NZXTSharp Documentation

Release latest

Mar 04, 2019

SDK-Docs

NZXTSharp

N) YA
NZXTSharp.COM

2.1 Interfaces e e e e e e e
2.2 ClaSSES . . v v o e e e e e e e e e e
NZXTSharp.HuePlus

3.1 HuePlus.Cs o e e e e e e
3.2 HuePlusChannel.cs e e e e e e
3.3 HuePlusChannellnfo.cs e e
34 CandleLight.cs e
3.5 DIreCtiON.CS . . v v v v e e e e e e e e e e e e
NZXTSharp.KrakenX

4.1 KrakenX.CS L e e e e e

NZXTSharp.Exceptions

5.1 Classes

Getting Started with NZXTSharp

6.1 Hue+

Hue+ Protocol

7.1 Handshakes e e e e e e
7.2 Channel Handshakes/ Getting Channel Info,
7.3 SetEffect L e e
7.4 Param Schemas e e e e e e
7.5 Unit LED Protocols e e e e e e
KrakenX Protocol

8.1 Handshakes e e e e e e e e e
8.2 Status Reports e e e e e e e e e e
8.3 Overrides e e e e e e e e e e e e e
8.4 SetEffect o e e e e e

8.5 Param Schemas

Support

10
11
12
12
12

13
13

15
15

17
17

21
22
22
22
22
23

25
25
26
26
26
27

29

10 Related Projects 31

10.1 Python o e e e e e e e e 31
102 CH 32
103 Gt o e e 32
104 C L 32
105 JavaScript. o o e e e e 32
10.6 Shell 32
107 Java . . oo 32
11 Supported Devices and Features 33
LTI Hued . . . o e e 34
11.2 KrakenX o o o e e e e 34

NZXTSharp Documentation, Release latest

Welcome to NZXTSharp’s readthedocs page!

NZXTSharp is a .NET Standard package that facilitates interaction with NZXT devices. You can find NZXTSharp on
Nuget.org, and the source on GitHub.

Docs here are organized by namespace.

NZXTSharp’s syntax is designed to be simple and easy to use, almost like python. The structure is built around
devices, effects, and params.

Effects are created with params, and effects are applied to devices. Devices are the main point that the user of the SDK
will interact with.

A basic getting started example with the Hue+:

using NZXTSharp;
using NZXTSharp.Devices;
using NZXTSharp.Effects;

HuePlus hue = new HuePlus();

Fixed effect = new Fixed(new Color (255, 255, 255)); // Create effect object
hue.ApplyEffect (hue.Both, effect); // Apply the effect

SDK-Docs 1

https://www.nuget.org/packages/NZXTSharp
https://github.com/akmadian/NZXTSharp

NZXTSharp Documentation, Release latest

2 SDK-Docs

CHAPTER 1

NZXTSharp

Table of Contents

* NZXTSharp
— Classes
x Color.cs
- Constructors
- Color()
- Color(int R, int G, int B)

- Color(string hexColor)

1.1 Classes

1.1.1 Color.cs

The Color class is used by all NZXTSharp effects, and represents a Color

Constructors
Color()
Color(int R, int G, int B)

Creates a Color instance from the provided R, G, B values.

NZXTSharp Documentation, Release latest

Values must be 0 - 255 (inclusive).

Color(string hexColor)

Creates a Color instance from the provided hex color code.

Supports color codes with a leading #: #££££ff, or without: ffffff.

4 Chapter 1. NZXTSharp

CHAPTER 2

NZXTSharp.COM

The NZXTSharp . COM namespace contains classes used for facilitating communication between INZXTDevices and

their respective hardware.

Nothing in the COM namespace is meant to be accessed by the user of NZXTSharp. All classes serve infrastructural

purposes.

Table Of Contents

* NZXTSharp.COM
— Interfaces
x [COMController.cs
— Classes
* SerialController.cs
- Properties
- Constructors
- Methods
* Serial COMData.cs

- Properties

- Constructors

NZXTSharp Documentation, Release latest

2.1 Interfaces

2.1.1 ICOMController.cs

Currently empty.

2.2 Classes

2.2.1 SerialController.cs

Inherets ICOMController.cs

Properties

SerialPort Port { get; } The serial port operated by the SerialController.
Serial COMData StartData { get; } The Serial COMData used to start the SerialController.
bool IsOpen { get => Port.IsOpen; } Whether or not the SerialPort operated by the SerialController is open.

Constructors

SerialController(string[] PossiblePorts, Serial COMData Data)
 param string[] PossiblePorts - A string array containing the ports to attempt opening. Format: “COM3”.

e param Serial COMData Data - A SerialCOMData object containing the information needed to open the
port.

Methods

byte[] Write(byte[] buffer, int responselength) Writes the bytes in the given buffer, and returns the device’s response.

e param byte[] buffer - The bytes to write to the device.

» param int reponselength - The expected length of the response: dictates the size of the returned buffer.
Improper sizing will result in lost data.

void WriteNoResponse(byte[] buffer) Writes the bytes in the given buffer to the device. Does not return a response.

» param byte[] buffer - The bytes to write to the device.
void Reconnect() Disposes of and reinitializes the SerialController instance.

void Dispose() Disposes of the SerialController instance.

6 Chapter 2. NZXTSharp.COM

NZXTSharp Documentation, Release latest

2.2.2 SerialCOMData.cs

Properties

System.I1O.Ports.Parity Parity { get; } The parity type to use.
System.1O.Ports.StopBits StopBits { get; } The stopbits to use.
int WriteTimeout { get; } The write timeout in ms.

int ReadTimeout { get; } The read timeout in ms.

int Baud { get; } The baud rate to open the port with.

int DataBits { get; } The number of databits to use.

Constructors

The Serial COMData class only has one constructor, and takes arguments corresponding to each of the available prop-
erties. The name parameter is optional, and defaults to an empty string.

2.2. Classes 7

NZXTSharp Documentation, Release latest

8 Chapter 2. NZXTSharp.COM

CHAPTER 3

NZXTSharp.HuePlus

Table of Contents

* NZXTSharp.HuePlus

HuePlus.cs
* Properties
* Constructors

* Methods

HuePlusChannel.cs
* Properties
x Constructors

* Methods

HuePlusChannellnfo.cs
* Properites
* Constructors

* Methods

CandleLight.cs
% Constructors

Direction.cs

x Constructors

NZXTSharp Documentation, Release latest

3.1 HuePlus.cs

Represents an NZXT Hue+ device.

inherits: IHueDevice.cs

3.1.1 Properties

string Name { get; } The device’s product name.

Channel Both { get; } A Channel object representing both channels on the Hue+

Channel Channell { get; } A channel object representing the Channel 1 of the Hue+ device.
Channel Channel2 { get; } A channel object representing the Channel 2 of the Hue+ device.
List<Channel> Channels { get; } A List containing all Channel objects owned by the Hue+ device.
string CustomName { get; set; } A custom name for the HuePlus device instance.

NZXTDeviceType Type { get; } The NZXTDeviceType of the HuePlus device. NZXTDeviceType.HuePlus

3.1.2 Constructors

HuePlus() Constructs a basic HuePlus instance.

HuePlus(int MaxHandshakeRetry = 5, string CustomName = null) Constructs a HuePlus instance with a custom retry count, ar

» param int MaxHandshakeRetry - Defaults to 5

e param string CustomName - Deafults to null.

3.1.3 Methods

void Reconnect() Disposes of and reinitializes to the HuePlus instance’s COMController.
void Dispose() Disposes of the HuePlus instance’s COMController.
void ApplyEffect(Channel channel, IEffect effect, bool SaveToChannel = true) Applies a given IEffect to a given Channel.

¢ param Channel channel - The HuePlus Channel to apply the affect to. Must be owned by the same HuePlus
instance the effect is being applied to.

 param IEffect effect - The IEffect to apply.

¢ param bool SaveToChannel - Whether or not to save the given IEffect to the given Channel. Defaults to
true.

void ApplyCustom(byte[] Buffer) Writes a custom buffer to the HuePlus instance’s COMController.
void UnitLedOn() Turns on the Hue+ device’s unit led.
void UnitLedOff() Turns off the Hue+ device’s unit led.
void SetUnitLed(bool State) Sets the Hue+ device’s unit led based on the State param.
» param bool State - Which state to set the LED to. true: on, false: off.

void UpdateChannellnfo(Channel Channel) Updates the given Channel’s Channellnfo.

10 Chapter 3. NZXTSharp.HuePlus

NZXTSharp Documentation, Release latest

e param Channel Channel - The Channel instance to update.

3.2 HuePlusChannel.cs

Channels are “owned” by devices. Channels also “own” a number of ISubDevices, and a Channellnfo object.

3.2.1 Properties

int ChannelByte { get; } The Channel instance’s ChannelByte.

IEffect Effect { get: } The IEffect currently applied to the Channel isntance.

bool State { get; } Whether or not the Channel instance is active (on).

Channellnfo Channellnfo { get; } The Channel’s Channellnfo object.

IHueDevice Parent { get; } The device that owns the Channel.

List<ISubDevice> SubDevices { get; } A list of ISubDevices owned by the Channel.

3.2.2 Constructors

Channel(int ChannelByte) Constructs a Channel instance with the given ChannelByte.

 param int ChannelByte - The Channel’s ChannelByte; 0x00 for both, 0x01 for Channel 1, 0x02 for Channel
2.

Channel(int ChannelByte, IHueDevice Parent) Constructs a Channel instance with a given ChannelByte, owned by a given Pare

 param int ChannelByte - The Channel’s ChannelByte; 0x00 for both, 0x01 for Channel 1, 0x02 for Channel
2.

¢ param [HueDevice Parent - The [HueDevice that will own the Channel object.

Channel(int ChannelByte, IHueDevice Parent, Channellnfo Info) Constructs a Channel instance with a given ChannelByte, ow1

 param int ChannelByte - The Channel’s ChannelByte; 0x00 for both, 0x01 for Channel 1, 0x02 for Channel
2.

e param IHueDevice Parent - The [HueDevice that will own the Channel object.

e param Channellnfo Info - A Channellnfo object about the Channel.

3.2.3 Methods

void RefreshSubDevices() Refreshes all ISubDevices in the Channel’s SubDevices list.
void On() Turns the Channel on, and re-applies the last applied effect.

void Off() Turns the Channel off, and applies an “#000000” fixed effect.

void UpdateChannellnfo() Updates the Channel instance’s Channellnfo object.

void SetChannelInfo(Channellnfo Info) Sets the Channel instance’s Channellnfo to a given Channellnfo “Info”.

3.2. HuePlusChannel.cs 11

NZXTSharp Documentation, Release latest

3.3 HuePlusChannelinfo.cs

Users of NZXTSharp are generally not meant to construct Channellnfo instances.

3.3.1 Properites

int NumLeds { get; } The total number of LEDs available on a Channel.

int NumSubDevices { get; } The number of ISubDevices available on a given Channel.
NZXTDeviceType Type { get; } The type of ISubDevices available on a Channel.

3.3.2 Constructors

ChannelIlnfo(byte[] data) Constructs a Channellnfo instance from some data returned from a channel handshake.

3.3.3 Methods

void Update() Updates the information contained in a Channellnfo object.

3.4 CandleLight.cs

Inherits from NZXTSharp.IEffect
EffectName = “CandleLight”

3.4.1 Constructors

CandleLight(Color Color) Constructs a CandleLight effect.
¢ param Color Color - The Color to display.

3.5 Direction.cs

The direction param is used to specify the direction some effects move in, sometimes defining whether the effect
moves smoothly or not.

Inherits from NZXTSharp.IParam

3.5.1 Constructors

Direction(bool isForward, bool withMovement) Constructs a Direction param with the given bool values.
» param bool isForward - Whether or not the effect will move forward or backward.

 param bool withMovement - Whether or not the effect will move smoothly.

12 Chapter 3. NZXTSharp.HuePlus

CHAPTER 4

NZXTSharp.KrakenX

Table of Contents

* NZXTSharp.KrakenX
— KrakenX.cs
* Properties

x Constructors

x Methods

4.1 KrakenX.cs

Represents an NZXT KrakenX device.
Inherits: NZXTSharp.INZXTDevice

4.1.1 Properties
Type Name Access | Description
HIDDevicelD DevicelD { get; } | The HIDDevicelD of the KrakenX device.
NZXTDeviceType | Type { get; } | The NZXTDeviceType of the KrakenX device.
int ID { get; } | A unique device ID.
KrakenXChannel | Both { get; } | Represents both the Logo, and Ring channels.
KrakenXChannel | Logo { get; } | Represents the KrakenX’s logo RGB channel.
KrakenXChannel | Ring { get; } | Represents the KrakenX’s ring RGB channel.
System. Version FirmwareVersion | { get; } | The KrakenX device’s firmware version.

13

NZXTSharp Documentation, Release latest

4.1.2 Constructors

KrakenX() Constructs a KrakenX instance.

4.1.3 Methods

14 Chapter 4. NZXTSharp.KrakenX

CHAPTER B

NZXTSharp.Exceptions

Table of Contents

* NZXTSharp.Exceptions

— Classes

k

*

*

*

*

IncompatibleDeviceTypeException
IncompatibleEffectException
IncompatibleParamException
InvalidEffectSpeedException
MaxHandshakeRetryExceededException
SubDeviceDoesNotExistException
SubDeviceLEDDoesNotExistException

TooManyColorsProvidedException

5.1 Classes

5.1.1 IncompatibleDeviceTypeException

thrown When an NZXTDeviceType is passed to a method or constructor that is not compatible with that method or

constructor.

15

NZXTSharp Documentation, Release latest

5.1.2 IncompatibleEffectException

thrown When an effect passed to a device’s ApplyEffect () method is not compatible with that device.

5.1.3 IncompatibleParamException

thrown When a param object passed to an effect constructor is not compatible with that effect.

5.1.4 InvalidEffectSpeedException

thrown When an invalid speed value is passed to a param or effect constructor.

Speed values must be 0 - 4 (inclusive); 0 being slowest, 2 being normal, and 4 being fastest.

5.1.5 MaxHandshakeRetryExceededException

thrown When the maximum number of handshake attempts has been exceeded during device intitialization.

Max Retry Count is 5 by default.

5.1.6 SubDeviceDoesNotExistException

thrown When a user attempts to reference a subdevice that does not exist.

Ex: If there are only four fans connected to a given channel (SubDevices highest index: 3), and the user attempts to
reference Channel . SubDevices [4], this exception will be thrown.

5.1.7 SubDeviceLEDDoesNotExistException

thrown When a user attempts to reference a subdevice LED that does not exist.

Ex: If there is only one strip connected to a given channel (SubDevices.Leds highest index: 9), and the user attempts
to reference Channel . SubDevices[0] .Leds [10], this exception will be thrown.

5.1.8 TooManyColorsProvidedException

thrown When a Color[] of length greater than 8 is passed to an effect constructor.

16 Chapter 5. NZXTSharp.Exceptions

CHAPTER O

Getting Started with NZXTSharp

This page contains getting started examples and code snippets.

NZXTSharp’s syntax is designed to be simple and easy to use, almost like python. The structure is built around
devices, subdevices, effects, and params.

Effects are created with params, and effects are applied to devices. Devices can own subdevices.

An example of a subdevice is a fan, or RGB strip. Once Hue 2 support is added, the CableComb and Underglow
SubDevices will be added.

Table of Contents

* Getting Started with NZXTSharp
— Hue+
* Boilerplate
* Applying Effects

% SubDevices

* Custom RGB values for a Fixed Effect

6.1 Hue+

The Hue+ model consists of the HuePlus class instance. The instance owns three Channel objects, but only Channell
and Channel2 have SubDevices.

17

NZXTSharp Documentation, Release latest

6.1.1 Boilerplate

To get started, you’ll need the following:

using NZXTSharp.Devices;

HuePlus hue = new HuePlus () ;

With this HuePlus instance, you can apply effects, get channel info, toggle the unit LED, etc.

6.1.2 Applying Effects

Effects are applied to a Hue+ device with the ApplyEffect () method. The channel(s) to apply the effect to, and
the effect object are passed as params to this method.

Adding on to the last example:

using NZXTSharp;
using NZXTSharp.Devices;
using NZXTSharp.Effects;

HuePlus hue = new HuePlus();

HexColor color = new Color (255, 255, 255); // You can make colors with RGB values
HexColor color = new Color ("#ffffff"); // Also works with Hex codes (with or without,_,
—the leading #)

Fixed effect = new Fixed(color); // Create effect

hue.ApplyEffect (hue.Both, effect); // Apply effect to both channels
hue.ApplyEffect (hue.Channell, effect); // Or just one

hue.UnitLedOff(); // Turn unit LED off
hue.UnitLedOn (); // And back on again!

6.1.3 SubDevices

A HuePlus instance has two Channels that own subdevices: Channell and Channel2. The Both Channel does not own
any because it is not a “physical” channel. Keep in mind that ALL changes to subdevices need to be “pushed” to the
device by setting, or re-setting an effect.

All subdevice classes are held in the NZXTSharp .Devices namespace.

Building on the Boilerplate example:

using NZXTSharp.Devices;
using NZXTSharp.Effects;

HuePlus hue = new HuePlus();
Fixed effect = new Fixed(new Color ("#FFFFEFE"));

List<ISubDevice> ChlDevices = hue.Channell.SubDevices; // Not necessary, but syntax_
—1looks better

ChlDevices[0] .Al1LedOff(); // Turn off all LEDs on first subdevice in channel.
hue.ApplyEffect (hue.Channell, effect); // Apply changes

(continues on next page)

18 Chapter 6. Getting Started with NZXTSharp

NZXTSharp Documentation, Release latest

(continued from previous page)

ChlDevices[1l].ToggleLed(9); // Toggle individual LEDs with the ToggleLed method
ChlDevices[1].Leds[8] = false; // Or by setting the value.
hue.ApplyEffect (hue.Channell, effect); // Apply changes

ChlDevices[1].ToggleLedRange (1, 5); // Or, toggle ranges of LEDs
hue.ApplyEffect (hue.Channell, effect); // Apply changes

6.1.4 Custom RGB values for a Fixed Effect

The fixed effect, being the most versatile, allows the user of NZXTSharp to construct a fixed effect with custom RGB
values for each LED. This is done by passing a byte array to a Fixed effect constructor.

Byte array schema: The byte array must have at least 1 RGB value, and at most 120 RGB values. If the length is not
within this range, an InvalidParamException will be thrown.

RGB Value formatting: For the effect to display properly, all RGB values MUST be passed in G, R, B format. RGB
Values, like all other RGB values in NZXTSharp must be between 0-255 (inclusive).

Building on the Boilerplate example:

using NZXTSharp;
using NZXTSharp.Devices;
using NZXTSharp.Effects;

HuePlus hue = new HuePlus();

// Create RGB array, this will have two LEDs lit: one white, one red.
byte[] colors = new byte[] { 255, 255, 255, 0, 255, 0 };

Fixed effect = new Fixed(colors); // Create Effect

hue.ApplyEffect (hue.Both, effect); // And apply it!

// Also supports subdevice and LED toggling.

hue.Channell.SubDevices[1l].ToggleState(); // Toggle device
hue.ApplyEffect (hue.Both, effect); // Apply changes

6.1. Hue+ 19

NZXTSharp Documentation, Release latest

20

Chapter 6. Getting Started with NZXTSharp

CHAPTER /

Hue+ Protocol

Table of Contents

e Hue+ Protocol

Handshakes

Channel Handshakes/ Getting Channel Info
Set Effect

Param Schemas

* CIS/S - Color In Set/ Speed
* Direction

* LS/S - LED Size/ Speed

Unit LED Protocols

Basic Protocol Schema: Command Type, ChannelByte, EffectByte, Param1, Param2, LedData ChannelByte:
Both = 00, Channel 1 = 01, Channel 2 = 02

Command Types: Set Effect = 4b, Unit LED = 46, Get Channel Info = 8d

The Hue+ operates on a serial port, and is made to handle discrete commands sent in packets. To open a connection
to a Hue+ device, open a serial connection on whatever COM port your Hue+ is operating on with a baud rate of
256000, parity set to None, dataBits set to 8, and stopBits set to 1. Then, begin the handshake process.

Effect protocols are made of exactly 125 bytes or less. For all protocols, the first five bits in each packet are what |
will call “settings bytes”, and the remaining 120 are LED data in G, R, B format.

Settings bytes (in order) consist of which kind of command is being set, the channels to apply the effect to, which
effect to set, and two parameters. See set effect protocol for more information.

21

NZXTSharp Documentation, Release latest

7.1 Handshakes

To begin interaction with a Hue+ device, a handshake must first be completed.
The “Hello” handshake can be completed by continuously sending 0xc0, until the Hue+ unit reponds with 0xO1.

There is no trick to a “GoodBye” handshake, just close the serial connection.

7.2 Channel Handshakes/ Getting Channel Info

To get information about what is connected to a channel, send an 8d ChannelByte command to the Hue+. Ex: To
get channel info for channel 1, send 8d 01. For channel 2, 8d 02. The response structure is still being worked out,
some of the values are still unclear.

The response should be 5 bytes long, and follows this schema:
e ?7: 7 Consistent between devices
* ?7: 7 Not consistent between devices
* 7 : 7 Not consistent between devices.
e X : Fan or Strip; 0x00 = strips, 0x01 = fans.

e X : Number of fans or strips connected.

7.3 Set Effect

Below is a table outlining the settings packets for each effect. Bolded param values are defined below in the Param
Scemas Section.

Direction params marked with WM can make use of movement in the effect. See the direction param schema below
for more information.

Effect Packets/ Send EffectByte | Param1 Param2
Fixed 1 0x4b | CB | 0x00 0x03 0x02
Fading 1/ Color* 0x4b | CB | 0x01 0x03 CIS/S
Spectrum Wave 1 0x4b | CB | 0x02 Direction CIS/S
Marquee 3 0x4b | CB | 0x03 Direction LS/S
Covering Marquee | 3/ Color* 0x4b | CB | 0x04 Direction CIS/S
Alternating 2 0x4b | CB | 0x05 Direction WM | CIS/S
Pulse 1/ Color* 0x4b | CB | 0x06 0x03 CIS/S
Breathing 1/ Color* 0x4b | CB | 0x07 0x03 CIS/S
Candle Light 1 0x4b | CB | 0x09 0x03 0x02
Wings 1 0x4b | CB | 0x0c 0x03 CIS/S

7.4 Param Schemas

7.4.1 CIS/S - Color In Set/ Speed

CIS/S params are a composite of a couple values: The index of the current color in a set of colors, and the speed of
the effect. Find the values individually, and concatenate them to get the btye to be passed as a param.

22 Chapter 7. Hue+ Protocol

https://nzxtsharp.readthedocs.io/en/latest/Protocols/Hue+.html#param-schemas
https://nzxtsharp.readthedocs.io/en/latest/Protocols/Hue+.html#param-schemas

NZXTSharp Documentation, Release latest

First Digit: Color In Set. If there are multiple colors being applied, this digit denotes the index of the color.
— To Find: digit=x * 2
+ x: The color number (Zero Indexed)
* Second Digit: Speed

— 0 - 4 where 0 is slowest, and 4 is fastest. 2 is normal.

IF Effect only uses one color, first digit is 0.
* Whole Byte: Concatenate Color In Set (IN HEX), and Speed.
— Ex: If the effect uses one color, and was at normal speed, the resulting byte would be 02.

— Ex: If the color is the third one in the set, and the speed is at fastest, the resulting byte would be 44.

7.4.2 Direction
For direction, just like CIS/S, the byte result is a composite of two values: whether or not the effect’s direction is
forward or backward, and whether or not the effect should be moving.
If an effect’s param1 byte is marked with WM, it can make use of movement toggling.
The byte values are as follows:
* Forward: 03
e Backward: 13
* IF marked as WM, the following are also available:
— Forward W/ Movement: Ob
— Backward W/ Movement: 1b

7.4.3 LS/S - LED Size/ Speed

To find the desired byte composite, use the table below:

Speedv;LEDSize> |3 |4 |5 |6

Slowest 00 | 08 | 10 | 18
Slow 0109|111 19
Normal 02 |0a |12 | la
Fast 03 |0b| 13| 1b
Fastest 04 | Oc | 14 | 1c

7.5 Unit LED Protocols

Turning the Hue+ unit’s LED on or off is pretty simple. All of the data needed fits into one packet, and seven bytes.
Just send the desired byte codes over the serial port, and the light should do as instructed.

On: 46 00 c0 00 00 00 ff

Off: 46 00 c0 00 00 ff 00

Special Thanks to Pet0203. for helping me get started and providing base code.

7.5. Unit LED Protocols 23

https://github.com/Pet0203

NZXTSharp Documentation, Release latest

24

Chapter 7. Hue+ Protocol

CHAPTER 8

KrakenX Protocol

I want to give a special thanks to Jonas Malaco for his help with building out KrakenX support in NZXTSharp, and
his work in reverse engineering the KrakenX protocol.

Table of Contents

e KrakenX Protocol

— Handshakes

Status Reports

Overrides

Set Effect

Param Schemas

* DCB - Direction/ ChannelByte

* DCBWM - Direction/ ChannelByte (With Movement)
* CIS/S - Color In Set/ Speed
* LS/S - LED Size/ Speed

This document describes the HID communication protocol for NZXT KrakenX (x42, x52, x62, x72) devices. The
vendor ID for NZXT is Ox1e71, and the device id for KrakenX devices is 0x170e.

CAM receives device information about once/ second, I call these “status reports”. CAM also consistently sends
packets to the Kraken device. The packets sent from CAM are meant to set the pump/ fan speeds based on whatever
pump/ fan profile is currently set. Jonas Malaco

8.1 Handshakes

KrakenX devices have no hello or goodbye handshake process.

25

https://github.com/jonasmalacofilho

NZXTSharp Documentation, Release latest

8.2 Status Reports

The Kraken device continuously sends status reports upstream to the PC. These reports are always 0x40 bytes long.
So far, information about how to get pump/ fan speeds, liquid temp, and firmware version. Here is how to get that
information from a status report: In the following examples, data refers to the array of bytes last received from the
device (zero-indexed).

Pump Speed: data[4] << 8 | data[5] - << is the bitwise left-shift operator, and | is the bitwise OR operator.
Fan Speed: data[4] * 0x100 + data[5]
Liquid Temp: data[0] + (data[1] * 0.1) - The liquid temp value in degrees C, unrounded.
Firmware Version:
* Major: data[10]
e Minor: (int)data[12].ToString() + data[13].ToString()

8.3 Overrides

If you want custom pump/ fan speeds to be set, the KrakenX device requires “overrides” at least once every 10 seconds,
or the device will revert back to the CAM default “performance profile”. The override buffer schema is as follows:

Pump: 0x02, 0x4d, 0x40, 0x00, (byte)Speed - Speed is the desired speed as a percentage.
Fan: 0x02, 0x4d, 0x00, 0x00, (byte)Speed - Speed is the desired speed as a percentage.

8.4 Set Effect

The process of setting an RGB effect is similar to how it is with the Hue+. RGB Effect packets are always 65 bytes
long. There are 5 settings bytes at the beginning, then 9 G, R, B color codes, then padding out to the 65 length with
0x00. The 9 GRB color codes are for the 8 LEDs in the ring, and the one in the logo. Even when effects are set on just
the logo or ring, there are still 9 color codes. The first 8 seem to be for the ring, and the last is for the logo.

The settings bytes schema is as follows: 0x02, Ox4c, Param1, EffectByte, Param?2

Below is a table outlining the settings packets for each effect. Bolded param values are defined below in the Param
Schemas Section.

26 Chapter 8. KrakenX Protocol

NZXTSharp Documentation, Release latest

Effect Name Packets/ CB/ Effect- Param2| Compatible With
Send Param1 Byte

Fixed 1 0x02 | Ox4c| CB 0x00 0x02 Both

Fading 1/ Color 0x02 | Ox4c| CB 0x01 CISS | Both

SpectrumWave | 1 0x02 | Ox4c | DCB 0x02 Speed | Both

Marquee 1 0x02 | Ox4c | CB 0x03 LSS Ring Only

CoveringMar- 1/ Color 0x02 | Ox4c | DCB 0x04 CISS | Both (at same time), or Ring

quee Only

Alternating 1/ Color 0x02 | Ox4c| DCBWM | 0x05 CISS | Ring Only

Breathing 1/ Color 0x02 | Ox4c| CB 0x06 CISS | Both

Pulse 1/ Color 0x02 | Ox4c | CB 0x07 CISS | Both

TaiChi 2 0x02 | Ox4c| CB 0x08 CISS | Ring Only

WaterColor 1 0x02 | Ox4c | CB 0x09 Speed | Ring Only

Loading 1 0x02 | Ox4c| CB 0x0a Speed | Ring Only

Wings 1 0x02 | Ox4c| CB 0x0c Speed | Ring Only

Speed refers to the speed the effect will display at: O - 4 where 0 is slowest, and 4 is fastest. 2 is normal.

8.5 Param Schemas

The KrakenX shares the CISS and LSS param with the Hue+. The KrakenX does have a couple of its own unique (for
now) params:

8.5.1 DCB - Direction/ ChannelByte

This param is a concatenation of two ints:
* First Byte: Direction — Forward: 0, Backward: 1
* Second Byte: ChannelByte — The ChannelByte of the channel the effect will be applied to.

8.5.2 DCBWM - Direction/ ChannelByte (With Movement)

This param is only used for the Alternating RGB effect. The desired value can be found with this table:

Direction v; With Movement > | True False
Forward 0x0A | 0x02
Backward Ox1A | Ox12

8.5.3 CIS/S - Color In Set/ Speed
CIS/S params are a composite of a couple values: The index of the current color in a set of colors, and the speed of
the effect. Find the values individually, and concatenate them to get the btye to be passed as a param.
* First Digit: Color In Set. If there are multiple colors being applied, this digit denotes the index of the color.
— To Find: digit=x * 2
+ x: The color number (Zero Indexed)

¢ Second Digit: Speed

8.5. Param Schemas 27

NZXTSharp Documentation, Release latest

— 0 - 4 where 0 is slowest, and 4 is fastest. 2 is normal.

* IF Effect only uses one color, first digit is O.

* Whole Byte: Concatenate Color In Set (IN HEX), and Speed.

— Ex: If the effect uses one color, and was at normal speed, the resulting byte would be 02.

— Ex: If the color is the third one in the set, and the speed is at fastest, the resulting byte would be 44.

8.5.4 LS/S - LED Size/ Speed

To find the desired byte composite, use the table below:

Speedv;LEDSize> |3 |4 |5 |6

Slowest 00 | 08 | 10 | 18
Slow 01 {09 | 11 | 19
Normal 02 | 0a | 12| 1la
Fast 03 | 0b | 13 | 1b
Fastest 04 | Oc | 14 | 1Ic

28

Chapter 8. KrakenX Protocol

CHAPTER 9

Support

To get help with NZXTSharp, you can:
* Email me: akmadian@gmail.com
* Create an issue or look into the source code: https://github.com/akmadian/NZXTSharp
* Join the NZXTSharp Discord server: https://discord.gg/yK8m2CU

If you have suggestions for the documentation or the package itself, please let me know using one of the
methods above!

Special Thanks To:

Jonas Malaco (github) For his help with the KrakenX protocol

Pet0203 (github) For his help with development, and the Hue+ protocol.

DarkMio (github) For developing Octopede, which contributed to KrakenX support.

29

mailto:akmadian@gmail.com
https://github.com/akmadian/NZXTSharp
https://discord.gg/yK8m2CU
https://github.com/jonasmalacofilho
https://github.com/Pet0203
https://github.com/DarkMio

NZXTSharp Documentation, Release latest

30

Chapter 9. Support

cHAaPTER 10

Related Projects

Table of Contents

* Related Projects
— Python
- C#
- C++

-C

JavaScript
Shell

Java

NZXTSharp is for the NZXT community. I hope that it will be used not just by devs, but that those devs will use
NZXTSharp to build applications that many people (even with no dev experience) can use. Because of this, I be-
lieve that any and all awareness of NZXT SDKs will be beneficial to the community. Listing of an SDK is not an
endorsement.

If I missed your SDK, please contact me! My contact info can be found on the support page.

Here are some other open source SDKs or applications:

10.1 Python

kusti8 - hue-plus; A Windows and Linux driver in Python for the NZXT Hue+.

jonasmalacofilho (NZXTSharp Contributor!) - liquidctl; Cross-platform tool and drivers for liquid coolers and other
devices.

akej74 - grid-control; Grid Control is a free and open source alternative to NZXT CAM.

31

https://github.com/kusti8/hue-plus
https://github.com/jonasmalacofilho/liquidctl
https://github.com/akej74/grid-control

NZXTSharp Documentation, Release latest

10.2 C#

piet-v - HueLightPlus; Ambilight-clone for NZXT Hue+ LED-Controller
DarkMio - Octopede; A replacement for NZXT Kraken Controller

wongfei - nzxt-grid-driver; Simple Grid+ controller/configurator to get rid of ugly CAM software.

10.3 C++

RBlafford - levd; Daemon with configurable properties that will control NZXT Kraken x61 cooler.
rupor-github - squid; Squid service for NZXT Kraken

VIGGEEN - vim-krakenx-daemon; Daemon for controlling NZXT Kraken series under Linux distributions.

104 C

jaksi - leviathan; Linux kernel module to control and monitor NZXT liquid coolers.

10.5 JavaScript

yetzt - node-krkn; nzxt kraken x52/x62 usb interface controller library for nodejs
MarnixBouhuis - NZXT.js; Control NZXT CAM devices with NodeJS
Spartal42 - OpenCAM; A lightweight alternative to NZXT’s CAM software for Kraken devices

10.6 Shell

CapitalF - gridfan; A controller script for the NZXT Grid+ v2 fan controller.

10.7 Java

RoelGo - CamSucks; An alternative control software for the NZXT GRID+

Tankernn - JavaGridControl; Open-Source control software for the NZXT Grid+ and Grid+ v2

32 Chapter 10. Related Projects

https://github.com/piet-v/HueLightPlus
https://github.com/DarkMio/Octopode
https://github.com/wongfei/nzxt-grid-driver
https://github.com/RBlafford/levd
https://github.com/rupor-github/squid
https://github.com/VIGGEEN/vlm-krakenx-daemon
https://github.com/jaksi/leviathan
https://github.com/yetzt/node-krkn
https://github.com/MarnixBouhuis/NZXT.js
https://github.com/Sparta142/OpenCAM
https://github.com/CapitalF/gridfan
https://github.com/RoelGo/CamSucks
https://github.com/Tankernn/JavaGridControl

cHAPTER 11

Supported Devices and Features

This list is the most current resource for checking which devices and features are and are not supported. If a device is
not listed, it is not supported.

The Hue+ is supported, KrakenX products are partially supported, the Hue 2 is most likely next. If you would
like to request a specific device or feature, please submit an issue at NZXTSharp’s GitHub repo, and tag it with
device-request or feature-request.

The supported features tables use the following schema for column values:
e NI - Not Implemented.
* WIP - Work In Progress/ In Process of Implementation.
e ITT - Implemented, To Test.
e TNW - Tested, Not Working.
e TFW - Tested, Fully Working.

Table of Contents

* Supported Devices and Features
— Hue+
* Device Features
* Effects
— KrakenX

% Device Features

* Effects

33

NZXTSharp Documentation, Release latest

11.1 Hue+

11.1.1 Device Features

Feature

NI

WIP

ITT

TNW

TFW

Unit LED On

Unit LED Off

Channel On

Channel Off

Channel Handshakes

Subdevices

Subdevice LEDs

elialkelialiaikalls

11.1.2 Effects

Feature

NI

WIP

ITT

TNW

TFW

Fixed

Fading

Spectrum Wave

Marquee

Covering Marquee

Alternating

Pulse

Breathing

Candle Light

Wings

DAL R R K| PR < < | | <

11.2 KrakenX

11.2.1 Device Features

Feature

NI

WIP

ITT

TNW

TFW

Get Pump Speed

Set Pump Speed

Channel On

Channel Off

Get Fan Speed

Set Fan Speed

Get Liquid Temp

Get Firmware Version

|]| R | K PR <] R

34

Chapter 11. Supported Devices and Features

NzZXTSharp Documentation, Release latest

11.2.2 Effects

Feature NI | WIP | ITT | TNW | TFW
Fixed X
Fading
Spectrum Wave X
Marquee X
Covering Marquee
Alternating
Pulse

Breathing
TaiChi

Wings
WaterCooler
Loading

o

| < | <

||| <

11.2. KrakenX 35

	NZXTSharp
	Classes

	NZXTSharp.COM
	Interfaces
	Classes

	NZXTSharp.HuePlus
	HuePlus.cs
	HuePlusChannel.cs
	HuePlusChannelInfo.cs
	CandleLight.cs
	Direction.cs

	NZXTSharp.KrakenX
	KrakenX.cs

	NZXTSharp.Exceptions
	Classes

	Getting Started with NZXTSharp
	Hue+

	Hue+ Protocol
	Handshakes
	Channel Handshakes/ Getting Channel Info
	Set Effect
	Param Schemas
	Unit LED Protocols

	KrakenX Protocol
	Handshakes
	Status Reports
	Overrides
	Set Effect
	Param Schemas

	Support
	Related Projects
	Python
	C#
	C++
	C
	JavaScript
	Shell
	Java

	Supported Devices and Features
	Hue+
	KrakenX

