22

T

TEST () (in module OasisPy.test), 25

29

	Installing OasisPy
	System Requirements
	Software Requirements

	Getting Started
	OasisPy Basics
	Using OasisPy
	Convenience Methods

	How It Works
	Overview of the Software
	The OASIS Pipeline

	Tutorial
	Troubleshooting
	API
	OASIS Methods
	Convenience Functions
	Auxillary Functions

	Features
	Index

