

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/nwjs-test/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/nwjs-test/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Package and Distribute {: .doctitle}

[TOC]

This document guides you how to package and distribute NW.js based app.

Quick Start

You can use nw-builder [https://github.com/nwjs/nw-builder] to quickly generate a package for you.

	Prepare your app as below.

	Install nw-builder with npm install -g nw-builder

	Package your app with nwbuild -p linux64 /path/to/your/app

Your app can be found in ./build folder.

Prepare Your App

Before packaging, you should prepare all necessary files on hands. Check out following checklist to make sure you didn’t miss anything:

	[] Source code and resources

	[] Install NPM modules with npm install

	[] [Rebuild native Node modules](Advanced/Use Native Node Modules.md)

	[] [Build NaCl binaries](Advanced/Use NaCl in NW.js.md)

	[] [Compile source code](Advanced/Protect JavaScript Source Code.md) and remove the original files

	[] Icon used in [manifest file](../References/Manifest Format.md#icon)

!!! warning
Do not assume your node_modules that target one platform work as is in all platforms. For instance node-email-templates has specific Windows & Mac OS Xnpm install commands. Besides, it requires python to install properly, which is not installed by default on Windows.
As a rule of thumb npm install your package.json on each platform you target to ensure everything works as expected.

!!! note “Filename and Path”
On most Linux and some Mac OS X, the file system is case sensitive. That means test.js and Test.js are different files. Make sure the paths and filenames used in your app have the right case. Otherwise your app may look bad or crash on those file systems.

!!! note “Long Path on Windows”
The length of path used in your app may exceed the maximum length (260 characters) on Windows. That will cause various build failures. This usually happens during installing dependencies with npm install using older version of NPM (<3.0). Please build your app in the root directory, like C:\build\, to avoid this issue as much as possible.

Prepare NW.js

You have to redistribute NW.js with your app to get your app running. NW.js provided multiple [build flavors](Advanced/Build Flavors.md) for different requirements and package size. Choose the proper build flavor for your product or [build it from source code](../For Developers/Building NW.js.md).

All files in the downloaded package should be redistributed with your product, except tools in SDK flavor including nwjc, payload and chromedriver.

Package Your App

There two options to pack your app: plain files or zip file.

Package Option 1. Plain Files (Recommended)

On Windows and Linux, you can put the files of your app in the same folder of NW.js binaries and then ship them to your users. Make sure nw (or nw.exe) is in the same folder as package.json. Or you can put the files of your app in a folder named package.nw in the same folder as nw (or nw.exe).

On Mac, put the files of your app into a folder named app.nw in nwjs.app/Contents/Resources/ and done.

It’s the recommended way to pack your app.

Package Option 2. Zip File

You can package all the files into a zip file and rename it as package.nw. And put it along with NW.js binaries for Windows and Linux. For Mac, put package.nw in nwjs.app/Contents/Resources/.

!!! warning “Start Slow with Big Package or Too Many Files”
At starting time, NW.js will unzip the package into temp folder and load it from there. So it will start slower if your package is big or contains too many files.

On Windows and Linux, you can even hide the zip file by appending the zip file to the end of nw or nw.exe.
You can run following command on Windows to achieve this:

copy /b nw.exe+package.nw app.exe

or following command on Linux:

cat nw app.nw > app && chmod +x app

Platform Specific Steps

Windows

Icon for nw.exe can be replaced with tools like Resource Hacker [http://www.angusj.com/resourcehacker/], nw-builder [https://github.com/mllrsohn/node-webkit-builder] and node-winresourcer [https://github.com/felicienfrancois/node-winresourcer].

You can create a installer to deploy all necessary files onto end user’s system. You can use Windows Installer [https://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx], NSIS [http://nsis.sourceforge.net/Main_Page] or Inno Setup [http://www.jrsoftware.org/isinfo.php].

Linux

On Linux, you need to create proper .desktop file [https://wiki.archlinux.org/index.php/Desktop_Entries].

To create a self-extractable installer script, you can use scripts like shar [https://en.wikipedia.org/wiki/Shar] or makeself [http://stephanepeter.com/makeself/].

To distribute your app through the package management sysmtem, like apt, yum, pacman etc, please follow their official documents to create the packages.

Mac OS X

On Mac OS X, you need to modify following files to have your own icon and boundle id:

	Contents/Resources/nw.icns: icon of your app. nw.icns is in Apple Icon Image Format [https://en.wikipedia.org/wiki/Apple_Icon_Image_format]. You can convert your icon in PNG/JPEG format into ICNS by using tools like Image2Icon [http://www.img2icnsapp.com/].

	Contents/Info.plist: the apple package description file. You can view Implementing Cocoa’s Standard About Panel [http://cocoadevcentral.com/articles/000071.php] on how this file will influence your app and what fields you should modify.

And you should sign you Mac app. Or the user won’t launch the app if Gatekeeper is turned on. See Signed Apps or Installer Packages [https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/DistributingApplicationsOutside/DistributingApplicationsOutside.html] for details.

References

See wiki of NW.js [https://github.com/nwjs/nw.js/wiki/How-to-package-and-distribute-your-apps] for more tools of packaging your app.

FAQ {: .doctitle}

[TOC]

console.log doesn’t output to Linux terminal

--enable-logging=stderr should be used in the command line; See more here: https://www.chromium.org/for-testers/enable-logging

var crypto = require('crypto') gets a wrong object

Chromium has its

 Getting Started with NW.js

Getting Started with NW.js

[TOC]

What can NW.js do?

NW.js is based on Chromium [http://www.chromium.org] and Node.js [http://nodejs.org/]. It

 Debugging with DevTools {: .doctitle}

Debugging with DevTools {: .doctitle}

!!! note “SDK Flavor Only”
DevTools is only available in [SDK flavor](Advanced/Build Flavors.md). It’s recommended to use SDK flavor to develop and test your app. And use other flavors for production.

Open Developer Tools

DevTools can be opened with keyboard shortcut F12 for Windows and Linux or ⌘

+⌥

+i.

Alternatively, you

 Migrate from 0.12 to 0.13 {: doctitle}

Migrate from 0.12 to 0.13 {: doctitle}

[TOC]

Architecture Changes

	NW.js application is running as a Chrome App internally. All chrome.* platform APIs and features can be used in NW application now. The default protocol is changed from file:// to chrome-extension://, where the host part of the URL is the generated id. The app:// protocol in 0.12 is replaced by chrome-extension:// protocol.

	All NW specific APIs, including require() is moved into a nw object from the nw.gui library. However, we provided a builtin wrapper library to provide compatibility for 0.12 apps. You can use nw.gui library for some time before we deprecate it in 0.14 or later.

	The Node.js context is put in the DOM context of the background page, which is shared between opening windows as in 0.12 and before. The difference is you have access to all DOM features and chrome.* platform APIs in the Node context in 0.13.

	The entry of the application is either JS or HTML as in 0.12, but as the application is internally a Chrome App, the first window is supposed to be launched by JS from the background page. If you specify a HTML file as the entry with “main” field in package.json, NW will use a default JS to open the first window and load it.

	If NW.js is running under [Mixed Context Mode](../Advanced/JavaScript Contexts in NW.js.md#mixed-context-mode) (boot NW.js with --mixed-context argument), nw.* is kind of mirror of window.*. In this mode, you CANNOT share variables among frames or windows by assigning it to Node context. So do NOT turn on Mixed Context mode if your application is heavily depending on this variable sharing feature.

Node.js Changes

	Node.js is bumped to 5.x in latest build. Check your NPM modules to make sure they support Node.js 5.x especially for native modules. There is a list of native modules [https://github.com/nodejs/node/issues/2798] which should be migrated to latest NaN 2.

	Add NW version information to process.versions[nw]. process.versions[node-webkit] will be deprecated later.

API Changes

Build Flavors

	Different build flavors support different set of APIs and capabilities. See [Build Flavors](../Advanced/Build Flavors.md) to choose the right NW.js flavor or [build your own](../../For Developers/Building NW.js.md).

Shorcut

	Shortcut API does NOT map Ctrl modifier to ⌘

 on Mac OS X. However 0.13.0 supports Command modifier in cross platform way. So it’s your responsible to detect the OS and choose the right modifier when registering hotkeys. See Shortcut.key for details.

Menu

	Menus on Mac is created with default menubar, including app-name, Edit and Window, instead of minimal menubar in 0.12.

	To fix the name of application menu, you will need to modify nwjs.app/Contents/Resources/en.lproj/InfoPlist.strings instead of nwjs.app/Contents/Info.plist. See [Customize Menubar](../Advanced/Customize Menubar.md#mac-os-x).

Manifest Format

	[single-instance](../../References/Manifest Format.md#single-instance) is deprecated and it’s always true. You CANNOT have multiple instances for your app unless you’re using different user data directory (by --user-data-dir). You may also want to use the open event: the first instance will be notified with this event when user tries to launch the second instance.

	[toolbar](../../References/Manifest Format.md#toolbar) is deprecated and it’s always false. The traditional toolbar will NOT be supported including the reload buttons, location bar and DevTools buttons. As a workaround, you can open / close DevTools with F12 (Windows & Linux) or ⌘

+⌥

+i (Mac). And use win.reload() and win.reloadDev() to simulate the reload buttons.

	[no-edit-menu](../../References/Manifest Format.md#no-edit-menu-mac) is deprecated.

	[snapshot](../../References/Manifest Format.md#snapshot) is deprecated. Use win.evalNWBin() instead.

	The format of [node-remote](../../References/Manifest Format.md#node-remote) is changed to array of match patterns [https://developer.chrome.com/extensions/match_patterns] used by Chrome extension.

	Window options always-on-top, visible-on-all-workspaces, new-instance, inject-js-start and inject-js-end is renamed to [always_on_top](../../References/Manifest Format.md#always_on_top), [visible_on_all_workspaces](../../References/Manifest Format.md#visible_on_all_workspaces), new_instance, inject_js_start and inject_js_end respectively in package.json or as argument of Window.open().

	--data-path command line argument is replaced by --user-data-dir.

Window

	There is an id to identify each window. This will be used to remember the size and position of the window and restore that geometry when a window with the same id is later opened. It could be specified in Window.open or [id of window subfields in manifest](../../References/Manifest Format.md#id)

	Event capturepagedone of Window API is deprecated.Use the callback with the win.capturePage(callback [, config]) instead.

	Window.open is changed to passing the created window as the argument of the callback.

	Window.showDevtools is changed to passing the created window as the argument of the callback.

	win.setTransparent is deprecated. You can’t change the transparency after window is created.

	unmaximize and leave-fullscreen events of Window object is deprecated and replaced by restore. When window is restored from minimized, maximized or fullscreen, restore event is triggered instead.

	Window options always-on-top and visible-on-all-workspaces is renamed to [always_on_top](../../References/Manifest Format.md#always_on_top) and [visible_on_all_workspaces](../../References/Manifest Format.md#visible_on_all_workspaces) respectively in package.json or as argument of Window.open().

	Window is not inherited from EventEmitter anymore, but the methods on(), once(), removeListener() and removeAllListeners() are still supported.

Screen

	The id obtained by added, orderchanged, namechanged, thumbnailchanged should be registered and use the stream id returned by registerStream(id) before passing to getUserMedia. See Synopsis for the usage.

Known issues

	The following window options passed to nw.Window.open() is not effective on Linux: min_width, min_height, max_width, max_height, resizable for now; try to set them in the callback.

	nw.Window.get(window_object) is not working as expected when passing the argument; use window_object.nw.Window.get() as a workaround.

	nw.Window.reloadDev() is not supported for now

	closed event of nw.Window: App.quit() doesn’t trigger this event.

	devtools-closed event of nw.Window is not supported for now.

	as_desktop option is not supported for now

	webkit.{plugin|java|page-cache} option in package.json is not supported for now: plugins are enabled by default.

	nwUserAgent attribute of <iframe> is not supported for now.

	tooltip of MenuItem is not supported for now.

	nw.App.setCrashDumpDir() is not supported; crash dump is stored in app-data-path/Crash Reports

 Build Flavors {: .doctitle}

Build Flavors {: .doctitle}

[TOC]

NW.js supports various build flavors for reducing the application size. Currently NW.js supports following build flavors:

	SDK flavor: has builtin support for DevTools and NaCl plugins. SDK flavor has the same capabilities as the builds before 0.13.0

	NaCL flavor: supports Native Client (NaCl) plugins, but has no builtin DevTools.

	Normal flavor: is a minimum build without DevTools and NaCl plugin support.

See [Build Flavors section in Building NW.js](../../For Developers/Building NW.js.md#build-flavors) for how to build them from source code.

 Using Flash plugin {: .doctitle}

Using Flash plugin {: .doctitle}

[TOC]

NW.js supports Pepper Flash plugin. Just put the plugin files (including ‘manifest.json’ of it) in the ‘PepperFlash’ subdirectory under NW.js binary. On Mac OSX, the subdirectory should be in the “Internet Plug-Ins” directory in the framework bundle.

 Customize Menubar

Customize Menubar

[TOC]

Different platforms has different meanings of window menu, following discussions will show you the differences and provide best practice to keep window menu working decently on all platforms.

Create and Set Menubar

To create a menubar, you just need to specify type: 'menubar' in the option when you create the menu:

var your_menu = new nw.Menu({ type: 'menubar' });

And make sure every item appended to the menubar has a submenu. A normal text-only menu item on menubar makes no sense on most platforms.

var submenu = new nw.Menu();
submenu.append(new nw.MenuItem({ label: 'Item A' }));
submenu.append(new nw.MenuItem({ label: 'Item B' }));

// the menu item appended should have a submenu
your_menu.append(new nw.MenuItem({
 label: 'First Menu',
 submenu: submenu
}));

Then you can set the window menu by setting the menu property of the window:

nw.Window.get().menu = your_menu;

See both Menu and Window for details of the API.

Platform Differences

Windows & Linux

On Windows and Linux, the menubars behave exactly the same. Each window can have one menubar and they all reside bellow the titlebar.

Mac OS X

!!! warning “Behavior Changed”
The behavior of the feature is changed since 0.13.0. Please see [Migration Notes from 0.12 to 0.13](../Migration/From 0.12 to 0.13.md#menu).

On Mac, one app can only have one menu, which is called application menu, no matter how many windows the app may have. And many key shortcuts rely on the existence of application menu, such as Quit, Close and Copy.

By default, NW.js app will start with default menus, including your-app-name, Edit and Window. You can get the default menus using the menu.createMacBuiltin method and customize it as you need:

var mb = new nw.Menu({type:"menubar"});
mb.createMacBuiltin("your-app-name");
// append, insert or delete items of `mb` to customize your own menu
// then ...
nw.Window.get().menu = mb;

!!! note “Fix the Title of Application Menu”
The first item of application menu shows nwjs instead of your-app-name. To fix it, you need to set the value of CFBundleName in all files of nwjs.app/Contents/Resources/*.lproj/InfoPlist.strings to your-app-name instead of nwjs.

Best practice

As mentioned above, on Windows and Linux each window can have one menubar, while on Mac an app can have only one application menu. So generally you should set menu for only your main window and avoid using window menu when you may have multiple main windows.

And it may happens that you want to design different menus for different platforms, then you can use process.platform [http://nodejs.org/api/process.html#process_process_platform] to get which platform you’re in.

 Use NaCl in NW.js {: .doctitle}

Use NaCl in NW.js {: .doctitle}

[TOC]

!!! note “Feature for SDK and NaCl Flavor”
This feature is only available in SDK and NaCl flavor. See [Build Flavors](Build Flavors.md) for details.

NW.js supports NaCl (Native Client) and PNaCl (Portable Native Client) just as Chromium. You can embed NaCl and PNaCl within you app.

!!! note
Following tutorial is copied from Chrome document for NaCl [https://developer.chrome.com/native-client/devguide/tutorial/tutorial-part1].

Overview

This tutorial shows how to build and run a web application using Portable Native Client (PNaCl). This is a client-side application that uses HTML, JavaScript and a Native Client module written in C++. The PNaCl toolchain is used to enable running the Native Client module directly from a web page.

It’s recommended that you read the Native Client Technical Overview [https://developer.chrome.com/native-client/overview.html] prior to going through this tutorial.

What the application in this tutorial does

The application in this tutorial shows how to load a Native Client module in a web page, and how to send messages between JavaScript and the Native Client module. In this simple application, the JavaScript sends a 'hello' message to the Native Client module. When the Native Client module receives a message, it checks whether the message is equal to the string 'hello'. If it is, the Native Client module returns a message saying 'hello from NaCl'. A JavaScript alert panel displays the message received from the Native Client module.

Communication between JavaScript and Native Client modules

The Native Client programming model supports bidirectional communication between JavaScript and the Native Client module. Both sides can initiate and respond to messages. In all cases, the communication is asynchronous: The caller (JavaScript or the Native Client module) sends a message, but the caller does not wait for, or may not even expect, a response. This behavior is analogous to client/server communication on the web, where the client posts a message to the server and returns immediately. The Native Client messaging system is part of the Pepper API, and is described in detail in Developer’s Guide: Messaging System [https://developer.chrome.com/native-client/devguide/coding/message-system.html]. It is also similar to the way web workers [http://en.wikipedia.org/wiki/Web_worker] interact with the main document in JavaScript.

Step 1: Download and install the Native Client SDK

Follow the instructions on the Download [https://developer.chrome.com/native-client/sdk/download.html] page to download and install the Native Client SDK.

Step 2: Start a local server

To simulate a production environment, the SDK provides a simple web server that can be used to serve the application on localhost. A convenience Makefile rule called serve is the easiest way to invoke it:

$ cd pepper_$(VERSION)/getting_started
$ make serve

!!! tip
The SDK may consist of several “bundles”, one per Chrome/Pepper version (see versioning [https://developer.chrome.com/native-client/version.html] information). In the sample invocation above pepper_$(VERSION) refers to the specific version you want to use. For example, pepper_37. If you don’t know which version you need, use the one labeled (stable) by the naclsdk list command. See Download the Native Client SDK [https://developer.chrome.com/native-client/sdk/download.html] for more details.

If no port number is specified, the server defaults to port 5103, and can be accessed at http://localhost:5103.

Any server can be used for the purpose of development. The one provided with the SDK is just a convenience, not a requirement.

Step 3: Set up the Chrome browser

PNaCl is enabled by default in Chrome. We recommend that you use a version of Chrome that’s the same or newer than the SDK bundle used to build Native Client modules. Older PNaCl modules will always work with newer versions of Chrome, but the converse is not true.

!!! tip
To find out the version of Chrome, type about:chrome in the address bar.

For a better development experience, it’s also recommended to disable the Chrome cache. Chrome caches resources aggressively; disabling the cache helps make sure that the latest version of the Native Client module is loaded during development.

	Open Chrome’s developer tools by clicking the menu icon [image: menu-icon] and choosing Tools >

 Developer tools.

	Click the gear icon [image: gear-icon] in the bottom right corner of the Chrome window.

	Under the “General” settings, check the box next to “Disable cache (while DevTools is open)”.

	Keep the Developer Tools pane open while developing Native Client applications.

Step 4: Stub code for the tutorial

The stub code for the tutorial is avalable in the SDK, in pepper_$(VERSION)/getting_started/part1. It contains the following files:

	index.html: Contains the HTML layout of the page as well as the JavaScript code that interacts with the Native Client module.
The Native Client module is included in the page with an <embed> tag that points to a manifest file.

	hello_tutorial.nmf: A manifest file that’s used to point the HTML to the Native Client module and optionally provide additional commands to the PNaCl translator that is part of the Chrome browser.

	hello_tutorial.cc: C++ code for a simple Native Client module.

	Makefile: Compilation commands to build the pexe (portable executable) from the C++ code in hello_tutorial.cc.

It’s a good idea to take a look at these files now—they contain a large amount of comments that help explain their structure and contents. For more details on the structure of a typical Native Client application, see Application Structure [https://developer.chrome.com/native-client/devguide/coding/application-structure.html].

The stub code is intentionally very minimal. The C++ code does not do anything except correctly initialize itself. The JavaScript code waits for the Native Client module to load and changes the status text on the web page accordingly.

Step 5: Compile the Native Client module and run the stub application

To compile the Native Client module, run make:

$ cd pepper_$(VERSION)/getting_started/part1
$ make

Since the sample is located within the SDK tree, the Makefile knows how to find the PNaCl toolchain automatically and use it to build the module. If you’re building applications outside the NaCl SDK tree, you should set the $NACL_SDK_ROOT environment variable. See Building Native Client Modules [https://developer.chrome.com/native-client/devguide/devcycle/building.html] for more details.

Assuming the local server was started according to the instructions in Step 2, you can now load the sample by pointing Chrome to http://localhost:5103/part1. Chrome should load the Native Client module successfully and the Status text should change from “LOADING...” to “SUCCESS”. If you run into problems, check out the Troubleshooting section below.

Step 6: Modify the JavaScript code to send a message to the Native Client module

In this step, you’ll modify the web page (index.html) to send a message to the Native Client module after the page loads the module.

Look for the JavaScript function moduleDidLoad(), and add new code to send a ‘hello’ message to the module. The new function should look as follows:

function moduleDidLoad() {
 HelloTutorialModule = document.getElementById('hello_tutorial');
 updateStatus('SUCCESS');
 // Send a message to the Native Client module
 HelloTutorialModule.postMessage('hello');
}

Step 7: Implement a message handler in the Native Client module

In this step, you’ll modify the Native Client module (hello_tutorial.cc) to respond to the message received from the JavaScript code in the application. Specifically, you’ll:

	Implement the HandleMessage() member function of the module instance.

	Use the PostMessage() member function to send a message from the module to the JavaScript code.

First, add code to define the variables used by the Native Client module (the ‘hello’ string you’re expecting to receive from JavaScript and the reply string you want to return to JavaScript as a response). In the file hello_tutorial.cc, add this code after the #include statements:

namespace {
// The expected string sent by the browser.
const char* const kHelloString = "hello";
// The string sent back to the browser upon receipt of a message
// containing "hello".
const char* const kReplyString = "hello from NaCl";
} // namespace

Now, implement the HandleMessage() member function to check for kHelloString and return kReplyString. Look for the following line:

// TODO(sdk_user): 1. Make this function handle the incoming message.
Populate the member function with code, as follows:

virtual void HandleMessage(const pp::Var& var_message) {
 if (!var_message.is_string())
 return;
 std::string message = var_message.AsString();
 pp::Var var_reply;
 if (message == kHelloString) {
 var_reply = pp::Var(kReplyString);
 PostMessage(var_reply);
 }
}

See the Pepper API documentation for additional information about the pp::Instance.HandleMessage [https://developer.chrome.com/native-client/pepper_stable/cpp/classpp_1_1_instance.html#a5dce8c8b36b1df7cfcc12e42397a35e8] and pp::Instance.PostMessage [https://developer.chrome.com/native-client/pepper_stable/cpp/classpp_1_1_instance.html#a67e888a4e4e23effe7a09625e73ecae9] member functions.

Step 8: Compile the Native Client module and run the application again

	Compile the Native Client module by running the make command again.

	Start the SDK web server by running make serve.

	Re-run the application by reloading http://localhost:5103/part1 in Chrome.

After Chrome loads the Native Client module, you should see the message sent from the module.

Troubleshooting

If your application doesn’t run, see Step 3 above to verify that you’ve set up your environment correctly, including both the Chrome browser and the local server. Make sure that you’re running a correct version of Chrome, which is also greater or equal than the SDK bundle version you are using.

Another useful debugging aid is the Chrome JavaScript console (available via the Tools menu in Chrome). Examine it for clues about what went wrong. For example, if there’s a message saying “NaCl module crashed”, there is a possibility that the Native Client module has a bug; debugging [https://developer.chrome.com/native-client/devguide/devcycle/debugging.html] may be required.

There’s more information about troubleshooting in the documentation:

	FAQ Troubleshooting [https://developer.chrome.com/native-client/faq.html#faq-troubleshooting].

	The Progress Events [https://developer.chrome.com/native-client/devguide/coding/progress-events.html] document contains some useful information about handling error events.

Next steps

	See the Application Structure [https://developer.chrome.com/native-client/devguide/coding/application-structure.html] section in the Developer’s Guide for information about how to structure a Native Client module.

	Check the C++ Reference [https://developer.chrome.com/native-client/pepper_stable/cpp] for details about how to use the Pepper APIs.

	Browse through the source code of the SDK examples (in the examples directory) to learn additional techniques for writing Native Client applications and using the Pepper APIs.

	See the Building [https://developer.chrome.com/native-client/devguide/devcycle/building.html], Running [https://developer.chrome.com/native-client/devguide/devcycle/running.html], and Debugging pages [https://developer.chrome.com/native-client/devguide/devcycle/debugging.html] for information about how to build, run, and debug Native Client applications.

	Check the naclports [http://code.google.com/p/naclports/] project to see what libraries have been ported for use with Native Client. If you port an open-source library for your own use, we recommend adding it to naclports (see How to check code into naclports [http://code.google.com/p/naclports/wiki/HowTo_Checkin]).

Content available under the CC-By 3.0 license [http://creativecommons.org/licenses/by/3.0/]

 Transparent Window {: .doctitle}

Transparent Window {: .doctitle}

[TOC]

Basic Requirements

The transparent feature is supposed to work with frameless window.

Windows

The transparent feature is only supported on Vista and above with DWM (Desktop Window Manager) enabled. Transparency might not work on classic theme / basic version of the OS, or using remote desktop.

Linux

You need to run NW.js with these params and your window manager needs to support compositing:

--enable-transparent-visuals --disable-gpu

Make a Transparent Window

In the HTML body, specify the alpha of the background colour:

<body style="background-color:rgba(0,0,0,0);">

and specify [transparent field](../../References/Manifest Format.md#transparent) to true in manifest:

 "window": {
 "frame": false,
 "transparent": true
 }

Click Through (Windows and Mac)

You can enable transparency clickthrough on Windows and Mac. This feature enables you to click the object under the window at the point whose alpha value is 0.

To enable transparency clickthrough, you need following command line options:

--disable-gpu --force-cpu-draw

!!! note
The click through is only supported for frameless, non resizable frame, though it might work for other configuration depending on the OS.

 JavaScript Contexts in NW.js {: .doctitle}

JavaScript Contexts in NW.js {: .doctitle}

[TOC]

Concept of JavaScript Context

Scripts running in different windows live in different JavaScript contexts, i.e. each

 Test with ChromeDriver {: .doctitle}

Test with ChromeDriver {: .doctitle}

[TOC]

From ChromeDriver project home page [https://sites.google.com/a/chromium.org/chromedriver/]:

WebDriver is an open source tool for automated testing of webapps across many browsers. It provides capabilities for navigating to web pages, user input, JavaScript execution, and more. ChromeDriver is a standalone server which implements WebDriver’s wire protocol for Chromium. ChromeDriver is available for Chrome on Android and Chrome on Desktop (Mac, Linux, Windows and ChromeOS).

NW.js provide a customized ChromeDriver for automated testing NW.js based apps. You can use it with tools like selenium [http://docs.seleniumhq.org/].

Getting started

The following workflow uses selenium-python [http://selenium-python.readthedocs.org/] to drive the tests. You can use any language port for Selenium to work with chromedriver.

Installing

	Download ChromeDriver from NW.js website. It’s in the SDK build.

	Extract the package and place chromedriver under the same dir that contains the NW.js binaries: nw for Linux, nw.exe for Windows, or node-webkit.app for Mac.

	Install selenium-python in your project:

pip install selenium

Running

Suppose your app shows a form for searching from remote. The page basically something like this:

<form action="http://mysearch.com/search" method="GET">
 <input type="text" name="q"><input type="submit" value="Submit">
</form>

Write a Python script to automatically fill in the search box and submit the form:

import time
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
chrome_options.add_argument("nwapp=/path/to/your/app")

driver = webdriver.Chrome(executable_path='/path/to/nwjs/chromedriver', chrome_options=chrome_options)

time.sleep(5) # Wait 5s to see the web page
search_box = driver.find_element_by_name('q')
search_box.send_keys('ChromeDriver')
search_box.submit()
time.sleep(5) # Wait 5s to see the search result
driver.quit()

See http://selenium-python.readthedocs.org/ for detailed documents of selenium-python.

Modifications on the upstream chromedriver

	chromedriver is modified to find NW executable in the same directory by default

	An additional option nwargs is added if you want to pass non-switch argument to the command line:

import time
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
chrome_options.add_argument("nwapp=/path/to/your/app")
chrome_options.add_experimental_option("nwargs", ["arg1", "arg2"])

driver = webdriver.Chrome(executable_path='/path/to/nwjs/chromedriver', chrome_options=chrome_options)

 Security in NW.js

Security in NW.js

[TOC]

Node and Normal Frames

There are two kinds of frames in NW.js: node frame and normal frame.

Node frames have following extra capabilities than normal frames:

	Access Node.js / NW.js APIs

	Access extended DOM features, such as [save as dialog](../../References/Changes to DOM.md#attribute-nwsaveas), [nwUserAgent attribute](../../References/Changes to DOM.md#attribute-nwuseragent) etc.

	Bypass all security restrictions, such as sandboxing, same origin policy etc. For example, you can make cross origin XHR to any remote sites, or access to <iframe> element whose src points to remote sites in node frames.

In NW.js, frames matching ALL of the following criterias will be a node frame:

	nodejs set to true in [manifest file](../../References/Manifest Format.md#nodejs)

	URL of windows and frames matching node-remote patterns in [manifest file](../../References/Manifest Format.md#node-remote) or chrome-extension:// protocol.

	Frames or parent frames NOT having [nwdisable attribute](../../References/Changes to DOM.md#attribute-nwdisable).

	Frames or parent frames NOT in [<webview> tag](../../References/webview Tag.md)

 Use Native Node Modules {: .doctitle}

Use Native Node Modules {: .doctitle}

[TOC]

npm tool provided by Node.js builds the native modules, i.e. C/C++ Addons [https://nodejs.org/api/addons.html], at the time of installation.

Starting from 0.13.0, native modules built by node-gyp or npm in upstream can be supported.

In Linux and OSX you can just load the native module directly. In windows you’ll need to replace the file
%APPDATA%\npm\node_modules\node-gyp\src\win_delay_load_hook.c with the one at https://github.com/nwjs/nw.js/blob/nw13/tools/win_delay_load_hook.c

Before 0.13.0, the V8 version and Node API in NW.js is different from official Node.js. To use native Node.js modules with NW.js, you have to rebuild the modules with one of following tools.

nw-gyp

nw-gyp [https://github.com/nwjs/nw-gyp] is a hack on node-gyp to support NW.js specific headers and libraries.

The usage is the same with node-gyp, except that you need to specify the version and arch (x64 or ia32) of NW.js manually.

npm install -g nw-gyp
cd myaddon
nw-gyp rebuild --target=0.13.0 --arch=x64

See https://github.com/nwjs/nw-gyp for more details.

node-pre-gyp

Some packages uses node-pre-gyp [https://github.com/mapbox/node-pre-gyp], which supports building for both Node.js and NW.js by using either node-gyp or nw-gyp.

The usage of node-pre-gyp is as following:

npm install -g node-pre-gyp
cd myaddon
node-pre-gyp build --runtime=node-webkit --target=0.13.0 --target_arch=x64

See https://github.com/mapbox/node-pre-gyp for more details.

Known Issues

So far, you have to rebuild each native module with tools above including thoses are indirectly depended modules. Since binding.gyp is required for building native modules, you can easily locate all native modules by finding binding.gyp file.

 Content Verification

Content Verification

[TOC]

The “content verification” feature, or “app signing”, prevents loading unsigned files with your official binary. Given a keypair, ‘verified_contents.json’ is the signature for the application files. It’s created with the tool ‘sign.py’ and the private key (private_key.pem file). The public key is built into NW.js binary. To run the signed application, use nw --verify-content=enforce_strict . in the application directory. It will show the simple page. In the next, try to modify index.html a little bit and run it again. NW will report the file is corrupted and quit immediately.

!!! note
This feature doesn’t prevent someone from hacking your app and loading it with other NW binaries. Consider writing some of your features with C++ and load it with Node.js module, NaCl or [compile your JS to binary with nwjc](Protect JavaScript Source Code.md)

Sign an application

To sign an application with the demo keypair, do the following:

	change to application directory

	make sure verified_contents.json or computed_hashes.json is not there (you can just remove them)

	run payload.exe; it will generate payload.json, which serves as input for sign.py

	run python sign.py > /tmp/verified_contents.json (it’s important that the tmp destination directory is not application directory)

	move the generated verified_contents.json file to application dir and it’s done.

Rebuild to use your own keypair

To use your own keypair you’ll need to rebuild the NW binary. And the argument for --verify-content= in the command line need to be set to enforce_strict by default in your build.

	generate your keypair: openssl genrsa -out private_key.pem 2048
(the output file contains both the private and public key)

	run python convertkey.py; it will convert the public key to C source code.

	put the generated source code in
content/nw/src/nw_content_verifier_delegate.cc; replace the default key.

	change the default value for the command line argument: change line no.73 in that file to:
Mode experiment_value = ContentVerifierDelegate::ENFORCE_STRICT;

	build the NW binary.

Tools, sample application and the demo private key is under tools/sign directory. The demo private key is paired with the public key built into the official NW binaries.

 Protect JavaScript Source Code {: doctitle}

Protect JavaScript Source Code {: doctitle}

[TOC]

The JavaScript source code of your application can be protected by compiling to native code and loaded by NW.js. You only have to distribute the compiled code with your app for production.

Compilation

JS source code is compiled to native code with the tool nwjc , which is provided in the SDK build.

To use it:

nwjc source.js binary.bin

The *.bin file is needed to be distributed with your application. You can name it whatever you want.

Load the Compiled JavaScript

nw.Window.get().evalNWBin(frame, 'binary.bin');

The arguments of the win.evalNWBin() method are similar with the Window.eval() method, where the first parameter is the target iframe (null for main frame), and the 2nd parameter is the binary code file.

!!! note
The compiled code is executed in [Browser Context](JavaScript Contexts in NW.js.md#browser-context). You can use any Web APIs (such as DOM) and [access NW.js API and Node API](JavaScript Contexts in NW.js.md#access-nodejs-and-nwjs-api-in-browser-context) like other scripts running in browser context.

Known Issues

The compiled code runs slower than normal JS: ~30% performance according to v8bench. Other non-compiled JS source code will not be affected.

The compiled code is not cross-platform nor compatible between versions of NW.js. So you’ll need to run nwjc for each of the platforms when you package your application.

 Contributors of Documents {: .doctitle}

Contributors of Documents {: .doctitle}

	Roger Wang roger.wang@intel.com

	Cong Liu cong.liu@intel.com

 Building NW.js {: .doctitle}

Building NW.js {: .doctitle}

[TOC]

!!! important
This document is written for latest NW 0.13. For legacy build instructions, please read the wiki page [https://github.com/nwjs/nw.js/wiki/Building-nw.js] on GitHub.
See our buildbot for official build configuration and steps: http://buildbot-master.nwjs.io:8010/waterfall

Prerequisites

NW.js use same build tools and similar steps as Chromium. Read the instructions according to your platform to install depot_tools and other prerequistes:

	Windows [http://www.chromium.org/developers/how-tos/build-instructions-windows]

	Mac OS X [https://chromium.googlesource.com/chromium/src/+/master/docs/mac_build_instructions.md]

	Linux [https://chromium.googlesource.com/chromium/src/+/master/docs/linux_build_instructions.md]

!!! note “Windows”
As suggested by Chromium document, you need to run set DEPOT_TOOLS_WIN_TOOLCHAIN=0 or set the variable in your global environment.
CLang is the build tool used by non-Windows platforms. On Windows, it’s not supported yet. You need to run set GYP_DEFINES="clang=0" to disable CLang on Windows before going to next steps.

!!! note “Xcode 7”
Mac SDK 10.11 as part of Xcode 7 is not supported yet. If you have upgraded to Xcode 7, either downgrade to Xcode 6 or copy Mac SDK 10.10 from other machines under ```xcode-select -p`/Platforms/MacOSX.platform/Developer/SDKs`` as suggested by Chromium document [https://chromium.googlesource.com/chromium/src/+/master/docs/mac_build_instructions.md].

Get the Code

Step 1. Create a folder for holding NW.js source code, like $HOME/nwjs, and run following command in the folder to generate .gclient file:

mkdir -p $HOME/nwjs
cd $HOME/nwjs
gclient config --name=src https://github.com/nwjs/chromium.src.git@origin/nw13

Generally if you are not interested in running Chromium tests, you don’t have to sync the test cases and reference builds, which saves you lot of time. Open the .gclient file you just created and replace custom_deps section with followings:

"custom_deps" : {
 "src/third_party/WebKit/LayoutTests": None,
 "src/chrome_frame/tools/test/reference_build/chrome": None,
 "src/chrome_frame/tools/test/reference_build/chrome_win": None,
 "src/chrome/tools/test/reference_build/chrome": None,
 "src/chrome/tools/test/reference_build/chrome_linux": None,
 "src/chrome/tools/test/reference_build/chrome_mac": None,
 "src/chrome/tools/test/reference_build/chrome_win": None,
}

Step 2. Run following command in your terminal:

gclient sync --with_branch_heads

This usually downloads 20G+ from GitHub and Google’s Git repos. Make sure you have a good network provider and be patient :stuck_out_tongue:

When finished, you will see a src folder created in the same folder as .gclient.

!!! note “First Build on Linux”
If you are building on Linux for the first time, you need to run gclient sync --with_branch_heads --nohooks and then run ./build/install-build-deps.sh to install dependencies on Ubuntu. See Chromium document [http://dev.chromium.org/developers/how-tos/get-the-code] for detailed instructions of getting the source code.

!!! note “First Build on Windows”
On Windows, you have to install DirectX SDK [https://www.microsoft.com/en-us/download/details.aspx?id=6812] and copy the files into the source folder manually using following bash command:

mkdir -p $HOME/nwjs/src/third_party/directxsdk/files
cp -r /c/Program\ Files\ \(x86\)/Microsoft\ DirectX\ SDK\ \(June\ 2010\)/* \
$HOME/nwjs/src/third_party/directxsdk/files/

Build

Build files are generated in out/ folder during gclient sync. Run following command in your terminal will generate the Debug build of standard NW.js binaries in out/Debug folder:

cd src
ninja -C out/Debug nwjs

!!! tip “Build Time”
Generally a full build takes hours of time depending on the performance of your machine. Recommended configuration is to build on a PC with multicore CPU (>=8 cores), SSD and large memory (>= 8G). And you can read Build Faster section below for some tips to speed up the build.

To generate Release build, switch the second command to ninja -C out/Release nwjs.

To build 32-bit/64-bit binaries or non-standard build flavors, you need to setup GYP_DEFINES variable in your environment and run gclient runhooks --force to generate build files. And then re-run the commands above to generate binaries. Continue to read following sections to find out how to setup GYP_DEFINES.

32-bit/64-bit Build

	Windows
	32-bit: is the default build target

	64-bit: set GYP_DEFINES="target_arch=x64" and rebuild in out/Debug_x64 or out/Release_x64 folder

	Linux
	32-bit: TODO: chroot

	64-bit: is the default build target

	Mac
	32-bit: export GYP_DEFINES="host_arch=ia32 target_arch=ia32" and rebuild in out/Debug or out/Release folder

	64-bit: is the default build target

Build Flavors

	Standard: it’s generated by default. Same as GYP_DEFINES="nwjs_sdk=0 disable_nacl=1".

	SDK: GYP_DEFINES="nwjs_sdk=1 disable_nacl=0"

	NaCl: GYP_DEFINES="disable_nacl=0"

See [Build Flavors](../For Users/Advanced/Build Flavors.md) for the differences of all supported build flavors.

Enable Proprietary Codecs

Due to the license issue, the prebuilt binaries of NW.js doesn’t support proprietary codecs, like H.264. So you can’t play MP3/MP4 with <audio> and <video> tags with prebuilt NW.js. To enable those medias, you have to build NW.js from source code by following the document of [Enable Proprietary Codecs](Enable Proprietary Codecs.md).

Build Faster

From Google’s website, there are a few tips to speed up your build. Open the links below to see the tips for your platform:

	Mac Build Instructions: Faster builds [https://chromium.googlesource.com/chromium/src/+/master/docs/mac_build_instructions.md#Faster-builds]

	Tips for improving build speed on Linux [https://chromium.googlesource.com/chromium/src/+/master/docs/linux_faster_builds.md]

 Writing Test Cases for NW.js {: .doctitle}

Writing Test Cases for NW.js {: .doctitle}

[TOC]

Test Framework

NW.js is using a tiny Python based framework only in three files. You can read the source code in test directory [https://github.com/nwjs/nw.js/tree/nw13/test].

Each test case in NW.js is a runnable app, so that you can manually run the case without the framework.

In NW.js, there are two types of test cases: auto and remoting. See Write Test Cases sections below to see the instructions.

To run the test cases, use the following command:

python test/test.py -t 80 auto
python test/test.py -t 80 remoting

Write Test Cases

Auto Test Case

TODO

Remoting Test Case

The remoting test cases are driven by ChromeDriver. Usually these test cases involves user interaction. See [Test with ChromeDriver](../For Users/Advanced/Test with ChromeDriver.md) for the usage of ChromeDriver.

A remoting test case requires a test.py file in the root of the application folder.

Here is the template of test.py file:

import time
import os

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
chrome_options.add_argument("nwapp=" + os.path.dirname(os.path.abspath(__file__)))

driver = webdriver.Chrome(executable_path=os.environ['CHROMEDRIVER'], chrome_options=chrome_options)
time.sleep(1)
try:
 print driver.current_url
 # Put your test code here using `assert`
finally:
 driver.quit()

The real case is an NW.js app. With ChromeDriver, you can simulate mouse clicks and inputs and then get the content of some DOM element. For example, with following code, when you click the button of “Click Me”, a new DOM element will be added to the document with content of “success”:

<button id="clickme" onclick="success()">Click Me</button>
<script>
function success() {
 var el = document.createElement('div');
 el.id = 'result';
 el.innerHTML = 'success';
 document.body.appendChild(el);
}
</script>

Then you can test it in test.py script:

driver.implicitly_wait(10) # 10s timeout when finding an element

clickme = driver.find_element_by_id('clickme')
clickme.click() # click the button

result = driver.find_element_by_id('result')
assert("success" in result.get_attribute('innerHTML')) # assert "success" is in the element

 Understanding Crash Dump {: .doctitle}

Understanding Crash Dump {: .doctitle}

[TOC]

Once NW.js crashed, a minidump file (.dmp) will be generated on disk. Users can include it in the bug report. You can decode the minidump file to get the stack trace when crashed. So it’s helpful to find out what’s wrong with NW.js in certain cases.

To extract the stack trace from the minidump file, you need three things: the minidump (.dmp) file generated from the crash, symbols file of NW.js binary and the minidump_stackwalk tool.

Find Minidump File

The minidump file will be generated in the following default directories when NW.js crashed:

	Linux: ~/.config/<name-in-manifest>/Crash\ Reports/

	Windows: %LOCALAPPDATA%\CrashPad

	Mac: ~/Library/Application\ Support/<name-in-manifest>/CrashPad/

The <name-in-manifest> is the name field of [Manifest file](../References/Manifest Format.md#name).

!!! note “Strip Headers from Linux Minidump File”
Minidump file generated on Linux has additional headers in text format. They have to be stripped off before decoding. The real content of minidump file starts with MDMP followed by unreadable binaries. So simply delete the text before MDMP.

Organize Symbol Files

Packages of symbol files for released NW.js can be found within the same folder of NW.js download folder. The symbol files (.sym) can be extracted from the downloaded packages.

Then you have to organize the symbol files in a correct path with correct file name in order be used by minidump_stackwalk tool. minidump_stackwalk uses simple symbol supplier [https://code.google.com/p/chromium/codesearch#chromium/src/breakpad/src/processor/simple_symbol_supplier.cc&l=142] to find symbol files. Following is the way of how it finds the symbol files.

The tool will try to search the .sym file as in following pattern:
{SYMBOLS_ROOT}/{DEBUG_FILE_NAME}/{DEBUG_IDENTIFIER}/{DEBUG_FILE_NAME_WITHOUT_PDB}.sym

	{SYMBOLS_ROOT} is the root folder of all symbol files. You can put all versions / platforms of NW .sym files in a same folder.

	{DEBUG_FILE_NAME}, {DEBUG_IDENTIFIER} and {DEBUG_FILE_NAME_WITHOUT_PDB} can be obtained from the first line of .sym file which typically looks like MODULE Linux x86_64 265BDB6BE043D5C70D3A1E279A8F0B1A0 nw.
	265BDB6BE043D5C70D3A1E279A8F0B1A0 is {DEBUG_IDENTIFIER}

	nw is {DEBUG_FILE_NAME}.

	{DEBUG_FILE_NAME_WITHOUT_PDB} can be converted from {DEBUG_FILE_NAME} by removing .pdb extension which is only necessary for Windows.

Decode Minidump with minidump_stackwalk

minidump_stackwalk can be built with NW.js or from breakpad source code directly on Mac and Linux. Or you can install prebuilt from Cygwin on Windows.

To get the stack trace from minidump file, run following command:

minidump_stackwalk minidump_file.dmp /path/to/symbols_root 2>&1

If the symbol files were not organized correctly, you still can get call stack from this tool. But you will not see symbols and there will be a warning in last section of output - “Loaded modules” like this:

0x00240000 - 0x02b29fff nw.exe ??? (main) (WARNING: No symbols, nw.exe.pdb, 669008F7B6EE44058CBD5F21BEB5B5CFe)

Trigger Crash for Testing

To test the crash dump feature, you can trigger the crash on purpose with APIs provided by NW.js: App.crashBrowser() and App.crashRenderer(). They crash the browser process and the renderer process respectively.

References

	http://www.chromium.org/developers/decoding-crash-dumps

	http://code.google.com/p/google-breakpad/wiki/GettingStartedWithBreakpad

 Repositories

Repositories

Following repositories are related to NW.js:

	https://github.com/nwjs/chromium.src

	https://github.com/nwjs/nw.js

	https://github.com/nwjs/blink

	https://github.com/nwjs/breakpad

	https://github.com/nwjs/node

	https://github.com/nwjs/v8

 Contributing to NW.js {: .doctitle}

Contributing to NW.js {: .doctitle}

[TOC]

NW.js project is in active development. And you are encouraged to contribute new features and bug fixes for the project.

Here is a general rule when you submit your pull request:

	Run test cases and make sure you didn’t break any

	[Write proper test cases](Writing Test Cases for NW.js.md) to test your feature and bug

	[Write document](Writing Documents for NW.js.md) for your features

	Add your name and email to AUTHORS [https://github.com/nwjs/nw.js/blob/nw13/AUTHORS]

We are liable to accept features which are cross platform and easy to test, to make NW.js in good shape and quality.

 Enable Proprietary Codecs

Enable Proprietary Codecs

[TOC]

Supported Codecs in Prebuilt NW.js Binary

As NW.js is based on Chromium, the media components are essentially the same.

In the pre-built NW.js, following codecs are supported:

theora,vorbis,vp8,pcm_u8,pcm_s16le,pcm_s24le,pcm_f32le,pcm_s16be,pcm_s24be

and following demuxers are supported:

ogg,matroska,wav

Enable Proprietary Codecs in NW.js

!!! warning “License and Patent Fee”
MP3 and H.264 codecs are licensed under the GPL in ffmpeg used by NW.js. Make sure your app are released with compatible license of GPL. And you also have to pay patent licensing royalties for using them. Consult a lawyer if you do not understand the licensing constraints and using patented media formats in your application.

In recent versions of Chromium project, ffmpeg DLL was changed to be builtin. And we don’t have license to redistribute the codec in question. So developers don’t have any ways to get the codec without compiling. To make things easier, we build ffmpeg as a separate Dll. The Dll we distribute will not contain any proprietary codecs in question. Developers can recompile the Dll for themselves, which is much easier than compiling NW. Or they can get Dll from someone else from the community [https://github.com/nwjs/nw.js/issues/4492]. Note that developers can redistribute binaries containing proprietary codecs as long as they have the license. If a developer doesn’t have the license, using this tip or moving to other solutions doesn’t make him/her eligible to redistribute the codecs.

In order to use MP3 and H.264, you’ll need to compile ffmpeg with patch and corresponding options.

Step 1. Apply following patch to third_party/ffmpeg/ffmpeg.gyp to make ffmpeg include the codecs:

diff --git a/ffmpeg.gyp b/ffmpeg.gyp
index 294dd2e..7dfcd3a 100755
--- a/ffmpeg.gyp
+++ b/ffmpeg.gyp
@@ -72,7 +72,7 @@
 ['chromeos == 1', {
 'ffmpeg_branding%': '<(branding)OS',
 }, { # otherwise, assume Chrome/Chromium.
- 'ffmpeg_branding%': '<(branding)',
+ 'ffmpeg_branding%': 'Chrome'
 }],
],

Step 2. Regenerate the gyp files again with gclient runhooks.

Step 3. Rebuild ffmpeg Dll with ninja -C out/Release ffmpeg.

 Writing Documents for NW.js {: .doctitle}

Writing Documents for NW.js {: .doctitle}

[TOC]

Read Before Writing New Document

Github provides nice representation of Markdown online with its own syntax GFM (Github Flavored Markdown). And many of the developers are reading documents directly on GitHub. To enable the best documentation of NW.js for any developers, make sure the document is readable on GitHub before submitting your PR.

The documentation site of NW.js is generated by MkDocs [http://www.mkdocs.org/] which supports a slightly different Markdown syntax than GFM. So the page may be broken on GitHub while works under MkDocs, or vice versa.
A bad example is not having .md suffix in internal links, like Build NW.js. On GitHub, the link is broken because the file Build NW.js without .md does not exist. Always add .md suffix to your internal links.

View the Document Offline

To view the well-formatted documents on your own laptop, you need Python [https://www.python.org/] and install following dependencies:

pip install mkdocs pygments pymdown-extensions

Run following commands in the root of NW.js repo:

mkdocs serve

Then open your browser and navigate to http://localhost:8000/ .

Template for API Reference Page

Here is a minimal template for writing a page for NW.js API reference:

Module Name {: .doctitle}

[TOC]

Describe the usage and other details of the module here.

Module.staticMethod(arg1, arg2)

* `arg1` `{String}` description of `arg1`
* `arg2` `{Object}` description of `arg2`
 * `isSet` `{Boolean}` description of the field
* Returns `{Type}` description of the return value

Details about the the method.

inst.method(arg1, arg2)

Event: eventName(arg1, arg2)

	[MUST] use # for page title and ## or ### headers for sections. DO NOT use ======= or -------.

	[MUST] add {: .doctitle} right to the page title. This is the CSS class name for the document title.

	[MUST] add a horizontal ruler with --- after the page title.

	[MUST] add a [TOC] after the ruler.

	[MUST] quote any code with a back tick (`) in the document unless it’s in the headers.

	[MUST] specify the language for the code blocks.

	Instance methods / properties in headers [MUST] use lower case instance name. Bad example: Window.resizeTo(x,y); Good example: win.resizeTo(x,y)

	Events [MUST] in headers be written as Event: eventName(args...)

	[MUST] provide detailed list of arguments and return values for methods, including name, type wrapped with brackets ({TypeName}) and whether it’s optional in italic (Optional).

Checklist for Pull Request

	[] Comply with the Template for API Reference Page above

	[] Make sure the new page is added to mkdocs.yml

	[] Make sure the document is readable on GitHub

	[] Make sure the links are not broken

	[] Add your name and email to Contributors of Documents.md

Markdown Extensions

Currently the documentation site of NW.js enables following extensions for generating documents. See mkdocs.yml in the root for detailed configuration.

	markdown.extensions.toc

	markdown.extensions.admonition

	markdown.extensions.smarty

	markdown.extensions.nl2br

	markdown.extensions.codehilite

	pymdownx.extra

	pymdownx.inlinehilite

	pymdownx.magiclink

	pymdownx.tilde

	pymdownx.caret

	pymdownx.smartsymbols

	pymdownx.githubemoji

	pymdownx.tasklist

	pymdownx.progressbar

	pymdownx.headeranchor

	pymdownx.arithmatex

	pymdownx.mark

	pymdownx.critic

 Manifest Format {: .doctitle}

Manifest Format {: .doctitle}

[TOC]

Every app package should contain a manifest file named package.json in the format of JSON [http://www.json.org/]. This document will help you understand the meaning of each field of the manifest.

Quick Start

Following is a minimal manifest:

{
 "main": "index.html",
 "name": "nw-demo",
}

You only need at least these two fields to start with an NW.js app. Here is the quick explanation of them:

	main: tell NW.js to open index.html in the same folder as package.json at start

	name: gives the application a unique name called nw-demo

Required Fields

Each package must provide all the following fields in its package descriptor file.

main

	{String} which page should be opened when NW.js starts.

You can specify a

 Shortcut {: .doctitle}

Shortcut {: .doctitle}

[TOC]

Shortcut represents a global keyboard shortcut, also known as system-wide hotkey. If registered successfully, it works even if your app does not have focus.

Shortcut inherited from EventEmitter [https://nodejs.org/api/events.html#events_class_events_eventemitter]. Every time the user presses the registered shortcut, your app will receive an active event of the shortcut object.

Synopsis

var option = {
 key : "Ctrl+Shift+A",
 active : function() {
 console.log("Global desktop keyboard shortcut: " + this.key + " active.");
 },
 failed : function(msg) {
 // :(, fail to register the |key| or couldn't parse the |key|.
 console.log(msg);
 }
};

// Create a shortcut with |option|.
var shortcut = new nw.Shortcut(option);

// Register global desktop shortcut, which can work without focus.
nw.App.registerGlobalHotKey(shortcut);

// If register |shortcut| successfully and user struck "Ctrl+Shift+A", |shortcut|
// will get an "active" event.

// You can also add listener to shortcut's active and failed event.
shortcut.on('active', function() {
 console.log("Global desktop keyboard shortcut: " + this.key + " active.");
});

shortcut.on('failed', function(msg) {
 console.log(msg);
});

// Unregister the global desktop shortcut.
nw.App.unregisterGlobalHotKey(shortcut);

new Shortcut(option)

	option {Object}
	key {String} key combinations of the shortcut, such as "ctrl+shift+a". See shortcut.key property for details.

	active {Function} Optional a callback when the hotkey is triggered. See shortcut.active property for details.

	failed {Function} Optional a callback when failed to register the hotkey. See shortcut.failed property for details.

Create new Shortcut, option is an object contains initial settings for the Shortcut.

shortcut.key

Get the key of a Shortcut. It is a string to specify the shortcut key, like "Ctrl+Alt+A". The key is consisted of zero or more modifiers and a key on your keyboard. Only one key code is supported. Key code is case insensitive.

List of supported modifiers:

	Ctrl

	Alt

	Shift

	Command: Command modifier maps to Apple key (⌘

) on Mac, and maps to the Windows key on Windows and Linux.

List of supported keys:

	Alphabet: A-Z

	Digits: 0-9

	Function Keys: F1-F24

	Comma

	Period

	Tab

	Home / End / PageUp / PageDown / Insert / Delete

	Up / Down / Left / Right

	MediaNextTrack / MediaPlayPause / MediaPrevTrack / MediaStop

	Comma or ,

	Period or .

	Tab or \t

	Backquote or `

	Enter or \n

	Minus or -

	Equal or =

	Backslash or \

	Semicolon or ;

	Quote or '

	BracketLeft or [

	BracketRight or [

	Escape

	DOM Level 3 W3C KeyboardEvent Code Values [http://www.w3.org/TR/DOM-Level-3-Events-code/]

!!! warning “Single Key without Modifiers”
The API App.registerGlobalHotKey() can support applications intercepting a single key (like { key: "A"}). But users will not be able to use “A” normally any more until the app unregisters it. However, the API doesn’t limit this usage, and it would be useful if the applications wants to listen Media Keys.
Only use zero modifier when you are knowing what your are doing.

shortcut.active

Get or set the active callback of a Shortcut. It will be called when user presses the shortcut.

shortcut.failed

*Get or set the failed callback of a Shortcut. It will be called when application passes an invalid key , or failed to register the key.

Event:active

Same as shortcut.active

Event:failed

Same as shortcut.failed

 Shell {: .doctitle}

Shell {: .doctitle}

[TOC]

Shell is a collection of APIs that do desktop related jobs.

Synopsis

// Open URL with default browser.
nw.Shell.openExternal('https://github.com/nwjs/nw.js');

// Open a text file with default text editor.
nw.Shell.openItem('test.txt');

// Show a file in parent folder with file manager.
nw.Shell.showItemInFolder('test.txt');

Shell.openExternal(uri)

	uri {String} A URL to open in system default manner.

Open the given external URI in the desktop’s default manner. For example, mailto: URLs in the default mail user agent.

Shell.openItem(file_path)

	file_path {String} path to a local file

Open the given file_path in the desktop’s default manner.

Shell.showItemInFolder(file_path)

	file_path {String} path to a local file

Show the given file_path in the parent folder with file manager. If possible, select the file.

 App {: .doctitle}

App {: .doctitle}

[TOC]

App.argv

Get the filtered command line arguments when starting the app. In NW.js, some command line arguments are used by NW.js, which should not be interested of your app. App.argv will filter out those arguments and return the ones left. You can get filtered patterns from App.filteredArgv and the full arguments from App.fullArgv.

App.fullArgv

Get all the command line arguments when starting the app. The return values contains the arguments used by NW.js, such as --nwapp, --remote-debugging-port etc.

App.filteredArgv

Get a list of patterns of filtered command line arguments used by App.argv. By default, following patterns are used to filter the arguments:

[
 /^--url=/,
 /^--remote-debugging-port=/,
 /^--renderer-cmd-prefix=/,
 /^--nwapp=/
]

App.dataPath

Get the application’s data path in user’s directory.

	Windows: %LOCALAPPDATA%/<name>

	Linux: ~/.config/<name>

	OSX: ~/Library/Application Support/<name>

<name> is the field in the manifest.

App.manifest

Get the JSON object of the manifest file.

App.clearCache()

Clear the HTTP cache in memory and the one on disk. This method call is synchronized.

App.closeAllWindows()

Send the close event to all windows of current app, if no window is blocking the close event, then the app will quit after all windows have done shutdown. Use this method to quit an app will give windows a chance to save data.

App.crashBrowser()

App.crashRenderer()

These 2 functions crashes the browser process and the renderer process respectively, to test the [Crash dump](../For Developers/Understanding Crash Dump.md) feature.

App.getProxyForURL(url)

	url {String} the URL to query for proxy

Query the proxy to be used for loading url in DOM. The return value is in the same format used in PAC [http://en.wikipedia.org/wiki/Proxy_auto-config] (e.g. “DIRECT”, “PROXY localhost:8080”).

App.setProxyConfig(config)

	config {String} Proxy rules

Set the proxy config which the web engine will be used to request network resources.

Rule (copied from net/proxy/proxy_config.h [https://github.com/nwjs/chromium.src/blob/nw13/net/proxy/proxy_config.h])

 // Parses the rules from a string, indicating which proxies to use.
 //
 // proxy-uri = [<proxy-scheme>"://"]<proxy-host>[":"<proxy-port>]
 //
 // proxy-uri-list = <proxy-uri>[","<proxy-uri-list>]
 //
 // url-scheme = "http" | "https" | "ftp" | "socks"
 //
 // scheme-proxies = [<url-scheme>"="]<proxy-uri-list>
 //
 // proxy-rules = scheme-proxies[";"<scheme-proxies>]
 //
 // Thus, the proxy-rules string should be a semicolon-separated list of
 // ordered proxies that apply to a particular URL scheme. Unless specified,
 // the proxy scheme for proxy-uris is assumed to be http.
 //
 // Some special cases:
 // * If the scheme is omitted from the first proxy list, that list applies
 // to all URL schemes and subsequent lists are ignored.
 // * If a scheme is omitted from any proxy list after a list where a scheme
 // has been provided, the list without a scheme is ignored.
 // * If the url-scheme is set to 'socks', that sets a fallback list that
 // to all otherwise unspecified url-schemes, however the default proxy-
 // scheme for proxy urls in the 'socks' list is understood to be
 // socks4:// if unspecified.
 //
 // For example:
 // "http=foopy:80;ftp=foopy2" -- use HTTP proxy "foopy:80" for http://
 // URLs, and HTTP proxy "foopy2:80" for
 // ftp:// URLs.
 // "foopy:80" -- use HTTP proxy "foopy:80" for all URLs.
 // "foopy:80,bar,direct://" -- use HTTP proxy "foopy:80" for all URLs,
 // failing over to "bar" if "foopy:80" is
 // unavailable, and after that using no
 // proxy.
 // "socks4://foopy" -- use SOCKS v4 proxy "foopy:1080" for all
 // URLs.
 // "http=foop,socks5://bar.com -- use HTTP proxy "foopy" for http URLs,
 // and fail over to the SOCKS5 proxy
 // "bar.com" if "foop" is unavailable.
 // "http=foopy,direct:// -- use HTTP proxy "foopy" for http URLs,
 // and use no proxy if "foopy" is
 // unavailable.
 // "http=foopy;socks=foopy2 -- use HTTP proxy "foopy" for http URLs,
 // and use socks4://foopy2 for all other
 // URLs.

App.quit()

Quit current app. This method will not send close event to windows and app will just quit quietly.

App.setCrashDumpDir(dir)

!!! warning “Deprecated”
This API was deprecated since 0.11.0.

	dir {String} path to generate the crash dump

Set the directory where the minidump file will be saved on crash. For more information, see [Crash dump](../For Developers/Understanding Crash Dump.md).

App.addOriginAccessWhitelistEntry(sourceOrigin, destinationProtocol, destinationHost, allowDestinationSubdomains)

	sourceOrigin {String} The source origin. e.g. http://github.com/

	destinationProtocol {String} The destination protocol where the sourceOrigin can access to. e.g. app

	destinationHost {String} The destination host where the sourceOrigin can access to. e.g. myapp

	allowDestinationSubdomains {Boolean} If set to true, the sourceOrigin is allowed to access subdomains of destinations.

Add an entry to the whitelist used for controlling cross-origin access. Suppose you want to allow HTTP redirecting from github.com to the page of your app, use something like this:

App.addOriginAccessWhitelistEntry('http://github.com/', 'chrome-extension', location.host, true);

Use App.removeOriginAccessWhitelistEntry with exactly the same arguments to do the contrary.

App.removeOriginAccessWhitelistEntry(sourceOrigin, destinationProtocol, destinationHost, allowDestinationSubdomains)

	sourceOrigin {String} The source origin. e.g. http://github.com/

	destinationProtocol {String} The destination protocol where the sourceOrigin can access to. e.g. app

	destinationHost {String} The destination host where the sourceOrigin can access to. e.g. myapp

	allowDestinationSubdomains {Boolean} If set to true, the sourceOrigin is allowed to access subdomains of destinations.

Remove an entry from the whitelist used for controlling cross-origin access. See addOriginAccessWhitelistEntry above.

App.registerGlobalHotKey(shortcut)

	shortcut {Shortcut} the Shortcut object to register.

Register a global keyboard shortcut (also known as system-wide hot key) to the system.

See Shortcut for more information.

App.unregisterGlobalHotKey(shortcut)

	shortcut {Shortcut} the Shortcut object to unregister.

Unregisters a global keyboard shortcut.

See Shortcut for more information.

Event: open(args)

	args {String} the full command line of the program.

Emitted when users opened a file with your app.

Event: reopen

This is a Mac specific feature. This event is sent when the user clicks the dock icon for an already running application.

 Window {: .doctitle}

Window {: .doctitle}

[TOC]

Window is a wrapper of the DOM’s window object. It has extended operations and can receive various window events.

Every Window is an instance of the EventEmitter class, and you’re able to use Window.on(...) to respond to native window’s events.

Synopsis

// Get the current window
var win = nw.Window.get();

// Listen to the minimize event
win.on('minimize', function() {
 console.log('Window is minimized');
});

// Minimize the window
win.minimize();

// Unlisten the minimize event
win.removeAllListeners('minimize');

// Create a new window and get it
nw.Window.open('https://github.com', {}, function(new_win) {
 // And listen to new window's focus event
 new_win.on('focus', function() {
 console.log('New window is focused');
 });

});

Window.get([window_object])

	window_object {DOM Window} Optional is the DOM window

	Returns {Window} the native Window object

If window_object is not specifed, then return current window’s Window object, otherwise return window_object‘s Window object.

// Get the current window
var win = nw.Window.get();

// Create a new window and get it
nw.Window.open('https://github.com/nwjs/nw.js', {}, function(new_win) {
 // do something with the newly created window
});

Window.open(url, [options], [callback])

!!! warning “Behavior Changed”
The behavior of the function is changed since 0.13.0. Please see [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	url {String} URL to be loaded in the opened window

	options {Object} Optional see [Window subfields](Manifest Format.md#window-subfields) in manifest format. And following extra fields can also be used in options.
	new_instance {Boolean} Optional whether to open a new window in a separate render process.

	inject_js_start {String} Optional the script to be injected before document loaded. See [Manifest format](Manifest Format.md#inject_js_start)

	inject_js_end {String} Optional the script to be injected before document unloaded. See [Manifest format](Manifest Format.md#inject_js_end)

	id {String} Optional the id used to identify the window. This will be used to remember the size and position of the window and restore that geometry when a window with the same id is later opened. See also the Chrome App documentation [https://developer.chrome.com/apps/app_window#type-CreateWindowOptions]

	callback(win) {Function} Optional callback when with the opened native Window object

Open a new window and load url in it.

!!! note
You should wait for the Window’s loaded event before interacting with any of its components.

!!! note “Focus”
The opened window is not focused by default. If you want it to be focused by default, you can set focus to true in options.

win.window

Get the corresponding DOM window object of the native window.

win.x

win.y

Get or set left/top offset from window to screen.

win.width

win.height

Get or set window’s size.

win.title

Get or set window’s title.

win.menu

Get or set window’s menubar. Set with a Menu with type menubar. See Menu.

win.isFullscreen

Get whether we’re in fullscreen mode.

win.isTransparent

Get whether transparency is turned on

win.isKioskMode

Get whether we’re in kiosk mode.

win.zoomLevel

Get or set the page zoom. 0 for normal size; positive value for zooming in; negative value for zooming out.

win.cookies.*

This includes multiple functions to manipulate the cookies. The API is defined in the same way as Chrome Extensions’ [http://developer.chrome.com/extensions/cookies.html]. NW.js supports the get, getAll, remove and set methods; onChanged event (supporting both addListener and removeListener function on this event).

And anything related to CookieStore in the Chrome extension API is not supported, because there is only one global cookie store in NW.js apps.

win.moveTo(x, y)

	x {Integer} offset to the left of the screen

	y {Integer} offset to the top of the screen

Moves a window’s left and top edge to the specified coordinates.

win.moveBy(x, y)

	x {Integer} horizontal offset

	y {Integer} vertical offset

Moves a window a specified number of pixels relative to its current coordinates.

win.resizeTo(width, height)

	width {Integer} the width of the window

	height {Integer} the height of the window

Resizes a window to the specified width and height.

win.resizeBy(width, height)

	width {Integer} the offset width of the window

	height {Integer} the offset height of the window

Resizes a window by the specified amount.

win.focus()

Focus on the window.

win.blur()

Move focus away. Usually it will move focus to other windows of your app, since on some platforms there is no concept of blur.

win.show([is_show])

	is_show {Boolean} Optional specify whether the window should be shown or hidden. It’s set to true by default.

Show the window if it’s not shown.

show(false) has the same effect with hide().

!!! note “Focus”
show will not focus on the window on some platforms, so you need to call focus if you want to.

win.hide()

Hide the window. User will not be able to find the window once it’s hidden.

win.close([force])

	force {Boolean} specify whether to close the window forcely and bypass close event.

Close current window. And you can prevent the closing by listening to the close event. If force is specified and equals to true, then the close event will be ignored.

Usually you would like to listen to the close event and do some shutdown work and then do a close(true) to really close the window.

win.on('close', function() {
 this.hide(); // Pretend to be closed already
 console.log("We're closing...");
 this.close(true); // then close it forcely
});

win.close();

win.reload()

Reloads the current window.

win.reloadDev()

Reloads the current page by starting a new renderer process from scratch.

win.reloadIgnoringCache()

Like reload(), but don’t use caches (aka “shift-reload”).

win.maximize()

Maximize the window on GTK and Windows, and zoom the window on Mac OS X.

win.unmaximize()

!!! warning “Deprecated”
This feature is deprecated since 0.13.0. It’s now replaced by restore event. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

Unmaximize the window, i.e. the reverse of maximize().

win.minimize()

Minimize the window to task bar on Windows, iconify the window on GTK, and miniaturize the window on Mac OS X.

win.restore()

Restore window to previous state after the window is minimized, i.e. the reverse of minimize(). It’s not named unminimize since restore is used commonly.

win.enterFullscreen()

Make the window fullscreen.

!!! note
This function is different with HTML5 FullScreen API, which can make part of the page fullscreen, Window.enterFullscreen() will only fullscreen the whole window.

win.leaveFullscreen()

Leave the fullscreen mode.

win.toggleFullscreen()

Toggle the fullscreen mode.

win.enterKioskMode()

Enter the Kiosk mode. In Kiosk mode, the app will be fullscreen and try to prevent users from leaving the app, so you should remember to provide a way in app to leave Kiosk mode. This mode is mainly used for presentation on public displays.

win.leaveKioskMode()

Leave the Kiosk mode.

win.toggleKioskMode()

Toggle the kiosk mode.

win.setTransparent(transparent)

!!! warning “Deprecated”
This feature is deprecated since 0.13.0. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	transparent {Boolean} whether to set the window to be transparent

Turn on/off the transparency support. See more info on [Transparent Window](../For Users/Advanced/Transparent Window.md).

win.showDevTools([iframe], [callback])

!!! note
This API is only available on SDK build flavor.

!!! warning “Behavior Changed”
The behavior of the function is changed since 0.13.0. Please see [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	iframe {String} or {HTMLIFrameElement} Optional the id or the element of the <iframe> to be jailed on. By default, the DevTools is shown for entire window.

	callback(dev_win) {Function} callback with the native window of the DevTools window.

Open the devtools to inspect the window.

The optional iframe as String should be the value of id attribute of any <iframe> element in the window. It jails the DevTools to inspect the <iframe> only. If it is an empty string, this feature has no effect.

The optional iframe as HTMLIFrameElement should be the iframe object. And it serves the same purpose with the id argument.

This function returns a Window object via the callback. You can use any properties and methods of Window except the events.

See also in [webview reference](webview Tag.md) on how to open DevTools for webview or open DevTools in a webview.

win.closeDevTools()

!!! note
This API is only available on SDK build flavor.

Close the devtools window.

win.isDevToolsOpen()

!!! note
This API is only available on SDK build flavor.

Query the status of devtools window.

See also win.showDevTools().

win.setMaximumSize(width, height)

	width {Integer} the maximum width of the window

	height {Integer} the maximum height of the window

Set window’s maximum size.

win.setMinimumSize(width, height)

	width {Integer} the minimum width of the window

	height {Integer} the minimum height of the window

Set window’s minimum size.

win.setResizable(resizable)

	resizable {Boolean} whether the window can be resized

Set whether window is resizable.

win.setAlwaysOnTop(top)

	top {Boolean} whether the window should always be on top

Sets the widget to be on top of all other windows in the window system.

win.setVisibleOnAllWorkspaces(visible) (Mac and Linux)

	top {Boolean} whether the window should be visible on all workspaces

For platforms that support multiple workspaces (currently Mac OS X and Linux), this allows NW.js windows to be visible on all workspaces simultaneously.

win.canSetVisibleOnAllWorkspaces() (Mac and Linux)

Returns a a boolean indicating if the platform (currently Mac OS X and Linux) support Window API method setVisibleOnAllWorkspace(Boolean).

win.setPosition(position)

	position {String} the position of the window. There are three valid positions: null or center or mouse

Move window to specified position. Currently only center is supported on all platforms, which will put window in the middle of the screen.

win.setShowInTaskbar(show)

	show {Boolean} whether show in task bar

Control whether to show window in taskbar or dock. See also show_in_taskbar in [Manifest-format](Manifest Format.md#show_in_taskbar).

win.requestAttention(attension)

	attension {Boolean} or {Integer} If a Boolean, it indicates to request or cancel user’s attension. If an Integer, it indicates the number of times the window flashes.

Request the user’s attension by making the window flashes in the task bar.

!!! note “Mac”
On Mac, value < 0 will trigger NSInformationalRequest, while value > 0 will trigger NSCriticalRequest.

win.capturePage(callback [, config])

	callback {Function} the callback when finished capturing the window

	config {String} or {Object} Optional if a String, see config.format for valid values.
	format {String} optional the image format used to generate the image. It supports two formats: "png" and "jpeg". If ignored, it’s "jpeg" by default.

	datatype {String} it supports three types: "raw", "buffer" and "datauri". If ignored, it’s "datauri" by default.

Captures the visible area of the window.

!!! note “raw or datauri“
The "raw" only contains the Base64 encoded image. But "datauri" contains the mime type headers as well, and it can be directly assigned to src of Image to load the image.

Example usage:

// png as base64string
win.capturePage(function(base64string){
 // do something with the base64string
}, { format : 'png', datatype : 'raw'});

// png as node buffer
win.capturePage(function(buffer){
 // do something with the buffer
}, { format : 'png', datatype : 'buffer'});

win.setProgressBar(progress)

	progress {Float} valid values within [0, 1]. Setting to negative value (<0) removes the progress bar.

!!! note “Linux”
Only Ubuntu is supported, and you’ll need to specify the application .desktop file through NW_DESKTOP env. If NW_DESKTOP env variable is not found, it uses nw.desktop by default.

win.setBadgeLabel(label)

Set the badge label on the window icon in taskbar or dock.

!!! note “Linux”
This API is only supported on Ubuntu and the label is restricted to a string number only. You’ll also need to specify the .desktop file for your application (see the note on setProgressBar)

win.eval(frame, script)

	frame {HTMLIFrameElement} the frame to execute in. If iframe is null, it assumes in current window / frame.

	script {String} the source code of the script to be executed

Execute a piece of JavaScript in the frame.

win.evalNWBin(frame, path)

	frame {HTMLIFrameElement} the frame to execute in. If iframe is null, it assumes in current window / frame.

	path {String} the path of the snapshot file generated by nwjc

Load and execute the compiled snapshot in the frame. See [Protect JavaScript Source Code with V8 Snapshot](../For Users/Advanced/Protect JavaScript Source Code.md).

Event: close

The close event is a special event that will affect the result of the Window.close() function. If developer is listening to the close event of a window, the Window.close() emit the close event without closing the window.

Usually you would do some shutdown work in the callback of close event, and then call this.close(true) to really close the window, which will not be caught again. Forgetting to add true when calling this.close() in the callback will result in infinite loop.

And if the shutdown work takes some time, users may feel that the app is exiting slowly, which is bad experience, so you could just hide the window in the close event before really closing it to make a smooth user experience.

See example code of win.close(true) above for the usage of close event.

!!! note “Mac”
On Mac, there is an argument passed to the callback indicating whether it’s being closed by ⌘

+Q. It will be set to string quit if that’s true, otherwise undefined.

Event: closed

The closed event is emitted after corresponding window is closed. Normally you’ll not be able to get this event since after the window is closed all js objects will be released. But it’s useful if you’re listening this window’s events in another window, whose objects will not be released.

// Open a new window.
nw.Window.open('popup.html', {}, function(win) {
// Release the 'win' object here after the new window is closed.
win.on('closed', function() {
 win = null;
});

// Listen to main window's close event
nw.Window.get().on('close', function() {
 // Hide the window to give user the feeling of closing immediately
 this.hide();

 // If the new window is still open then close it.
 if (win != null)
 win.close(true);

 // After closing the new window, close the main window.
 this.close(true);
});

});

Event: loading

Emitted when the window starts to reload, normally you cannot catch this event because usually it’s emitted before you actually setup the callback.

The only situation that you can catch this event is when you refresh the window and listen to this event in another window.

Event: loaded

Emitted when the window is fully loaded, this event behaves the same with window.onload, but doesn’t rely on the DOM.

Event: document-start(frame)

	frame {HTMLIFrameElement} is the iframe object, or null if the event is for the window.

Emitted when the document object in this window or a child iframe is available, after all files are loaded, but before DOM is constructed or any script is run.

See inject-js-start in [Manifest-format](Manifest Format.md#inject-js-start).

Event: document-end(frame)

	frame {HTMLIFrameElement} is the iframe object, or null if the event is for the window.

Emitted when the document object in this window or a child iframe is unloaded, but before the onunload event is emitted.

See inject-js-end in [[Manifest-format]]

Event: focus

Emitted when window gets focus.

Event: blur

Emitted when window loses focus.

Event: minimize

Emitted when window is minimized.

Event: restore

!!! warning “Behavior Changed”
The behavior of the function is changed since 0.13.0. Please see [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

Emitted when window is restored from minimize, maximize and fullscreen state.

Event: maximize

Emitted when window is maximized.

Event: unmaximize

Emitted when window is restored from maximize state.

!!! note
On some platforms window can be resized even when maximized. The unmaximize may not be emitted when a maximized window is resized instead of being unmaximized

Event: move(x, y)

Emitted after window is moved. The callback is called with 2 arguments: (x, y) for the new location of the left / top corner of the window.

Event: resize(width, height)

Emitted after window is resized. The callback is called with 2 arguments: (width, height) for the new size of the window.

Event: enter-fullscreen

Emitted when window enters fullscreen state.

Event: leave-fullscreen

!!! warning “Deprecated”
This feature is deprecated since 0.13.0. It’s now replaced by restore event. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

Emitted when window leaves fullscreen state.

Event: zoom

Emitted when window zooming changed. It has a parameter indicating the new zoom level. See win.zoom() method for the parameter’s value definition.

Event: capturepagedone

!!! warning “Deprecated”
This feature is deprecated since 0.13.0. Use the callback with win.capturePage() instead. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

Emitted after the capturePage method is called and image data is ready. See win.capturePage() callback function for the parameter’s value definition.

Event: devtools-opened(url)

!!! warning “Deprecated”
This feature is deprecated since 0.13.0. Use the callback passed to win.showDevtools instead. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

See win.showDevTools() method for more details.

Event: devtools-closed

Emitted after Devtools is closed.

See win.closeDevTools() method for more details.

Event: new-win-policy (frame, url, policy)

	frame {HTMLIFrameElement} is the object of the child iframe where the request is from, or null if it’s from the top window.

	url {String} is the address of the requested link

	policy {Object} is an object with the following methods:
	ignore() : ignore the request, navigation won’t happen.

	forceCurrent() : force the link to be opened in the same frame

	forceDownload() : force the link to be a downloadable, or open by external program

	forceNewWindow() : force the link to be opened in a new window

	forceNewPopup() : force the link to be opened in a new popup window

	setNewWindowManifest(m) : control the options for the new popup window. The object m is in the same format as the [Window subfields](Manifest Format.md#window-subfields) in manifest format.

Emitted when a new window is requested from this window or a child iframe. You can call policy.* methods in the callback to change the default behavior of opening new windows.

For example, you can open the URL in system brower when user tries to open in a new window:

nw.Window.get().on('new-win-policy', function(frame, url, policy) {
 // do not open the window
 policy.ignore();
 // and open it in external browser
 nw.Shell.openExternal(url);
});

Event: navigation (frame, url, policy)

	frame {HTMLIFrameElement} is the object of the child iframe where the request is from, or null if it’s from the top window.

	url {String} is the address of the requested link

	policy {Object} is an object with the following methods:
	ignore() : ignore the request, navigation won’t happen.

Emitted when navigating to another page. Similar to new-win-policy, you can call policy.ignore() within the callback to ignore the navigation.

 Command Line Options {: .doctitle}

Command Line Options {: .doctitle}

[TOC]

You use following command line options when starting NW.js to change some default behaviors.

--mixed-context

Run NW.js in [Mixed Context Mode](../For Users/Advanced/JavaScript Contexts in NW.js.md#mixed-context-mode) instead of Separate Context Mode.

--nwapp

An alternative way to specify the path of the app. This parameter is especially useful when [testing with ChromeDriver](../For Users/Advanced/Test with ChromeDriver.md).

--user-data-dir

Specify the data directory for your app, which contains the stored data, caches and crash dumps etc. By default the data directory is in following directories according to your platform:

	Windows: %LOCALAPPDATA%/<name-in-manifest>/

	Mac: ~/Library/Application Support/<name-in-manifest>/

	Linux: ~/.config/<name-in-manifest>

Where <name-in-manifest> is the [name field in manifest](Manifest Format.md#name).

--disable-raf-throttling

When it’s used, requestAnimationFrame() callback will continue to fire when window is minimized or hidden. It’s pretty useful for game developer. When the argument is not used, it behaves in the same way as Chrome browser and has no side effects.

--enable-gcm

Enable the chrome.gcm API.

--enable-transparent-visuals

--disable-transparency

--disable-gpu

--force-cpu-draw

These options are related to the transparent window feature. See [Transparent Window](../For Users/Advanced/Transparent Window.md) for details.

Other Chromium Options

You can also use Chromium options listed in https://github.com/nwjs/chromium.src/blob/nw13/chrome/common/chrome_switches.cc and https://github.com/nwjs/chromium.src/blob/nw13/content/public/common/content_switches.cc . See also http://peter.sh/experiments/chromium-command-line-switches/

These options can be put into [chromium-args in manifest](Manifest Format.md#chromium-args) to get NW.js running with them each time.

 Changes to Node {: .doctitle}

Changes to Node {: .doctitle}

[TOC]

console

Since NW.js supports GUI applications instead

 < webview> Tag

<

webview>

 Tag

[TOC]

Use the <webview> tag to embed ‘guest’ content (such as web pages) in your app. Different from the <iframe>, the <webview> runs in a separate process than your app; it doesn’t have the same permissions as your app and all interactions between your app and embedded content will be asynchronous. This keeps your app safe from the embedded content.

Synopsis

To embed a web page in your app, add the webview tag to your app’s embedder page (this is the app page that will display the guest content). In its simplest form, the webview tag includes the src of the web page and css styles that control the appearance of the webview container:

<webview id="foo" src="http://www.google.com/" style="width:640px; height:480px"></webview>

References

See Chrome document of <webview> tag [https://developer.chrome.com/apps/tags/webview] for detailed API references.

NW.js added the following methods besides upstream APIs:

webview.showDevTools(show, [container])

	show {boolean} flag: open or close the devtools window

	container {webview Element} Optional the element of the <webview> to be used to display devtools. By default, the DevTools is shown with a new window.

loading local files in webview

Add the following permission to the manifest:

 "webview": {
 "partitions": [
 {
 "name": "trusted",
 "accessible_resources": ["<all_urls>"]
 }
]
 }

and add ‘partition=”trusted”’ attribute to the webview tag.

 MenuItem {: .doctitle}

MenuItem {: .doctitle}

[TOC]

MenuItem represents an item in a menu. A MenuItem can be a separator or a normal item which has label and icon or a checkbox. It can response to mouse click or keyboard shortcut.

Synopsis

var item;

// Create a separator
item = new nw.MenuItem({ type: 'separator' });

// Create a normal item with label and icon
item = new nw.MenuItem({
 type: "normal",
 label: "I'm a menu item",
 icon: "img/icon.png"
});

// Or you can omit the 'type' field for normal items
item = new nw.MenuItem({ label: 'Simple item' });

// Bind a callback to item
item = new nw.MenuItem({
 label: "Click me",
 click: function() {
 console.log("I'm clicked");
 },
 key: "s",
 modifiers: "ctrl+alt",
});

// You can have submenu!
var submenu = new nw.Menu();
submenu.append(new nw.MenuItem({ label: 'Item 1' }));
submenu.append(new nw.MenuItem({ label: 'Item 2' }));
submenu.append(new nw.MenuItem({ label: 'Item 3' }));
item.submenu = submenu;

// And everything can be changed at runtime
item.label = 'New label';
item.click = function() { console.log('New click callback'); };

new MenuItem(option)

	option {Object} an object contains initial settings for the MenuItem
	label {String} Optional label for normal item or checkbox

	icon {String} Optional icon for normal item or checkbox

	tooltip {String} Optional tooltip for normal item or checkbox

	type {String} Optional the type of the item. Three types are accepted: normal, checkbox, separator

	click {Function} Optional the callback function when item is triggered by mouse click or keyboard shortcut

	enabled {Boolean} Optional whether the item is enabled or disabled. It’s set to true by default.

	checked {Boolean} Optional whether the checkbox is checked or not. It’s set to false by default.

	submenu {Menu} Optional a submenu

	key {String} Optional the key of the shortcut

	modifiers {String} Optional the modifiers of the shortcut

Every field has its own property in the MenuItem, see documentation of each property for details.

MenuItem is inherited from EventEmitter. You can use on to listen to the events.

item.type

Get the type of a MenuItem, it can be separator, checkbox and normal.

!!! note
The type can be set only when you create it. It cannot be changed at runtime.

item.label

Get or set the label of a MenuItem, it can only be plain text for now.

item.icon

Get or set the icon of a MenuItem, it must a path to your icon file. It can be a relative path which points to an icon in your app, or an absolute path pointing to a file in user’s system.

It has no effect on setting icon of a separator item.

item.iconIsTemplate (Mac)

Get or set whether icon image is treated as “template” (true by default). When the property is set to true the image is treated as “template” and the system automatically ensures proper styling according to the various states of the status item (e.g. dark menu, light menu, etc.). Template images should consist only of black and clear colours and can use the alpha channel in the image to adjust the opacity of black content. It has no effects on Linux and Windows.

item.tooltip (Mac)

Get or set the tooltip of a MenuItem, it can only be plain text. A tooltip is short string that describes the menu item, it will show when you hover your mouse on the item.

item.checked

Get or set whether the MenuItem is checked. Usually if a MenuItem is checked. There will be a mark on the left side of it. It’s used mostly to indicate whether an option is on.

item.enabled

Get or set whether the MenuItem is enabled. An disabled MenuItem will be greyed out and you will not be able to click on it.

item.submenu

Get or set the submenu of a MenuItem, the submenu must be a Menu object. You should set submenu in the option when creating the MenuItem. Changing it at runtime is slow on some platforms.

item.click

Get or set the click callback of a MenuItem, the click must be a valid function. It will be called when users activate the item.

item.key

A single character string to specify the shortcut key for the menu item.

Valid Keys for All Platfroms

	Alphabet: a-z

	Digits: 0-9

	Other keys on main area: [,] , ' , , , . , / , ` , - , = , \ , ' , ; , Tab

	Esc

	Down , Up , Left , Right

	W3C DOM Level 3 KeyboardEvent Key Values [http://www.w3.org/TR/DOM-Level-3-Events-key/]: KeyA (same as A), Escape (same as Esc), F1, ArrowDown (same as Down) etc.

Special Keys for Mac Only

On Mac, you can also use special keys as shortcut key with String.fromCharCode(specialKey). Here are some useful keys:

	28: Left (←

)

	29: Right (→

)

	30: Up (↑

)

	31: Down (↓

)

	27: Escape (⎋

)

	11: PageUp (⇞

)

	12: PageDown (⇟

)

For full list of special keys supported on Mac, see NSMenuItem.keyEquivalent [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSMenuItem_Class/#//apple_ref/occ/instp/NSMenuItem/keyEquivalent] and NSEvent: Function-Key Unicodes [https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/index.html#//apple_ref/doc/constant_group/Function_Key_Unicodes].

item.modifiers

A string to specify the modifier keys for the shortcut of the menu item. It should be the concatenation of the following strings: cmd / command / super, shift, ctrl, alt. e.g. "cmd+shift+alt".

cmd represents different keys on all platforms: Windows key (Windows) on Windows and Linux, Apple key (⌘

) on Mac. super and command are aliases of cmd.

Event: click

Emitted when user activates the menu item.

 Changes to DOM {: .doctitle}

Changes to DOM {: .doctitle}

[TOC]

<

input type=”file”>

HTML5 does provided limited support for file dialogs with <input type="file" /> element, such as multiple [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-multiple], accept [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-accept] and webkitdirectory. NW.js extended the file input to better support native apps.

!!! note
NW.js extended features are only enabled in Node frames for security reasons. See [Security in NW.js](../For Users/Advanced/Security in NW.js.md) for the differences of Node and normal frame.

fileinput.value

The property contains native path of the local file.

For example, you can read the file selected by user with Node.js API:

// Get the native path of the file selected by user
var fileinput = document.querySelector('input[type=file]');
var path = fileinput.value;

// Read file with Node.js API
var fs = nw.require('fs');
fs.readFile(path, 'utf8', function(err, txt) {
 if (err) {
 console.error(err);
 return;
 }

 console.log(txt);
});

fileitem.path

HTML5 provides a files attribute to return all files selected in a <input> tag. NW.js provided an extra property fileitem.path to each file item in files, which is the native path of the selected file.

var fileinput = document.querySelector('input[type=file]');
var files = fileinput.files;

for (var i = 0; i < files.length; ++i) {
 console.log(files[i].path);
}

Attribute: nwdirectory

nwdirectory is a bit similar to webkitdirectory, but it returns the path of directory instead of returning files in it.

For example:

<input type="file" nwdirectory>

Attribute: nwsaveas

nwsaveas will open a ‘Save as’ dialog, which lets user enter the path of a file. It’s possible to select a non-existing file, which is different from the default file input tag.

For example:

<input type="file" nwsaveas>

And you can specify a value for the default file name to save:

<input type="file" nwsaveas="filename.txt">

Attribute: nwworkingdir

With nwworkingdir, the file dialog starts in

 Menu {: .doctitle}

Menu {: .doctitle}

[TOC]

Menu represents a menubar or a context menu. And MenuItem is item inside a menu. Please read the document of MenuItem for more details.

Synopsis

An example to create a context menu:

// Create an empty context menu
var menu = new nw.Menu();

// Add some items
menu.append(new nw.MenuItem({ label: 'Item A' }));
menu.append(new nw.MenuItem({ label: 'Item B' }));
menu.append(new nw.MenuItem({ type: 'separator' }));
menu.append(new nw.MenuItem({ label: 'Item C' }));

// Remove one item
menu.removeAt(1);

// Popup as context menu
menu.popup(10, 10);

// Iterate menu's items
for (var i = 0; i < menu.items.length; ++i) {
 console.log(menu.items[i]);
}

To create a menubar, usually you have to create a 2-level menu and assign it to window.menu. Here is the example of creating a menubar:

// Create an empty menubar
var menu = new nw.Menu({type: 'menubar'});

// Create a submenu as the 2nd level menu
var submenu = new nw.Menu();
submenu.append(new nw.MenuItem({ label: 'Item A' }));
submenu.append(new nw.MenuItem({ label: 'Item B' }));

// Create and append the 1st level menu to the menubar
menu.append(new nw.MenuItem({
 label: 'First Menu',
 submenu: submenu
}));

// Assign it to `window.menu` to get the menu displayed
nw.Window.get().menu = menu;

See [Customize Menubar](../For Users/Advanced/Customize Menubar.md) for detailed usages.

new Menu([option])

	option {Object} Optional
	type {String} Optional two types are accepted by this method: “menubar” or “contextmenu”. The value is set to “contextmenu” by default.

Create a Menu object.

menu.items

Get an array that contains all items of a menu. Each item is an instance of MenuItem. See MenuItem for detailed information.

menu.append(item)

	item {MenuItem} the item to be appended to the tail of the menu

Append item to the tail of the menu.

menu.insert(item, i)

	item {MenuItem} the item to be inserted into the menu

	i {Integer} the index in the menu list to insert the the item

Insert the item at ith position of the menu. The index is started from 0.

menu.remove(item)

	item {MenuItem} the item to be removed

Remove item from the menu. This method requires you to keep the MenuItem outside the Menu.

menu.removeAt(i)

	i {Integer} the index of the item to be removed from the menu

Remove the ith item form the menu.

menu.popup(x, y)

	x {Integer} the x position of the anchor

	y {Integer} the y position of the anchor

Popup the context menu at the anchor in (x, y) in current window. This method is only valid for contextmenu type.

Usually you would listen to contextmenu event of DOM elements and manually popup the menu:

document.body.addEventListener('contextmenu', function(ev) {
 ev.preventDefault();
 menu.popup(ev.x, ev.y);
 return false;
});

In this way, you can precisely choose which menu to show for different elements, and you can update menu elements just before popuping it.

menu.createMacBuiltin(appname, [options]) (Mac)

	appname {String} The application name

	options {Object} Optional
	hideEdit {Boolean} Optional do not populate the Edit menu

	hideWindow {Boolean} Optional do not populate the Window menu

Creates the builtin menus (App, Edit and Window) within the menubar on Mac. The items can be manipulated with the items property. The argument appname is used for the title of App menu.

You can still use builtin menus with other menu items. i.e. append or insert items to the menu is still valid.

See also [Customize Menubar](../For Users/Advanced/Customize Menubar.md#mac-os-x) for detailed usage.

 Screen {: .doctitle}

Screen {: .doctitle}

[TOC]

Screen is an instance of EventEmitter object, and you’re able to use Screen.on(...) to respond to native screen’s events.

Screen is a singleton object, need to be initiated once by calling nw.Screen.Init()

Synopsis

//init must be called once during startup, before any function to nw.Screen can be called
nw.Screen.Init();

var screenCB = {
 onDisplayBoundsChanged: function(screen) {
 console.log('displayBoundsChanged', screen);
 },

 onDisplayAdded: function(screen) {
 console.log('displayAdded', screen);
 },

 onDisplayRemoved: function(screen) {
 console.log('displayRemoved', screen)
 }
};

// listen to screen events
nw.Screen.on('displayBoundsChanged', screenCB.onDisplayBoundsChanged);
nw.Screen.on('displayAdded', screenCB.onDisplayAdded);
nw.Screen.on('displayRemoved', screenCB.onDisplayRemoved);

Screen.Init()

Init the Screen singleton object, you only need to call this once

Screen.screens

Get the array of screen (number of screen connected to the computer)

screen has following structure:

screen {
// unique id for a screen
 id: int,

// physical screen resolution, can be negative, not necessarily start from 0,depending on screen arrangement
 bounds: {
 x: int,
 y: int,
 width: int,
 height: int
 },

// useable area within the screen bound
 work_area: {
 x: int,
 y: int,
 width: int,
 height: int
 },

 scaleFactor: float,
 isBuiltIn: bool,
 rotation: int,
 touchSupport: int
}

Screen.chooseDesktopMedia (sources, callback)

	sources {String[]} array of source types. Two types are supported by this API: "screen" and "window".

	callback {Function} callback function with chosed streamId. streamId will be false if failed to execute or existing session is alive.

!!! note
Screen sharing by selection; Currently only working in Windows and OSX and some linux distribution.

Example:

nw.Screen.Init(); // you only need to call this once
nw.Screen.chooseDesktopMedia(["window","screen"],
 function(streamId) {
 var vid_constraint = {
 mandatory: {
 chromeMediaSource: 'desktop',
 chromeMediaSourceId: streamId,
 maxWidth: 1920,
 maxHeight: 1080
 },
 optional: []
 };
 navigator.webkitGetUserMedia({audio: false, video: constraint}, success_func, fallback_func);
 }
);

Event: displayBoundsChanged(screen)

Emitted when the screen resolution, arrangement is changed, the callback is called with 1 argument screen. See Screen.screens for the format.

Event: displayAdded (screen)

Emitted when a new screen added, the callback is called with 1 argument screen. See Screen.screens for the format.

Event: displayRemoved (screen)

Emitted when existing screen removed, the callback is called with 1 argument screen. See Screen.screens for the format.

Screen.DesktopCaptureMonitor

This API behaves similar functions as Screen.chooseDesktopMedia. But it doesn’t have GUI. You can use this API to monitor the changes of screens and windows on desktop and implement your own UI.

Screen.DesktopCaptureMonitor is an instance of EventEmitter. You can use Screen.DesktopCaptureMonitor.on() to listen to the events.

Synopsis

var dcm = nw.Screen.DesktopCaptureMonitor;
nw.Screen.Init();
dcm.on("added", function (id, name, order, type) {
 //select first stream and shutdown
 var constraints = {
 audio: {
 mandatory: {
 chromeMediaSource: "system",
 chromeMediaSourceId: dcm.registerStream(id)
 }
 },
 video: {
 mandatory: {
 chromeMediaSource: 'desktop',
 chromeMediaSourceId: dcm.registerStream(id)
 }
 }
 };

 // TODO: call getUserMedia with contraints

 dcm.stop();
});

dcm.on("removed", function (id) { });
dcm.on("orderchanged", function (id, new_order, old_order) { });
dcm.on("namechanged", function (id, name) { });
dcm.on("thumbnailchanged", function (id, thumbnail) { });
dcm.start(true, true);

Screen.DesktopCaptureMonitor.started

Boolean of whether the DesktopCaptureMonitor is started.

Screen.DesktopCaptureMonitor.start(should_include_screens, should_include_windows)

	should_include_screens {Boolean} whether should include screens

	should_include_windows {Boolean} whether should include windows

The DesktopCaptureMonitor will start monitoring the system and trigger the the events. The screen may flicker if while DesktopCaptureMonitor is running.

Screen.DesktopCaptureMonitor.stop()

The DesktopCaptureMonitor will stop monitoring the system. DesktopCaptureMonitor should be stopped after a stream is selected.

Screen.DesktopCaptureMonitor.registerStream(id)

Register and return a valid stream id passed into chromeMediaSourceId in getUserMedia constraints. See Synopsis for the usage.

Event: added (id, name, order, type, primary)

!!! warning “Behavior Changed”
This feature is changed in 0.13.0. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	id {String} is the media id. Use registerStream(id) to obtain a valid stream id used with getUserMedia(). See registerStream

	name {String} is the title of the window or screen

	order {Integer} is the z-order of the windows, if screens are selected they will appear first

	type {String} type of the stream: “screen”, “window”, “other” or “unknown”

	primary {Boolean} Windows OS only this will be true if the source is the primary monitor

Emit when a new source was added.

Event: removed (order)

	order {Integer} is the order of the media source that is no longer capturable

Emit when a source was removed.

Event: orderchanged (id, new_order, old_order)

!!! warning “Behavior Changed”
This feature is changed in 0.13.0. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	id {String} is the media id of the screen or window that has changed z-order

	new_order {Integer} is the new z-order

	old_order {Integer} is the old z-order

Emit when the Z-order of a source changed (this may change for windows as others are focused).

Event: namechanged (id, name)

!!! warning “Behavior Changed”
This feature is changed in 0.13.0. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	id {String} is the media id of the screen or window that has a name changed

	name {String} is the new new name of the screen or window

Emit when the name of the source has changed. This can happen when a window changes title.

Event: thumbnailchanged (id, thumbnail)

!!! warning “Behavior Changed”
This feature is changed in 0.13.0. See [Migration Notes from 0.12 to 0.13](../For Users/Migration/From 0.12 to 0.13.md).

	id {String} is the media id of the screen or window that has an updated thumbnail

	thumbnail {String} is the base64 encoded png of the thumbnail

Emit when the thumbnail of a source changed.

 Clipboard {: .doctitle}

Clipboard {: .doctitle}

[TOC]

Clipboard is an abstraction of clipboard for Windows, Linux and Mac.

Synopsis

// get the system clipboard
var clipboard = nw.Clipboard.get();

// Read from clipboard
var text = clipboard.get('text');
console.log(text);

// Or write something
clipboard.set('I love NW.js :)', 'text');

// And clear it!
clipboard.clear();

Clipboard.get()

	Returns {Clipboard} the clipboard object

!!! note
The Selection Clipboard in X11 is not supported.

clip.set(data, [type])

	data {String} the data to write to the clipboard

	type {String} Optional the type of the data. Currently only "text" (plain text) is support. By default, type is set to "text".

Write data of type to the clipboard.

clip.get([type])

	type {String} Optional the type of the data. Currently only "text" (plain text) is support. By default, type is set to "text".

	Returns {String} the data retrieved from the clipboard

Get the data of type from clipboard.

clip.clear()

Clear the clipboard.

 Tray {: doctitle}

Tray {: doctitle}

[TOC]

Tray is an abstraction of different controls on different platforms, usually it’s a small icon shown on the OS’s notification area. On Mac OS X it’s called Status Item, on GTK it’s Status Icon, and on Windows it’s System Tray Icon.

Synopsis

// Create a tray icon
var tray = new nw.Tray({ title: 'Tray', icon: 'img/icon.png' });

// Give it a menu
var menu = new nw.Menu();
menu.append(new nw.MenuItem({ type: 'checkbox', label: 'box1' }));
tray.menu = menu;

// Remove the tray
tray.remove();
tray = null;

new Tray(option)

	option {Object}
	title {String} title

	tooltip {String} tooltip

	icon {String} icon

	alticon {String} alternate

	iconsAreTemplates {Boolean} whether icons are templates

	menu {Menu} popup menu

Create a new Tray, option is an object contains initial settings for the Tray. Every field has its own property in the Tray, see documentation of each property for details.

tray.title

Get or set the title of the tray.

On Mac OS X title will be showed on status bar along with its icon, but it doesn’t have effects on GTK and Windows, since the latter two platforms only support tray to be showed as icons.

tray.tooltip

Get or set the tooltip of the tray. tooltip shows when you hover the Tray with mouse.

!!! note
tooltip is showed on all three platforms. Should be set as Tray property rather from option object constructor.

tray.icon

Get or set the icon of the tr