
nVision User Guide
Release 2016.3

Peter Schregle, Impuls Imaging GmbH

Mar 29, 2018

Contents

1 Program Editions 5
1.1 nVision Designer . 5
1.2 nVision Runtime . 5
1.3 Module Matrix . 6

2 Requirements 7

3 Licensing 9

4 Camera and Device Interfaces 11

5 Getting Started 15
5.1 Particle Analysis . 15

6 Ribbon 23
6.1 File . 24
6.2 Home . 25
6.3 Locate . 26
6.4 Measure . 27
6.5 Verify . 28
6.6 Identify . 29
6.7 Process . 30
6.8 Segmentation . 36
6.9 Pipeline . 37
6.10 Interactive Measurement . 39

7 Tools 41
7.1 Location . 41
7.2 Measurement . 48
7.3 Verification . 70
7.4 Identification . 74
7.5 Miscellaneous . 84

8 Dataflow 95
8.1 Linear Pipeline . 97
8.2 Sub-Pipeline . 98

9 Image Processing 103

i

9.1 Point Algorithms . 103
9.2 Color . 123

10 Image Analysis 129
10.1 Blob Analysis . 129
10.2 Region Features . 134
10.3 Pixel Based Features . 158
10.4 Object Filtering . 170
10.5 Gauging . 170
10.6 Identification . 173
10.7 Camera Calibration . 176

11 Geometry 181
11.1 Geometry . 181
11.2 Geometric Primitives . 181
11.3 Geometric Transformations . 184
11.4 Graphics . 189

12 User Interface Creation 195
12.1 Controls . 196
12.2 Widgets . 217

13 Graphic Programming Language 221
13.1 Pipelines . 221
13.2 Nodes . 221
13.3 Pins . 222
13.4 Subpipelines . 222
13.5 Transform . 223
13.6 Types . 225
13.7 Conversions . 225

14 Miscellaneous 227
14.1 Digital IO . 227
14.2 CAD Drawing Support . 238
14.3 Database Support . 240

15 Reference 245
15.1 Ribbon . 245
15.2 Tools . 260
15.3 Nodes . 276

16 Credits 695
16.1 Boost . 695
16.2 zlib . 695
16.3 bzip . 696
16.4 FreeImage . 697
16.5 DynamicExpresso . 701
16.6 KBCsv . 701
16.7 NetworkView . 702
16.8 TaskDialog . 705

ii

nVision User Guide, Release 2016.3

User Guide

Machine Vision Development System Release 2017.1

Copyright (c) 2017 Impuls Imaging GmbH
All rights reserved.

Impuls Imaging GmbH
Schlingener Str. 4
86842 Türkheim

Germany/European Union

http://www.impuls-imaging.com

nVision is a computer vision development system. The main use is to create automated machine vision applications
that are used in the industry. It uses a graphical approach to programming, which leads to much shorter develop-
ment time, compared to traditional programming. In addition, the learning curve is shallow, which allows you to be
immediately productive.

Since nVision has valuable and powerful tools for image inspection, it has proven to be usable in the scientific labora-
tory as well. It is the tool of choice in the lab, when a Photoshop-based approach is too laborious and when you need
fast results. The graphical programming helps in the lab as well to quickly create the needed results in an automated
way.

nVision helps you with a variety of vision based tasks needed in the industry:

• Check the position of a part to guide a handling systems or to put a vision tool in the right position.

• Identify a part based on marks, shape or other visual aspects.

• Verify a part to check if it has been built or assembled correctly.

• Measure a parts dimensions.

• Inspect a part for defects.

Make sure to read the nVision Quick Start Guide. It contains the most important information on a single page.

Contents 1

http://www.impuls-imaging.com

nVision User Guide, Release 2016.3

2 Contents

nVision User Guide, Release 2016.3

Fig. 1: The nVision window.

Contents 3

nVision User Guide, Release 2016.3

4 Contents

CHAPTER 1

Program Editions

nVision has two main components: the nVision Designer is the rapid application development system and the nVision
Runtime is the runtime part. The nVision Designer provides a graphical user interface and a graphical programming
system. The nVision Runtime provides the computer vision functionality in a modular way and a facility to execute
the graphical programs. It also has the means to display a HMI (human-machine interface).

nVision Designer is what you use to create applications. When these applications are to be deployed to the machine
on the factory floor, usually only the more cost-effective and modular nVision Runtime is used.

1.1 nVision Designer

nVision Designer comes with complete feature sets targeted to the intended audience.

Product Description
nVision Designer MV Targeted for machine vision development.
nVision Designer L Targeted for laboratory use.
nVision Designer U The ultimate version has everything.

1.2 nVision Runtime

The following runtime modules are available.

5

nVision User Guide, Release 2016.3

Module Description
Image Processing Contains basic image processing functionality, both monochrome and color, including

camera support.
Analysis, Measure-
ment

Contains image analysis functionality, blob analysis, camera calibration, gauging mea-
surement.

Template Matching Contains the matching and searching functionality, template matching, geometric pattern
matching.

Barcode, Matrix-
code

Contains the barcode reading functionality, both linear and two dimensional symbologies.

OCR, OCV Contains the Optical Character Recognition and Optical Character Verification function-
ality.

1.3 Module Matrix

The table shows which modules are included in which designer edition.

Module MV L U
Image Processing * * *
Analysis, Measurement * * *
Template Matching * *
Barcode, Matrixcode * *
OCR, OCV * *

6 Chapter 1. Program Editions

CHAPTER 2

Requirements

nVision (Designer and Runtime) runs on Windows 7 or higher, 64 bit (recommended) or 32 bit (memory limitations
apply). It supports many cameras of different vendors, either via the GigE Vision, USB3 Vision, and GenICam
standards or directly via the manufacturers SDK.

7

nVision User Guide, Release 2016.3

8 Chapter 2. Requirements

CHAPTER 3

Licensing

nVision (Designer and Runtime) are licensed to the specific hardware. In order to run nVision, you need a license key.

When nVision is started for the first time, it needs to be activated. In addition to the license key, activation needs a
hardware key, which is determined automatically. The activation process uses the he hardware key, together with the
license key and creates an activation key. It is the activation key - in combination with the two other keys - that actually
unlocks the nVision software.

Usually, activation works through an internet connection and is simple and transparent. If you copy your license key
to the clipboard before you start nVision for the very first time, you will hardly notice the process. Otherwise, a dialog
such as the following will be displayed:

In order to continue, you should enter your license key and press the Return key. nVision will contact the licensing
server and use the returned activation key to unlock. If the license server cannot be connected for some reason, you
can phone (+49 8245 7749600) or write an email to info@impuls-imaging.com to tell us both your license key and the
hardware key, and we will provide you with an activation key that you can enter manually.

Activation is perpetual for a specific hardware. If the hardware changes, this is considered a new hardware, which
means that you have to activate nVision again. While nVision is licensed to one machine only, one license key
permits three activations to cover the case of defective hardware.

9

mailto:info@impuls-imaging.com

nVision User Guide, Release 2016.3

Fig. 3.1: The nVision licensing dialog.

10 Chapter 3. Licensing

CHAPTER 4

Camera and Device Interfaces

The primary interfaces to cameras used in nVision are the GigEVision and the USB3 Vision interfaces. These in-
terfaces are standardized. Image data can be accessed via GenTL and camera properties can be read and written via
GenICam.

For cameras interfaced via GenTL and GenICam, the full set of properties is accessible from within nVision.

The camera properties are accessible in the form of a properties window.

In addition, the camera properties can be read and written from within a graphical pipeline, i.e. the properties can be
changed from within a program.

Secondary interfaces to cameras and devices exist via manufacturer SDKs for historical reasons. USB2 cameras are
interfaced this way, since they were available before standardization, as well as interfaces to frame grabbers.

The following table lists tested devices:

11

nVision User Guide, Release 2016.3

Fig. 4.1: The camera properties window.

12 Chapter 4. Camera and Device Interfaces

nVision User Guide, Release 2016.3

Fig. 4.2: Writing camera properties from within a pipeline.

Manufacturer URL Device Interface

Allied Vision www.alliedvision.com GigE Cameras GenTL / GenICam

Basler www.baslerweb.com GigE Cameras GenTL / GenICam

Baumer www.baumer.com GigE / USB3 Cam-
eras

GenTL / GenICam

Flir www.flir.com GigE Cameras
(A315)

GenTL / GenICam

IDS www.ids-imaging.com USB Cameras Direct (Vendor SDK)

IDS www.ids-imaging.com GigE Cameras GenTL / GenICam

JAI www.jai.com GigE / USB3 Cam-
eras

GenTL / GenICam

Leutron www.leutron.com USB Cameras Direct (Vendor SDK)

Gardasoft www.gardasoft.com GigE Flash Con-
troller

GenTL / GenICam

Matrix Vision www.matrix-vision.com Framegrabber Direct (Vendor SDK)

Matrix Vision www.matrix-vision.com USB Cameras Direct (Vendor SDK)

Matrix Vision www.matrix-vision.com GigE /USB3 Cam-
eras

GenTL / GenICam

Net GmbH www.net-gmbh.com USB Cameras Direct (Vendor SDK)

Point Grey www.ptgrey.com GigE / USB3 Cam-
eras

GenTL / GenICam

Sentech www.sentecheurope.com GigE / USB3 Cam-
eras

GenTL / GenICam

Smartek www.smartek.vision GigE Cameras GenTL / GenICam

SVS Vistek www.svs-vistek.com GigE Cameras GenTL / GenICam

The Imaging
Source

www.theimagingsource.comGigE Cameras GenTL / GenICam

Various Webcams Direct (Windows Media Foun-
dation)

Ximea www.ximea.com USB3 Cameras GenTL / GenICam

13

http://www.alliedvision.com/
http://www.baslerweb.com/
http://www.baumer.com/
http://www.flir.com/
http://www.ids-imaging.com/
http://www.ids-imaging.com/
http://www.jai.com/
http://www.leutron.com/
http://www.gardasoft.com/
http://www.matrix-vision.com/
http://www.matrix-vision.com/
http://www.matrix-vision.com/
http://www.net-gmbh.com/
http://www.ptgrey.com/
http://www.sentecheurope.com/
http://www.smartek.vision/
http://www.svs-vistek.com/
http://www.theimagingsource.com/
http://www.ximea.com/

nVision User Guide, Release 2016.3

All other GigE Vision or USB3 Vision capable cameras should work with nVision right our of the box, but have not
been tested in-house so far.

14 Chapter 4. Camera and Device Interfaces

CHAPTER 5

Getting Started

The screen shot shows the various parts of the nVision application.

At the top there is a ribbon with commands to control the application.

At the bottom, there is the work area, consisting of the browser and the workbench, where the main interaction takes
place.

Before we explain nVision in detail, let us show a few simple examples of how to work with nVision.

5.1 Particle Analysis

Let us assume that the current task is to count and measure particles.

1. Open the image

The first step is to load an image. nVision can acquire images from digital cameras, but for now let us load an image
from disk, by using the File - Open command:

In the dialog that opens, select the cells.tif file. The file is loaded and displayed both in the browser and in the
work area.

2. Segment the image

Segmenting the image is next. The particles - in this case the cell nuclei - should be separated from the background.
This can be done with the Threshold command from the ribbon’s Segmentation tab.

A threshold of 100 works nicely for this image.

Of course you can change the thresholding mode as well as the threshold itself with the controls on top of the threshold
node.

As a result of the thresholding, the appearance of the picture has changed, because the segmented cell nuclei are
displayed in a red overlay color (partly transparent) on top of the original image. In addition, the threshold command
has been appended to the linear processing pipeline, which now shows two steps.

3. Find connected components

15

nVision User Guide, Release 2016.3

Fig. 5.1: The various parts of the nVision application.

Fig. 5.2: Load an image from disk.

16 Chapter 5. Getting Started

nVision User Guide, Release 2016.3

Fig. 5.3: nVision with a loaded image.

Fig. 5.4: Segmenting an image with the threshold command.

5.1. Particle Analysis 17

nVision User Guide, Release 2016.3

Fig. 5.5: The result of the segmentation is overlaid in red on top of the image.

18 Chapter 5. Getting Started

nVision User Guide, Release 2016.3

From the Segmentation tab, use the Connected Components command.

Fig. 5.6: Splitting a region into connected components.

This performs connected components analysis and splits the result from the previous segmentation step into connected
objects.

Fig. 5.7: The result of the component splitting is overlaid on top of the image in color.

The appearance of the picture has changed again: now the different cell nuclei are displayed in different overlay
colors. Also, the connected components command has been appended to the linear processing pipeline, which now
shows three steps.

4. Analyze particles

The final step in our short introductory example is to analyze the particles.

From the Segmentation tab, use the Blob Analysis command.

5.1. Particle Analysis 19

nVision User Guide, Release 2016.3

Fig. 5.8: Analyzing the blobs.

Now another step is appended to the pipeline displaying the total number of blobs, and a grid filled with numbers is
displayed below the image.

For each particle in the image, three is a row in the grid showing particle measurements (also sometimes called
features). Between the image and the grid is a line with some checkboxes: Bounds and EquivalentEllipse. These are
features that can be graphically visualized.

Make sure that you have either Bounds or EquivalentEllipse checked and click the Show checkbox in the first column
of any grid row. This will show either the bounding box or the equivalent ellipse of said object in a graphical fashion.

You can also click the colored objects in the graphical view, and the grid scrolls to the line of the selected object.

In addition you can click the Commit button on the ribbon to commit the measurement results to the browser window.
From there, the data can be exported to a CSV (comma separated values) file, which can be loaded into Excel or any
other programs for further manipulation.

nVision has built a pipeline of commands as you have issued the commands. This pipeline can be re-used and applied
to other images. In fact, you have built a little program, but you have done so without any programming. If you close
nVision, this pipeline will be saved along the image (if the image is called cells.tif, the associated pipeline will be
called cells.tif.xpipe).

We hope that this little tutorial has whetted your appetite for more and that you continue reading and working with
nVision. Enjoy!

20 Chapter 5. Getting Started

nVision User Guide, Release 2016.3

Fig. 5.9: The results of the blob analysis.

5.1. Particle Analysis 21

nVision User Guide, Release 2016.3

22 Chapter 5. Getting Started

CHAPTER 6

Ribbon

The ribbon shows commands used to control nVision. The commands are grouped into tabs and then further into
groups.

Fig. 6.1: The ribbon.

At the top of the ribbon there are some quick access commands.

Shortcut Command Description

CTRL-O Opens a file.

Saves to a file.

Saves to a file under a new name.

Saves all files.

Deletes the selected node.

Commits the results of the selected node as a document.

23

nVision User Guide, Release 2016.3

At the right of the ribbon, besides the nVision logo, there is the Help button. If you click on this button, the help
window is shown. The help window provides context sensitive help as well as internet links to educational videos and
this manual.

Shortcut Command Description

F1 Help Displays documentation in a browser window.

Besides, still at the right, there is a button with a little upwards pointing arrow. Click on this button to minimize the
ribbon.

Fig. 6.2: The ribbon in its minimized state.

If the ribbon is in minimized mode, you can still access the commands by first clicking on the respective tab.

6.1 File

The file tab at the very left shows commands to open and save files, as well as to import and export pipelines.

Fig. 6.3: The file menu with the list of recently opened files.

In addition, it shows a list of recently loaded documents. Documents on the recently loaded list can be pinned, so that
they are kept at the top of the list.

At the bottom, there is also a button to shut down nVision.

24 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

6.2 Home

The Home tab shows the most common commands.

Fig. 6.4: The home tab.

At the left – in the Acquire group - there are selection boxes for cameras and the color mode of the camera (these
are filled with entries, once a supported camera is properly installed) as well as two buttons that allow you to take a
snapshot (Start Snap) from a camera or put the camera into life acquisition (Start Live/Stop Live).

Shortcut Command Description

Start/Stop Snap Snaps a picture.

Start/Stop Live Starts or stops live acquisition.

Then - in the Adjust Camera - there are commands to adjust exposure and calibration of the camera.

Shortcut Command Description

Exposure Inserts the exposure control tool.

Exposure Inserts the define scale tool.

Exposure Inserts the calibration tool.

Then – in the Zoom group – there are commands to set the zoom factor. You can Zoom In, Zoom Out, or reset the
zoom (Reset Zoom). The Reset Zoom button has a drop-down menu with additional zoom commands: Zoom to Fit
Width, Zoom to Fit Height and Zoom to Fit. These commands allow you to zoom an image to fit the window width
or height or both.

Shortcut Command Description

CTRL+ + Zoom In Zoom in to show more details.

CTRL+ - Zoom Out Zoom out to show more surrounding.

CTRL+ALT+0 Reset Zoom Resets the zoom factor.

Below the Reset Zoom command there is a submenu with additional related commands.

6.2. Home 25

nVision User Guide, Release 2016.3

Shortcut Command Description

Zoom Fit Set the zoom so that both width and height fit.

Zoom to Fit Width Set the zoom so that the width fits.

Zoom to Fit Height Set the zoom so that the height fits.

Then – in the Tool Windows group – there are buttons that allow you to show or hide various additional windows.

Shortcut Command Description

F11 Show Browser Show/hide the browser.

F1 Show Help Show/hide the help window.

Show Camera Parameters Show/hide the camera parameters window.

Show System Globals Show/hide the system globals window.

6.3 Locate

The Locate tab shows commands that insert tools for part location. Part location very often is the first step in an
inspection task.

Fig. 6.5: The locate tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

26 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

The Locate group contains the commands for localization.

Shortcut Command Description

Locate (Shape) Locates a part using shapes (geometrical shape matching).

Locate (Pattern) Locates a part using pattern matching (normalized correlation).

Teach Teaches a part for subsequent location.

6.4 Measure

The Measure tab shows commands that insert tools for part measurement. Measurement of intensity or color, of
geometric dimensions, as well as counting of features are often steps in an inspection task.

Fig. 6.6: The measure tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Intensity Group contains the commands for intensity based measurement.

Shortcut Command Description

Brightness Inspects the brightness inside a region of interest.

Contrast Inspects the contrast inside a region of interest.

The Geometry Group contains the commands for geometry based measurement.

6.4. Measure 27

nVision User Guide, Release 2016.3

Shortcut Command Description

Distance Measures a length.

Circle Measures a circle.

Angle Measures an angle.

Area Size Measures an area.

The Count Group contains the commands for feature counting.

Shortcut Command Description

Count Edges Counts the number of edges along a line.

Count Contour Points Counts the number of contour points.

Count Areas Counts the number of distinct blobs.

6.5 Verify

The Verify tab shows commands that insert tools for part verification.

Fig. 6.7: The verify tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Features group contains the commands for pattern matching.

28 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

Shortcut Command Description

Match Contour Matches a region of a part using geometrical shape matching.

Match Pattern Matches a region of apart using normalized correlation.

6.6 Identify

The Identify tab shows commands that insert tools for part identification, such as decoding barcodes and matrix codes,
as well as reading texts.

Fig. 6.8: The identify tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Codes group contains the commands for barcode and matrix code decoding.

6.6. Identify 29

nVision User Guide, Release 2016.3

Short-
cut

Com-
mand

Description

Bar-
code

Decodes a barcode in a re-
gion of interest.

Ma-
trix-
code

Decodes a matrix code in
a region of interest.

The Text group contains the commands for optical character recognition.

Shortcut Command Description

OCR Reads text in a region of interest using optical character recognition (OCR).

6.7 Process

The Process tab has commands for basic image processing. The commands are grouped into statistic operations, point
processing (pixel-wise), color transformation, filtering, morphology and geometric transformations.

Fig. 6.9: The process tab.

30 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Statistics group contains commands for statistical processing.

Shortcut Command Description

Histogram Calculates a histogram.

Horizontal Profile Calculates a horizontal profile.

Horizontal Profile Overlay Calculates a horizontal profile and overlays it on the image.

The Crop group contains the Crop Box command.

Shortcut Command Description

Crop Box Crops a rectangular portion of an image.

The Bin group contains the Bin command.

Shortcut Command Description

Bin Resize an image using binning.

The Point group contains point operations between an image and a constant. These operations look at single pixels
only and ignore their neighborhood.

6.7. Process 31

nVision User Guide, Release 2016.3

Short-
cut

Command Description

Not Inverts every pixel of an image (using 1’s complement).

Negate Inverts every pixel of an image (using 2’s complement).

Increment Increments every pixel of an image by 1.

Decrement Decrements every pixel of an image by 1.

Absolute Takes the absolute value of every pixel of an image.

Add Adds a constant value to every pixel of an image.

Subtract Subtracts a constant value from every pixel of an image.

Difference Takes the absolute difference between every pixel of an image and a
constant.

Multiply Multiplies every pixel of an image by a constant value.

Divide Divides every pixel of an image through a constant value.

Logical And And of every pixel of an image and a constant value.

Logical Or Or of every pixel of an image and a constant value.

Logical Xor Xor of every pixel of an image and a constant value.

Equal Compares every pixel of an image with a constant.

Bigger Compares every pixel of an image with a constant.

Bigger or Equal Compares every pixel of an image with a constant.

Smaller Compares every pixel of an image with a constant.

Smaller or
Equal<

Compares every pixel of an image with a constant.

Minimum Calculates the minimum of every pixel of an image and a constant.

Maximum Calculates the maximum of every pixel of an image and a constant.

32 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

The Color group contains commands for colorspace conversions.

Short-
cut

Command Description

Convert to
Monochrome

Converts every pixel of a color image to monochrome.

Convert to Rgb Converts every pixel of a color image to the RGB (red, green, blue) color
space.

Convert to Hls Converts every pixel of a color image to the HLS (hue, luminance, satu-
ration) color space.

Convert to Hsi Converts every pixel of a color image to the HSI (hue, saturation, inten-
sity) color space.

Convert to Lab Converts every pixel of a color image to the LAB* color space.

The Frame group contains the Frame command.

Shortcut Command Description

Frame Puts a frame around an image.

The Filter group contains linear filters. Linear filters produce their results by taking their neighbor pixels into consid-
eration. Various filters use different filter kernels to create various filter characteristics.

6.7. Process 33

nVision User Guide, Release 2016.3

Shortcut Command Description

Median Calculates a median filter.

Hybrid Median Calculates a hybrid median which better preserves edges.

Gaussian Blurs an image with a gaussian averaging filter of varying size.

Gauss Blurs an image with a fixed size Gaussian kernel.

Lowpass Blurs an image with a lowpass filter.

Hipass Sharpens an image with a sharpening filter.

Laplace Calculates a laplace filter.

Horizontal Sobel Emphasizes edges with a horizontal Sobel filter.

Horizontal Prewitt Emphasizes edges with a horizontal Prewitt filter.

Horizontal Scharr Emphasizes edges with a horizontal Scharr filter.

Vertical Sobel Emphasizes edges with a vertical Sobel filter.

Vertical Prewitt Emphasizes edges with a vertical Prewitt filter.

Vertical Scharr Emphasizes edges with a vertical Scharr filter.

The Morphology group contains morphological operations, i.e. operations that change the shape. Some of these
operations can be applied to images and to regions. Region versions are binary in nature and extremely fast because
of their run-length implementation.

34 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

Short-
cut

Command Description

Dilate Performs a dilation on image pixels. A dilation makes bright areas bigger and
dark areas smaller.

Dilate
(Regions)

Performs a dilation on a region. A dilation makes a region bigger.

Erode Performs an erosion on image pixels. An erosion makes bright areas smaller and
dark areas bigger.

Erode (Re-
gions)

Performs an erosion on a region. An erosion makes a region smaller.

Open Performs an opening on an image. Opening is an erosion followed by a dilation.

Open (Re-
gions)

Performs an opening on a region. Opening is an erosion followed by a dilation.

Close Performs a closing on an image. Closing is a dilation followed by an erosion.

Close (Re-
gions)

Performs a closing on a region. Closing is a dilation followed by an erosion.

Gradient Performs a morphological gradient on an image. Closing is a dilation minus an
erosion.

Gradient
(Regions)

Performs a morphological gradient on a region. Closing is a dilation minus an
erosion.

Inner
Bound-
ary

Calculates the inner boundary of a region. The inner boundary consists of the
region pixels that touch the background.

Outer
Boundary

Calculates the outer boundary of a region. The outer boundary consists of the
background pixels that touch the region.

Fill Holes Fills holes in a region.

The Geometry tab contains commands for geometric transformations.

6.7. Process 35

nVision User Guide, Release 2016.3

Shortcut Command Description

Mirror Reverses right and left of an image.

Flip Reverses top and bottom of an image.

Rotate Counter Clockwise Rotate an image by 90 degrees counter clockwise.

Rotate 180 Degrees Rotates an image by 180 degrees.

Rotate Clockwise Rotates an image by 90 degrees clockwise.

6.8 Segmentation

The Segmentation tab groups commands related to segmentation and blob analysis.

Fig. 6.10: The segmentation tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Segmentation group contains the commands for thresholding, connected components separation and region fil-
tering.

36 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

Short-
cut

Command Description

Threshold Thresholds an image and returns a region.

Connected Compo-
nents

Splits a region into its connected components, that is a list of separate
regions.

Filter Regions Filters regions according to a criterium.

The Blob Analysis group contains the commands for blob analysis and graphical plotting.

Shortcut Command Description

Blob Analysis Performs blob analysis on a list of regions.

Plot Plots the results of a blob analysis.

6.9 Pipeline

The Pipeline tab groups pipeline related commands.

Fig. 6.11: The pipeline tab.

The Edit group contains the commands for pipeline editing, which are repeated on most ribbon tabs for good access-
ability.

Shortcut Command Description

Delete Node Deletes the selected node.

Commit Commits the results of the selected node as a document.

The Pipeline group contains the commands for sub-pipeline creation as well as import and export of pipelines.

6.9. Pipeline 37

nVision User Guide, Release 2016.3

Shortcut Command Description

Sub-Pipeline Creates a sub-pipeline.

Import Pipeline Imports a pipeline from a file.

Export Pipeline Exports a pipeline to a file.

The Control group contains the commands for batch processing of images in folders.

Shortcut Command Description

First Image Jumps to the first image in an image folder.

Previous Image Jumps to the previous image in an image folder.

Next Image Jumps to the next image in an image folder.

Process Images Processes all images in an image folder.

Stop Stops processing of images in an image folder.

Export On/Off Turns export nodes on or off.

Export Once Causes all export nodes to export once.

The Timer group allows to set the polling interval for polling nodes.

Shortcut Command Description

Update On/Off Switch polling on/off.

The Execution Info group provides information about program execution. It shows the last execution time of the
program as well as the execution state.

Shortcut Command Description

Show Node Timing Shows timing information of every node in a sub-pipeline.

38 Chapter 6. Ribbon

nVision User Guide, Release 2016.3

The Execution Statistics group provides statistic information about program execution. It shows the average execution
time as well as the achieved framerate.

Shortcut Command Description

Statistics Start/Stop Switch statistics accumulation on/off.

The Result group contains the Result tool, which supports simple communication with a machine.

Short-
cut

Com-
mand

Description

Re-
sult

This tool provides simple com-
munication with a machine.

6.10 Interactive Measurement

The Measure tab shows commands that are related to interactive measurement.

Fig. 6.12: The measure tab.

The Calibrate group contains the commands for interactive calibration.

6.10. Interactive Measurement 39

nVision User Guide, Release 2016.3

Shortcut Command Description

Calibrate Origin Toggles the origin calibration tool on or off.

Calibrate Scale Toggles the scale calibration tool on or off.

The Overlay group contains commands that switch graphical overlays on or off.

Shortcut Command Description

Rectangular Grid Toggles the rectangular grid overlay on or off.

Circular Grid Toggles the circular grid overlay on or off.

Scale Bar Toggles the scale bar overlay on or off.

The Picker group contains the pixel value picker.

Shortcut Command Description

Picker Interactively inspect pixel values.

The Measure group contains commands for interactive measurement.

Shortcut Command Description

Commit Results Commits the results of the selected tool.

Toggle the counting tool on or off. Toggle the counting tool on or off.

Reset Counting Tool Resets the counting tool count.

Measure Length Tool Toggle the measure length tool on or off.

The Gauging group contains the edge inspector.

Shortcut Command Description

Horizontal Edge Inspector This tool helps finding parameters for edge inspection.

40 Chapter 6. Ribbon

CHAPTER 7

Tools

nVision has a set of tools that are meant to make most machine vision tasks simple.

Many tasks in machine vision have similar steps, and the set of high level tools in nVision aims to make execution of
these steps easy. The steps can be grouped into location, measuring, verification and identification.

The Locate menu groups the commands for part location, where location can be performed by pattern matching or
shape matching.

The Measure menu groups various measurement tools, that can be used for intensity or dimensional measurement.

The Verify menu groups commands for pattern or shape verification.

The Identify menu groups the command for barcode and matrix code decoding, as well as for optical character
recognition (OCR and OCV).

The tools are image oriented and display graphical elements on top of the image to select regions and other parameters.

In addition there are a few miscellaneous tools that do not fit into the above groups. They are documented below under
the heading Miscellaneous.

7.1 Location

The location of a part is often a step that is executed at the beginning of a machine vision task.

7.1.1 Locate

The tools in this group provide location of parts based on features of these parts. These commands are often the first
step in a sequence, because all subsequent tools respect the position and angle that these tools determine.

The locate tools determine a pose (a position as well as an angle) that can be used to adjust other tools regions of
interest. If no location tool is used, the default pose is assumed to be in the middle of the picture.

41

nVision User Guide, Release 2016.3

Horizontal Shift

The Horizontal Shift tool uses horizontal edge detection to find a horizontal location. The tool is used by clicking the
Horizontal Shift command button.

The tool displays a region of interest that is used to detect the shift. The region of interest can be moved by the user.

The Horizontal Shift tool has a configuration panel, which can be used to set parameters.

The parameters in the Edge Detection Parameters affect the edge detection.

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

42 Chapter 7. Tools

nVision User Guide, Release 2016.3

Vertical Shift

The Vertical Shift tool uses horizontal edge detection to find a horizontal location. The tool is used by clicking the
Vertical Shift command button.

The tool displays a region of interest that is used to detect the shift. The region of interest can be moved by the user.

The Vertical Shift tool has a configuration panel, which can be used to set parameters.

The parameters in the Edge Detection Parameters affect the edge detection.

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

Locate (Shape)

The locate shape tool locates a part using geometric contour matching. The tool is used by clicking the Locate (Shape)
command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Make sure that you select a characteristic portion as the pattern.

7.1. Location 43

nVision User Guide, Release 2016.3

44 Chapter 7. Tools

nVision User Guide, Release 2016.3

Once you have moved the region of interest to a suitable position for pattern defintion, you click the Teach button to
teach the pattern.

If the tool finds the pattern, it displays a green box where it found the pattern and also moves the coordinate axes to
the middle of the box to visualize the new origin and rotation (the pose).

Subsequent tools use the pose to position their ROIs, such that the ROIs are always in the correct position, even if the
part moves considerably.

The locate shape tool has a configuration panel, which can be used to set parameters.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.6). Matches below
this score are not considered.

Locate (Pattern)

The locate pattern tool locates a part using pattern matching. The tool is used by clicking the Locate (Pattern)
command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Make sure that you select a characteristic portion as the pattern.

Once you have moved the region of interest to a suitable position for pattern defintion, you click the Teach button to
teach the pattern.

If the tool finds the pattern, it displays a green box where it found the pattern and also moves the coordinate axes to
the middle of the box to visualize the new origin and rotation (the pose).

Subsequent tools use the pose to position their ROIs, such that the ROIs are always in the correct position, even if the
part moves considerably.

The locate pattern tool has a configuration panel, which can be used to set parameters.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.8). Matches below
this score are not considered.

7.1. Location 45

nVision User Guide, Release 2016.3

46 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.1. Location 47

nVision User Guide, Release 2016.3

7.2 Measurement

7.2.1 Intensity

Intensity based tools measure features based on the greyvalues, such as brightness or contrast.

Brightness

The brightness tool measures the average brightness in a region of interest. The tool is used by clicking the Brightness
command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values (be-
tween 127 and 255 in the following example). Because of the high reflection of the metal part, the average brightness
inside the region of interest is 154, which is in between the expected bounds.

The next picture shows the tool result, if the measured angle is not within the expected boundary values (betwwen 127
and 255 in the following example). Because of the low reflection of the plastic part, the average brightness inside the
region of interest is 105, which is outside the expected bounds.

The brightness tool has a configuration panel, which can be used to set parameters.

The Min Brightness parameter is used to set the minimal accepatable brightness (default = 127), the Max Brightness
parameter is used to set the maximal accepatable brightness (default = 255).

48 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.2. Measurement 49

nVision User Guide, Release 2016.3

Contrast

The contrast tool measures the contrast in a region of interest. The tool is used by clicking the Contrast command
button. Actually, the standard deviation of the greyvalues is used as a measure of the contrast.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values
(between 127 and 255 in the following example). Because of the high reflection of the metal part, the contrast inside
the region of interest is 154, which is in between the expected bounds.

The next picture shows the tool result, if the measured angle is not within the expected boundary values (betwwen 127
and 255 in the following example). Because of the low reflection of the plastic part, the contrast inside the region of
interest is 105, which is outside the expected bounds.

50 Chapter 7. Tools

nVision User Guide, Release 2016.3

The contrast tool has a configuration panel, which can be used to set parameters.

The Min Contrast parameter is used to set the minimal accepatable contrast (default = 30), the Max Contrast param-
eter is used to set the maximal accepatable contrast (default = 255).

7.2.2 Geometry

The tools in this group measure geometric features.

Distance

The Distance tool measures the distance between edges along a line. The tool is used by clicking the Distance
command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

7.2. Measurement 51

nVision User Guide, Release 2016.3

It displays a yellow line that specifies the search line. You can move the line around on the image by dragging it. You
can also pick either of the line endpoints to move just this endpoint.

Once the search line has been positioned over two edges in the image it displays the calculated distance, which
is visualized graphically and its numerical value is displayed in green, if it is in between the tool’s minimum and
maximum expected values (between 129 px and 130 px in the following example):

The next picture shows the tool result, if the measured distance is not within the expected boundary values (betwwen
49 px and 51 px):

This makes it easy to see the tool’s outcome.

The distance tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum distance.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

Width is the width of the stripe along the line region.

52 Chapter 7. Tools

nVision User Guide, Release 2016.3

Distance (Two Points)

The Distance (Two Points) measures the distance between two points. The tool is used by clicking the Distance (Two
Points) button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays two yellow lines labelled A and B that specify the search linees. You can move the lines around on the
image by dragging them. You can also pick either of the line endpoints to prolong the line or move just this endpoint
(move the mouse a little bit away from the endpoint, until the cursor changes).

Once the search lines have been positioned over two edges in the image the calculated distance, which is visualized
graphically and its numerical value are displayed.

The Distance (Two Points) tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum distance.

The distance type between the two points can be the straight, horizontal or vertical distances.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

Width is the width of the stripe along the line region.

7.2. Measurement 53

nVision User Guide, Release 2016.3

54 Chapter 7. Tools

nVision User Guide, Release 2016.3

Circle

The circle tool measures a circle in a region of interest. The tool is used by clicking the Circle command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a yellow box that specifies the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside). Inside the box is a little yellow point that markes the center of
the box.

Once the box has been positioned over a circle (or part of a circle) in the image it displays the calculated circle, which
is visualized graphically and its numerical diameter is displayed in green, if it is in between the tool’s minimum and
maximum expected values (between 53 px and 54 px in the following example):

The next picture shows the tool result, if the measured distance is not within the expected boundary values (betwwen
50 px and 51 px):

This makes it easy to see the tool’s outcome.

The circle tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum diameter.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

7.2. Measurement 55

nVision User Guide, Release 2016.3

56 Chapter 7. Tools

nVision User Guide, Release 2016.3

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Spacing is the angular spacing in degrees of the search lines.

Angle

The angle tool measures the angle between two lines. The tool is used by clicking the Angle command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays two boxes that are used to select regions, the boxes are labeled A and B. You can move the boxes around
on the image by dragging their inside. You can also resize the boxes by picking them at their boundary lines (on the
boundary line or just a bit outside) or at their corner points (on the corner point of just a bit outside). The arrows at the
boxes visualize the search direction of the line detection (box A has horizontal arrows and should be used for vertical
lines, box B has vertical arrows and should be used for horizontal lines).

Once the search box has been positioned over an edge in the image it displays the calculated edge points in green, and
a resulting line in blue that it calculates by fitting a line through the points.

The tool has outlier detection as you can see in the following picture. The outlier points are marked in red and they
are not used for the line fit.

The search boxes move with the pose, that is their position is relative to the part position that has been determined by
a location tool upstream.

If the tool finds both lines it calculates the angle between those lines. The angle is visualized graphically and its
numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values (between
89,7 ° and 90,3 ° in the following example):

The next picture shows the tool result, if the measured angle is not within the expected boundary values (betwwen
89,9 ° and 90,1 °):

This makes it easy to see the tool’s outcome.

The angle tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum angles.

The parameters in the Edge Detection Parameters affect the edge detection.

7.2. Measurement 57

nVision User Guide, Release 2016.3

58 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.2. Measurement 59

nVision User Guide, Release 2016.3

60 Chapter 7. Tools

nVision User Guide, Release 2016.3

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Spacing is the distance between the search lines of the edge detection (default = 5). The effect of the spacing can be
seen by the density of the visualized edge points.

Area Size

The area size tool measures the object area in a region of interest. The tool is used by clicking the Area Size command
button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The tool is meant to be used on regions where you have contrasting objects, either dark or bright. It automatically
detects the objects. In a region without much contrast, using the tool is mostly meaningless because of noise.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values.

The next picture shows the tool result, if the measured area is not within the expected boundary values.

The area size tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Polarity can be set to Dark Objects or Bright Objects.

7.2.3 Count

The tools in this group count various things, and compare the number to the expected number or range.

Count Edges

The count tool counts the number of edges along a linear region of interest. The tool is used by clicking the Count
Edges command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a yellow line that specifies the search line. You can move the line around on the image by dragging it. You
can also pick either of the line endpoints to move just this endpoint.

Once the line has been positioned and finds edges, it visualizes them as blue points and it outputs their number. If the
number is within expected bounds, the tool color is green.

The next picture shows the tool result, if the number of edges is not within the expected boundary values:

7.2. Measurement 61

nVision User Guide, Release 2016.3

62 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.2. Measurement 63

nVision User Guide, Release 2016.3

64 Chapter 7. Tools

nVision User Guide, Release 2016.3

This makes it easy to see the tool’s outcome.

The tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum diameter.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

7.2. Measurement 65

nVision User Guide, Release 2016.3

Count Contour Points

The count contour points tool counts the number of high-contrasting pixels within a region of interest. The tool is used
by clicking the Count Contour Points command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

One use of the tool is to check for riffle or embossing on metal parts.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values.

The next picture shows the tool result, if the number of contour points is not within the expected boundary values.

The count contour points tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Sensitivity can be set to a value between 0 (highly sensitive) and 255 (not sensitive).

Count Areas

The count areas tool counts the number of objects in a region of interest. The tool is used by clicking the Count Areas
command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

66 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.2. Measurement 67

nVision User Guide, Release 2016.3

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The tool is meant to be used on regions where you have contrasting objects, either dark or bright. It automatically
detects the objects. In a region without much contrast, using the tool is mostly meaningless because of noise.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values.

The next picture shows the tool result, if the measured area is not within the expected boundary values.

The count areas tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Polarity can be set to Dark Objects or Bright Objects.

68 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.2. Measurement 69

nVision User Guide, Release 2016.3

7.3 Verification

7.3.1 Features

The tools in this group provide matching of parts based on features of these parts.

Match Contour

The match contour tool locates a part using geometric pattern matching. The tool is used by clicking the Match
Contour command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Usually, the box is put tightly around an area where you expect a specific pattern, which is loaded from a file some-
where.

If the tool finds the pattern, it displays a green box where it found the pattern and displays the match score (between 0
and 1, where 1 is a perfect match). Scores below 0.3 are mostly meaningless. Please not that the characteristic of the
score is different to the one used in the Match Pattern command.

If the tools cannot find the pattern at all, or if the score is too low, it displays a red box if possible and outputs the text
“No Match” in red.

The match pattern tool has a configuration panel, which can be used to set parameters.

The Template parameter specifies the match template, which is loaded from disk.

70 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.3. Verification 71

nVision User Guide, Release 2016.3

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.7). Matches below
this score are not considered.

Match Pattern

The match pattern tool locates a part using normalized correlation matching. The tool is used by clicking the Match
Pattern command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Usually, the box is put tightly around an area where you expect a specific pattern, which is loaded from a file some-
where.

If the tool finds the pattern, it displays a green box where it found the pattern and displays the match score (between 0
and 1, where 1 is a perfect match). Scores below 0.5 are mostly meaningless. Please not that the characteristic of the
score is different to the one used in the Match Contour command.

If the tools cannot find the pattern at all, or if the score is too low, it displays a red box if possible and outputs the text
“No Match” in red.

The match pattern tool has a configuration panel, which can be used to set parameters.

The Template parameter specifies the match template, which is loaded from disk.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.7). Matches below
this score are not considered.

72 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.3. Verification 73

nVision User Guide, Release 2016.3

7.4 Identification

7.4.1 Codes

The tools in this group perform barcode and matrix code decoding. Various symbologies are supported. In addition,
the tools can match the decoded text to an expected pattern.

Barcode

The barcode tool decodes a barcode inside a region of interest. The tool is used by clicking the Barcode command
button.

74 Chapter 7. Tools

nVision User Guide, Release 2016.3

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a box that is used to select the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside).

Once the search box has been positioned over a code in the image it tries to decode the code. Its position and the
decoded text is displayed in green, if it matches the expected text (anything in this case):

The next picture shows the tool result, if the decoded text does not match the expectation:

This makes it easy to see the tool’s outcome.

The barcode tool has a configuration panel, which can be used to set parameters.

The controls in Pattern Matching allow you to specify a pattern that the decoded result must follow in order to be
correct.

Regular Expression: Defines the pattern that the decoded string should match. The pattern follows the rule of a
regular expression, specifically the .NET variant of regular expressions.

The following table explains common cases. For full information, look at the original documentation
(https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx).

7.4. Identification 75

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

nVision User Guide, Release 2016.3

76 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.4. Identification 77

nVision User Guide, Release 2016.3

78 Chapter 7. Tools

nVision User Guide, Release 2016.3

Pat-
tern

Description

. Any character (except newline). a.c abc, aac, acc,
. . .

^ Start of a string. ^abc abc, abcdefg,
abc123, . . .

$ End of a string. abc$ abc,
endsinabc,
123abc, . . .

|Alternation. bill|
ted

bill, ted

[..
.]

Explicit set of characters to match. a[bB]c abc, aBc

* 0 or more of previous expression. ab*c ac, abc, abbc,
. . .

+ 1 or more of previous expression. ab+c abc, abbc,
abbbc, . . .

? 0 or 1 of previous expression; also forces minimal matching when an
expression might match several strings within a search string.

ab?c ac, abc

{. . .} Explicit quantifier notation. ab{2}c abbc
(. . .) Logical grouping of part of an expression. (abc){2} abcabc
\\ Preceding one of the above, it makes it a literal instead of a special

character.
a\\.b a.b

Ignore Case: If checked the case of the characters is ignored, otherwise the case must match exactly.

The controls in Enabled Symbologies allow you to enable or disable specific symbologies. Supported symbologies
are Code 39, Code 30 Extended, Code 93, EAN 128, EAN 8, EAN 13, UPC A, UPC E, Databar and Databar Limited.

The controls in Decoder Parameters allow you to manipulate locator and decoder behavior.

Number of Scanning Directions: 0: vertical, 1: horizontal, 2: both, 3 and more: oblique, every 180/N degrees. The
default setting of 4 means the locator scans every 45 degrees.

Scanning Density: The spacing between scanning-lines, in pixels; small values favor the decoding rate and increase
the running time. 5 is the default.

Noise: The noise threshold. Threshold level to get rid of spurious bars caused by noise. 40 is the default.

Check Quiet Zone: Check the quiet zone. When checked, a quiet zone as large as the standard requires must be
present; when set to false, it is advisable to disable other symbologies to avoid false matches. The default is checked.

Minimum Bars: The minimum number of bars for a successfull decode.

Matrixcode

The matrixcode tool decodes a two-dimensional barcode inside a region of interest. The tool is used by clicking the
Matrixcode command button.

The tool displays graphical elements to specify the region of interest as well as to display the results.

7.4. Identification 79

nVision User Guide, Release 2016.3

It displays a box that is used to select the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside).

Once the search box has been positioned over a code in the image it tries to decode the code. Its position and the
decoded text is displayed in green, if it matches the expected text (anything in this case):

The next picture shows the tool result, if the decoded text does not match the expectation:

This makes it easy to see the tool’s outcome.

The matrixcode tool has a configuration panel, which can be used to set parameters.

The controls in Pattern Matching allow you to specify a pattern that the decoded result must follow in order to be
correct.

Regular Expression: Defines the pattern that the decoded string should match. The pattern follows the rule of a
regular expression, specifically the .NET variant of regular expressions.

The following table explains common cases. For full information, look at the original documentation
(https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx).

80 Chapter 7. Tools

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

nVision User Guide, Release 2016.3

7.4. Identification 81

nVision User Guide, Release 2016.3

82 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.4. Identification 83

nVision User Guide, Release 2016.3

Pat-
tern

Description

. Any character (except newline). a.c abc, aac, acc,
. . .

^ Start of a string. ^abc abc, abcdefg,
abc123, . . .

$ End of a string. abc$ abc,
endsinabc,
123abc, . . .

|Alternation. bill|
ted

bill, ted

[..
.]

Explicit set of characters to match. a[bB]c abc, aBc

* 0 or more of previous expression. ab*c ac, abc, abbc,
. . .

+ 1 or more of previous expression. ab+c abc, abbc,
abbbc, . . .

? 0 or 1 of previous expression; also forces minimal matching when an
expression might match several strings within a search string.

ab?c ac, abc

{. . .} Explicit quantifier notation. ab{2}c abbc
(. . .) Logical grouping of part of an expression. (abc){2} abcabc
\\ Preceding one of the above, it makes it a literal instead of a special

character.
a\\.b a.b

Ignore Case: If checked the case of the characters is ignored, otherwise the case must match exactly.

The controls in Enabled Symbologies allow you to enable or disable specific symbologies. Supported symbologies
are Data Matrix and QR Code.

The controls in Decoder Parameters allow you to manipulate locator and decoder behavior.

Polarities: Selects the possible contrast of the marking. Auto (default), Black on White or White on Black.

Views: Selects the possible orientation of the marking. Auto (default), Straight or Mirrored.

7.5 Miscellaneous

7.5.1 Adjust Camera

The Adjust Camera tab on the Home menu contains the Exposure tool and various calibration tools, which can be used
to set the exposure time of a camera and establish a world to image coordinate calibration.

Exposure

The Exposure tool is used to set the exposure time of a camera. It works with GenICam cameras that have the
exposure time parameter. The tool is used by clicking the Exposure command button (Home - Acquire).

The tool displays the live image and shows over-exposed parts in yellow and underexposed parts in blue.

The exposure tool has a configuration panel, which can be used to set parameters.

84 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.5. Miscellaneous 85

nVision User Guide, Release 2016.3

86 Chapter 7. Tools

nVision User Guide, Release 2016.3

The Exposure Time is the exposure time in ms (milliseconds). It uses GenICam to write the exposure time to the
camera, which has to be connected to the global Camera output port in the system globals.

Underflow and Overflow show the respective percentages of the underflow and overflow pixels.

At the bottom, a graphic of the brightness histogram is shown.

When the exposure time is changed, the blue and yellow image overlays, the percentage values and the histogram
graphic are all affected and change. The graphic and numeric outputs help you to properly set exposure time interac-
tively.

Define Scale

The Define Scale tool is used to define an overall scale in the image. You can use it if your optical axis is orthogonal
to the measurement plane, and if the desired measurement accuracy is not to high.

The tool calculates a calibration factor that is used to convert pixel measurements to world units, such as µm, mm, cm
or m (or any other spatial unit that is needed in your application). Once a calibration has been established, other length
measurement tools respect the calibration and output their measurments in world unit (as opposed to image units in
pixels).

The Define Scale tool can use a line to establish a scale.

Alternatively, it can use a circle to establish a scale.

The Define Scale tool has a configuration panel where you can select whether you want to use a line or a circle for
setting the scale.

Once you have aligned the line or circle with a know distance in your image, type the distance as well as the unit and
press the Teach button.

Calibrate

The Calibrate tool is used to establish a camera calibration. The calibration can correct a perspective distortion and
still measure proper distances in the calibrated plane.

The tool detects the positions of dots on a calibration target and uses those to detect the perspective distortion. In
addition to the detected dot positions the tool needs to know the distance between two dots in world units as well as
the world unit.

Only the dots within the region of interest turn blue and are used for calibration.

The Calibrate tool has a configuration panel where you can enter the distance between two dots as well as the world
units.

Once you have a proper image of the calibration target and entered the distance between the dots as well as the unit,
press the Teach button.

7.5.2 Pipeline

The Result tab on the Pipeline menu contains the result tool, which provides a simple means of communication.

7.5. Miscellaneous 87

nVision User Guide, Release 2016.3

88 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.5. Miscellaneous 89

nVision User Guide, Release 2016.3

Result

The result tool is used to communicate the result of an inspection task. It works with an Adam module from Advantec.
The tool is used by clicking the Result command button (Pipeline - Result).

The result tool writes the result in the form of an electrical signal to the Adam module.

The result tool has a configuration panel, which can be used to set parameters.

The parameters in Configure IO specify the electrical lines that are switched on.

OK specifies the number of the output of the Adam module which is used to signal the OK state.

Not OK specifies the number of the output of the Adam moduel which is used to signal the not OK state.

90 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.5. Miscellaneous 91

nVision User Guide, Release 2016.3

92 Chapter 7. Tools

nVision User Guide, Release 2016.3

7.5. Miscellaneous 93

nVision User Guide, Release 2016.3

94 Chapter 7. Tools

CHAPTER 8

Dataflow

nVision can be programmed graphically using the concept of a dataflow pipeline.

While the user is executing image processing commands, nVision builds a pipeline of those commands. Such a
pipeline is essentially a program that can then be executed over and over again, for potentially many images. The
image data flows through the pipeline much like water flows through a system of pipes.

Here is an example of such a pipeline, where the data flows from top to bottom.

It is particularly easy to create this pipeline, just by issuing the following commands, one after the other:

Command Description

File - Open Opens a file (cells.tif from samples).

Segmentation - Threshold Binary thresholding (> 100).

Segmentation - Connected Components Split into connected components.

Segmentation - Blob Analysis Calculate features for objects.

There are some parameters on top of some pipeline steps that can be changed and that affect the outcome of the
pipeline. If you want to know what these parameters are, move the mouse on top of the parameters editor and look
at the tooltip that appears. Whenever a parameter is changed by the user, the pipeline reruns and the results are
re-calculated.

What you have built this way is a linear sequence of steps - or pipeline nodes - and this is essentially a very simple
program.

95

nVision User Guide, Release 2016.3

Fig. 8.1: A linear pipeline, where the data flows from top to bottom, following the arrows.

96 Chapter 8. Dataflow

nVision User Guide, Release 2016.3

8.1 Linear Pipeline

A linear pipeline is the easiest way to create a program in nVision.

A linear pipeline is displayed at the left of the workbench. Each image can have its own pipeline and the pipeline is
tightly coupled with the image. When an image is saved, the pipeline is saved along the image under the same name
but with .xpipe added. If you save an image under the name image.tif, the associated pipeline will be save at
the same location under the name image.tif.xpipe.

A pipeline can be explicitely exported to a file, in case you want to reuse it for a different image. This is done with
the Export Pipeline command from the File menu. To actually re-use a pipeline for a different image, use the Import
Pipeline command from the File menu.

A pipeline can also be used for a batch of files in a folder. In this case, you would first load the set of file using the
Open Folder command from the File menu, and then load a pipeline using the Import Pipeline command from the
File menu. On the Pipeline menu are commands that can then be used to run the pipeline on all images, or to single
step forward or backward through the sequence of files.

The steps of a linear pipeline are called pipeline nodes or simply nodes.

Fig. 8.2: A node in the linear pipeline. Data flows in from the top and out at the bottom. Parameters can be changed
by the user using the controls at the top of the node. Output data is previewed in a little thumbnail presentation in the
node.

Behind the scenes, building a linear pipeline is a complex process. When a command is executed from the menu, the
associated node is appended to the existing pipeline. At the same time, it is connected to the pipeline, so that the data
can flow to the new end. Also, the visualization in the workbench is changed, so that the result of the last pipeline
node is shown.

The data that can flow through the pipeline is not restricted to images only. There are many more types of data, such as
histograms, profiles, regions, blob analysis results or even numbers. Commands however may make sense for a limited
set of types only. An image filter needs an image on input. As a consequence, when a linear pipeline is built, some
commands on the menu may be grayed out, if the result of executing them would be an inconsistent linear pipeline.

Usually, the last node in a linear pipeline is selected, and new nodes are appended at the end. However, you can also
select a node in the middle of the pipeline. In this case, a node would be inserted after the selected node. In such cases
even more commands may be grayed out, since not only the input to the node must fit the available type, but also the
output of the node.

Another feature of the linear pipeline are the previews that are displayed within the nodes. We have tried to make these
previews as helpful as possible, so that it is easy for you to understand how a specific pipeline works. The previews
are live, which you will appreciate if you have a camera connected.

8.1. Linear Pipeline 97

nVision User Guide, Release 2016.3

Finally, the nodes in the linear pipeline have a context menu, which is shown when you move the mouse on top of the
node:

Command

Show the node result in the workbench window.

Toggle acquisition from a camera.

We encourage you to play with the commands and build pipelines as you wish. nVision is made to be explored by the
user and we have tried to make this exploration phase as easy as possible. Once you know a few basics, nVision is
very learnable, and a lot of its features can be found out by simple exploration, without the need of reading a lengthy
manual.

8.2 Sub-Pipeline

Surprisingly many applications can be carried out using a linear pipeline, but at some time sooner or later, you will hit
a task that cannot be solved this way. For this reason, we have created the possibility to work with branched pipelines.
A branched pipeline can have multiple branches and is much more powerful and flexible than its linear variant. Here
is an example of a very simple branched pipeline:

The ingredients of a branched pipeline are essentially the same as for the linear pipeline: nodes and connections
between the nodes. With the increased flexibility comes a little bit more work for the user: the connections are no
longer automatic, but must be done manually.

Although they are displayed slightly different, nodes in the linear and in the branched pipeline are equivalent. You can
also see that the distinction between input and parameters is somewhat arbitrary. In fact, parameters are just additional
inputs.

Inputs are either mandatory or optional. Mandatory inputs need to be connected to some other node upstream, other-
wise the node will not be able to execute. If a node does cannot execute, it either displays a standard icon or nothing at
all in its preview area. Optional inputs do not need to be connected and they show a little control element that allows
to input a value. However, they can be connected to some other node upstream, and in this case the control element is
hidden and the data is taken from the upstream node.

A sub-pipeline is created by executing the Subpipeline command from the Pipeline menu. This adds a sub-pipeline
node to the linear pipeline. Since the sub-pipeline is empty at this time, the workbench shows an empty window, but
at the top you see a tab with the name SubPipeline and an orange splitter. The splitter can be dragged down with the
mouse, and if you do so, the upper portion of the window will display the branched pipeline area and the lower portion
of the window will display the result. Since at this time the subpipeline is still empty, both areas will be mostly empty
as well. In order to change the name of the sub-pipeline, click its title on top of the preview.

In the sub-pipeline, the commands are available via a context menu, which you can access by clicking with the right
mouse button into the editor area. There are more commands available as in the linear case.

The commands in the context menu are organized in groups. Most commands add a node to the pipeline editor canvas,
which you can then drag around with the mouse by clicking somewhere inside its box. You can also connect the ports
of the nodes to other ports in order to define the flow of data. Arrows can only be drawn between compatible ports,
and icons guide you and help you to determine which ports are compatible.

At the top is a search box where you can type your command. For example, if you search a command related to
histograms, just start typing hi, and the menu show only thos commands that contain the letter hi in their name (or
group).

It is helpful to have the help window open while you learn programming. When you browse the menu, the help window
will show help for the command you are browsing.

98 Chapter 8. Dataflow

nVision User Guide, Release 2016.3

Fig. 8.3: A very simple branched pipeline. It takes an image on its single input, maps it over a palette and outputs the
result. Another node creates the palette by choosing between a set of predefined entries. Below the pipeline you see
the result, which in this case is a colored image.

8.2. Sub-Pipeline 99

nVision User Guide, Release 2016.3

Fig. 8.4: A node in the branched pipeline. Data flows in from the left and out at the right. Parameters can be changed
by the user using the controls at the left of the node. Output data is previewed in a little thumbnail presentation in the
node.

The Pipeline group contains a few commands that are related to pipeline handling. The Imaging group contains
commands that are related to image processing. The Vision group contains commands related to particle analysis,
gauging, template matching, barcode and matrixcode reading as well as OCR. The Graphics group contains commands
to create graphical overlays and editors, and the Support group contains any other commands that support you in
creating efficient pipelines.

100 Chapter 8. Dataflow

nVision User Guide, Release 2016.3

Fig. 8.5: The context menu of the sub-pipeline.

8.2. Sub-Pipeline 101

nVision User Guide, Release 2016.3

102 Chapter 8. Dataflow

CHAPTER 9

Image Processing

9.1 Point Algorithms

Point operations are the simplest image processing transformations. An output pixel value depends on the input pixel
value only. Examples of such transformations are tone adjustments for brightness and contrast, thresholding, color
space transformation, image compositing, image arithmetic or logic, etc.

Mathematically, a point operator can be written as

ℎ(𝑥, 𝑦) = 𝑔(𝑓(𝑥, 𝑦))

or

ℎ = 𝑔 ∘ 𝑓

9.1.1 Classification of Point Operations

There are various ways to classify point operations. One way to classify them is by the number of arguments. Unary
point operations take one argument, binary point operations take two arguments and tertiary point arguments take
three arguments. Another way is to separate them into arithmetic, logical, and other operations. The table shows this
classification for the operations implemented within nVision.

| | Arithmetic | Logic | Other | |———-|—————————————————–|————–|—————————|
| Unary | Absolute, Decrement, Increment, Negate, Square Root | Not | Colorspace transformation | | Binary | Add,
Difference, Subtract | And, Or, Xor | | | Tertiary |

9.1.2 Unary Image Operator

Applies a unary point operation to an image. Unary point operations are applied pixel by pixel, the same way for every
pixel.

The following operators are available:

103

nVision User Guide, Release 2016.3

Absolute

Absolute.

abs (Image) -> Result

Decrement

Decrement by 1.

Image - 1 -> Result

Increment

Increment by 1.

Image + 1 -> Result

104 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Negate

Negate (2’s complement).

• Image -> Result

Not

Not (1’s complement).

~ Image -> Result

9.1. Point Algorithms 105

nVision User Guide, Release 2016.3

Square Root

Square root.

sqrt(Image) -> Result

Inputs

Image (Type: Image)

The input image.

Operator (Type: string)

Specifies the operator.

operator operation
++ increment
-- decrement
- negate (2’s complement)
! not (1’s complement)
abs absolute
sqrt square root

106 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Outputs

Result (Type: Image)

The result image.

9.1.3 BinaryImageConstantOperator

Applies a binary point operation between an image and a constant. Possible operations can be grouped into arithmetic,
logic and comparison fields. Binary point operations are applied pixel by pixel, the same way for every pixel.

Arithmetic Operators

The following operators are available:

Add

Add with saturation.

Image + Constant -> Result

Subtract

Subtract with saturation.

Image - Constant -> Result

9.1. Point Algorithms 107

nVision User Guide, Release 2016.3

Difference

Difference with saturation.

abs (Image - Constant) -> Result

Multiply

Multiply without saturation.

Image * Constant -> Result

108 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Divide

Divide without saturation.

Image / Constant -> Result

Multiply (Blend)

Multiply with saturation.

Image * Constant -> Result

Divide (Blend)

Divide with saturation.

Image / Constant -> Result

Logic Operators

The following operators are available:

9.1. Point Algorithms 109

nVision User Guide, Release 2016.3

110 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

And

Logical And.

Image & Constant -> Result

Or

Logical Or.

Image | Constant -> Result

Xor

Logical Xor.

Image ^ Constant -> Result

Comparison Operators

The following operators are available:

9.1. Point Algorithms 111

nVision User Guide, Release 2016.3

Smaller

Compare smaller.

Image < Constant -> Result

Smaller or Equal

Compare smaller or equal.

Image <= Constant -> Result

112 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Equal

Compare equal.

Image == Constant -> Result

Bigger or Equal

Compare bigger or equal.

Image >= Constant -> Result

Bigger

Compare bigger.

Image > Constant -> Result

Min/Max Operators

The following operators are available:

9.1. Point Algorithms 113

nVision User Guide, Release 2016.3

114 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Min

Minimum.

min(Image, Constant) -> Result

Max

Maximum.

max(Image, Constant) -> Result

Inputs

Image (Type: Image)

The input image.

Constant (Type: object)

The constant.

9.1. Point Algorithms 115

nVision User Guide, Release 2016.3

Operator (Type: string)

Specifies the operator.

operator operation
+ add
- subtract
diff difference
* multiply
/ divide
*_blend multiply (blend)
/_blend divide (blend)
& and
| or
^ xor
< smaller
<= smaller or equal
== equal
>= bigger or equal
> bigger
min minimum
max maximum

Outputs

Result (Type: Image)

The result image.

9.1.4 BinaryImageOperator

Applies a binary point operation between two images. Possible operations can be grouped into arithmetic, logic and
comparison fields. Binary point operations are applied pixel by pixel, the same way for every pixel, for corresponding
pixels of two images.

The following operators are available:

Add with saturation.

Image + Gradient -> Result

Subtract with saturation.

Image - Gradient -> Result

Difference with saturation.

116 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

9.1. Point Algorithms 117

nVision User Guide, Release 2016.3

abs (Image - Gradient) -> Result

Multiply without saturation.

Image * Gradient -> Result

Divide without saturation.

Image / Gradient -> Result

Multiply with saturation.

Image * Gradient -> Result

Divide with saturation.

Image / Gradient -> Result

Logic Operators

The following operators are available:

And

Logical And.

Image & Gradient -> Result

118 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Or

Logical Or.

Image | Gradient -> Result

Xor

Logical Xor.

Image ^ Gradient -> Result

Comparison Operators

The following operators are available:

Smaller

Compare smaller.

Image < Gradient -> Result

9.1. Point Algorithms 119

nVision User Guide, Release 2016.3

120 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

Smaller or Equal

Compare smaller or equal.

Image <= Gradient -> Result

Equal

Compare equal.

Image == Gradient -> Result

Bigger or Equal

Compare bigger or equal.

Image >= Gradient -> Result

Bigger

Compare bigger.

Image > Gradient -> Result

9.1. Point Algorithms 121

nVision User Guide, Release 2016.3

Min/Max Operators

The following operators are available:

Min

Minimum.

min(Image, Gradient) -> Result

Max

Maximum.

max(Image, Gradient) -> Result

Inputs

ImageA (Type: Image)

The first input image.

122 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

ImageB (Type: Image)

The second input image.

Operator (Type: string)

Specifies the operator.

operator operation
+ add
- subtract
diff difference
* multiply
/ divide
*_blend multiply (blend)
/_blend divide (blend)
& and
| or
^ xor
< smaller
<= smaller or equal
== equal
>= bigger or equal
> bigger
min minimum
max maximum

Outputs

Result (Type: Image)

The result image.

9.2 Color

The term color space describes the representation of colors with numbers. An infinite number of color spaces is in
existence and a large number is in everyday use today.

9.2. Color 123

nVision User Guide, Release 2016.3

Physically, color is a sensation that can be described with a spectrum, a mixture of light waves of different wavelengths
between 380 nm and 700 nm. The spectrum is a physical quantity that can be measured by appropriate means.

Fig. 9.1: The Visible Spectrum

However, color is also a human sensation that is formed in the human brain by means of stimulation via the eye. This
makes it a bit difficult to talk about color, since some people might perceive it slightly different. In fact, there are
people which exhibit certain forms of color blindness such that their perception is different from people with normal
color vision.

Since there seems to be slightly different color perception even among non-color-blind people, the CIE has defined a
normal observer with a defined color perception.

Fig. 9.2: The CIE Standard Observer Color Matching Functions

The normal observer has been defined in 1931 by testing around 200 people with normal vision. These people have
been asked to mix a color that they observed on a 2 degree view centered in the middle of the retina with three colored
light sources (red, green and blue). The numbers of the mixtures have been recorded and served to derive the normal
spectrum. In 1964 a similar experiment has been carried out to determine the 10 degree normal spectrum.

Color primaries (red, green and blue) are mixed to approximate the color spectrum in most television and computer
displays.

Fig. 9.3: The Color Display Spectrum

124 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

9.2.1 Use of Color Spaces in Image Reproduction and Television

Image reproduction in print or television faces very difficult problems, since images are often viewed in dramatically
different conditions than they were taken. For example take a scene in the open field on a bright sunny day which
has been filmed and is viewed by the audience in a dark cinema at total darkness. Yet, the color impression should
be natural for the audience. Similar problems exist in print, where paper, ink and process differences make it very
difficult to achieve satisfying results.

While the color space conversion functions in nVision can be used to compensate for these effects, nVision has not
been designed specifically to provide the equivalent of a color management system.

9.2.2 Use of Color Spaces in Image Analysis

In image analysis color spaces are often used to provide a means for qualitative separation of colors. Depending on the
specific needs, some color spaces are more suitable than others, and therefore the need of color space transformation
arises.

The color space transformations available in nVision have been designed to target the needs in image analysis.

9.2.3 The CIE Color Spaces

With the standard observer color matching functions, the CIE defined the XYZ color space. The tristimulus values for
a color with a spectral power distribution I(𝜆) are given in terms of the standard observer by:

𝑋 =

∫︁
𝐼(𝜆)�̄�(𝜆)𝑑𝜆

𝑌 =

∫︁
𝐼(𝜆)𝑦(𝜆)𝑑𝜆

𝑍 =

∫︁
𝐼(𝜆)𝑧(𝜆)𝑑𝜆

Since the human eye has three types of color sensors, a full plot of all visible colors is a three-dimensional figure.
However, if brightness is stripped off, chromaticity remains. For example brown is a darker version of yellow, they
have the same chromaticity but different brightness.

The XYZ color space was designed so that the Y parameter was a measure of the brightness of a color. The chromatic-
ity of a color could then be specified by the parameters x and y:

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍

𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍

Because of the normalization, the third parameter z is not needed:

𝑧 =
𝑍

𝑋 + 𝑌 + 𝑍
= 1 − 𝑥− 𝑦

The derived color space specified by x, y and Y is known as the CIE xyY color space and is widely used to specify
colors in practice.

9.2. Color 125

nVision User Guide, Release 2016.3

Fig. 9.4: The CIE Color Space Chromaticity Diagram

126 Chapter 9. Image Processing

nVision User Guide, Release 2016.3

9.2.4 The RGB Color Space

There is not only one RGB color space. Instead, more information must be presented to precisely define the specific
variant of RGB. Notably, the XYZ coordinates of the red, green and blue Primaries must be known, as well as the
white point.

A very good source of information is the website of Bruce Lindbloom, notably the page titled “RGB Working Space
Information”.

Most images nowadays use the sRGB color space, and this is also the default chosen by the nVision software.

9.2.5 The HLS and HSI Color Spaces

These color models are based on an artist’s concepts of tint, shade and tone. The coordinate system is cylindrical and
the models are designed to provide intuitive color specification.

The HLS (hue, lightness, saturation) color model forms a double cone in a cylindrical space. Hue is the angle around
the vertical axis, with red at 0 degrees, green at 120 degrees and blue at 240 degrees. The colors accur around the
perimeter in the same order as in the CIE chromaticity diagram. Lightness is along the vertical center axis and ranges
from black at the bottom over the various grey shades to white at the top. Saturation is the radial distance from the
center axis and specifies how much color and grey are mixed.

The HSI (hue, saturation, intensity) color model forms a cone, where the top plane contains white in the center and
saturated colors around the perimeter. The bottom tip of the cone is black. As with the HLS model, hue is the angle
around the vertical axis, with red at 0 degrees, green at 120 degrees and blue at 240 degrees.

The mathematics of the both models are described in “Foley, van Dam: Computer Graphics: Principles and Practice”.

Both color spaces make it easy to segment images based on colors.

9.2.6 The L*a*b* Color Space

The L*a*b* color space (sometimes also called CIELAB) is a color opponent space. It is physically non-linear to
provide perceptual uniformity. The difference betwwen colors can then be calculated simply by computing their
Euclidean distance. While HLS/HSI provide are intuitive, but not uniform, L*a*b adds uniformity.

The mathematics of the L*a*b* color space is described in “Reinhard: Color Imaging”.

9.2.7 Color Space Conversion

nVision has functions to convert images between different color spaces.

9.2. Color 127

nVision User Guide, Release 2016.3

128 Chapter 9. Image Processing

CHAPTER 10

Image Analysis

10.1 Blob Analysis

A group of connected pixels is commonly called a blob. Here is an example of an image containing a few blobs. The
original image is segmented and the connected components are determined and visualized by color.

Original Image Segmented Image Connected Components

Blob analysis takes a set of connected pixels that are usually generated by imaging real-life objects, and calculates
features from the pixel set, such as their area, their position, etc.

Often blobs are produced by some segmentation process, and one of the simplest segmentation methods is binary
thresholding: every pixel with a value below the threshold is part of the background and every other pixel is part of
some blob. Exactly which blob the pixel is a part of is determined by a connectivity analysis process sometimes called
labelling or connected components analysis.

The smallest possible blob consists of a single pixel, and larger blobs consist of several connected pixels.

Have a look at the image above: Does this picture contain one or two blobs? It depends on how you look at it. If you
only allow connections via horizontal and vertical neighbours, the picture contains two blobs. However, if diagonal
connections count as well, the picture contains one blob only.

129

nVision User Guide, Release 2016.3

Fig. 10.1: Does this picture contain one or two blobs?

4-connected 8-connected

By convention, one often uses 8-connectedness for the foreground and 4-connectedness for the background pixels.
According to this convention, the following picture contains one white object with two black holes.

Fig. 10.2: One white object with two black holes

One can summarize the relations of the above picture with the following table.

The table clearly shows that there are only two useful connectivity configurations:

130 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Foreground Connectivity Background Connectivity Objects / Holes
4 4 7 / 2
4 8 7 / 0
8 4 1 / 2
8 8 1 / 0

• One (white) object with two (black) holes, or

• Seven (white) objects with no holes.

The other possible configurations do not make any sense, regardless how you look at them.

By default, nVision assumes that foreground pixels are 8-connected and background pixels are 4-connected.

nVision uses regions to represent blobs. Blob analysis is then the process of calculating region features. Because
of the efficient run-length storage of regions, these features can be calculated very quickly. Since a region does not
contain any pixel values, region features do not need to touch pixels. For a surprisingly large number of features pixel
values are not necessary, such as the area or the center of gravity. Here is an example of how a region_list can be
created by thresholding and connected components analysis:

However, there is also a class of features that can only be calculated when you take pixel values into account, such as
the mean brightness of a blob. nVision has a set of functions that can calculate pixel based features as well, but keep
in mind that the performance requirements of calculating these features are higher. For pixel-based features, you still
need a region to specify the object.

Here is a list of the region features:

Feature Description
Area The area as a number of pixels.
Left The leftmost column position (inclusive).
Right The rightmost column position (exclusive).
Top The topmost row position (inclusive).
Bottom The bottommost row position (exclusive).
Width The width (axis parallel).
Height The height (axis parallel).
Aspect Ratio The axis parallel aspect ratio.
Bounds The axis-parallel bounding box.
Perimeter The perimeter.
Compactness The compactness.
Circularity The circularity.
Sphericity The sphericity.
Roughness The roughness.
Roundness The roundness.
Convex Hull The convex hull.
Convex Area The area of the convex hull.
Perforation The perforation.
Convexity The convexity.
Convex Perimeter The perimeter of the convex hull.
Maximum Feret Diameter The maximum diameter of the convex hull.
Minimum Feret Diameter The minimum diameter of the convex hull.
Minimum Bounding Circle The minimum bounding circle of the region.
Inner Contour The inner contour (lies on the blob).
Inner Contour Perimeter The length of the inner contour.
Outer Contour The outer contour (lies on the background).

Continued on next page

10.1. Blob Analysis 131

nVision User Guide, Release 2016.3

Table 10.1 – continued from previous page
Feature Description
Outer Contour Perimeter The length of the outer contour.
Raw Moments The moments based on the region.
Normalized Moments The normalized moments based on the region.
Centroid The center of gravity based on the region.
Central Moments The central moments based on the region.
Equivalent Ellipse The equivalent ellipse based on the region.
Equivalent Ellipse Eccentricity the equivalent ellipse based on the region.
Scale Invariant Moments The scale invariant moments based on the region.
Hu Moments Hu moments based on the region.
Flusser Moments Flusser moments based on the region.
Holes The holes of the region in the form of a region_list of connected components.
Number of Holes The number of holes of the region.
Area of Holes The total area of the holes of the region.
Fiber Length A length measurement of fiber-like objects.
Fiber Width A thickness measurement of fiber-like objects.
Bounding Rectangle A bounding rectangle of the region. This rectangle has the same orientation as the equivalent ellipse.
Minimum Area Bounding Rectangle A bounding rectangle of the region. This rectangle has the smallest possible area.
Minimum Perimeter Bounding Rectangle A bounding rectangle of the region. This rectangle has the smallest possible perimeter.

Here is a list of the pixel based features:

Feature Description
Minimum Position The position of the minimum.
Minimum The minimum pixel value.
Maximum Position The position of the maximum.
Maximum The maximum pixel value.
Total The total value.
Mean The mean value.
Standard Deviation The standard deviation.
Skewness The skewness.
Channel Minimum The per-channel minimum pixel value.
Channel Maximum The per-channel maximum pixel value.
Contrast The contrast.
Weber Contrast The contrast according to Weber’s formula.
Michelson Contrast The conrast according to Michelson’s formula.
Horizontal Profile The horizontal profile.
Vertical Profile The vertical profile.
Histogram The histogram.
Raw Moments The moments based on the grey values.
Normalized Moments The normalized moments based on the grey values.
Centroid The center of gravity based on the grey values.
Central Moments The central moments based on the grey values.
Equivalent Ellipse The equivalent ellipse based on the grey values.
Equivalent Ellipse Eccentricity The equivalent ellipse based on the grey values.
Scale Invariant Moments The scale invariant moments based on the grey values.
Hu Moments Hu moments based on the grey values.
Flusser Moments Flusser moments based on the grey values.

132 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.3: Semgmentation, connected components analysis and blob analysis.

10.1. Blob Analysis 133

nVision User Guide, Release 2016.3

10.2 Region Features

The simplest feature you may want to calculate - which is not a region feature in the strict sense - could be the number
of objects in an image.

Fig. 10.4: Calculating the number of objects in an image.

The second simplest feature is the region area, and now we are really talking about region features.

10.2.1 Area

The area of a region is an integer value and specifies the number of pixels in the object. It is calculated efficiently by
summing the lengths of all region chords together.

Fig. 10.5: Calculating the area.

The area property is often used to filter out small or large objects. Another way to calculate this feature is with the
blob_features class:

10.2.2 Left

This calculates the minimal x coordinate (inclusive) of the region.

Regions that have a left value of 0 (or <0) are regions touching (or crossing) the left border. This feature is sometimes
used to filter out objects touching the left border.

Since this is an integer coordinate, it is conceptually in the middle of the leftmost pixel.

10.2.3 Right

This calculates the maximal x coordinate (exclusive) of the region.

Regions that have a right value equal to the image width (or bigger than the image width) are regions touching (or
crossing) the right border. This feature is sometimes used to filter out objects touching the right border.

Since this is an integer coordinate, it is conceptually half a pixel right of the rightmost pixel.

134 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.6: Calculating the left position.

Fig. 10.7: Visualizing the left position.

10.2. Region Features 135

nVision User Guide, Release 2016.3

Fig. 10.8: Calculating the right position.

Fig. 10.9: Visualizing the right position.

136 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.4 Top

This calculates the minimal y coordinate (inclusive) of the region.

Fig. 10.10: Calculating the top position.

Regions that have a top value of 0 (or <0) are regions touching (or crossing) the top border. This feature is sometimes
used to filter out objects touching the top border.

Since this is an integer coordinate, it is conceptually in the middle of the topmost pixel.

10.2.5 Bottom

This calculates the maximal y coordinate (exclusive) of the region.

Regions that have a bottom value equal to the image height (or bigger than the image height) are regions touching (or
crossing) the bottom border. This feature is sometimes used to filter out objects touching the bottom border.

Since this is an integer coordinate, it is conceptually in the middle of the topmost pixel.

10.2.6 Width

This calculates the axis-parallel width of the region.

10.2.7 Height

This calculates the axis-parallel height of the region.

10.2.8 Aspect Ratio

This calculates the axis-parallel aspect ratio of the region. The aspect ratio is calculated according to the following
formula:

𝑟 =
𝑤

ℎ

where w is the width and h is the height.

10.2. Region Features 137

nVision User Guide, Release 2016.3

Fig. 10.11: Visualizing the top position.

Fig. 10.12: Calculating the left position.

138 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.13: Visualizing the bottom position.

Fig. 10.14: Calculating the width of an object.

10.2. Region Features 139

nVision User Guide, Release 2016.3

Fig. 10.15: Calculating the height of an object.

Fig. 10.16: Calculating the aspect ratio of an object.

140 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.9 Sphericity

This calculates the sphericity of the region. The sphericity is defined as the quotient of the diameter of a circle having
the same area as the object and the maximum feret diameter of the object. The sphericity is calculated according to
the following formula:

𝑠 =
2 * 𝑠𝑞𝑟𝑡 𝑎

𝑝𝑖

𝑓

where a is the area and f is the maximum feret diameter.

10.2.10 Circularity

This calculates the circularity of the region. The circularity is defined as the quotient of the perimeter of a circle having
the same area as the object and the perimeter of the object. The circularity is calculated according to the following
formula:

𝑐 =
2 * 𝑠𝑞𝑟𝑡𝑎 * 𝑝𝑖

𝑝

where a is the area and p is the perimeter.

10.2.11 Roundness

This calculates the roundness of the region. The roundness is defined as the quotient of the area of the object and the
area of the minimum bounding circle. The roundness is calculated according to the following formula:

𝑟 =
𝑎

𝑐

where a is the area and c is the area of the minimum bounding circle.

10.2.12 Roughness

This calculates the roughness of the region. The roughness is defined as the quotient of the perimeter of the object and
the perimeter of the convex hull. The roughness is calculated according to the following formula:

𝑟 =
𝑝

𝑐

where p is the perimeter and c is the perimeter of the convex hull.

10.2.13 Bounds

This calculates the bounds of the region.

The bounds are an axis parallel rectangle that encompasses the whole region tightly.

10.2.14 Perimeter

The perimeter of a region specifies the length of the object outline.

10.2. Region Features 141

nVision User Guide, Release 2016.3

Fig. 10.17: Calculating the bounds of an object.

Fig. 10.18: Visualizing the bounds.

142 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.19: Calculating the perimeter of an object.

Fig. 10.20: Calculating the compactness of an object.

10.2.15 Compactness

This calculates the compactness of the region.

The compactness c is calculated from the region area a and the region perimeter p according to this formula:

𝑐 =
𝑝2

4𝜋𝑎

10.2.16 Convex Hull

This calculates a polyline that constitutes the convex hull of the region.

Fig. 10.21: Calculating the convex hull of an object.

The convex hull encompasses the region tightly, like a rubberband.

The convex hull can be used to calculate further features, such as the area of the convex hull, the perimeter of the
convex hull, as well as the minimum and maximum width of the convex hull. The minimum and the maximum width
of the convex hull are calculated using a rotating caliper algorithm and are often called the Feret diameters.

10.2. Region Features 143

nVision User Guide, Release 2016.3

Fig. 10.22: Visualizing the convex hull.

144 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.17 Convex Area

This calculates the area enclosed by the convex hull.

Fig. 10.23: Calculating the convex area of an object.

The convex area is always the same or bigger than the area of the original region. For the example image one can see
right away that it is certainly bigger.

10.2.18 Perforation

This calculates the perforation of the region.

Fig. 10.24: Calculating the perforation of an object.

The perforation p is calculated from the region area a and the area of the holes ah according to this formula:

𝑝 =
𝑎ℎ
𝑎

The perforation is zero for a region that has no holes, and it increases the more holes the region has. The perforation
is scale invariant.

10.2.19 Convexity

This calculates the convexity of the region.

The convexity c is calculated from the region area a and the convex area ac according to this formula:

𝑐 =
𝑎

𝑎𝑐

The convexity is 1 for a region that already is convex. It is smaller than 1 for non-convex regions. The convexity is
scale invariant.

10.2. Region Features 145

nVision User Guide, Release 2016.3

Fig. 10.25: Calculating the convexity of an object.

Fig. 10.26: Calculating the convex perimeter of an object.

10.2.20 Convex Perimeter

This calculates the perimeter of the convex hull polygon.

10.2.21 Minimum Feret Diameter

This calculates the minimum feret diameter of the convex hull polygon. The minimum feret diameter is calculated
using a rotating calipers algorithm.

Fig. 10.27: Calculating the minimum feret diameter of an object.

10.2.22 Maximum Feret Diameter

This calculates the maximum feret diameter of the convex hull polygon. The
maximum feret diameter is calculated using a rotating calipers algorithm.

146 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.23 Minimum Bounding Circle

This calculates the smallest bounding circle of the region.

Fig. 10.28: Calculating the minimum bounding circle of an object.

10.2.24 Inner Contour Perimeter

This calculates the object perimeter using the inner contour. The inner contour is a counter-clockwise chain code of
object boundary pixels. The inner contour exclusively lies on object pixels and is an 8-connected contour.

The inner contour is 8-connected. The contour length sums the contour segments for each of the chain code directions.
Horizontal and vertical directions count as 1, diagonal directions count as

√
2.

10.2.25 Outer Contour Perimeter

This calculates the object perimeter using the outer contour. The outer contour is a clockwise chain code of background
pixels just outside the object. The outer contour exclusively lies on background pixels and is a 4-connected contour.

The outer contour is 4-connected. The contour length sums the contour segments for each of the chain code directions.
Horizontal and vertical directions count as 1, diagonal directions are not used.

10.2.26 Region-based Moments

This calculates the region-based raw moments. There is a specific chapter about moments that you can consult, if you
want to learn more about moments and how they are implemented. Here, in the context of blob analysis, they are
documented only briefly.

10.2. Region Features 147

nVision User Guide, Release 2016.3

Fig. 10.29: Visualizing the minimum bounding circle of an object.

Fig. 10.30: Calculating the inner contour perimeter of an object.

Fig. 10.31: Calculating the outer contour perimeter of an object.

148 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.32: Calculating the region based moments of an object.

The region-based raw moments are calculated up to the third order, according to the following formula:

𝑀𝑝𝑞 =
∑︁
𝑥𝑦

𝑥𝑝𝑦𝑞

The moments class has the properties m00, m10, m01, m20, m11, m02, m30, m21, m12 and m03 to read the respective
moment.

10.2.27 Region-based Normalized Moments

This calculates the region-based normalized moments.

Fig. 10.33: Calculating the region based normalized moments of an object.

They are calculated up to the third order, according to the following formula:

𝑁𝑝𝑞 =
𝑀𝑝𝑞

𝑀00

Normalized moments are invariant with respect to scaling, but are not invariant with respect to translation and rotation.

You can use the properties n10, n01, n20, n11, n02, n30, n21, n12 and n03 to read the respective normalized moments.

10.2.28 Region-based Centroid

This calculates the region-based object centroid. The centroid is a property of the normalized moments.

The centroid is the center of gravity and calculated according to the following formula:

(︀𝑥
𝑦

)︀
=
(︀𝑁10

𝑁00
𝑁01

𝑁00

)︀

10.2. Region Features 149

nVision User Guide, Release 2016.3

Fig. 10.34: Calculating the region based centroid of an object.

150 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.29 Region-based Central Moments

This calculates the region-based central moments.

Fig. 10.35: Calculating the region based central moments of an object.

They are calculated up to the third order according to the following formula:

𝜇𝑝𝑞 =
1

𝑀00

∑︁
𝑥

∑︁
𝑦

(𝑥− 𝑥)
𝑝
(𝑦 − 𝑦)

𝑞

Central moments are invariant with respect to translation, but are not invariant with respect to rotation. You can use
the properties mu20, mu11, mu02, mu30, mu21, mu12 and mu03 to read the respective central moments.

10.2.30 Region-based Equivalent Ellipse

This calculates the region_based equivalent ellipse of the object. The equivalent ellipse is built by combining properties
from the normalized and the central moments.

Fig. 10.36: Calculating the region based equivalent ellipse of an object.

10.2.31 Region-based Scale Invariant Moments

This calculates the region-based scale-invariant moments.

They are calculated up to the third order according to the following formula:

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇
𝑝+𝑞
2 +1

00

10.2. Region Features 151

nVision User Guide, Release 2016.3

Fig. 10.37: Visualizing the region based equivalent ellipse of an object.

Fig. 10.38: Calculating the region based scale invariant moments of an object.

152 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Scale-invariant moments are invariant with respect to translation and scaling, but are not invariant with respect to
rotation.

You can use the properties eta20, eta11, eta02, eta30, eta21, eta12 and eta03 to read the respective scale invariant
moments.

10.2.32 Region-based Hu Moments

This calculates the region-based Hu moments. The formulas are described in the chapter about moments.

Fig. 10.39: Calculating the region based Hu moments of an object.

Hu’s moments are invariant with respect to translation, scaling and rotation.

The formulas for Hu’s moments are:

𝜑1 = 𝜂20 + 𝜂02

𝜑2 = (𝜂20 − 𝜂02)2 + 4𝜂211

𝜑2 = (𝜂20 − 𝜂02)2 + 4𝜂211

𝜑4 = (𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2

𝜑5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)
[︀
(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2

]︀
+(3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)

[︀
3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
𝜑6 = (𝜂20 − 𝜂02)

[︀
(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
+4𝜂11(𝜂30 + 𝜂12)(𝜂21 + 𝜂03)

𝜑7 = (3𝜂21 − 3𝜂03)(𝜂30 + 𝜂12)
[︀
(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2

]︀
−(𝜂30 − 3𝜂12)(𝜂21 + 𝜂03)

[︀
3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
You can use the properties phi1, phi2, phi3, phi4, phi5, phi6 and phi7 to read the respective Hu moment.

10.2.33 Region-based Flusser Moments

This calculates the region-based Flusser moments. The formulas are described in the chapter about moments.

Flusser’s moments are invariant with respect to affine transformations.

10.2. Region Features 153

nVision User Guide, Release 2016.3

Fig. 10.40: Calculating the region based Flusser moments of an object.

The formulas for Flusser’s moments are:

𝐼1 =
𝜇20𝜇02 − 𝜇2

11

𝜇4
00

𝐼2 =
𝜇2
30𝜇

2
03 − 6𝜇30𝜇21𝜇12𝜇03 + 4𝜇30𝜇

3
12 + 4𝜇3

21𝜇03 − 3𝜇2
21𝜇

2
12

𝜇1
000

𝐼3 =
𝜇20(𝜇21𝜇03 − 𝜇2

12) − 𝜇11(𝜇30𝜇03 − 𝜇21𝜇12))

𝜇7
00

+
𝜇02(𝜇30𝜇12 − 𝜇2

21)

𝜇7
00

𝐼4 =
𝜇3
20𝜇

2
03 − 6𝜇2

20𝜇11𝜇12(𝜇03 − 6𝜇2
20𝜇02𝜇21)𝜇03

𝜇11
00

+
9𝜇2

20𝜇02𝜇
2
12 + 12𝜇20𝜇

2
11𝜇21𝜇03 + 6𝜇20𝜇11𝜇02𝜇30𝜇03

𝜇11
00

−18𝜇20𝜇11𝜇02𝜇21𝜇12 + 8𝜇3
11𝜇30𝜇03 + 6𝜇20𝜇

2
02𝜇30𝜇12

𝜇11
00

+
9𝜇20𝜇

2
02𝜇

2
21 + 12𝜇2

11𝜇02𝜇30𝜇12 − 6𝜇11𝜇
2
02𝜇30𝜇21

𝜇11
00

+
𝜇3
02𝜇

2
30

𝜇11
00

You can use the properties i1, i2, i3, and i4 to read the respective flusser moments.

10.2.34 Number of Holes

This calculates the number of holes of the region.

Fig. 10.41: Calculating the number of holes of an object.

154 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.2.35 Area of Holes

This calculates the total area of the holes of the region.

Fig. 10.42: Calculating the area of all holes of an object.

10.2.36 Fiber Length

This calculates an approximation of a fiber length. This measurement is only valid for elongated objects. The fiber
length is approximated as half the perimeter.

10.2.37 Fiber Width

This calculates an approximation of a fiber width. The fiber width is approximated as twice the maximum value of the
distance transform.

10.2.38 Bounding Rectangle

This calculates a bounding rectangle of the region.

Fig. 10.43: Calculating the bounding rectangle of an object.

10.2. Region Features 155

nVision User Guide, Release 2016.3

The rectangle has the same orientation as the equivalent ellipse.

10.2.39 Minimum Area Bounding Rectangle

This calculates a bounding rectangle of the region with a minimal area.

Fig. 10.44: Calculating the bounding rectangle of an object.

The result is the rectangle with the smallest area bounding the region.

156 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.45: Visualizing the bounding rectangle of an object.

10.2. Region Features 157

nVision User Guide, Release 2016.3

10.2.40 Minimum Perimeter Bounding Rectangle

This calculates a bounding rectangle of the region with a minimal perimeter.

Fig. 10.46: Calculating the bounding rectangle of an object.

The result is the rectangle with the smallest perimeter bounding the region.

10.3 Pixel Based Features

In contrast to region-based features, pixel-based features use the pixel values in addition to the region definition.
Pixel-based features are necessary since some features, such as the minimum pixel value, cannot be calculated given
the region alone. However, the calculation of pixel-based features is slower than the calculation of region-based
features.

10.3.1 Minimum Position

This calculates the minimum position value.

blob_features b(gray.get_view(), objects[0]);
point_3d<int> minimum = *b.get_minimum_position();

When calculating the minimum position for color images, the color is treated as a vector and the minimum is deter-
mined by comparing the Euclidean vector length.

10.3.2 Minimum

This calculates the minimum value.

When calculating the minimum for color images, the color is treated as a vector and the minimum is determined by
comparing the Euclidean vector length.

10.3.3 Maximum Position

This calculates the maximum position value.

158 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.47: Visualizing the bounding rectangle of an object.

Fig. 10.48: Calculating the minimum value of an object.

10.3. Pixel Based Features 159

nVision User Guide, Release 2016.3

blob_features b(gray.get_view(), objects[0]);
point_3d<int> maximum = *b.get_maximum_position();

When calculating the minimum position for color images, the color is treated as a vector and the minimum is deter-
mined by comparing the Euclidean vector length.

10.3.4 Maximum

This calculates the maximum value.

Fig. 10.49: Calculating the maximum value of an object.

When calculating the maximum for color images, the color is treated as a vector and the maximum is determined by
comparing the Euclidean vector length.

10.3.5 Total

This calculates the total value.

Fig. 10.50: Calculating the total value of an object.

The total is the sum of all pixel values of the object:

𝑇 =
∑︁

𝐼

160 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

10.3.6 Mean

This calculates the mean value.

Fig. 10.51: Calculating the mean value of an object.

The mean is calculated according to the following formula:

𝑀 =
𝑇

𝑛

where T is the total value and n is the number of pixels (i.e. the area) of the blob.

10.3.7 Standard Deviation

This calculates the standard deviation value. Standard deviation is a measure of how wide the distribution of values is.

Fig. 10.52: Calculating the standard deviation of an object.

The standard deviation is calculated according to the following formula:

𝜎 =

√︂
1

𝑛

∑︁
(𝐼 − 𝐸)2

10.3.8 Skewness

This calculates the skewness value. Skewness can be understood as a measure of asymmetry in the distribution, i.e.
how much it deviates from a gauss-shaped curve.

10.3. Pixel Based Features 161

nVision User Guide, Release 2016.3

Fig. 10.53: Calculating the skewness of an object.

The skewness is calculated according to the following formula:

𝜎 =
3

√︂
1

𝑛

∑︁
(𝐼 − 𝐸)3

10.3.9 Contrast

This calculates the channel-wise contrast.

Fig. 10.54: Calculating the contrast of an object.

The contrast is calculated according to the following formula:

𝑐 =
𝑚𝑎𝑥

𝑚𝑖𝑛 + 1

10.3.10 Weber Contrast

This calculates the channel-wise contrast acoording to Weber’s formula.

The contrast is calculated according to the following formula:

𝑐 =
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑖𝑛 + 1

162 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.55: Calculating the contrast of an object.

10.3.11 Michelson Contrast

This calculates the channel-wise contrast acoording to Michelson’s formula.

Fig. 10.56: Calculating the contrast of an object.

The contrast is calculated according to the following formula:

𝑐 =
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥 + 𝑚𝑖𝑛 + 1

10.3.12 Pixel-based Moments

This calculates the pixel-based raw moments. There is a specific chapter about moments that you can consult, if you
want to learn more about moments and how they are implemented. Here, in the context of blob analysis, they are
documented only briefly.

The pixel-based raw moments are calculated up to the third order, according to the following formula:

𝑀𝑝𝑞 =
∑︁
𝑥𝑦

𝑥𝑝𝑦𝑞𝐼𝑥𝑦

Pixel based moments are similar to region-based moments, but they make use of pixel values in addition. The brighter
a pixel is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
The moments class has the properties m00, m10, m01, m20, m11, m02, m30, m21, m12 and m03 to read the respective
moment.

10.3. Pixel Based Features 163

nVision User Guide, Release 2016.3

Fig. 10.57: Calculating the pixel based moments of an object.

10.3.13 Pixel-based Normalized Moments

This calculates the pixel-based normalized moments.

Fig. 10.58: Calculating the pixel based normalized moments of an object.

They are calculated up to the third order, according to the following formula:

𝑁𝑝𝑞 =
𝑀𝑝𝑞

𝑀00

Pixel based moments are similar to region-based moments, but they use pixel values in addition. The brighter a pixel
is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
You can use the properties n10, n01, n20, n11, n02, n30, n21, n12 and n03 to read the respective normalized moments.

10.3.14 Pixel-based Centroid

This calculates the pixel-based object centroid. The centroid is a property of the normalized moments.

The centroid is the center of gravity and calculated according to the following formula:(︂
𝑥
𝑦

)︂
=

(︃
𝑁10

𝑁00
𝑁01

𝑁00

)︃

164 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.59: Calculating the pixel based centroid of an object.

Fig. 10.60: Visualizing the pixel based centroid of an object.

10.3. Pixel Based Features 165

nVision User Guide, Release 2016.3

Pixel based centroids are similar to region-based centroids, but they use pixel values in addition. The brighter a pixel
is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.

10.3.15 Pixel-based Central Moments

This calculates the pixel-based central moments.

Fig. 10.61: Calculating the pixel based central moments of an object.

They are calculated up to the third order according to the following formula:

𝜇𝑝𝑞 =
1

𝑀00

∑︁
𝑥

∑︁
𝑦

(𝑥− 𝑥)
𝑝
(𝑦 − 𝑦)

𝑞
𝐼𝑥𝑦

Central moments are invariant with respect to translation, but are not invariant with respect to rotation. Pixel based
moments are similar to region-based moments, but they use pixel values in addition. The brighter a pixel is the more
weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
You can use the properties mu20, mu11, mu02, mu30, mu21, mu12 and mu03 to read the respective central moments.

10.3.16 Pixel-based Equivalent Ellipse

This calculates the pixel-based equivalent ellipse of the object. The equivalent ellipse is built by combining properties
from the normalized and the central moments.

Pixel based equivalent ellipses are similar to region-based equivalent ellipses, but they use pixel values in addition.
The brighter a pixel is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.

10.3.17 Pixel-based Scale Invariant Moments

This calculates the pixel-based scale-invariant moments.

They are calculated up to the third order, according to the following formula:

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇
𝑝+𝑞
2 +1

00

166 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.62: Calculating the pixel based equivalent ellipse of an object.

Fig. 10.63: Visualizing the pixel based equivalent ellipse of an object.

10.3. Pixel Based Features 167

nVision User Guide, Release 2016.3

Fig. 10.64: Calculating the pixel based scale invariant moments of an object.

Scale-invariant moments are invariant with respect to translation and scaling, but are not invariant with respect to
rotation.

Pixel based moments are similar to region-based moments, but they use pixel values in addition. The brighter a pixel
is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
You can use the properties eta20, eta11, eta02, eta30, eta21, eta12 and eta03 to read the respective scale invariant
moments.

10.3.18 Pixel-based Hu Moments

This calculates the pixel-based Hu moments.

Fig. 10.65: Calculating the pixel based Hu of an object.

168 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

The formulas for Hu’s moments are:

𝜑1 = 𝜂20 + 𝜂02

𝜑2 = (𝜂20 − 𝜂02)2 + 4𝜂211

𝜑3 = (𝜂30 − 3𝜂12)2 + (3𝜂21 − 𝜂03)2

𝜑4 = (𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2

𝜑5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)
[︀
(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2

]︀
+(3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)

[︀
3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
𝜑6 = (𝜂20 − 𝜂02)

[︀
(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
+4𝜂11(𝜂30 + 𝜂12)(𝜂21 + 𝜂03)

𝜑7 = (3𝜂21 − 3𝜂03)(𝜂30 + 𝜂12)
[︀
(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2

]︀
−(𝜂30 − 3𝜂12)(𝜂21 + 𝜂03)

[︀
3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2

]︀
Hu’s moments are invariant with respect to translation, scaling and rotation.

Pixel based moments are similar to region-based moments, but they use pixel values in addition. The brighter a pixel
is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
You can use the properties phi1, phi2, phi3, phi4, phi5, phi6 and phi7 to read the respective Hu moment.

10.3.19 Pixel-based Flusser Moments

This calculates the pixel-based Flusser moments.

Fig. 10.66: Calculating the pixel based Flusser moments of an object.

10.3. Pixel Based Features 169

nVision User Guide, Release 2016.3

The formulas for Flusser’s moments are:

𝐼1 =
𝜇20𝜇02 − 𝜇2

11

𝜇4
00

𝐼2 =
𝜇2
30𝜇

2
03 − 6𝜇30𝜇21𝜇12𝜇03 + 4𝜇30𝜇

3
12 + 4𝜇3

21𝜇03 − 3𝜇2
21𝜇

2
12

𝜇1
000

𝐼3 =
𝜇20(𝜇21𝜇03 − 𝜇2

12) − 𝜇11(𝜇30𝜇03 − 𝜇21𝜇12))

𝜇7
00

+
𝜇02(𝜇30𝜇12 − 𝜇2

21)

𝜇7
00

𝐼4 =
𝜇3
20𝜇

2
03 − 6𝜇2

20𝜇11𝜇12(𝜇03 − 6𝜇2
20𝜇02𝜇21)𝜇03

𝜇11
00

+
9𝜇2

20𝜇02𝜇
2
12 + 12𝜇20𝜇

2
11𝜇21𝜇03 + 6𝜇20𝜇11𝜇02𝜇30𝜇03

𝜇11
00

−18𝜇20𝜇11𝜇02𝜇21𝜇12 + 8𝜇3
11𝜇30𝜇03 + 6𝜇20𝜇

2
02𝜇30𝜇12

𝜇11
00

+
9𝜇20𝜇

2
02𝜇

2
21 + 12𝜇2

11𝜇02𝜇30𝜇12 − 6𝜇11𝜇
2
02𝜇30𝜇21

𝜇11
00

+
𝜇3
02𝜇

2
30

𝜇11
00

Flusser’s moments are invariant with respect to affine transformations.

Pixel based moments are similar to region-based moments, but they use pixel values in addition. The brighter a pixel
is the more weight it has in the calculation of the moment.

If color images are used, they are converted to monochrome, before the respective pixel-based moment is calculated.
You can use the properties i1, i2, i3, and i4 to read the respective usser moments.

10.4 Object Filtering

Filtering is the process of removing objects that satisfy a certain condition. Examples of filtering are removal of small
objects caused by noise, or removal of objects touching the image border, because these objects would be partial
anyway and their features would be wrong.

Here is an example that removes objects with an area smaller than 100 pixels:

Here is another example that removes objects which are touching the left border:

Filters can be chained in order to create more complex conditions.

10.5 Gauging

nVision can be used to measure positions of edges in images. It uses projections along lines, within rectangles or
along other curves or within other shapes. The projections are analyzed and edges can be measured fast and with
subpixel accuracy. The precision that you can achieve depends on the characteristics of your system (noise in the
image, sharpness of the edges, etc.), but in general you can expect 1/20th of a pixel precision with an optimal setup.

The first step in measuring edges is the selection of an area of interest. This can be a line segment, an oriented
rectangle, or even a circular ring. From this area of interest, an intensity profile is calculated. Usually you would use
real image intensities, but you can also measure edges in a different color space, if you are interested in the location
of a color change.

170 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.67: Removing small objects.

Fig. 10.68: Removing objects near left boundary.

10.5. Gauging 171

nVision User Guide, Release 2016.3

Fig. 10.69: Objects near left border have been removed..

172 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

The intensity profile is then smoothed in order to reduce noise and then the gradient is calculated. The extrema within
the gradient are searched and their strength is compared to a threshold. If the extrama fall below the threshold, they
are discarded; otherwise the extrema represent real edges. The position of the edge is then calculated with subpixel
precision, as well as the interpolated grey and gradient values at this location.

Here is the full edge information visualized within a tool.

10.6 Identification

10.6.1 Barcode Decoding

nVision supports decoding barcodes.

Several one-dimensional symbologies are supported. Here is an alphabetical list of the supported symbologies:

Symbology Dimensionality Link to Description
Code39 1D http://en.wikipedia.org/wiki/Code_39
Code93 1D http://en.wikipedia.org/wiki/Code_93
Code128 1D http://en.wikipedia.org/wiki/Code_128
EAN 1D http://en.wikipedia.org/wiki/International_Article_Number_(EAN)
UPC 1D http://en.wikipedia.org/wiki/Universal_Product_Code

The decoder node has a selection list, where you can select the symbologies that you want to decode.

10.6. Identification 173

http://en.wikipedia.org/wiki/Code_39
http://en.wikipedia.org/wiki/Code_93
http://en.wikipedia.org/wiki/Code_128
http://en.wikipedia.org/wiki/International_Article_Number_(EAN
http://en.wikipedia.org/wiki/Universal_Product_Code

nVision User Guide, Release 2016.3

Fig. 10.70: The symbology selection list.

The decoder expects one code in the image that is given. It expects the code to sit roughly in the middle and the
scanning is horizontal. This means that the bars should be vertical. A virtual horizontal scan line that sits in the middle
should cross the whole code.

Here is an example of a perfectly positioned code:

Fig. 10.71: Perfect position of code for the decoder.

The code in the following image cannot be decoded:

The code in the following image does not decode, because the virtual scan line does not cross the whole code:

The barcode decoder does not do anything else to locate a barcode. If your circumstances are different, you can use
other preprocessing tools, to bring the barcode in a suitable position for the decoder. If the barcode is not properly
rotated, you can use the rotation tools. If the barcode is not properly located, you can use the crop tool to cut out the
relevant portion for the barcode decoder. If contrast or brightness are not sufficient, you can use image preprocessing.

The decoder can be inserted in the linear pipeline or in a sub-pipeline.

In a sub-pipeline, there is an additional region input as well as a boolean input, that tries more location steps at the
expense of longer decoding time.

In addition, also the output of the decoder can be handled in more detail. The decoder delivers a list of results, and
each result contains the decoded string, the name and identifier of the recognized symbology and the position where
the code was found.

10.6.2 Matrixcode Decoding

nVision supports decoding matrix codes.

174 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

Fig. 10.72: The decoder cannot decode this image, because the bars are horizontal.

Fig. 10.73: The decoder cannot decode this image, because the virtual scan line does not cross the whole code.

Fig. 10.74: In a linear pipeline, the image flows in from the top and the symbologies can be selected.

Fig. 10.75: In a sub-pipeline, more control can be executed.

10.6. Identification 175

nVision User Guide, Release 2016.3

Several two-dimensional symbologies are supported. Here is an alphabetical list of the supported symbologies:

Symbology Dimensionality Link to Description
Aztec 2D http://en.wikipedia.org/wiki/Aztec_Code
Data Matrix 2D http://en.wikipedia.org/wiki/Data_Matrix
PDF417 2D http://en.wikipedia.org/wiki/PDF417
QR Code 2D http://en.wikipedia.org/wiki/QR_code

The decoder node has a selection list, where you can select the symbologies that you want to decode.

Fig. 10.76: The symbology selection list of the matrixcode decoder.

The decoder expects one code in the image that is given. It expects the code to sit roughly in the middle.

Here is an example of a perfectly positioned code:

Fig. 10.77: Perfect position of code for the decoder.

The matrix code decoder does not do anything else to locate a code. If your circumstances are different, you can use
other preprocessing tools, to bring the matrix code in a suitable position for the decoder. If the matrix code is not
properly located, you can use the crop tool to cut out the relevant portion for the matrix code decoder. If contrast or
brightness are not sufficient, you can use image preprocessing.

The decoder can be inserted in a sub-pipeline.

10.7 Camera Calibration

In many measurement applications, measurements are to be taken in world units, such as meters. A typical camera
transforms those world units into pixels. Camera calibration aims to perform the inverse transformation, in order to
convert distances expressed in pixels back to world units. Camera calibration establishes a correspondence between
coordinates in the real world and coordinates in the camera image.

The real world is three-dimensional and a camera creates a two-dimensional picture of it. The resulting projection
usually is a perspective projection, where distances between points far away from the camera are smaller than the
same distances between points nearer to the camera.

If you can control the optical setup in a way that the optical axis is orthogonal to an observed planar scene, you can
setup the calibration by defining a scaling factor only, like in the following example.

The screenshot shows the definition of a scale with the Define Scale tool int the Adjust Camera group of the Home
tab on the ribbon.

Once the scale has been defined, it will be used by the spatial measurement tools, and they will return their measured
values in the world coordinates that have been defined with the Define Scale tool. It is important to know that the

176 Chapter 10. Image Analysis

http://en.wikipedia.org/wiki/Aztec_Code
http://en.wikipedia.org/wiki/Data_Matrix
http://en.wikipedia.org/wiki/PDF417
http://en.wikipedia.org/wiki/QR_code

nVision User Guide, Release 2016.3

Fig. 10.78: Real World and Camera Correspondence

10.7. Camera Calibration 177

nVision User Guide, Release 2016.3

Fig. 10.79: Define a scaling factor

178 Chapter 10. Image Analysis

nVision User Guide, Release 2016.3

method with the scaling factor will only work, if you have an orthogonal camera setup. If the real setup deviates, the
accuracy of the method will suffer.

Another, more automatic way to calibrate the camera is to use a calibration target. nVision uses calibration targets in
order to find the correspondence between coordinates in the camera coordinate system and the respective coordinates
in the real world. The resultant calibration is valid only for the two-dimensional plane where the calibration target has
been put in the real world.

Fig. 10.80: Using a calibration target

The calibration target consists of a pattern with known geometry and known distances. The calibration procedure takes
an image of the pattern and measures the pattern. The measured positions are with respect to the camera coordinate
system. Since the coordinates of the calibration target are known, they can be related to the measured positions and
the corespondence can be established. Once this correspondence is known, any coordinate in the image coordinate
system can be transformed to the real world coordinates (in the plane of the calibration target).

nVision has a set of tools that help with camera calibration. The Define Scale and Calibrate tools can be used to

10.7. Camera Calibration 179

nVision User Guide, Release 2016.3

determine the calibration. The Distance, Distance (Two Points), Circle and Area Size tools return their results in
world units if used with calibration.

Tool Icon Description

Define Scale Interactively define a scaling factor to be used in camera calibration.

Calibrate Use a calibration target to automatically determine the camera calibration.

Distance Measure a distance along a line in world coordinates.

Distance (Two Points) Measure a distance between two points in world coordinates.

Circle Measure a circle position and radius in world coordinates.

Area Size Measure the size of an area in world coordinates.

Mathematically, the background of the camera calibration is a perspective transformation between pixel coordinates
and real world coordinates. To find the values of the perspective transformation, the correspondence of points in the
real world (they come from the known distance of the calibration target) and the points in the image (they are measured
from the image of the calibration target) is needed. At least four correspondent points are needed, but nVision can
handle any number of additional points. Once this correspondence is known, it is saved as a prespective transformation
matrix along with the unit of the real world coordinates.

Various vendors produce high quality calibration targets in different size and made from different material. See
the Edmund Optics website for more information: http://www.edmundoptics.com/test-targets/distortion-test-targets/
fixed-frequency-grid-distortion-targets, http://www.edmundoptics.com/test-targets/distortion-test-targets/
diffuse-reflectance-grid-distortion-targets/3046/.

A cheap way to create calibration targets is to print them out with a printer. The dots should be arranged in a rectangular
way and the horizontal and vertical distances of all dots to their neighbors must be the same.

180 Chapter 10. Image Analysis

http://www.edmundoptics.com/test-targets/distortion-test-targets/fixed-frequency-grid-distortion-targets
http://www.edmundoptics.com/test-targets/distortion-test-targets/fixed-frequency-grid-distortion-targets
http://www.edmundoptics.com/test-targets/distortion-test-targets/diffuse-reflectance-grid-distortion-targets/3046/
http://www.edmundoptics.com/test-targets/distortion-test-targets/diffuse-reflectance-grid-distortion-targets/3046/

CHAPTER 11

Geometry

11.1 Geometry

Many functions in image processing and image analysis deal with geometric entities, i.e. when you determine the
position of a template or the length of a structure. nVision has a set of geometric features, which help managing,
visualizing and manipulating geometries.

nVision provides a set of geometric primitives as well as a set of geometric transformations. Geometric primitives are
things like points, vectors, lines, etc. Geometric transformations are translations, rotations, scalings, etc. Geometric
transformations allow to transform geometric primitives, i.e. move, scale or rotate them, etc. Geometric primitives
have features: the length and orientation of a line segment are examples. In addition, geometric primitives can be
used to perform geometric calculations: examples are the calculation of the intersection between two lines, or the
calculation of a convex hull polygon, given a set of points.

Besides the geometric primitives, nVision has graphic counterparts for some to support the visualization and the
interactive manipulation of the geometric primites. For example, a PointWidget displays a point on some surface
with a color and diameter that can be chosen via a Pen. The point widget also supports interactive manipulation, i.e.
the user can drag the point on the surface with the mouse.

11.2 Geometric Primitives

The geometric primitives are used to model geometries. They are drawn here with respect to a coordinate system
used in images, where the positive x-axis extends to the right and the positive y-axis extends downwards. In such a
coordinate system, positive angles are in clockwise direction.

11.2.1 Direction

A Direction is a vector of unit length in two-dimensional space. It serves the same purpose as an angle, i.e. it
represents a direction in the two-dimensional Euclidean space R2.

181

nVision User Guide, Release 2016.3

Fig. 11.1: The direction geometric primitive.

You can default-construct a direction (corresponding to an angle of 0 degrees), you can convert it to an angle, calculate
the orthogonal and opposite directions, add and subtract directions as well as find the bisector between two directions.

11.2.2 Vector

A Vector is a vector of arbitrary length in two-dimensional Euclidean space R2.

Fig. 11.2: The vector geometric primitive.

You can default-construct a vector (of length 0) or you can pass a coordinate pair. With a given vector, you can
calculate its direction and length. You can also read back its horizontal and vertical extents. You can also find its
direction, normal vector or calculate the dot product with another vector.

11.2.3 Point

A Point is a point at an arbitrary position in two-dimensional Euclidean space R2.

You can default-construct a point (at the origin) or you can pass a coordinate pair. You can also read back it’s horizontal
and vertical position. The difference of two points is the directed distance between them, i.e. it is a vector.

182 Chapter 11. Geometry

nVision User Guide, Release 2016.3

Fig. 11.3: The point geometric primitive.

11.2.4 Line

A Line is a line at an arbitrary position and direction in two-dimensional Euclidean space R2 that extends into infinity
at both ends.

Fig. 11.4: The line geometric primitive.

You can default-construct a line (horizontal at the origin) or you can pass a point and a direction. There are various
ways you can modify a line, which boil down to the fact that you can modify its origin and direction.

11.2.5 Ray

A Ray is a line starting at an arbitrary position and extending into infinity along its direction in two-dimensional
Euclidean space R2.

Fig. 11.5: The ray geometric primitive.

You can default-construct a ray (horizontal starting at origin along the positive x-axis) or you can pass a point and a
direction. There are various ways you can modify a ray, which boil down to the fact that you can modify its origin and
direction.

11.2.6 LineSegment

A LineSegment is a line between two arbitrary points in two-dimensional space R2.

You can default-construct a line segment (between origin and point [1, 0]) or you can pass a point, direction and extent,
or you can pass two points. There are various ways you can modify a line segment, which boil down to the fact that
you can modify its origin, direction and extent.

11.2. Geometric Primitives 183

nVision User Guide, Release 2016.3

Fig. 11.6: The line segment geometric primitive.

11.2.7 Box

A Box is a rectangle of arbitrary size located at an arbitrary point in two-dimensional Euclidean space R2, whose sides
are parallel to the coordinate axes.

Fig. 11.7: The box geometric primitive.

You can default-construct a box or you can pass a point and a vector.

11.2.8 Rectangle

A Rectangle is characterized by a center point P, two radii rx and ry and an angle 𝛼.

Fig. 11.8: The rectangle geometric primitive.

A rectangle can be created from a center point, a diagonal vector and an angle given in radians.

11.2.9 Circle

A Circle is located at its center point P and contains the set of points having distance radius to the center point.

You can default-construct a circle or you can pass a point and a radius. A circle is characterized by a center point P
and the radius r.

11.2.10 Ellipse

An Ellipse is characterized by a center point P, two radii rx and ry and an angle 𝛼.

An ellipse can be created from a center point, a diagonal vector and an angle given in radians.

11.3 Geometric Transformations

This chapter explains geometric transformations, such as translation, rotation, etc. The availabe transformations are
listed and their properties are explained.

The various translations can be ordered and structured. Starting with the identity transform everything is invariant.
The translation transform leaves everything but the position invariant, the rotation transform leaves everything but the
rotation invariant. Combining translation and rotation yields a rigid transform, which leaves everything but position

184 Chapter 11. Geometry

nVision User Guide, Release 2016.3

Fig. 11.9: The circle geometric primitive.

Fig. 11.10: The ellipse geometric primitive.

and rotation invariant. Combining a rigid transform with an isotropic scaling transform yields a similarity transform,
which does no longer preserve area and length. An affine transform no longer leaves angles invariant and a projective
transform does not preserve parallelism.

The diagram shows the various transforms in a hierarchy and the little drawings hint about the transformations that
are carried out. nVision implements functions to transform various geometric primitives with these transformations.
In addition, transformations can be determined by relating sets of points (often called passpoints) that correspond in
both world and image coordinates.

11.3.1 Translation

Translation moves geometry in the plane by a translation vector.

It has two degrees of freedom, namely the horizontal and vertical displacements (i.e. the components of the translation
vector).

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is translated or shifted by adding offsets to it. This can be written as:

𝑥
′

= 𝑥 + 𝑡𝑥

𝑦
′

= 𝑦 + 𝑡𝑦

or in matrix form: (︂
𝑥

′

𝑦
′

)︂
=

(︂
𝑥
𝑦

)︂
+

(︂
𝑡𝑥
𝑡𝑦

)︂
By using homogeneous coordinates, the equation can also be written like this:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠
We will use the notation with homogeneous coordinates from now on.

11.3.2 Rotation

Rotation rotates geometry in the plane by some angle.

11.3. Geometric Transformations 185

nVision User Guide, Release 2016.3

Fig. 11.11: The hierarchy of the geometric transformations.

186 Chapter 11. Geometry

nVision User Guide, Release 2016.3

It has one degree of freedom, namely the rotation angle.

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is rotated around the origin by multiplying with a rotation matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑐𝑜𝑠(𝜑) −𝑠𝑖𝑛(𝜑) 0
𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜑) 0

0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.3 Rigid

A rigid transformation combines translation and rotation.

It has three degrees of freedom, namely the horizontal and vertical displacements (i.e. the components of the translation
vector) and the rotation angle.

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with a rigid matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑐𝑜𝑠(𝜑) −𝑠𝑖𝑛(𝜑) 𝑡𝑥
𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜑) 𝑡𝑦

0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.4 Isotropic Scaling

An isotropic scaling scales geometry in the plane by some factor.

It has one degree of freedom, namely the scaling factor.

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with an isotropic scaling matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑠 0 0
0 𝑠 0
0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.5 Similarity

A similarity transformation combines a rigid transformation with isotropic scaling.

It has four degrees of freedom, namely the horizontal and vertical displacements (i.e. the components of the translation
vector), the rotation angle and the scaling factor.

11.3. Geometric Transformations 187

nVision User Guide, Release 2016.3

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with a similarity matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑠 * 𝑐𝑜𝑠(𝜑) −𝑠 * 𝑠𝑖𝑛(𝜑) 𝑡𝑥
𝑠 * 𝑠𝑖𝑛(𝜑) 𝑠 * 𝑐𝑜𝑠(𝜑) 𝑡𝑦

0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.6 Scaling

A scaling scales geometry in the plane by different factors in the horizontal and vertical direction.

It has two degrees of freedom, namely the horizontal and vertical scaling factors (i.e. the components of the scaling
vector).

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with a scaling matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.7 Affine

An affine transformation has six degrees of freedom.

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with an affine matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23

0 0 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠

11.3.8 Projective

A projective transformation has eight degrees of freedom.

A point (︂
𝑥
𝑦

)︂
in the two-dimensional plane is transformed by multiplying with a projective matrix:⎛⎝𝑥

′

𝑦
′

1

⎞⎠ =

⎛⎝𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 1

⎞⎠ *

⎛⎝𝑥
𝑦
1

⎞⎠
188 Chapter 11. Geometry

nVision User Guide, Release 2016.3

11.4 Graphics

11.4.1 Coordinates

Graphics are drawn within a coordinate system. In order to facilitate easy cooperation with image coordinates, the
coordinate system has its origin in the upper left corner, positive x coordinates extend to the right and positive y
coordinates extend to the bottom. The graphics system is two-dimensional. There is no z dimension in graphics that
would correspond with the z dimension in images. The graphics system is connected to the system of hierarchical
widgets. Each widget lives in the coordinate system of its parent widget, but it may establish a different coordinate
system for itself and its children. For example, the WidgetIimage shifts its coordinate system by half a pixel right
and down, in order to make sure that integer coordinates are in the middle of a pixel. If you draw graphics on top
of an image (inside an ImageWwidget), the lines will be centered on the image pixels if you draw them with integer
coordinates.

Fig. 11.12: Image coordinates

11.4.2 Brush

A brush is needed to fill a geometric primitive. nVision provides a solid color brush. A solid color brush can be
created from a color and an alpha value.

A brush can be created by setting values for the primary colors red, green and blue, as well as it’s opacity (which is
the opposite of transparency).

11.4. Graphics 189

nVision User Guide, Release 2016.3

Fig. 11.13: Solid color brushes

11.4.3 Pen

A pen is needed to outline a geometric primitive. A pen has a certain brush, a width, a dash style, a dash offset, a cap
style for start, end and dash caps, a line join style and a miter limit. It is used to draw outlines.

Fig. 11.14: Pen color and thickness

The picture shows various pens with different colors and increasing width from top to bottom. The fact that the line
ends seem to extend more to the left and right with the thicker lines comes from the fact that a square end line cap is
used by default.

Fig. 11.15: Pen opacity on white background

A pen’s opacity or transparency can be adjusted with its alpha value (alpha = 1.0 means fully opaque, alpha = 0.0
means fully transparent). The resulting color is a mixture of the background with the pen color, where the alpha value
controls the weight of the mixture.

A pen can have flat, square, round or triangle shaped end caps, as shown in the picture. The caps can be specified
separately for the begin and end of the line.

A pen can have various dash styles: solid, dashed, dotted, etc.

190 Chapter 11. Geometry

nVision User Guide, Release 2016.3

Fig. 11.16: Pen opacity on black background

Fig. 11.17: Pen end caps

Fig. 11.18: Pen dash style

Fig. 11.19: Pen dash offset

11.4. Graphics 191

nVision User Guide, Release 2016.3

The dash pattern can be shifted left or right with the dash offset. Positive values shift to the left, negative values shift
to the right. The actual shift amount is the pen width multiplied by the dash offset.

Fig. 11.20: Pen dash caps

Similar to the end caps, a pen can have also dash caps.

Fig. 11.21: Pen miter join

Fig. 11.22: Pen bevel join

A polygon can have various joins at the vertices: miter join, bevel join, round join.

The miter limit controls how far joins can extend, when the angle between the lines is small.

192 Chapter 11. Geometry

nVision User Guide, Release 2016.3

Fig. 11.23: Pen round join

Fig. 11.24: Pen miter or bevel join

Fig. 11.25: Pen miter join with miter limit 1.0

Fig. 11.26: Pen miter join with miter limit 2.0

11.4. Graphics 193

nVision User Guide, Release 2016.3

Fig. 11.27: Pen miter join with miter limit 3.0

194 Chapter 11. Geometry

CHAPTER 12

User Interface Creation

nVision can create and display HMIs (human machine interfaces or custom user interfaces). This facility is used
within the nVision Designer at various places, and it can also be exploited by users.

The HMI system is fully integrated in the pipeline programming system. Here is an example of an HMI in nVision:

In the workspace area you see a picture at the left and a dialog area at the right. The picture occupies 3/4th and the
dialog occupies 1/4th of the available workspace width. This HMI example is taken from the Exposure tool.

The HMI system is split into imaging centric widgets (used to display images, histograms and other imaging data)
and in dialog centric controls (used for standard purposes like entering texts and numbers, making selections, pressing
buttons). Both parts are integrated with each other and integrated with the pipeline.

195

nVision User Guide, Release 2016.3

The imaging centric widgets support display of imaging related things, with an additional set of interactive graphical
tools. They support layering with arbitrary depth and structure and allow you to create complex displays that may be
used for visualization purposes or for editing purposes.

The edge inspector is an example of a tool with a complex graphical widget display.

12.1 Controls

The nVision HMI system has a set of controls that can be grouped into layout, input and display purposes.

12.1.1 Window

The root of the HMI is the window.

The Window node creates the connection to the nVision workspace area.

At the bottom of the Window node is a pin that allows it to connect one child to the window. This child can take all
the space in the window. Usually, this will be a control from the layout group of controls.

12.1.2 Layout Controls

nVision has layout controls that adapt to the size of the available space (like the StackPanel, DockPanel and Grid),
as well as the Canvas, which places controls at specific pixel positions.

In addition, there are the Border, GroupBox and Expander controls, which group child controls (but are no layout
controls in the strict sense).

StackPanel

The StackPanel stacks its child controls in the vertical or horizontal direction.

Here is an example that stacks a text label and an edit control vertically. This definition

creates the following úser interface:

196 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 197

nVision User Guide, Release 2016.3

198 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

DockPanel

The DockPanel docks its child controls to one of the four sides Left, Top, Right or Bottom, where the respective child
takes at much space as it needs.

Here is an example that docks a text label to the top and a webbrowser to the left, where the webbrowser fills the
available space fully. This definition

creates the following user interface:

Grid

The Grid allows you to split the available area into a rectangular grid with m rows and n columns. The row and column
definitions are build with a list of GridLength nodes. The GridLength node specifies the size (absolute or relative)
of the specific row or column.

12.1. Controls 199

nVision User Guide, Release 2016.3

Here is an example that splits the area into two columns and one row, where the left column has 3x size and the right
column has 1x size. An image is displayed in the left column and its histogram is displayed in the right column. This
definition:

creates the following user interface:

12.1.3 Canvas

The Canvas allows you to put controls at specific positions on the canvas.

Here is an example that puts four images on a canvas. This definition:

creates the following user interface:

Border

The Border puts a border around its child.

Here is an example that puts a border around an image. This definition:

creates the following user interface:

GroupBox

The GroupBox puts a group box around its child.

Here is an example that puts a groupbox around three radio buttons. This definition:

creates the following user interface:

200 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 201

nVision User Guide, Release 2016.3

202 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

Expander

The Expander puts an expandable and collapsibal area around its child.

Here is an example that puts an expander around a profile. This definition:

creates the following user interface:

The profile display can be hidden or shown by clicking the little arrow button at the top-right corner of the expander.

12.1.4 Input Controls

Input controls are used to get input data from a user. This can be a text, a number, or anything else. Various controls
are available for this purpose.

Edit

Edit controls provide a means for the user to type data. The HMI system provides edit controls for integer numbers,
for floating point numbers, for arbitrary texts and for masked texts (masks provide a means to determined the shape or
pattern of of the text that can be entered.

Here is an example that shows the various edit controls. This definition:

creates the following user interface:

12.1. Controls 203

nVision User Guide, Release 2016.3

204 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 205

nVision User Guide, Release 2016.3

Button

Buttons are used to switch or visualize state, as well as to trigger actions. The Button is a push-button, which is
released when you no longer push it. The ToggleButton has two states, up or down. The CheckBox also has two
states, checked or not, but it visually looks different. The RadioButton is used in groups, where only one of the
buttons can be checked.

All buttons have one child, where you can connect an arbitrary complex HMI control hierarchy. All buttons also have
a Name input, which you can alternatively use to quickly create normal text buttons.

Button

A Button is down as long as it is held down with the mouse. When it is no longer held down, it releases itself to the
up state.

Here is an example that shows a simple text button. This definition:

creates the following user interface:

And this more complicated example shows a button with an image and a text. This definition:

creates the following user interface:

ToggleButton

A ToggleButton toggles between the up and down states when it is clicked.

Here is an example that shows a simple toggle button. This definition:

creates the following user interface:

206 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 207

nVision User Guide, Release 2016.3

CheckBox

A CheckBox toggles between the checked and unchecked states when it is clicked.

Here is an example that shows a simple CheckBox. This definition:

creates the following user interface:

RadioButton

A RadioButton is used in a group with other RadioButtons. Only one of them is checked at a time. If another
RadioButton in the same group is checked, the previously checked one is unchecked.

Here is an example that shows a simple RadioButton. This definition:

creates the following user interface:

Slider

A Slider can be used to move to or visualize a position.

Here is an example that shows a Slider. This definition:

creates the following user interface:

ScrollBar

A ScrollBar can be used to scroll to or visualize a position.

Here is an example that shows a ScrollBar. This definition:

208 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 209

nVision User Guide, Release 2016.3

210 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

creates the following user interface:

Listbox

The HMI system has several ways to present lists of strings.

ListBox (Single Select)

A single select ListBox can be used to select one from a number of entries.

Here is an example that shows a ListBox. This definition:

creates the following user interface:

ListBox (Multi Select)

A multi select ListBox can be used to select one from a number of entries.

12.1. Controls 211

nVision User Guide, Release 2016.3

Here is an example that shows a ListBox. This definition:

creates the following user interface:

ComboBox

A ComboBox can be used to select one from a number of entries. It has a collapsed and expanded state.

Here is an example that shows a ComboBox. This definition:

creates the following user interface:

and in expanded state:

12.1.5 Display Controls

Display controls are used to display information for a user. The information can be texts, images, charts or even
webpages.

212 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 213

nVision User Guide, Release 2016.3

Text

A TextBlock can be used to display text.

Here is an example that shows a TextBlock. This definition:

creates the following user interface:

Image

An Image can be used to display an image.

Here is an example that shows an Image. This definition:

creates the following user interface:

Led

An Led can be used to display a state.

Here is an example that shows an Led. This definition:

creates the following user interface:

214 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.1. Controls 215

nVision User Guide, Release 2016.3

LedSegments

An LedSegments can be used to display text in a segmented led-style display.

Here is an example that shows an LedSegments. This definition:

creates the following user interface:

ProgressBar

A ProgressBar can be used to visualize a value.

Here is an example that shows a ProgressBar, coupled to a Slider. This definition:

creates the following user interface:

216 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

Chart

The HMI system can display various types of charts.

WebBrowser

A WebBrowser can be used to display a webpage.

Here is an example that shows a WebBrowser. This definition:

creates the following user interface:

12.1.6 Styling

12.2 Widgets

12.2. Widgets 217

nVision User Guide, Release 2016.3

218 Chapter 12. User Interface Creation

nVision User Guide, Release 2016.3

12.2. Widgets 219

nVision User Guide, Release 2016.3

220 Chapter 12. User Interface Creation

CHAPTER 13

Graphic Programming Language

13.1 Pipelines

Pipelines are the programs that nVision executes. Data flows through a pipeline.

Nodes are the building blocks of a pipeline. Nodes have Pins, which are used to connect nodes via Connections.

Here is a simple pipeline consisting of two nodes:

A pipeline builds a directed graph. Data flows in the direction that is visualized with the arrows of the connections.
Cycles in the graph are forbidden.

In the above example, the Text node has a StringValue Input Pin, where the text Hello World! was typed. The
Output Pin of the node was connected to the Input Pin of the Uppercase node. Each node displays the value of its
(first) Output Pin.

Pipelines are executed in a live fashion. At any time any value changes, the pipeline re-runs and produces new outputs.
Pipeline execution is demand driven and lazy. Nodes execute only if and when needed.

13.2 Nodes

Nodes are the building blocks in a pipeline.

A node may have Input Pins and/or Output Pins. The Pins are used to connect Nodes with Connections.

This is a Node with one Input Pin labelled In and one Output Pin labelled Out. It takes its input text and uppercases
each letter and provides the result on its output.

221

nVision User Guide, Release 2016.3

13.3 Pins

Nodes may have Input Pins and/or Output Pins. Pins are typed.

Connections can be made only between Pins with compatible Types.

Pins are compatible, if their Types are equal or if the Type flowing on the connection can be converted automatically.

Pins with incompatible Types cannot be connected.

13.4 Subpipelines

Subpipelines can be used to group a set of connected Nodes into one Node.

As any other Node, a Subpipeline has Input Pins and/or Output Pins.

By default, a Subpipeline Node has one Input Pin and one Output Pin.

The name of the Subpipeline can be edited by clicking it:

222 Chapter 13. Graphic Programming Language

nVision User Guide, Release 2016.3

Inside the Subpipeline (double-click the Node to get inside) it looks like this:

Additional Pins of a Subpipeline Node can be defined with the Add Input Pin and Add Output Pin commands on the
context menu. The name of the Pin can be edited by clicking on it. A Pin can also be removed with the Delete Pin
command (right click somewhere on the Pin definition - but not on the text).

The Type of a Subpipeline Pin is undefined as long as it is not connected. As soon as the Pin is connected (either from
the inside, or from the outside) its Type is set (determined by the Type of the Pin on the other end of the connection).

13.5 Transform

The Transform Node takes a list of items and transforms it into a list of other items.

Transform goes through the input list item by item, and transforms each into a new item. New items are then combined
into the output list.

At the outside, transform takes the appearance of a Subpipeline. As any other Node, Transform has Input Pins
and/or Output Pins.

By default, the transform Node has one Input Pin and one Output Pin.

The name of the Transform Node can be edited by clicking it:

Inside the Transform (double-click the Node to get inside) it looks like this:

At the inside, Transform takes the appearance of a Subpipeline, but with predefined Input pins Item and ItemIndex.
These predefine Pins carry one item of the input list and its index in the input list, respectively.

13.5. Transform 223

nVision User Guide, Release 2016.3

224 Chapter 13. Graphic Programming Language

nVision User Guide, Release 2016.3

Additional Pins of a Transform Node can be defined with the Add Input Pin and Add Output Pin commands on the
context menu. The name of the Pin can be edited by clicking on it. A Pin can also be removed with the Delete Pin
command (right click somewhere on the Pin definition - but not on the text).

The Type of a Transform Pin is undefined as long as it is not connected. As soon as the Pin is connected (either from
the inside, or from the outside) its Type is set (determined by the Type of the Pin on the other end of the connection).

13.6 Types

Data flowing in pipelines is typed.

Primitive Types are:

type type-name description
boolean System.Boolean
integer (32 bit, signed) System.Int32
text System.String textual data, such as Text.

Input Pins and Output Pins are typed. With most pins this type is fixed, but on some pins the type may change while
the pipeline is edited.

Pins that may change are the input and output pins of subpipelines and their list processing cousins. These pins take
over a specific type from the first connection that is made to them, either from the outside or from the inside.

13.7 Conversions

Connections between two Pins provide the means for data to flow. Since the Pins define the Type of data, connections
can only be made, if the Types at both ends of the connection are the same, or if the data can be converted.

Widening conversions are made automatically, if they are available. Behind the scenes, a conversion Node is created,
but this conversion Node is hidden.

Converting an integer number to a floating point number is widening (any integer number can be represented as a
floating point number as well) and will be made automatically.

Converting a floating point number to an integer number is narrowing (the fractional part of a floating point number
needs to be cut away to convert) and is not made automatically.

13.6. Types 225

nVision User Guide, Release 2016.3

226 Chapter 13. Graphic Programming Language

CHAPTER 14

Miscellaneous

14.1 Digital IO

nVision has support for digital IO. This is helpful to control machinery from image processing applications or to react
upon input signals sent from machinery. Digital IO can either use digital IO modules or a PLC (programmable logic
controller).

14.1.1 Advantech Adam-60xx Ethernet Modules

nVision supports various digital IO modules from Advantech (http:www.advantech.com).

227

http://www.advantech.com

nVision User Guide, Release 2016.3

The modules are connected via LAN or wireless LAN to a PC and support a variety of input/output lines. The modules
may have additional features, such as counters, etc. but these are not supported.

module

bus

features

ADAM-6050

LAN

12 digital inputs, 6 digital outputs

ADAM-6050W

WLAN

12 digital inputs, 6 digital outputs

ADAM-6051

LAN

12 digital inputs, 2 digital outputs

ADAM-6051W

WLAN

12 digital inputs, 2 digital outputs

ADAM-6052

LAN

8 digital inputs, 8 digital outputs

ADAM-6060

LAN

6 digital inputs, 6 digital outputs

ADAM-6060W

WLAN

6 digital inputs, 6 digital outputs

ADAM-6066

LAN

6 digital outputs

The following nodes are available:

node

purpose

Adam6000 Module

An Advantech Adam-6000 module abstraction, which is needed to intialize the module and get information from it.

Read Inputs

This is needed to read from digital inputs.

228 Chapter 14. Miscellaneous

nVision User Guide, Release 2016.3

Write Outputs

This needed to write to digital outputs.

The Adam6000 Module node establishes a connection to an Adam device. The IP Address and Port inputs are used
to identify the module. The Type input is used to select the connected type of the module. The Module output can be
fed into the Read Inputs or Write Outputs nodes.

The Read Inputs node reads the values from the electrical inputs. The DigIn output contains the state of the electrical
inputs in the form of a binary integer.

The Write Outputs node writes the value from its DigOut input to its electrical outputs.

The Sync inputs of both the Read Inputs and Write Outputs nodes can be used to establish a defined order.

The Read Inputs node can be polled at regular intervals using the nVision timer.

14.1.2 Beckhoff TwinCAT3

nVision supports direct connection to a Beckhoff PLC. (http:www.beckhoff.de).

You need to install the Beckhoff TwinCAT3 software in order to use the modules from within nVision.

The following nodes are available:

node

purpose

Beckhoff PLC

Establishes the connection to the PLC.

Read Symbol

Reads from a symbol in the PLC.

Write Symbol

Writes to a symbol in the PLC.

The Beckhoff PLC node establishes a connection to a PLC over the ADS protocol. It needs an AMS NetId and a Port
as input, because this is needed for the unique identification of ADS devices. The output of the Beckhoff PLC node
is the PLC itself, which can be fed into the Read Symbol or Write Symbol nodes.

The Read Symbol node reads a symbol from the PLC. The symbol can be choosen from the list at the Symbol input
port. This list contains all available symbols in the connected PLC. The Read Symbol node has two outputs. The
output port Value gives the value of the accessed symbol. The output port Info gives information about the accessed
symbol. These information can be accessed e.g. by the Get Property node.

The Write Symbol node writes a symbol to the PLC at the input port. The symbol can be choosen from the list at the
Symbol input port. This list contains all available symbols in the connected PLC. The new value of the symbol can be
set on the input port Value.

The Sync inputs of both the Read Symbol and Write Symbol nodes can be used to establish a defined order.

The Read Symbol node can be polled at regular intervals using the nVision timer.

14.1.3 Data Translation OpenLayers

nVision supports various digital IO modules from Data Translation (http:www.datatranslation.com).

14.1. Digital IO 229

http://www.beckhoff.de
http://www.datatranslation.com

nVision User Guide, Release 2016.3

The modules are connected via USB or PCI buses to a PC and support a variety of input/output lines. The modules
may have additional features, such as counters, etc. but these are not supported.

module

bus

features

DT9817

USB

28 digital inputs/outputs

DT9817-H

USB

28 digital inputs/outputs

DT9817-R

USB

8 digital inputs, 8 digital outputs

DT9835

USB

64 digital inputs/outputs

DT335

PCI

32 digital inputs/outputs

DT351

PCI

8 digital inputs, 8 digital outputs

DT340

PCI

32 digital inputs, 8 digital outputs

230 Chapter 14. Miscellaneous

nVision User Guide, Release 2016.3

You need to install the Data Translation OpenLayers software in order to use the modules from within nVision. We
have used OpenLayers 7.5 to implement the support, so OpenLayers 7.5 or higher is needed.

The following nodes are available:

node

purpose

OpenLayers System

Provide information about the installed DT OpenLayers software and the connected devices.

OpenLayers Device

A DT OpenLayers module abstraction, which is needed to intialize the module and get information from it.

Read Inputs

This is needed to read from digital inputs.

Write Outputs

This needed to write to digital outputs.

The OpenLayers System node enumerates the OpenLayers devices connected to the PC. The Modules output delivers
a list of conected devices. The Version output displays the version of the installed OpenLayers software.

The OpenLayers Module node establishes a connection to an OpenLayers device. The Name input is needed to
identify the module. You can find out the name by inspecting the output of the OpenLayers System node. The
Module output can be fed into the Read Inputs or Write Outputs nodes.

The Read Inputs node reads the values from the electrical inputs. The DigIn output contains the state of the electrical
inputs in the form of an integer.

The Write Outputs node writes the value from its DigOut input to its electrical outputs.

The Sync inputs of both the Read Inputs and Write Outputs nodes can be used to establish a defined order.

The Read Inputs node can be polled at regular intervals using the nVision timer.

Here is an example of how to find out which DT OpenLayers devices are connected.

If you know the name of a DT OpenLayers device, you can also type it directly to initialize the module. The value that
you want to output on the digital output is typically not typed in, but calculated somewhere else. Also, the value that
is input via the digital inputs is typically used somewhere else in the pipeline.

14.1. Digital IO 231

nVision User Guide, Release 2016.3

14.1.4 Imago VisionBox AGE-X

nVision supports the VisionBox AGE-X industrial PCs from Imago Technologies.

The VisionBox AGE-X is developed for machine vision and has special features for it. But inside it works like a
normal PC. The VisionBox AGE-X can boot from a USB 2.0 or eSATA device. The idea is to work with an external
hard disk with a normal operation system and an IDE. Boot the system from it and develop directly on the AGE-X.
Impuls nVision can be installed on the VisionBox AGE-X. Tip: The Microsoft Windows remote desktop (RDP) is
very powerful. Using it you can develop from your normal desktop.

232 Chapter 14. Miscellaneous

http://imago-technologies.com

nVision User Guide, Release 2016.3

Installation

VisionBox AGE-X device driver

After booting Windows the first time the OS asks for some driver. The delivery package contains all drivers you need.
Other drivers can (must if you need this functionality) be installed manually. Select the desired installer and follow
the instructions. One of these drivers is for the AGE-X functionality.

Imago SDK

To use the VisionBox AGE-X within nVision, the Imago SDK needs to be installed. The installer includes the SDK.
Run the installer for your system: AGE-X Setup 32bit.exe or AGE-X Setup 64bit.exe. Select the de-
sired installer and follow the instructions.

nVision pipelines that make use of the Imago nodes can run on a VisionBox AGE-X only. They can be loaded on a
different PC (if the Imago SDK is installed on this PC), but they obviously cannot run on non-VisionBox hardware.

Build an Impuls nVision project

Start nVision, load an image, open a pipeline and you will find the AGE-X nodes in the menu.

The next pages give an overview of the AGE-X functionality and the best way to use it within nVision. This is only
an introduction of the general use. The Imago SDK contains a VIB_NET.chm reference for the whole functionality
and function description.

Step 1 - Opening the system

On the first step we create the main factory. Before we start let’s have a look to the structure of the framework:

14.1. Digital IO 233

nVision User Guide, Release 2016.3

234 Chapter 14. Miscellaneous

nVision User Guide, Release 2016.3

This shows a simplified class diagram of the underlying framework. VIB_NET is a platform independent API to
access the hardware functionality. VIBSystem is a factory which creates all devices. One device class groups
functions around a physical interface / unit, for example digital inputs or strobe unit. If the box has two independent
channels, you can create two instances of each type. For example the AGE-X has two strobe channels. Finally the
VIBSystem contains / handles a hardware dependent factory to build a concrete device implementation. It allows
one program to run on different Imago PC based boxes that will be created in the future without changes or rebuilds.

In order to read the version string from the ImagoSystem node, use the GetProperty node (Ctrl-P) and connect the
ImagoSystem node output to it.

Since opening the system usually is a one-time step, it can be done globally; either in the system globals of nVision
or in the global settings of the pipeline.

Step 2 - Using simple devices

An ImagoDevice node, which is not connected to an ImagoSystem node shows all possible devices, but they are all
greyed out.

Once an ImagoDevice node is connected to the ImagoSystem node, the available devices are displayed prominently
and can be easily selected.

The devices of a Baseboard system are different than those of a Network system.

Since opening the devices usually is a one-time step, it can be done globally; either in the system globals of nVision
or in the global settings of the pipeline.

Here is an example that shows how to set a digital output. The DIGITAL_OUTPUT Operation node shows a number
of methods that can be called on a digital output.

The example shows how to set a single bit on a digital output.

Step 3 - Using a complex device

A more complex device is the strobe out. This example cannot explain the strobe unit in detail. Please refer to the
function reference in the Imago SDK documentation. To run the code successfully, please connect a zero Ω bridge at
the first output.

Note: Every channel of the strobe unit must be calibrated (by default done by Imago), otherwise the initialization will
fail.

To use the strobe, several operations must be executed in a row:

• Initialize the strobe

• Set the trigger mode

• Set the desired current

14.1. Digital IO 235

nVision User Guide, Release 2016.3

236 Chapter 14. Miscellaneous

nVision User Guide, Release 2016.3

14.1. Digital IO 237

nVision User Guide, Release 2016.3

Setting the trigger mode and current needs to be done after initializing the device. In order to establish this order,
the Sync output of Init() is connected to the Sync input of set_TriggerMode(), and the Sync output of
set_TriggerMode() is connected to the Sync input of set_Current(). Connecting the Sync ports in this way
establishes an order of execution in a graph of operations, where otherwise the order of execution would be undefined.

Good to know

• Every Imago SDK function is thread safe.

• The Imago SDK framework is process safe.

• The device nodes show the available methods of a specific device. They also list property setters in the
form of set_Xxxx(). Property setters can be distinguished from methods, which are listed in the form
XxxxxYyyyy().

• Properties of the Imago nodes can be read with the GetProperty node (Ctrl-P).

• Every function in the Imago SDK can be called with the graphical nodes.

14.2 CAD Drawing Support

nVision can import CAD drawings and convert them to images. Once the CAD drawing has been converted to an
image, the usual image processing methods can be applied. Applications of particular interest are:

• match CAD drawings to acquired images, and then inspect differences.

• use CAD drawings to define regions of interest for part inspection.

nVision supports import of drawings from Autocad DXF files and Trumpf GEO files.

14.2.1 Import DXF files

DXF is a format defined and controlled by Autodesk (http:www.autodesk.com). Used within AutoCad, it has become
the de-facto standard for CAD drawing interchange - even between different vendors. While the DXF format is
syntactically simple and easy to parse, the semantics are complicated, because the format is not documented very
well. Also, it has been changed and extended in a somewhat ad-hoc manner during the many years since the first
versions of AutoCad, and this respecting and carrying on this heritage makes it difficult.

For this reason one cannot simply state that DXF drawing import will work in any case. nVision supports a partial 2D
subset only. Particularly, the following primites are supported:

primite

features

line

a line segment

arc

a circular arc

circle

a full circle

polygon

a polygon

238 Chapter 14. Miscellaneous

http://www.autodesk.com

nVision User Guide, Release 2016.3

Files containing additional primitives usually can be read, but the unknown items are ignored.

When importing a DXF file, you need to specify the filename and the name of the layer you want to import. If there
are multiple layers that you need to import, you can use several import nodes in parallel.

14.2.2 Import GEO files

GEO is the format used by laser cutting machines of TRUMPF (http:www.trumpf.com).

nVision supports a subset of the GEO format related to 2D.

primite

features

line

a line segment

arc

a circular arc

circle

a full circle

Files containing additional primitives usually can be read, but the unknown items are ignored.

When importing a GEO file, you need to specify the filename.

14.2.3 Render CAD drawings

Both import nodes create a CAD drawing when successful. The drawing has several properties that allow you to find
out more information about the drawing, such as the height and width (in mm) as well as the contours contained in it.

Also, the drawing can be rendered into an image.

When rendering a CAD drawing, the resolution parameter tells you how fine the rendering will be. A value of 1 means
that one pixel will have a size (area) of 1 mm (1 mm2). A value of 0.1 means that one pixel will have a size (area)
of 0.1 mm (0.01 mm2). The actual size of the rendered image is determined by the width and height of the imported
drawing (in mm), divided by the resolution parameter. The smaller (finer) the resolution parameter is, the bigger the
rendered image will be.

The Fill parameter controls whether the drawing contours will be filled or outlined only.

14.2. CAD Drawing Support 239

http://www.trumpf.com

nVision User Guide, Release 2016.3

14.3 Database Support

nVision can connect to databases and read values from or write value to them.

In order to use the database related nodes, you need to have a MySql database server running somewhere. You can
find more information about MySql on the website (http:www.mysql.com). The samples assume that you have a local
installation and that you have the sakila sample database accessible.

14.3.1 Establish Connection

The first step is to establish a connection to the database. The connection can be to a locally running database, or to
a database running on a foreign machine. In order to connect to a database you need to specify the server name. To
use the local machine, you would use localhost or 127.0.0.1 as the server name. To use a foreign name, you
would use the IP address or the DNS name of the server. Then you need to specify the database name that you want
to connect to. This database must exist on the server. Finally, you need to specify the user and the password for the
connection.

Since a connection has a somewhat global nature, you can put the connection into the Global or the System Global
pipeline.

Once you have a connection, you can use it to execute database queries. Queries come in the form of select, insert and
generic query statements. Since the different query nodes perform IO and do not behave in a functional manner, they
have the optional possibility to establish an order using their Sync inputs and outputs.

240 Chapter 14. Miscellaneous

http://www.mysql.com

nVision User Guide, Release 2016.3

14.3.2 Execute Select

The select node allows you to construct a simple Sql SELECT statement easily.

The picture shows how you work with the select node. You start by establishing the connetion, then you select the
table from the database (film) and finally you choose the columns. In the picture we have constructed the following
select statement: SELECT title, description FROM film;

The select returns a list of rows that reflect the result of the query, and each row consists of a list of strings; the result
is a list of a list of strings (List<List<String>>).

The QueryTail parameter allows you to append additional clauses to the end of the query (just before the semi-
colon). Possible clauses are WHERE..., GROUP BY..., ORDER BY..., LIMIT..., etc. For a full explanation of
the possible select queries have a look at the MySql documentation (https://dev.mysql.com/doc/refman/5.6/en/select.
html).

14.3.3 Execute Insert

The insert node allows you to construct a simple INSERT statement easily.

14.3.4 Execute Query

The query node allows you to contruct any query that you can run against your database, not restricted to just SELECT
or INSERT statements. Examples are CREATE TABLE..., DELETE..., DESCRIBE... and EXPLAIN... to
name a few different statements. Have a look at the MySql documentation (https://dev.mysql.com/doc/refman/5.6/en/
sql-syntax.html) to find out more about the possible statements.

14.3. Database Support 241

https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html
https://dev.mysql.com/doc/refman/5.6/en/sql-syntax.html

nVision User Guide, Release 2016.3

242 Chapter 14. Miscellaneous

nVision User Guide, Release 2016.3

14.3. Database Support 243

nVision User Guide, Release 2016.3

244 Chapter 14. Miscellaneous

CHAPTER 15

Reference

15.1 Ribbon

15.1.1 Home

The Home tab groups commands that are used often.

You can select a camera and its mode with the combo boxes in the Acquire group. You can also use the Start Snap
and Start Live commands to acquire a still image or start continuous live acquisition.

nVision supports multiple cameras (if they are connected) and you can use the controls to start one acquisition, change
the camera and start another acquisition.

The commands in the Adjust Camera group control camera related settings.

The Exposure tool lets you set the exposure time of a camera, and Define Scale and Calibrate perform spatial camera
calibration using a known length or a calibration target.

The commands in the Zoom group are used to zoom in an out, as well as to reset the zoom factor.

You can also use keyboard shortcuts to zoom in (Ctrl + +), zoom out (Ctrl + -) or reset the zoom factor to 1
(Ctrl + Alt + 0), or set the zoom factor (Ctrl + 0) so that the display fits the window size.

245

nVision User Guide, Release 2016.3

The Tool Windows group has commands to show or hide the Help, Browser, Camera Parameters, System Globals
and Log Output windows.

The Help (F1) window shows help information.

The Browser (F2) shows the loaded images and text files in a tiled fashion, along with additional information.

The Camera Parameters (F3) window shows the GenICam parameters of the selected camera.

The System Globals (F4) window shows a pipeline editor that can be used to define global values that are available in
all pipelines.

The Log Output (F5)window shows logging information.

15.1.2 Identify

The Identify tab groups commands that can read barcodes or text.

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Codes group contains commands for part identification with barcodes or matrix codes.

The Barcode and Matrixcode commands can be used to decode or verify 1-dimensional barcodes or 2-dimensional
matrix codes of various symbologies.

The Text group contains the command for part identification with text.

The OCR command can be used to decode or verify text.

The tools are meant to be chained one after the other, where one of the location tools is often the first tool in a chain
of tools.

246 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.1.3 Interactive Measurement

The Interactive Measurement tab groups commands for interactive measurement.

The Calibrate Origin command is used to set the origin of an image.

The (x,y) pixel coordinates of the origin can either be typed into the controls on the ribbon or dragged with the
rectangular crosshair cursor that appears when the command button is pressed.

The Calibrate Scale command sets the scale for interactive measurements. In order to calibrate the scale you align
the scale tool with some known length in the image and enter the length and unti into the controls.

The Overlay group contains commands for graphical overlays.

The Rectangular Grid command overlays a rectangular grid that respects the origin.

The Circular Grid command overlays a circular grid that respects the origin.

The Scale Bar command overlays a scale bar in the lower left area of the image that visualizes the scale.

The Picker command adds an interactive tool that allows to pick grayscale or color values at some position from an
image.

The position and the radius of the picking area can be dragged interactively.

The Measure group contains commands for interactive measurements.

The Counting Tool helps with interactive counting. Click the left mouse button when the tool is selected to set a
visual marker. If you hold the Ctrl key while clicking, a new group is started.

The Reset Counting Tool resets and counts and markers in all counting groups.

When done with counting, you can use the Commit Results command to write the measurement into a text file
(CSV-File) that you can then store to disk.

The Measure Length tool displays a scale that you can align with a position to measure. Once the alignment is perfect
(the two top corners are the hit spots for moving), you can use the Commit Results command (or the space key) to
write the measurement into a text file.

15.1. Ribbon 247

nVision User Guide, Release 2016.3

248 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.1. Ribbon 249

nVision User Guide, Release 2016.3

15.1.4 Locate

The Locate tab groups commands for location of parts.

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Locate group contains the tools for part location.

The Horizontal Shift and Vertical Shift tools detect the location of a part by using edge detection. They can be
combined to find the horizontal and vertical position of a part.

The Locate Contour and Locate Pattern tools detect the position of a part with regards to translation and rotation
using geometrical pattern matching (Locate Contour) or normalized grayscale correlation (Locate Pattern). In order
to work with the tools, a region of interest is placed on some distinctive portion of the part. The Teach command is
then used to teach this position.

Other tools respect this position and move their region of interest accordingly, so that the region of interest follows the
part movement.

The tools are meant to be chained one after the other, where one of the location tools is often the first tool in a chain
of tools.

15.1.5 Measure

The Measure tab groups commands for measurements of parts.

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Intensity group contains commands for intensity based measurments.

250 Chapter 15. Reference

nVision User Guide, Release 2016.3

The two tools calculate brightness and contrast within a region of interest. Brightness and contrast are often sufficent
to check for the presence of something.

The Geometry group contains commands to make geometric measurements.

The commands can calculate distances and angles, can fit circles and measure areas. All measurements can then be
classified to return true (ok) when they are within an expected range, or false (nok), when they are outside this range.

The Count group contains commands for edge and object counting.

The first tool counts edges crossing a line of interest. The next tool counts the number of contour points within a
region of interest (which is high, if the region is structured and low if the region is unstructured). The last command
counts the number of distinct objects.

The tools are meant to be chained one after the other, where one of the location tools is often the first tool in a chain
of tools.

15.1.6 Pipeline

The Pipeline tab groups pipeline related commands.

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Pipeline group has commands for sub-pipeline creation as well as import and export of pipelines.

The Sub-Pipeline command inserts a sub-pipeline into the linear pipeline.

This sub-pipeline step has a visualization in two panes, where the upper portion (above the blue splitter line, that you
can drag down) is the editor for the sub-pipeline, and the lower portion is the output visualization of the sub-pipeline.

A sub-pipeline by default has one input and one output, as well as any number of nodes and connections between the
nodes. Nodes are inserted by selecting them from a context menu (right mouse button click in the upper pane).

The visualization in the lower pane either shows the first output, or some other visualization that is composed within
the sub-pipeline.

15.1. Ribbon 251

nVision User Guide, Release 2016.3

252 Chapter 15. Reference

nVision User Guide, Release 2016.3

The Import Pipeline and Export Pipeline commands allow you to load and save pipelines from disk.

The Control group contains commands to apply the pipeline to a set of files on disk.

Some commands in this group are active if you have loaded a set of files with the Open Folder command. The
commands allow you to step forth and back in the sequence of files, process all images in the folder and control how
export nodes in the pipeline behave.

The Timer group contains commands for polling nodes.

Polling can be switched on an off, and the polling interval can be specified. Polling affects only one polling node
(nodes that support polling have a little clock symbol, which must be checked to make such a node the polling node).

The Execution Timing group contains information about the execution time of a pipeline.

You can see the overall execution time of the pipeline, and with the Show Node Timing command you can see timing
information broken down to a single node in the graphical editor.

The Execution Statistics group gives statistic information about pipeline execution.

The Statistics Start/Stop command enables or disables the accumulation of statistic information.

15.1.7 Process

The Process tab groups many commands for image processing.

The Statistics group contains commands for statistical analysis of images.

The Histogram command adds a step to the pipeline that calculates a histogram.

The Horizontal Profile command adds a step to the pipeline that calucates a horizontal profile.

The Horizontal Profile Overlay command adds a visual tool on top of the image display that displays the profile and
allows you to inspect positions and values.

The Crop Box command adds an interactive tool that allows to crop a rectangular portion out of an image.

The rectangular area can be moved and sized interactively. Only the cropped portion is sent downstream into the
following node.

15.1. Ribbon 253

nVision User Guide, Release 2016.3

254 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.1. Ribbon 255

nVision User Guide, Release 2016.3

The Bin command shrinks an image by an integer factor (horizontal and vertical can be different).

The command supports various binning modes: arithmetic, geometric, harmonic and quadratic mean, maximum and
minimum, as well as median and midrange.

The Point group contains commands for pixel-wise operations on images.

Some commands (Not, Negate, Increment, Decrement and Absolute) do not need any parameters at all.

Other commands (arithmetic, logic and comparison) need one parameter, which can be supplied via the linear pipeline.

The point commands also exist between two images, and those variants can be used in the graphical pipeline editor.

The Color group contains functions for color space conversions.

Images can be transformed into different color spaces.

Rgb or monochrome are usually used. Hls (hue, luminance, saturation) and Hsi (hue, saturation, intensity) are some-
times advantageous, because they model human perception better than Rgb. Lab tries to deliver perceptual uniformity
and is useful for color segmentation.

The Frame group contains the Frame command that puts a frame around an image.

The Filter group contains commands for neighborhood filtering operations on images.

The Filter group contains commands for median, lowpass and highpass filtering.

Median filtering is often used for noise reduction. The Median and Hybrid Median filters are two variants of median
filtering.

Lowpass filtering is another method used for noise reduction. The Gaussian (sigma), Gaussian (fixed 3x3 and 5x5
kernels) and Lowpass filters are variants of lowpass filtering.

The other filters are for edge emphasis and edge detection.

The Morphology group contains commands for morphological operations on images and regions.

256 Chapter 15. Reference

nVision User Guide, Release 2016.3

The morphological filters can operate on images (blue icons) or on regions (red icons). Morphological filters on
regions are much more performant and should be chosen if possible.

Dilate, Erode, Open and Close are the basic morphological functions. The morphological Gradient is a form on
edge detection.

The Inner Boundary and Outer Boundary turn a region into the respective boundary.

Fill Holes fills holes in a region.

The Geometry tab groups commands for geometric operations on images.

The Mirror commands reverses right and left in an image.

The Flip command reverses top and bottom in an image.

The Rotate Clockwise, Rotate 180° and Rotate Counter Clockwise commands rotate an image.

15.1.8 Segmentation

The Segmentation tab groups commands for segmentation of images (separation into foreground and background)
and blob analysis (particle analysis).

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Threshold command performs binary thresholding at a threshold value and creates a region as a result. The result
is really only one region, despite it may consist of visually separated parts.

The Connected Components command takes the region and splits it into a list of regions based on the connectivity
(or distance).

The Filter Regions commands allows you to remove those regions from a list of regions that do not satisfy a condition,
such as Area > 200. You can use any region feature for the filtering.

15.1. Ribbon 257

nVision User Guide, Release 2016.3

The Blob Analysis command calculates features for each region. You can select the features to be calculated. The
result is a grid of values: for each object or particle you will get a row of numeric results, that you can commit and
save to a CSV file if needed.

The Plot command displays features graphically.

15.1.9 User Tools

The User Tools tab allows to create custom tools and group them on the ribbon.

The Edit group contains commands for pipeline editing.

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Tools group contains a button to save a tool, as well as the saved tools.

The first step is to actually create a tool. You do this by adding a sub-pipeline to the linear flow and name it appropri-
ately, by editing its title in the linear flow. This name will become the name of the tool.

After doing that just click Save as Tool and it will appear on the ribbon.

Note that tool names must be unique. If a tool already exists, a dialog will pop p asking for permission to update it.

Tools are saved at: %USERPROFILE%/AppData/Local/Impuls/nVision

To load a tool just select the point of insertion on the linear flow and click on the desired tool ribbon button.

15.1.10 Verify

The Verify tab groups commands for pattern matching.

The Edit group contains commands for pipeline editing.

258 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.1. Ribbon 259

nVision User Guide, Release 2016.3

The first command deletes a node in the linear pipeline. The second command commits the result of the selected node
to the browser, where it can be stored into the filesystem. These two commands are replicated on most tabs of the
ribbon.

The Features group contains commands for pattern matching.

The commands use pattern mathching with geometric or correlation methods to calculate the similarity. Both tools
allow you to teach the look of a part and match the actual image against this template.

The tools are meant to be chained one after the other, where one of the location tools is often the first tool in a chain
of tools.

15.2 Tools

15.2.1 Angle Tool

The Angle tool measures the angle between two lines.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays two boxes that are used to select regions, the boxes are labeled A and B. You can move the boxes around
on the image by dragging their inside. You can also resize the boxes by picking them at their boundary lines (on the
boundary line or just a bit outside) or at their corner points (on the corner point of just a bit outside). The arrows at the
boxes visualize the search direction of the line detection (box A has horizontal arrows and should be used for vertical
lines, box B has vertical arrows and should be used for horizontal lines).

Once the search box has been positioned over an edge in the image it displays the calculated edge points in green, and
a resulting line in blue that it calculates by fitting a line through the points.

The tool has outlier detection. Outlier points are marked in red and they are not used for the line fit.

The search boxes move with the pose, that is their position is relative to the part position that has been determined by
a location tool upstream.

If the tool finds both lines it calculates the angle between those lines. The angle is visualized graphically and its
numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values, or in red,
if the measured angle is not within the expected boundary values (betwwen 89,9 ° and 90,1 °):

The angle tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum angles.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

260 Chapter 15. Reference

nVision User Guide, Release 2016.3

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Spacing is the distance between the search lines of the edge detection (default = 5). The effect of the spacing can be
seen by the density of the visualized edge points.

15.2.2 Area Size Tool

The Area Size tool measures the object area in a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The tool is meant to be used on regions where you have contrasting objects, either dark or bright. It automatically
detects the objects. In a region without much contrast, using the tool is mostly meaningless because of noise.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values, or in
red , if the measured area is not within the expected boundary values.

The area size tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Polarity can be set to Dark Objects or Bright Objects.

Objects smaller than a specified amount of pixels can be filtered out when Filter Objects Smaller Than is set.

Objects touching the border of the region of interest can be filtered out when Filter Objects Touching Border is set.

15.2.3 Barcode Tool

The Barcode tool decodes a barcode inside a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a box that is used to select the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside).

Once the search box has been positioned over a code in the image it tries to decode the code. Its position and the
decoded text is displayed in green, if it matches the expected text (anything in this case), or red, if the decoded text
does not match the expectation:

The Barcode tool has a configuration panel, which can be used to set parameters.

The controls in Pattern Matching allow you to specify a pattern that the decoded result must follow in order to be
correct.

Regular Expression: Defines the pattern that the decoded string should match. The pattern follows the rule of a
regular expression, specifically the .NET variant of regular expressions.

15.2. Tools 261

nVision User Guide, Release 2016.3

262 Chapter 15. Reference

nVision User Guide, Release 2016.3

The following table explains common cases. For full information, look at the original documentation
(https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx).

Pat-
tern

Description

. Any character (except newline). a.c abc, aac, acc,
. . .

^ Start of a string. ^abc abc, abcdefg,
abc123, . . .

$ End of a string. abc$ abc,
endsinabc,
123abc, . . .

|Alternation. bill|
ted

bill, ted

[..
.]

Explicit set of characters to match. a[bB]c abc, aBc

* 0 or more of previous expression. ab*c ac, abc, abbc,
. . .

+ 1 or more of previous expression. ab+c abc, abbc,
abbbc, . . .

? 0 or 1 of previous expression; also forces minimal matching when an
expression might match several strings within a search string.

ab?c ac, abc

{. . .} Explicit quantifier notation. ab{2}c abbc
(. . .) Logical grouping of part of an expression. (abc){2} abcabc
\\ Preceding one of the above, it makes it a literal instead of a special

character.
a\\.b a.b

Ignore Case: If checked the case of the characters is ignored, otherwise the case must match exactly.

The controls in Enabled Symbologies allow you to enable or disable specific symbologies. Supported symbologies
are Code 39, Code 30 Extended, Code 93, EAN 128, EAN 8, EAN 13, UPC A, UPC E, Databar and Databar Limited.

The controls in Decoder Parameters allow you to manipulate locator and decoder behavior.

Number of Scanning Directions: 0: vertical, 1: horizontal, 2: both, 3 and more: oblique, every 180/N degrees. The
default setting of 4 means the locator scans every 45 degrees.

Scanning Density: The spacing between scanning-lines, in pixels; small values favor the decoding rate and increase
the running time. 5 is the default.

Noise: The noise threshold. Threshold level to get rid of spurious bars caused by noise. 40 is the default.

Check Quiet Zone: Check the quiet zone. When checked, a quiet zone as large as the standard requires must be
present; when set to false, it is advisable to disable other symbologies to avoid false matches. The default is checked.

Minimum Bars: The minimum number of bars for a successfull decode.

15.2.4 Brightness Tool

The Brightness tool measures the average brightness in a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

15.2. Tools 263

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

nVision User Guide, Release 2016.3

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The numerical value of the brightness is displayed in green, if it is in between the tool’s minimum and maximum
expected values, or in red if it is outside the expected values.

The brightness tool has a configuration panel, which can be used to set parameters.

The Min Brightness parameter is used to set the minimal accepatable brightness (default = 127), the Max Brightness
parameter is used to set the maximal accepatable brightness (default = 255).

15.2.5 Calibrate Tool

The Calibrate tool is used to establish a camera calibration. The calibration can correct a perspective distortion and
still measure proper distances in the calibrated plane.

The tool detects the positions of dots on a calibration target and uses those to detect the perspective distortion. In
addition to the detected dot positions the tool needs to know the distance between two dots in world units as well as
the world unit.

Only the dots within the yellow region of interest turn blue and are used for calibration.

The Calibrate tool has a configuration panel where you can enter the distance between two dots as well as the world
units.

Once you have a proper image of the calibration target, eventually aligned the region of interest properly and entered
the distance between the dots as well as the unit, press the Teach button.

15.2.6 Circle Tool

The Circle tool measures a circle in a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a yellow box that specifies the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside). Inside the box is a little yellow point that markes the center of
the box.

Once the box has been positioned over a circle (or part of a circle) in the image it displays the calculated circle, which
is visualized graphically and its numerical diameter is displayed in green, if it is in between the tool’s minimum and
maximum expected values, or in red, if the measured distance is not within the expected boundary values.

The tool displays its measurement in pixels, or in world units, such as mm, if the system has been calibrated.

The circle tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum diameter.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

264 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.2. Tools 265

nVision User Guide, Release 2016.3

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Spacing is the angular spacing in degrees of the search lines.

15.2.7 Contrast Tool

The Contrast tool measures the contrast in a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values, or in
red if it is outside expected values.

The contrast tool has a configuration panel, which can be used to set parameters.

The Min Contrast parameter is used to set the minimal accepatable contrast (default = 30), the Max Contrast param-
eter is used to set the maximal accepatable contrast (default = 255).

15.2.8 Count Areas Tool

The Count Areas tool counts the number of objects in a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

The tool is meant to be used on regions where you have contrasting objects, either dark or bright. It automatically
detects the objects. In a region without much contrast, using the tool is mostly meaningless because of noise.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values, or
red, if the area count is not within the expected boundary values.

The tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Polarity can be set to Dark Objects or Bright Objects.

Objects smaller than a specified amount of pixels can be filtered out when Filter Objects Smaller Than is set.

Objects touching the border of the region of interest can be filtered out when Filter Objects Touching Border is set.

266 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.2.9 Count Controur Points Tool

The Count Contour Points tool counts the number of high-contrasting pixels within a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a rectangle that is used to select a region. You can move the rectangle around on the image by dragging its
inside. You can also resize the rectangle by picking it at its boundary lines (on the boundary line or just a bit outside).
You can rotate the rectangle by picking it at its corner points (on the corner point of just a bit outside).

One use of the tool is to check for riffle or embossing on metal parts.

The numerical value is displayed in green, if it is in between the tool’s minimum and maximum expected values, or
red , if the number of contour points is not within the expected boundary values.

The count contour points tool has a configuration panel, which can be used to set parameters.

The Min parameter is used to set the minimal accepatable area, the Max parameter is used to set the maximal accepat-
able area.

The Sensitivity can be set to a value between 0 (highly sensitive) and 255 (not sensitive).

15.2.10 Count Edges Tool

The Count tool counts the number of edges along a linear region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a yellow line that specifies the search line. You can move the line around on the image by dragging it. You
can also pick either of the line endpoints to move just this endpoint.

Once the line has been positioned and finds edges, it visualizes them as blue points and it outputs their number. If the
number is within expected bounds, the tool color is green, otherwise it is red.

The tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum diameter.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7). Strength is the minimum strength of an
edge (the gray scale slope of the edge, default = 15). Smoothing and Strength are interrelated: the more you smooth
the more you lessen the strength of an edge and vice versa.

15.2.11 Define Scale Tool

15.2. Tools 267

nVision User Guide, Release 2016.3

The Define Scale tool is used to define an overall scale in the image. You can use it if your optical axis is orthogonal
to the measurement plane, and if the desired measurement accuracy is not too high.

The tool calculates a calibration factor that is used to convert pixel measurements to world units, such as µm, mm, cm
or m (or any other spatial unit that is needed in your application). Once a calibration has been established, other length
measurement tools respect the calibration and output their measurments in world unit (as opposed to image units in
pixels).

The Define Scale tool can use a line to establish a scale. Alternatively, it can use a circle to establish a scale. Alterna-
tively, if the image has been acquired with a scanner, you can select the DPI setting to establish a scale.

The Define Scale tool has a configuration panel where you can select whether you want to use a line or a circle for
setting the scale, or where you can select the DPI setting of the image.

Once you have aligned the line or circle with a know distance in your image, type the distance as well as the unit and
press the Teach button.

15.2.12 Distance Tool

The Distance tool measures the distance between edges along a line.

The tool displays graphical elements to specify the region of interest as well as to display the results.

It displays a yellow line that specifies the search line. You can move the line around on the image by dragging it. You
can also pick either of the line endpoints to prolong the line or move just this endpoint (move the mouse a little bit
away from the endpoint, until the cursor changes). If you move the mouse in the vicinity of the line, a little bit outside,
you can drag the thickness of the line. The thickness affects the edge detection, because it specifies the area that is
averaged.

Once the search line has been positioned over two edges in the image it displays the calculated distance, which
is visualized graphically and its numerical value is displayed in green, if it is in between the tool’s minimum and
maximum expected values, or in red, if the measured distance is not within the expected boundary values.

The tool displays its measurement in pixels, or in world units, such as mm, if the system has been calibrated.

The distance tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum distance.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

15.2.13 Distance Two Points Tool

The Distance (Two Points) measures the distance between two points.

The tool displays graphical elements to specify the region of interest as well as to display the results.

268 Chapter 15. Reference

nVision User Guide, Release 2016.3

It displays two yellow lines labelled A and B that specify the search linees. You can move the lines around on the
image by dragging them. You can also pick either of the line endpoints to prolong the line or move just this endpoint
(move the mouse a little bit away from the endpoint, until the cursor changes). If you move the mouse in the vicinity
of the line, a little bit outside, you can drag the thickness of the line. The thickness affects the edge detection, because
it specifies the area that is averaged.

Once the search lines have been positioned over two edges in the image the calculated distance, which is visualized
graphically and its numerical value are displayed.

The tool displays its measurement in pixels, or in world units, such as mm, if the system has been calibrated.

The Distance (Two Points) tool has a configuration panel, which can be used to set parameters.

The Min and Max parameters are used to set the expected minimum and maximum distance.

The distance type between the two points can be the straight, horizontal or vertical distances.

The parameters in the Edge Detection Parameters affect the edge detection.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

15.2.14 Exposure Tool

The Exposure tool is used to set the exposure time of a camera. It works with GenICam cameras that have an
exposure time parameter.

The tool displays the live image and shows over-exposed pixels (> 250 greyvalues by default) in yellow color and
under-exposed pixels < 5 greyvalues by default) in blue color. This gives you a quick visual impression of the illumi-
nation/exposure of an image. In addition, the percentage of underflow and overflow pixels are displayed, as well as a
histogram that shows the overall brightness distribution.

The Exposure tool has a configuration panel, which can be used to set parameters.

The Exposure Time (ms) is the exposure time in ms (milliseconds). The tool uses GenICam to write the exposure
time to the camera, which has to be connected to the global Camera port in the system globals.

Underflow and Overflow show the respective pecentages of the underflow and overflow pixels.

When the exposure time is changed, the blue and yellow image overlays, the percentage values and the histogram
graphic are all affected and change. The graphic and the numeric outputs help you to property set illumination or
exposure interactively.

The Parameters group has seldomly used additional parameters:

The Underflow Threshold sets the threshold for detection of underflow pixels (by default this is set to 5).

The Overflow Threshold sets the threshold for detection of overflow pixels (by default this is set to 250).

The GenICam Parameter Name sets the parameter name of the GenICam property that is used to set the exposure
time. Usually that is ExposureTime, but some cameras use a different name, such as ExposureTimeAbs. You
can find out the proper name by inspecting the Camera Parameters window (you can open it with the Show Camera
Parameters command on the Home tab of the ribbon in the Tool Windows section).

15.2. Tools 269

nVision User Guide, Release 2016.3

15.2.15 Horizontal Shift Tool

The Horizontal Shift tool uses horizontal edge detection to find a horizontal location.

The tool displays a region of interest that is used to detect the shift. The region of interest can be moved by the user.
The parameters in the Edge Detection Parameters affect the edge detection.

Orientation can be used to set the direction of the edge detection: Left to Right or Right to Left are available.

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

The graphic below the controls shows the image that corresponds to the region of interest. The filled blue curve is the
averaged brightness and the yellow curve is the gradient, both after the smoothing is applied. You can observe how
the shape of the curves is affected by changing the Smoothing.

The two horizontal lines visualize the effect of the edge strength. An edge is only found if the yellow curve crosses
the lines. You can observe how the edge detection is affected by changing the Strength.

The vertical line shows where in the curve and image the edge is detected.

15.2.16 Locate Contour Tool

The locate contour tool locates a part using geometric contour matching.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Make sure that you select a characteristic portion when you define the pattern. Once the box has been positioned,
make sure that the filename in the Template File edit control is correct and press Teach. This saves the pattern.

If the tool finds the pattern, it displays a green box where it found the pattern and also moves the coordinate axes to
the middle of the box to visualize the new origin and rotation (the pose).

Subsequent tools use the pose to position their ROIs, such that the ROIs are always in the correct position, even if the
part moves considerably.

The locate shape tool has a configuration panel, which can be used to set parameters.

The Template File parameter specifies the match template, which is loaded from disk. If the template file exists, it is
displayed here.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.6). Matches below
this score are not considered.

270 Chapter 15. Reference

nVision User Guide, Release 2016.3

The Teach button saves the pattern to the disk.

15.2.17 Locate Pattern Tool

The locate pattern tool locates a part using pattern matching.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify the pattern. You can move the box
around on the image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the
boundary line or just a bit outside) or at its corner points (on the corner point of just a bit outside).

Make sure that you select a characteristic portion when you define the pattern. Once the box has been positioned,
make sure that the filename in the Template File edit control is correct and press Teach. This saves the pattern.

If the tool finds the pattern, it displays a green box where it found the pattern and also moves the coordinate axes to
the middle of the box to visualize the new origin and rotation (the pose).

Subsequent tools use the pose to position their ROIs, such that the ROIs are always in the correct position, even if the
part moves considerably.

The locate shape tool has a configuration panel, which can be used to set parameters.

The Template File parameter specifies the match template, which is loaded from disk. If the template file exists, it is
displayed here.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.6). Matches below
this score are not considered.

The Teach button saves the pattern to the disk.

15.2.18 Match Contour Tool

The Match Contour tool locates a part using geometric pattern matching.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify both the pattern as well as the search
region of the pattern. You can move the box around on the image by dragging its inside. You can also resize the box
by picking it at its boundary lines (on the boundary line or just a bit outside) or at its corner points (on the corner point
of just a bit outside).

Usually, the box is put tightly around an area where you expect a specific pattern. Once the box has been positioned,
make sure that the filename in the Template File edit control is correct and press Teach. This saves the pattern.

When the pattern has been taught, it may be beneficial to make the search region bigger, so that there is some tolerance
in finding the pattern.

If the tool finds the pattern, it displays the match score (between 0 and 1, where 1 is a perfect match). Scores below
0.5 are mostly meaningless. Please note that the characteristic of the score is different to the one used in the Match
Pattern tool.

15.2. Tools 271

nVision User Guide, Release 2016.3

If the tool cannot find the pattern at all, or if the score is too low, it outputs the text “No Match” in red.

The tool has a configuration panel, which can be used to set parameters.

The Template File parameter specifies the match template, which is loaded from disk. If the template exists, it is
displayed here.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.3). Matches below
this score are not considered.

The Teach button saves the pattern to the disk.

15.2.19 Match Pattern Tool

The Match Pattern tool locates a part using geometric pattern matching.

The tool displays graphical elements to specify the region of interest as well as to display the results.

The tool displays a yellow region of interest that you can drag around to specify both the pattern as well as the search
region of the pattern. You can move the box around on the image by dragging its inside. You can also resize the box
by picking it at its boundary lines (on the boundary line or just a bit outside) or at its corner points (on the corner point
of just a bit outside).

Usually, the box is put tightly around an area where you expect a specific pattern. Once the box has been positioned,
make sure that the filename in the Template File edit control is correct and press Teach. This saves the pattern.

When the pattern has been taught, it may be beneficial to make the search region bigger, so that there is some tolerance
in finding the pattern.

If the tool finds the pattern, it displays the match score (between 0 and 1, where 1 is a perfect match). Scores below
0.5 are mostly meaningless. Please note that the characteristic of the score is different to the one used in the Match
Contour tool.

If the tool cannot find the pattern at all, or if the score is too low, it outputs the text “No Match” in red.

The tool has a configuration panel, which can be used to set parameters.

The Template File parameter specifies the match template, which is loaded from disk. If the template exists, it is
displayed here.

The Min Score parameter is used to set the minimum score for an acceptable match (default = 0.5). Matches below
this score are not considered.

The Teach button saves the pattern to the disk.

15.2.20 Matrixcode Tool

The Matrixcode tool decodes a two-dimensional barcode inside a region of interest.

The tool displays graphical elements to specify the region of interest as well as to display the results.

272 Chapter 15. Reference

nVision User Guide, Release 2016.3

It displays a box that is used to select the region of interest. You can move the box around on the image by dragging
its inside. You can also resize the box by picking its boundary lines (on the boundary line or just a bit outside) or its
corner points (on the corner point of just a bit outside).

Once the search box has been positioned over a code in the image it tries to decode the code. Its position and the
decoded text is displayed in green, if it matches the expected text, or red, if the decoded text does not match the
expectation:

The Matrixcode tool has a configuration panel, which can be used to set parameters.

The controls in Pattern Matching allow you to specify a pattern that the decoded result must follow in order to be
correct.

Regular Expression: Defines the pattern that the decoded string should match. The pattern follows the rule of a
regular expression, specifically the .NET variant of regular expressions.

The following table explains common cases. For full information, look at the original documentation
(https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx).

Pat-
tern

Description

. Any character (except newline). a.c abc, aac, acc,
. . .

^ Start of a string. ^abc abc, abcdefg,
abc123, . . .

$ End of a string. abc$ abc,
endsinabc,
123abc, . . .

|Alternation. bill|
ted

bill, ted

[..
.]

Explicit set of characters to match. a[bB]c abc, aBc

* 0 or more of previous expression. ab*c ac, abc, abbc,
. . .

+ 1 or more of previous expression. ab+c abc, abbc,
abbbc, . . .

? 0 or 1 of previous expression; also forces minimal matching when an
expression might match several strings within a search string.

ab?c ac, abc

{. . .} Explicit quantifier notation. ab{2}c abbc
(. . .) Logical grouping of part of an expression. (abc){2} abcabc
\\ Preceding one of the above, it makes it a literal instead of a special

character.
a\\.b a.b

Ignore Case: If checked the case of the characters is ignored, otherwise the case must match exactly.

The controls in Enabled Symbologies allow you to enable or disable specific symbologies. Supported symbologies
are Data Matrix and QR Code.

The controls in Decoder Parameters allow you to manipulate locator and decoder behavior.

Polarities: Selects the possible contrast of the marking. Auto (default), Black on White or White on Black.

Views: Selects the possible orientation of the marking. Auto (default), Straight or Mirrored.

15.2.21 Reference Pose Tool

The Reference tool modifies the pose established by any location tool upstream.

15.2. Tools 273

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

nVision User Guide, Release 2016.3

The tool displays graphical elements to specify the new reference pose.

The tool displays a yellow box that you can drag and rotate to set the new pose. You can move the box around on the
image by dragging its inside. You can also resize the box by picking it at its boundary lines (on the boundary line or
just a bit outside) or rotate it by picking it at its corner points (on the corner point of just a bit outside).

Both the original pose (in gray) and the new pose are displayed, as well as two dimmer lines to help with alignment.

Subsequent tools use the pose to position their ROIs, such that the ROIs are always in the correct position, even if the
part moves considerably.

Stabilize Image keeps the image steady for downstream tools. It translates and rotates the image so that the selected
pose becomes the new center.

15.2.22 Result Tool

The Result tool is used to communicate the result of an inspection task. It works with an Adam module from Advantec.

The result tool writes the result in the form of an electrical signal to the Adam module.

The result tool has a configuration panel, which can be used to set parameters.

The parameters in Configure IO specify the electrical lines that are switched on.

OK specifies the number of the output of the Adam module which is used to signal the OK state.

Not OK specifies the number of the output of the Adam moduel which is used to signal the not OK state.

15.2.23 Vertical Shift Tool

The Vertical Shift tool uses horizontal edge detection to find a horizontal location.

The tool displays a region of interest that is used to detect the shift. The region of interest can be moved by the user.

The Vertical Shift tool has a configuration panel, which can be used to set parameters.

The parameters in the Edge Detection Parameters affect the edge detection.

Orientation can be used to set the direction of the edge detection: Top to Bottom or Bottom to Top are available.

Polarity can be used to select the type of edge: Both, Rising and Falling can be selected (default = Both). Rising
means an edge going from dark to bright along the search direction, falling means an edge from bright to dark, and
both means both edge types.

Smoothing is the amount of smoothing used in edge detection (default: 2.7).

Strength is the minimum strength of an edge (the gray scale slope of the edge, default = 15). Smoothing and Strength
are interrelated: the more you smooth the more you lessen the strength of an edge and vice versa.

The graphic below the controls shows the image that corresponds to the region of interest. The filled blue curve is the
averaged brightness and the yellow curve is the gradient, both after the smoothing is applied. You can observe how
the shape of the curves is affected by changing the Smoothing.

The two vertical lines visualize the effect of the edge strength. An edge is only found if the yellow curve crosses the
lines. You can observe how the edge detection is affected by changing the Strength.

The horizontal line shows where in the curve and image the edge is detected.

274 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.2. Tools 275

nVision User Guide, Release 2016.3

15.3 Nodes

15.3.1 Adam Module

Establish a connection to an Adam-60xx Ethernet Module from Adavantech, which allows you to read and write digital
signals.

This node initializes the module. If you connect its output to a GetProperty node, you can gather information about
the device. Usually you would connect the output to an Adam600 DigIn node to read electrical input, or an Adam6000
DigOut node to write electrical output.

The Adam modules are connected via LAN or wireless LAN to a PC and support a variety of input/output lines. The
modules may have additional features, such as counters, etc., but these are not yet supported.

module bus features
ADAM-6050 LAN 12 digital inputs, 6 digital outputs
ADAM 6050W WLAN 12 digital inputs, 6 digital outputs
ADAM-6051 LAN 12 digital inputs, 2 digital outputs
ADAM-6051W WLAN 12 digital inputs, 2 digital outputs
ADAM-6052 LAN 8 digital inputs, 8 digital outputs
ADAM 6060 LAN 6 digital inputs, 6 digital outputs
ADAM-6060W WLAN 6 digital inputs, 6 digital outputs
ADAM-6066 LAN 6 digital outputs

276 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

IP Address (Type: string)

The IP address of the Adam module (an IP V4 address such as 192.168.178.55).

Port (Type: Int32)

The port of the Adam module.

Type (Type: string)

The type of the Adam module (choose one of 6050, 6050W, 6051, 6051W, 6052, 6060, 6060W or 6066.

Outputs

Module (Type: Adam6000Module)

The Adam 60xx module instance.

Sample

Here is an example:

15.3.2 Adam 6000 DigIn

Reads digital electrical inputs from an Adam-60xx Ethernet Module from Adavantech.

This node reads digital signals from an Adam-60xx module.

15.3. Nodes 277

nVision User Guide, Release 2016.3

If the clock button inside the node is pressed , the node polls the module regularly. The frequency of the polling is
controlled with the timer interval setting on the Pipeline tab on the ribbon.

If the clock button inside the node is released , the module is not polled, and the node executes during regular
pipeline updates only.

Inputs

Module (Type: Adam6000Module)

An Adam 60xx module instance.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Here, the digital input is read after the image has been imported.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

DigIn (Type: Int32)

The digital input in the form of a 32 bit integer number.

Sample

Here is an example:

15.3.3 Adam 6000 DigOut

Writes digital electrical outputs to an Adam-60xx ethernet module from Adavantech.

This node writes digital signals to an Adam-60xx module.

278 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Module (Type: Adam6000Module)

An Adam 60xx module instance.

DigOut (Type: Int32)

The numeric value that is written to the electrical outputs.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Here, the digital output is written after the digital input has been read.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

Sync (Type: object)

Synchronizing object. It is used to establish an order of execution.

15.3. Nodes 279

nVision User Guide, Release 2016.3

Sample

Here is an example:

15.3.4 Add

Adds two or more numbers.

Inputs

A (Type: Double)

The first operand.

B (Type: Double)

The second operand.

C. . . Z (Type: Double)

Additional operands, added on demand.

Outputs

Sum (Type: Double)

The sum of all operands.

280 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

This node calculates the sum of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.5 Add Input

Input ports are the means by which data flows into a subpipeline. A subpipeline can have any number of input ports,
including zero. Input ports must be named uniquely, two input ports of the same suppipeline cannot have the same
name.

By default a sub-pipeline has one input, named Input1.

This is how this looks from the outside:

and here how it looks from the inside:

With the Add Input (Ctrl-I) command (or the Ctrl-I keyboard shortcut), you can add any number of additional
inputs, that are automatically named as well.

To delete an input, right-click on the arrow in front of the name and choose the Delete command.

To rename an input, click on the name and type.

15.3.6 Add Output

Output ports are the means by which data flows out of a subpipeline. A subpipeline can have any number of output
ports, including zero. Output ports must be named uniquely, two output ports of the same suppipeline cannot have the
same name.

By default a sub-pipeline has one output, named Output1.

This is how this looks from the outside:

and here how it looks from the inside:

15.3. Nodes 281

nVision User Guide, Release 2016.3

With the Add Output (Ctrl-O) command (or the Ctrl-O keyboard shortcut), you can add any number of additional
outputs, that are automatically named as well.

To delete an ouotput, right-click on the arrow after of the name and choose the Delete command.

To rename an output, click on the name and type.

15.3.7 AffineTransform

Geometrically transforms an image by an affine transform.

Inputs

Image (Type: Image)

The input image.

Transform (Type: Ngi.AffineMatrix)

The affine transformation matrix.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Extend Size (Type: bool)

The geometric transformation may produce pixels that are outside of the input image bounds. If the parameter is set,
the size of the output image is adapted to make room for these pixels. If the parameter is cleared, the size of the output
image is kept the same as the input image.

282 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Transformed (Type: Image)

The output image.

15.3.8 And

Logical And of two or more boolean values.

Inputs

A (Type: Boolean)

The first operand.

B (Type: Boolean)

The second operand.

C. . . Z (Type: Boolean)

Additional operands, added on demand.

Outputs

And (Type: Boolean)

The logical And of all operands.

15.3. Nodes 283

nVision User Guide, Release 2016.3

Comments

This node calculates the locgical And of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.9 AppendToTextFile

Appends an line of text to a text file.

Inputs

Object (Type: Object)

The input element. The input element is converted to a text which is then appended as a line to the existing contents
of the file.

Directory (Type: String)

A directory. This is preset with the user’s documents folder.

Filename (Type: String)

A filename. This is preset with "data.txt".

LineLimit (Type: Int32)

The maximum number of lines the file is limited to. Teh default is 0 which means that there is no limit. Negative
values will be treated the same as 0.

284 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

The AppendToTextFile node appends a line of text to a file. The input element can be any object, which is converted
to a line of text.

The directory and filename of the file can be specified. If no directory is used, the node uses the user’s documents
folder. If no filename is used, the node uses the name "data.txt". If the directory does not exist, it will be created.

The maximum number of lines that the file should have after the append can be specified. If the maximum number of
lines would be execeeded, the system still appends a line to the file, but at the same time it also removes the line at the
beginning of the file.

The node only executes, if the Export On/Off mode has been turned on,

or if the Export Once button is clicked.

Otherwise, the node does not execute and has no effect.

15.3.10 Beckhoff PLC

Establish a connection to a Beckhoff TwinCAT PLC, which allows you to read and write to PLC symbols.

This node initializes the PLC. If you connect its output to a GetProperty node, you can gather information about the
PLC. Usually you would connect the output to a Read Symbol node to read symbol data, or a Write Symbol node to
write symbol data.

Inputs

AMS NetID (Type: string)

The identifier of the Beckhoff PLC.

15.3. Nodes 285

nVision User Guide, Release 2016.3

Port (Type: Int32)

The port of the Beckhoff PLC.

Outputs

Module (Type: TwinCAT.Ads.AdsClient)

The Beckhoff PLC (ADS) instance.

Since establishing a connection to a PLC is often an operation with a somewhat global character, the Beckhoff PLC
node is sometimes put into the pipeline globals or the system globals.

15.3.11 Read Symbol

Reads symbol data from a Beckhoff PLC.

If the clock button inside the node is pressed , the node polls the PLC regularly. The frequency of the polling is
controlled with the timer interval setting on the Pipeline tab on the ribbon.

If the clock button inside the node is released , the PLC is not polled, and the node executes during regular pipeline
updates only.

Inputs

PLC (Type: TwinCAT.Ads.AdsClient)

A Beckhoff PLC (ADS) instance.

Symbol (Type: string)

A PLC symbol name.

286 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

Value (Type: String)

The symbol value.

Info (Type: TwinCAT.Ads.ITcAdsSymbol)

Additional symbol information.

15.3.12 Write Symbol

Writes symbol data to a Beckhoff PLC.

This node writes digital signals to an OpenLayers module.

Inputs

PLC (Type: TwinCAT.Ads.AdsClient)

A Beckhoff PLC (ADS) instance.

Symbol (Type: string)

A PLC symbol name.

Value (Type: string)

The value that is written to the Beckhoff PLC symbol.

15.3. Nodes 287

nVision User Guide, Release 2016.3

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

Sync (Type: object)

Synchronizing object. It is used to establish an order of execution.

15.3.13 BinaryImageConstantOperator

Applies a binary point operation between an image and a constant. Possible operations can be grouped into arithmetic,
logic and comparison fields. Binary point operations are applied pixel by pixel, the same way for every pixel.

Arithmetic Operators

The following operators are available:

Add

Add with saturation.

Image + Constant -> Result

Subtract

288 Chapter 15. Reference

nVision User Guide, Release 2016.3

Subtract with saturation.

Image - Constant -> Result

Difference

Difference with saturation.

abs (Image - Constant) -> Result

Multiply

Multiply without saturation.

Image * Constant -> Result

Divide

Divide without saturation.

Image / Constant -> Result

Multiply (Blend)

Multiply with saturation.

Image * Constant -> Result

Divide (Blend)

Divide with saturation.

Image / Constant -> Result

15.3. Nodes 289

nVision User Guide, Release 2016.3

290 Chapter 15. Reference

nVision User Guide, Release 2016.3

Logic Operators

The following operators are available:

And

Logical And.

Image & Constant -> Result

Or

Logical Or.

Image | Constant -> Result

Xor

Logical Xor.

Image ^ Constant -> Result

15.3. Nodes 291

nVision User Guide, Release 2016.3

Comparison Operators

The following operators are available:

Smaller

Compare smaller.

Image < Constant -> Result

Smaller or Equal

Compare smaller or equal.

Image <= Constant -> Result

292 Chapter 15. Reference

nVision User Guide, Release 2016.3

Equal

Compare equal.

Image == Constant -> Result

Bigger or Equal

Compare bigger or equal.

Image >= Constant -> Result

Bigger

15.3. Nodes 293

nVision User Guide, Release 2016.3

Compare bigger.

Image > Constant -> Result

Min/Max Operators

The following operators are available:

Min

Minimum.

min(Image, Constant) -> Result

Max

Maximum.

max(Image, Constant) -> Result

294 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Constant (Type: object)

The constant.

Operator (Type: string)

Specifies the operator.

15.3. Nodes 295

nVision User Guide, Release 2016.3

operator operation
+ add
- subtract
diff difference
* multiply
/ divide
*_blend multiply (blend)
/_blend divide (blend)
& and
| or
^ xor
< smaller
<= smaller or equal
== equal
>= bigger or equal
> bigger
min minimum
max maximum

Outputs

Result (Type: Image)

The result image.

15.3.14 BinaryImageOperator

Applies a binary point operation between two images. Possible operations can be grouped into arithmetic, logic and
comparison fields. Binary point operations are applied pixel by pixel, the same way for every pixel, for corresponding
pixels of two images.

Arithmetic Operators

The following operators are available:

Add

Add with saturation.

Image + Gradient -> Result

Subtract

Subtract with saturation.

296 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 297

nVision User Guide, Release 2016.3

Image - Gradient -> Result

Difference

Difference with saturation.

abs (Image - Gradient) -> Result

Multiply

Multiply without saturation.

Image * Gradient -> Result

Divide

Divide without saturation.

Image / Gradient -> Result

Multiply (Blend)

Multiply with saturation.

Image * Gradient -> Result

Divide (Blend)

Divide with saturation.

Image / Gradient -> Result

298 Chapter 15. Reference

nVision User Guide, Release 2016.3

Logic Operators

The following operators are available:

And

Logical And.

Image & Gradient -> Result

Or

Logical Or.

Image | Gradient -> Result

Xor

Logical Xor.

Image ^ Gradient -> Result

Comparison Operators

The following operators are available:

Smaller

Compare smaller.

Image < Gradient -> Result

15.3. Nodes 299

nVision User Guide, Release 2016.3

300 Chapter 15. Reference

nVision User Guide, Release 2016.3

Smaller or Equal

Compare smaller or equal.

Image <= Gradient -> Result

Equal

Compare equal.

Image == Gradient -> Result

Bigger or Equal

Compare bigger or equal.

Image >= Gradient -> Result

Bigger

Compare bigger.

Image > Gradient -> Result

Min/Max Operators

The following operators are available:

Min

15.3. Nodes 301

nVision User Guide, Release 2016.3

Minimum.

min(Image, Gradient) -> Result

Max

Maximum.

max(Image, Gradient) -> Result

Inputs

ImageA (Type: Image)

The first input image.

ImageB (Type: Image)

The second input image.

Operator (Type: string)

Specifies the operator.

302 Chapter 15. Reference

nVision User Guide, Release 2016.3

operator operation
+ add
- subtract
diff difference
* multiply
/ divide
*_blend multiply (blend)
/_blend divide (blend)
& and
| or
^ xor
< smaller
<= smaller or equal
== equal
>= bigger or equal
> bigger
min minimum
max maximum

Outputs

Result (Type: Image)

The result image.

15.3.15 BinaryRegionListOperator

Applies a binary operation between the regions in a list.

The following operators are available: union and intersection.

Union (|)

Calculates the union of all regions in the list.

15.3. Nodes 303

nVision User Guide, Release 2016.3

Intersection (&)

Calculates the intersection of all regions in the list.

Inputs

Regions (Type: RegionList)

The list of input regions.

Operator (Type: string)

Specifies the operator.

operator operation
| union
& intersection

Outputs

Result (Type: Region)

The result region.

15.3.16 BinaryRegionOperator

Applies a binary operation between two regions.

The following operators are available:

Union (|)

Calculates the union (yellow) of two regions A (dark), B (bright).

A | B -> Union

Intersection (&)

304 Chapter 15. Reference

nVision User Guide, Release 2016.3

Calculates the intersection (yellow) of two regions A (dark), B (bright).

A & B -> Intersection

Difference (\)

Calculates the difference (yellow) of two regions A (dark), B (bright).

A B -> Difference

B A -> Difference

15.3. Nodes 305

nVision User Guide, Release 2016.3

306 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

RegionA (Type: Region)

The first input region.

RegionB (Type: Region)

The second input region.

Operator (Type: string)

Specifies the operator.

operator operation
| union
& intersection
\ difference

Outputs

Result (Type: Region)

The result region.

15.3.17 Binning

Reduces an image in size by combining several neighboring pixels.

Inputs

Image (Type: Image)

The input image.

XFactor (Type: Int32)

The horizontal binning factor.

15.3. Nodes 307

nVision User Guide, Release 2016.3

YFactor (Type: Int32)

The vertical binning factor.

Function (Type: String)

The binning function.

Outputs

Binned (Type: Image)

The output image.

Comments

This function reduces an image in size by combining several neighboring pixels. The binning factor in horizontal and
vertical direction can be different. Different mathematical methods for combination can be selected with the binning
function.

ArithmeticMean: the aithmetic mean of the neighboring pixels is used.

GeometricMean: the geometric mean of the neighboring pixels is used.

HarmonicMean: the harmonic mean of the neighboring pixels is used.

QuadraticMean: the quadratic mean of the neighboring pixels is used.

Minimum: the minimum of the neighboring pixels is used.

308 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 309

nVision User Guide, Release 2016.3

Maximum: the maximum of the neighboring pixels is used.

Midrange: the midrange of the neighboring pixels is used.

Median: the median of the neighboring pixels is used.

Sample

Here is an example that bins an image by a factor of 4 in both horizontal and vertical directions.

15.3.18 Blob Analysis

Measures features of segmented blobs of pixels.

310 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Blobs (Type: RegionList)

The regions that define the blobs..

Image (Type: Image)

An optional image. This is only needed, if densitometric features should be calculated, because they need pixel values.

BlobFeatures (Type: List[String])

A list of strings which defines the features that should be calculated. The full set of features is described in the Blob
Analysis chapter of the nVision User Guide.

BlobColors (Type: ‘‘)

An optional list of colors that define the colors that should be used to color the different regions, so that they can be
visually distinguished.

Outputs

Data (Type: ‘System.Data.DataTable’)

The blob analysis result data.

Comments

The Blob Analysis node calculates the features for a list of blobs.

The set of features can be selected with the BlobFeatures input.

15.3. Nodes 311

nVision User Guide, Release 2016.3

The results of the blob analysis are displayed by default (if connected to the output of a sup-pipeline) as a colored
overlay on top of an image in the upper half and a table in the lower half. The table shows the numeric values of the
calculated features. Colored regions in the image can be clicked with the mouse to find the values in the table (the row
will be highlighted). Vice versa, if the checkboxes in the Show colum are marked and geometric features (like Bounds
and/or Equivalent Ellipse) are calculated, the blob is highlighted by the geometric feature (i.e. a bounding box or the
equivalent ellipse).

Sample

Here is an example that calculates the average of an image.

15.3.19 Blob Feature

Measures features of a region.

Inputs

Blob (Type: Region)

The region that defines the blob.

312 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 313

nVision User Guide, Release 2016.3

Outputs

Feature

The blob analysis result data. The type of the result depends on the selected feature.

Comments

The Blob Feature node calculates the feature for a single region.

The features can be selected inside the node. The full set of features is described in the Blob Analysis chapter of the
nVision User Guide.

15.3.20 HMI Border

The Border puts a border around its child.

At the bottom of the Border node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the Border.

The Border respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Background
styles.

Background (Type: SolidColorBrushByte)

The background of the Border.

BorderBrush (Type: SolidColorBrushByte)

The brush of the Border frame.

Thickness (Type: Thickness)

The thickness of the Border frame.

314 Chapter 15. Reference

nVision User Guide, Release 2016.3

CornerRadius (Type: ‘CornerRadius’)

The corner radius of the Border frame.

Example

Here is an example that puts a border around an image. This definition:

creates the following user interface:

15.3.21 Average

Calculates the average value of all pixels in a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Average (Type: Object)

The average value.

15.3. Nodes 315

nVision User Guide, Release 2016.3

316 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

The Average node calculates the average value of a buffer. It sums all pixels and divides by the number of pixels.

If the Region input is connected, the calculation of the average is constrained to within the region only, otherwise the
whole buffer is used.

If a color buffer is used, the average is calculated channel-wise.

Sample

Here is an example that calculates the average of an image.

15.3.22 Maximum

Calculates the maximum value of a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

15.3. Nodes 317

nVision User Guide, Release 2016.3

Outputs

Maximum (Type: Object)

The maximum value.

Comments

The Maximum node calculates the maximum value of a buffer.

If the Region input is connected, the calculation of the maximum is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the maximum length color vector is calculated.

Sample

Here is an example that calculates the maximum of an image.

15.3.23 Max Position

Calculates the position of the maximum value of a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

318 Chapter 15. Reference

nVision User Guide, Release 2016.3

Region (Type: Region)

An optional region.

Outputs

MaxPosition (Type: Index3d)

The position of the maximum value.

Comments

The Max Position node calculates the (first occurrence of the) position of the maximum value of a buffer.

If the Region input is connected, the calculation of the maximum is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the maximum length color vector is calculated.

15.3.24 Minimum

Calculates the minimum value of a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Minimum (Type: Object)

The minimum value.

15.3. Nodes 319

nVision User Guide, Release 2016.3

Comments

The Minimum node calculates the minimum value of a buffer.

If the Region input is connected, the calculation of the minimum is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the minimum length color vector is calculated.

Sample

Here is an example that calculates the minimum of an image.

15.3.25 Min Position

Calculates the position of the minimum value of a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

320 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

MinPosition (Type: Index3d)

The position of the minimum value.

Comments

The Min Position node calculates the (first occurrence of the) position of the minimum value of a buffer.

If the Region input is connected, the calculation of the minimum is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the minimum length color vector is calculated.

15.3.26 Quantile

Calculates the quantile of a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Percentage (Type: Double)

Specifies the quantile.

Outputs

Quantile (Type: Object)

The quantile value.

15.3. Nodes 321

nVision User Guide, Release 2016.3

Comments

The Quantile node calculates a quantile of a buffer.

If the Region input is connected, the calculation of the quantile is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the quantile is calculated channel-wise.

Sample

Here is an example that calculates the 50% quantile of an image.

15.3.27 StdDev

Calculates the standard deviation of all pixels in a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

322 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

StdDev (Type: Object)

The standard deviation.

Comments

The StdDev node calculates the standard deviation of all pixel values of a buffer.

If the Region input is connected, the calculation of the standard deviation is constrained to the pixels within the region
only, otherwise the whole buffer is used.

If a color buffer is used, the standard deviation is calculated channel-wise.

The standard deviation is a measure of statistical dispersion, averaging the squared distance of values from the mean
value. The standard deviation is a measure of how much a statistical distribution is spread out. The standard deviation
is the square root of the variance.

The standard deviation is calculated according to this formula:

𝜎 =
√︁

1
𝑛

∑︀
𝑥2 − 𝜇2

Sample

Here is an example that calculates the standard deviation of an image.

15.3.28 Sum

Calculates the sum of all pixels in a buffer.

15.3. Nodes 323

nVision User Guide, Release 2016.3

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Sum (Type: Object)

The sum.

Comments

The Sum node calculates the sum of all pixel values of a buffer.

If the Region input is connected, the calculation of the sum is constrained to the pixels within the region only, otherwise
the whole buffer is used.

If a color buffer is used, the sum is calculated channel-wise.

Sample

Here is an example that calculates the sum of an image.

15.3.29 Sum of Squares

Calculates the sum of squares of all pixels in a buffer.

324 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Sum (Type: Object)

The sum of squares.

Comments

The Sum node calculates the sum of squares of all pixel values of a buffer.

If the Region input is connected, the calculation of the sum is constrained to the pixels within the region only, otherwise
the whole buffer is used.

If a color buffer is used, the sum of squares is calculated channel-wise.

Sample

Here is an example that calculates the sum of squares of an image.

15.3. Nodes 325

nVision User Guide, Release 2016.3

15.3.30 Variance

Calculates the variance of all pixels in a buffer.

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Variance (Type: Object)

The variance.

Comments

The Variance node calculates the variance of all pixel values of a buffer.

If the Region input is connected, the calculation of the variance is constrained to the pixels within the region only,
otherwise the whole buffer is used.

If a color buffer is used, the variance is calculated channel-wise.

The variance is a measure of statistical dispersion, averaging the squared distance of values from the mean value. The
variance is a measure of how much a statistical distribution is spread out.

The variance is calculated according to this formula:

𝜎2 = 1
𝑛

∑︀
𝑥2 − 𝜇2

Sample

Here is an example that calculates the variance of an image.

15.3.31 Variation

Calculates the coefficient of variation of all pixels in a buffer.

326 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Buffer (Type: Buffer)

The input buffer.

Region (Type: Region)

An optional region.

Outputs

Variation (Type: Object)

The coefficient of variation.

Comments

The Variation node calculates the coefficient of variation of all pixel values of a buffer.

If the Region input is connected, the calculation of the coefficient of variation is constrained to the pixels within the
region only, otherwise the whole buffer is used.

If a color buffer is used, the coefficient of variation is calculated channel-wise.

The coefficient of variation is the standard deviation divided by the average.

The coefficient of variation is calculated according to this formula:

𝑐𝑣 = 𝜎
𝜇

15.3. Nodes 327

nVision User Guide, Release 2016.3

Sample

Here is an example that calculates the coefficient of variation of an image.

15.3.32 HMI Button

Buttons are used to switch or visualize state, as well as to trigger actions. The Button is a push-button, which is
released when you no longer push it.

A Button is down as long as it is held down with the mouse. When it is no longer held down, it releases itself to the
up state.

At the bottom of the Button node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the Button.

The Border respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground, Back-
ground, Font and Padding styles.

Name (Type: string)

The text that is displayed within the button. This text is only displayed, when no child is connected. If a child is
connected, the visual definition of the child is used.

Outputs

IsDown (Type: boolean)

True if the button is down, False otherwise.

328 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows a simple text button. This definition:

creates the following user interface:

And this more complicated example shows a button with an image and a text. This definition:

creates the following user interface:

15.3.33 Execute Command

Executes a GenICam command of a camera.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur before the parameter will be
written.

Name (Type: String)

The name of the GenICam command. These names are determined by the camera vendor.

15.3. Nodes 329

nVision User Guide, Release 2016.3

330 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur after the parameter has been
written.

Comments

The names of the available camera commands are the same as those in the camera parameters window that you can
open with the Show Camera Parameters on the Home ribbon bar.

15.3.34 Get Parameter

Reads a GenICam parameter value from a camera.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur before the parameter will be
read.

Name (Type: String)

The name of the GenICam parameter. These names are determined by the camera vendor.

Outputs

Value (Type: String)

The value read from the camera parameter.

Comments

The names of the available camera parameters can be found by opening the camera parameters window with the Show
Camera Parameters on the Home ribbon bar.

Example

Here is an example that snaps one image, reads the current ExposureTime (20 ms), sets the ExposureTime to 10 ms,
takes a second image, sets the ExposureTime back to its original value and takes a third image. The connections of the
Sync outputs and inputs establish the temporal order.

15.3. Nodes 331

nVision User Guide, Release 2016.3

332 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 333

nVision User Guide, Release 2016.3

334 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.35 Image Source

Delivers images from a camera in live acquisition mode.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

Outputs

Image (Type: Image)

Delivers an image from the camera.

Comments

The Start Acquisition node starts the acquisition on the specified camera. Once the acquition is running, an Image
Source node will deliver images from the camera. The Stop Acquisition node stops the acquisition on the specified
camera.

This Image Source node runs asynchronously. When a new image from a camera arrives, the pipeline executor is
notified and executes the pipeline.

15.3.36 Set Parameter

Writes a GenICam parameter value to a camera.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

15.3. Nodes 335

nVision User Guide, Release 2016.3

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur before the parameter will be
written.

Name (Type: String)

The name of the GenICam parameter. These names are determined by the camera vendor.

Value (Type: String)

The value to write to the camera parameter.

Outputs

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur after the parameter has been
written.

Comments

The names of the available camera parameters can be found by opening the camera parameters window with the Show
Camera Parameters on the Home ribbon bar.

Example

Here is an example that snaps one image, reads the current ExposureTime (20 ms), sets the ExposureTime to 10 ms,
takes a second image, sets the ExposureTime back to its original value and takes a third image. The connections of the
Sync outputs and inputs establish the temporal order.

15.3.37 Snap Image

Snaps an image from a camera.

The preview shows the number of available cameras.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, when the image shapshot occurs.

336 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 337

nVision User Guide, Release 2016.3

338 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Image (Type: Image)

The acquired image.

Example

Here is an example that snaps two images in fast succession:

15.3.38 Start Acquisition

Starts the acquisition of a camera.

15.3. Nodes 339

nVision User Guide, Release 2016.3

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur before the parameter will be
written.

Outputs

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur after the parameter has been
written.

Comments

The Start Acquisition node starts the acquisition on the specified camera. Once the acquition is running, an Image
Source node will deliver images from the camera. The Stop Acquisition node stops the acquisition on the specified
camera.

15.3.39 Stop Acquisition

Stops the acquisition of a camera.

Inputs

Camera (Type: CameraInfo)

Specifies the camera.

340 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur before the parameter will be
written.

Outputs

Sync (Type: System.Object)

This can be used to establish a temporal order, so that you can specify, what has to occur after the parameter has been
written.

Comments

The Start Acquisition node starts the acquisition on the specified camera. Once the acquition is running, an Image
Source node will deliver images from the camera. The Stop Acquisition node stops the acquisition on the specified
camera.

15.3.40 Canny

Applies Canny edge detection to an image.

According to Canny’s edge detection algorithm, the filter performs Gaussian smoothing, edge detection with a Sobel
filter and then uses hysteresis thresholding and non maximum suppression to end up with a binary imnage of the edges.

You can follow this node with a Threshold node to convert the binary image to a region.

Inputs

Image (Type: Image)

The input image.

Sigma (Type: Double)

Determines the size of the Gaussian filter kernel.

SobelSize (Type: Int32)

Determines the size of the Sobel filter kernel.

15.3. Nodes 341

nVision User Guide, Release 2016.3

Low (Type: Double)

The low threshold of the hysteresis thresholding expressed as a percentage.

High (Type: Double)

The hiegh threshold of the hysteresis thresholding expressed as a percentage.

Outputs

Image (Type: Image)

The output image of the edges.

Sample

Here is an example:

15.3.41 HMI Canvas

The Canvas allows you to put controls at specific positions on the canvas.

At the bottom of the Canvas node is a pin that allows it to connect several children.

Inputs

Style (Type: Style)

Optional styling of the Canvas.

342 Chapter 15. Reference

nVision User Guide, Release 2016.3

The Canvas respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Background
styles.

Background (Type: SolidColorBrushByte)

The background of the Canvas.

Comments

Children of the Canvas have the attached properties Left and Top. These properties are pixel positions and define
where exactly the respective child will be put on the canvas.

Example

Here is an example that puts four images on a canvas. This definition:

creates the following user interface:

15.3.42 Change Extension

Changes the extension of a path string.

15.3. Nodes 343

nVision User Guide, Release 2016.3

Inputs

Path (Type: String)

The path information to modify.

Extension (Type: String)

The new extension (with or without a leading period). Specify an empty string to remove an existing extension from
path.

Outputs

NewPath (Type: Ngi.Path)

The modified path information

Comments

If path is an empty string, the path information is returned unmodified. If extension is an empty string, the returned
string contains the specified path with its extension removed. If path has no extension, and extension is not the empty
string, the returned path string contains extension appended to the end of path.

15.3.43 HMI CheckBox

Buttons are used to switch or visualize state, as well as to trigger actions. The CheckBox has two states, checked or
not.

A CheckBox toggles between the checked and unchecked states when it is clicked.

At the bottom of the CheckBox node is a pin that allows it to connect one child.

344 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the CheckBox.

The CheckBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Name (Type: string)

The text that is displayed within the button. This text is only displayed, when no child is connected. If a child is
connected, the visual definition of the child is used.

Outputs

IsChecked (Type: boolean)

True if the checkbox is checked, False otherwise.

Example

Here is an example that shows a simple CheckBox. This definition:

creates the following user interface:

15.3. Nodes 345

nVision User Guide, Release 2016.3

15.3.44 Checker

Presets an image with a checkerboard pattern.

Inputs

CheckerCellSize (Type: VectorInt32)

The cell size of one checkerboard field. The default is 64 x 64 pixels.

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

Dark (Type: String)

The value of a dark checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Bright (Type: String)

The value of a bright checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

346 Chapter 15. Reference

nVision User Guide, Release 2016.3

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a checkerboard pattern.

Comments

The Checker node presets an image with a checkerboard pattern. The size of the created image, the colors for dark
and bright checkerboard fields, the region of interest and the background color can all be specified.

Sample

Here is an example that shows how to used the Checker node.

Here is the image created with the sample:

15.3.45 CircularGradient

Presets an image with a circular gradient pattern.

Inputs

Center (Type: PointDouble)

The center of the gradient. The default is 512, 512.

15.3. Nodes 347

nVision User Guide, Release 2016.3

348 Chapter 15. Reference

nVision User Guide, Release 2016.3

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

Dark (Type: String)

The dark value. This value is converted into the appropriate pixel type, depending on the Type parameter. For
monochrome images you should enter one number, for rgb color images you should enter three numbers separated
by a space.

Bright (Type: String)

The bright value. This value is converted into the appropriate pixel type, depending on the Type parameter. For
monochrome images you should enter one number, for rgb color images you should enter three numbers separated by
a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a circular pattern.

Comments

The CircularGradient node presets an image with a circular gradient pattern. The size of the created image, the
colors for dark and bright checkerboard fields, the region of interest and the background color can all be specified.

15.3. Nodes 349

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to used the CircularGradient node.

Here is the image created with the sample:

15.3.46 Combine

Combines two images to form a combined image.

Inputs

A (Type: Image)

The first input image.

B (Type: Image)

The second input image.

Direction (Type: String)

The direction to combine the image. This can be Horizontal, Vertical or Planar to combine in the X, Y, or
Z directions, respectively.

The other dimensions of the image must match, otherwise the combine node issues and error message.

Outputs

Image (Type: Image)

The combined output image.

350 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 351

nVision User Guide, Release 2016.3

Comments

This function combines an image in two parts, in either the horizontal, vertical or planar directions.

Sample

Here is an example:

15.3.47 Combine Channels

Combines three channels to create a color image.

Inputs

First (Type: Image)

The first channel image.

Second (Type: Image)

The second channel image.

Third (Type: Image)

The third channel image.

352 Chapter 15. Reference

nVision User Guide, Release 2016.3

Model (Type: String)

The color model of the resulting image.

Outputs

Image (Type: Image)

The output image.

Comments

This function combines three channels to a color image.

The color model specifies the color space of the resulting image and also the meaning of the channels. The following
color models are available: RGB, HLS, HSI and LAB.

Given the following channels (red, green and blue from left to right):

Here are the channels again visualized in their proper colors:

The result of the combination as an RGB image is:

15.3. Nodes 353

nVision User Guide, Release 2016.3

Sample

Here is an example that combines three channels to form a color image.

15.3.48 HMI ComboBox

A ComboBox can be used to select one from a number of entries. It has a collapsed and expanded state.

Inputs

Style (Type: Style)

Optional styling of the ComboBox.

The ComboBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Items (Type: List<string>)

A list of text items that is displayed in the ComboBox.

Index (Type: Int32)

The initial selection of the ComboBox. This is a zero-based index. You can use -1 to specify no selection. This value
is used only when the Items pin is connected.

354 Chapter 15. Reference

nVision User Guide, Release 2016.3

IsEditable (Type: Boolean)

If false, the ComboBox can be used to select items only. If true, you can also type into the edit field of the ComboBox.
Typing either selects between one of the items in the list or can be used to enter a text which is not in the list.

Outputs

SelectedItem (Type: string)

The selected item.

SelectedIndex (Type: Int32)

The zero-based index of the selected item, or -1 for no selection.

Example

Here is an example that shows a ComboBox. This definition:

creates the following user interface:

15.3. Nodes 355

nVision User Guide, Release 2016.3

and in expanded state:

15.3.49 Comment

Comments a pipeline.

A Comment can be used to add text to a pipeline. It does not participate in pipeline execution, but it serves as
documentation for a pipeline.

A Comment can be moved around freely on the pipeline canvas. The size of a comment is determined by the text
included in the comment.

Text can be entered by clicking into the comment area and typing.

15.3.50 Connected Components

Splits a region into a list of multiple spatially disconnected regions.

Inputs

Region (Type: Region)

The input region.

DistanceX (Type: Int32)

A horizontal distance. Pixels within this horizontal distance are considered to be connected.

DistanceY (Type: Int32)

A vertical distance. Pixels within this horizontal distance are considered to be connected.

356 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Blobs (Type: RegionList)

The resulting list of disconnected regions.

BlobColors

A list of colors that can be used to color the regions in a way that expresses their separated nature by using different
colors (the list contains six distinct colors that are repeated).

Comments

Usually, connectedness is specified using the terms 4-connected and 8-connected in the literature. 4-connected means
that objects touching only at the diagonal pixels are separated, 8-connected means that such objects are not sepa-
rated. The two distance parameters can be used to specify 4-connectedness (DistanceX == 0, DistanceY == 0) or
8-connectedness (DistanceX == 1, DistanceY == 1). Bigger values of the distance parameters can jump over gaps and
still treat objects as being connected.

Using this pipeline:

the following region has been created by thresholding:

and the following list of regions has been created by separating objects with the Connected Components node:

15.3.51 Constant

Presets an image with a constant color.

Inputs

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

Constant (Type: String)

The constant value. This value is converted into the appropriate pixel type, depending on the Type parameter. For
monochrome images you should enter one number, for rgb color images you should enter three numbers separated by
a space.

15.3. Nodes 357

nVision User Guide, Release 2016.3

358 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 359

nVision User Guide, Release 2016.3

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a constant pattern.

Comments

The Constant node presets an image with a constant color. The size of the created image, the constant color, the
region of interest and the background color can all be specified.

Sample

Here is an example that shows how to used the Constant node.

Here is the image created with the sample:

360 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 361

nVision User Guide, Release 2016.3

15.3.52 Boolean

Create and set a boolean value.

Outputs

Value (Type: Boolean)

The boolean value.

Comments

This node provides the means to create and set a boolean value.

The value can be changed by clicking on the button inside the node.

The title of the node can be edited.

15.3.53 Directory

Create and set a directory name.

Outputs

Directory (Type: String)

The directory name.

Comments

This node provides the means to create and set a directory name.

The value can be changed by typing the text inside the edit field in the node, or by selecting a directory using the [. . .]
button.

The title of the node can be edited.

15.3.54 Double

Create and set a floating point value.

362 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Value (Type: Double)

The floating point value.

Comments

This node provides the means to create and set a floating point value.

The value can be changed by typing the floating point value inside the edit field in the node. Also, the spinner buttons
can be used to increase or decrease the value.

The title of the node can be edited.

15.3.55 Filename

Create and set a filename.

Outputs

Filename (Type: String)

The filename.

Comments

This node provides the means to create and set a filename.

The value can be changed by typing the text inside the edit field in the node, or by selecting a file using the [. . .]
button.

The title of the node can be edited.

15.3.56 Integer

Create and set an integer value.

15.3. Nodes 363

nVision User Guide, Release 2016.3

Outputs

Value (Type: Int32)

The integer value.

Comments

This node provides the means to create and set an integer value.

The value can be changed by typing the integer value inside the edit field in the node. Also, the spinner buttons can be
used to increase or decrease the value.

The title of the node can be edited.

15.3.57 Text

Create and set a text value.

Outputs

Value (Type: String)

The text value.

Comments

This node provides the means to create and set a text value.

The value can be changed by typing the text inside the edit field in the node.

You can insert a few escape sequences to enter non-printable characters into the string.

escape sequence non-printable character
\t tab
\n newline
\r carriage return

The title of the node can be edited.

364 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.58 Context Menu

The context menu can be opened from the pipeline editor by clicking the right mouse button.

It shows commands to enter nodes and add additional input or output ports.

You can browse through the menu, and selecting an item will usually place the respective node in the pipeline editor
canvas, at the position where the mouse was when the menu opened.

The only exceptions to this rule are the following entries:

entry description
Add Input (Ctrl-I) add an input port
Add Output (Ctrl-O) add an output port
Copy (Ctrl-C) copy the selected nodes
Paste (Ctrl-V) paste the selected nodes

The search box at the top of the menu allows you to narrow down the menu. For example, if you are looking for
commands that have something to do with histogram, start typing his, and the context menu will show only those
commands and groups that have something to do with histograms.

Note that you do not need to click into the search edit box at the top of the menu, you can just start typing.

15.3.59 Convert Type

Converts the type of an image.

Inputs

Image (Type: Image)

The input image.

Type (Type: String)

The type of the resulting image.

Outputs

Image (Type: Image)

The output image.

Comments

This function takes an image and converts it to the specified type.

The following types are available: ImageByte, ImageUInt16, ImageUInt32, ImageDouble,
ImageRgbByte, ImageRgbUInt32, ImageRgbUInt32 and ImageRgbDouble.

Usually, nVision works with variant image types and treats any specific image type transparently. Sometimes, how-
ever, one needs a specific type. This conversion helps to convert to a specific type.

15.3. Nodes 365

nVision User Guide, Release 2016.3

366 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sample

Here is an example:

15.3.60 RGB -> Monochrome

Converts an image in the RGB color model to monochrome.

Inputs

Image (Type: Image)

The input image.

Outputs

Monochrome (Type: Image)

The output image.

Comments

This function converts an image in the RGB color model to a monochrome image.

Here is an example of the original color image:

And here is the same image converted to monochrome:

15.3. Nodes 367

nVision User Guide, Release 2016.3

368 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 369

nVision User Guide, Release 2016.3

Sample

Here is an example that converts a color image to monochrome.

15.3.61 Text -> CornerRadius

Converts text to a CornerRadius.

Inputs

Text (Type: string)

The text that is converted to a CornerRadius.

Outputs

CornerRadius (Type: CornerRadius)

The output CornerRadius.

Comments

A CornerRadius encodes radius values of four corners, for TopLeft, TopRight, BottomRight and BottomLeft.

You can specify one number, which is then used for all four corners, i.e. 50.

Alternatively, you can specify four numbers separated with semicolons, that are used for TopLeft, TopRight, Bottom-
Right and BottomLeft, i.e. 5, 10, 20, 30.

15.3.62 Text -> Color

Converts text to a color.

Inputs

Text (Type: string)

The text that is converted to a color.

370 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Brush (Type: Rgba)

The output color.

Comments

There are various ways how you can specify the color.

By Name

Use the color name, such as Red or Orange. The name is case insensite, that is you can use red as well. These
colors are available:

By Color Components

Use a hash sign, followed by three (#rgb), four (#argb), six (#rrggbb) or eight (#aarrggbb) hexadecimal
numbers. Examples are: #00F, #F00F, #0000FF, #FF0000FF.

15.3. Nodes 371

nVision User Guide, Release 2016.3

15.3.63 Text -> Color

Converts text to a color.

Inputs

Text (Type: string)

The text that is converted to a color.

Outputs

Brush (Type: RgbaByte)

The output color.

Comments

There are various ways how you can specify the color.

By Name

Use the color name, such as Red or Orange. The name is case insensite, that is you can use red as well. These
colors are available:

By Color Components

Use a hash sign, followed by three (#rgb), four (#argb), six (#rrggbb) or eight (#aarrggbb) hexadecimal
numbers. Examples are: #00F, #F00F, #0000FF, #FF0000FF.

15.3.64 Text -> Brush

Converts text to a brush.

Inputs

Text (Type: string)

The text that is converted to a brush.

Outputs

Brush (Type: SolidColorBrush)

The output brush.

372 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 373

nVision User Guide, Release 2016.3

Comments

There are various ways how you can specify the brush color.

By Name

Use the color name, such as Red or Orange. The name is case insensite, that is you can use red as well. These
colors are available:

By Color Components

Use a hash sign, followed by three (#rgb), four (#argb), six (#rrggbb) or eight (#aarrggbb) hexadecimal
numbers. Examples are: #00F, #F00F, #0000FF, #FF0000FF.

15.3.65 Text -> Brush

Converts text to a brush.

374 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Text (Type: string)

The text that is converted to a brush.

Outputs

Brush (Type: SolidColorBrushByte)

The output brush.

Comments

There are various ways how you can specify the brush color.

By Name

Use the color name, such as Red or Orange. The name is case insensite, that is you can use red as well. These
colors are available:

By Color Components

Use a hash sign, followed by three (#rgb), four (#argb), six (#rrggbb) or eight (#aarrggbb) hexadecimal
numbers. Examples are: #00F, #F00F, #0000FF, #FF0000FF.

15.3.66 Text -> Thickness

Converts text to a Thickness.

Inputs

Text (Type: string)

The text that is converted to a Thickness.

Outputs

Thickness (Type: Thickness)

The output Thickness.

15.3. Nodes 375

nVision User Guide, Release 2016.3

376 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

A Thickness encodes values of four sides, for Left, Top, Right and Bottom.

You can specify one number, which is then used for all four sides, i.e. 50.

Alternatively, you can specify two numbers separated with a semicolon, where the first is used for Left and Right, and
the second for Top and Bottom, which creates a symmetric thickness, i.e. 5; 10.

Alternatively, you can specify four numbers separated with semicolons, that are used for Left, Top, Right and Bottom,
i.e. 5, 10, 20, 30.

15.3.67 Convert to HLS

Converts an image to the HLS color model.

Inputs

Image (Type: Image)

The input image. This image can be of any color model.

Outputs

Hls (Type: Image)

The output image in the HLS color model.

Comments

This function converts an image to the HLS color model, regardless of the color space of the input image.

Here is an example of the original color image:

And here is how the hue, lightness and saturation channels look side by side.

Sample

Here is an example:

15.3.68 Convert to HSI

Converts an image to the HSI color model.

15.3. Nodes 377

nVision User Guide, Release 2016.3

378 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image. This image can be of any color model.

Outputs

Hsi (Type: Image)

The output image in the HSI color model.

Comments

This function converts an image to the HSI color model, regardless of the color space of the input image.

Here is an example of the original color image:

And here is how the hue, saturation and intensity channels look side by side.

Sample

Here is an example:

15.3.69 Convert to LAB

Converts an image to the LAB color model.

15.3. Nodes 379

nVision User Guide, Release 2016.3

380 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image. This image can be of any color model.

Outputs

Lab (Type: Image)

The output image in the LAB color model.

Comments

This function converts an image to the LAB color model, regardless of the color space of the input image.

Here is an example of the original color image:

And here is how the L, a and b channels look side by side.

Sample

Here is an example:

15.3.70 Convert to Rgb

Converts an image to the RGB color model.

15.3. Nodes 381

nVision User Guide, Release 2016.3

382 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image. This image can be of any color model.

Outputs

Rgb (Type: Image)

The output image in the RGB color model.

Comments

This function converts an image to the RGB color model, regardless of the color space of the input image.

15.3.71 Copy

You can use Ctrl-C or the Copy (Ctrl-C) command from the pipeline menu to copy the selected nodes and their
inside connections to the clipboard.

You can select nodes by clicking them with the left mouse button. Hold down the Ctrl key if you want to add to (or
subtract from) the selection.

You can also select a set of nodes inside a rectangle that you drag while holding down the Ctrl key.

Once you have copied a set of nodes to the clipboard, you can paste them somewhere else.

15.3.72 Crc16Ibm

The CRC16 IBM cyclic redundancy check.

Calculates the CRC using the CRC16 IBM algorithm.

15.3. Nodes 383

nVision User Guide, Release 2016.3

Inputs

Data (Type: DataList)

The data to write in the form of a DataList (a list of bytes).

Outputs

Crc (Type: Byte)

The result of the cyclic redundancy check.

Comments

The CRC16 IBM algorithm is one implementation of a cyclic redundancy check, used for error detection.

For more information, have a look at https://en.wikipedia.org/wiki/Cyclic_redundancy_check.

15.3.73 Circular Region

Creates a circular region.

384 Chapter 15. Reference

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

nVision User Guide, Release 2016.3

Inputs

Diameter (Type: Double)

The diameter of the circular region.

Outputs

Region (Type: Region)

The circular region.

Comments

The region is centered on the origin. Regions centered on the origin are suitable for morphological operations, such as
erosion, dilation, etc. The region is used as a structuring element and the shape of the region affects the morphological
operation.

15.3.74 Elliptical Region

Creates an elliptical region.

Inputs

Diameter (Type: VectorDouble)

The diameter of the elliptical region.

Direction (Type: Direction)

The direction of the elliptical region.

15.3. Nodes 385

nVision User Guide, Release 2016.3

Outputs

Region (Type: Region)

The elliptical region.

Comments

The region is centered on the origin. Regions centered on the origin are suitable for morphological operations, such as
erosion, dilation, etc. The region is used as a structuring element and the shape of the region affects the morphological
operation.

15.3.75 Pen

Creates a pen. A pen is used to specify outlines.

Inputs

Brush (Type: SolidColorBrushByte)

The brush.

Width (Type: Int32)

The width of the pen. A positive width scales with the zoom factor, a negative width does not scale.

DashStyle (Type: String)

The dash style, Solid, Dashed, Dotted, Dashdotted or Dashdotdotted.

386 Chapter 15. Reference

nVision User Guide, Release 2016.3

DashOffset (Type : Double)

The offse into the dash pattern.

StartCapStyle (Type: String)

The cap style of the start point, FlatCap, SquareCap, RoundCap or TriangleCap.

EndCapStyle (Type: String)

The cap style of the end point, FlatCap, SquareCap, RoundCap or TriangleCap.

DashCapStyle (Type: String)

The dash cap style, FlatCap, SquareCap, RoundCap or TriangleCap.

MiterLimit (Type: Double)

The miter limit.

LineJoinStyle (Type: String)

The line join style, MiterJoin, BevelJoin, RoundJoin or MiterOrBevelCap.

StartLineEndStyle (Type: String)

The line end style of the start point, NormalEnd, FilledDiskEnd, FilledSquareEnd,
FilledDiamondEnd, FilledArrowOutEnd, FilledArrowInEnd, BarEnd, BackslashEnd,
SlashEnd, ArrowOutEnd, ArrowInEnd, FilledSlimArrowOutEnd, FilledSlimArrowInEnd,
SlimArrowOutEnd or SlimArrowInEnd.

StartLineEndSize (Type: Double)

The size of the start line end.

StopLineEndStyle (Type: String)

The line end style of the stop point, NormalEnd, FilledDiskEnd, FilledSquareEnd,
FilledDiamondEnd, FilledArrowOutEnd, FilledArrowInEnd, BarEnd, BackslashEnd,
SlashEnd, ArrowOutEnd, ArrowInEnd, FilledSlimArrowOutEnd, FilledSlimArrowInEnd,
SlimArrowOutEnd or SlimArrowInEnd.

StopLineEndSize (Type: Double)

The size of the stop line end.

15.3. Nodes 387

nVision User Guide, Release 2016.3

Outputs

Pen (Type: PenByte)

The pen.

Sample

Here is an example that creates a yellowish half transparent brush and a wide pen using this brush.

15.3.76 Rectangular Region

Creates a rectangular region.

Inputs

Size (Type: VectorDouble)

The size of the rectangular region.

388 Chapter 15. Reference

nVision User Guide, Release 2016.3

Direction (Type: Direction)

The direction of the rectangular region.

Outputs

Region (Type: Region)

The rectangular region.

Comments

The region is centered on the origin. Regions centered on the origin are suitable for morphological operations, such as
erosion, dilation, etc. The region is used as a structuring element and the shape of the region affects the morphological
operation.

15.3.77 Solid Color Brush

Creates a solid color brush. A brush is used to specify fills.

Inputs

R (Type: Byte)

The red primary.

G (Type: Byte)

The green primary.

B (Type: Byte)

The blue primary.

Alpha (Type: Double)

The opacity.

15.3. Nodes 389

nVision User Guide, Release 2016.3

Outputs

SolidColorBrush (Type: SolidColorBrushByte)

The brush.

Sample

Here is an example that creates a yellowish half transparent brush and a wide pen using this brush.

15.3.78 Image

The Image node is used to display an image.

At the top of the Image node is a pin that allows it to connect to a parent widget (usually a Display widget node, but
other widget nodes can be used as well). The image will be displayed only, if a parent connection is made.

At the bottom of the Image node is a pin that allows it to connect children to the image widget. The parent, grandparent,
children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

Inputs

Image (Type: Image)

The image to display inside the widget.

390 Chapter 15. Reference

nVision User Guide, Release 2016.3

Alpha (Type: Double)

The opacity of the image display.

Example

Here is an example that displays an image inside a display:

Below the Window node is a Display and below the Display is an Image.

15.3.79 Palette

The Palette node is used to display a palette.

At the top of the Palette node is a pin that allows it to connect to a parent widget. The palette will be displayed only,
if a parent connection is made.

At the bottom of the Palette node is a pin that allows it to connect children to the palette widget. The parent, grand-
parent, children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

15.3. Nodes 391

nVision User Guide, Release 2016.3

Inputs

Palette (Type: Palette)

The palette to display inside the widget.

Box (Type: BoxDouble)

A position for the palette display.

Orientation (Type: String)

Orientation of the palette display: LeftToRight, RightToLeft, TopToBottom or BottomToTop.

Alpha (Type: Double)

The opacity of the palette display.

Example

Here is an example that displays an palette on top of an image. This pipeline

shows the following result:

15.3.80 Point

The Point node is used to display a point.

At the top of the Point node is a pin that allows it to connect to a parent widget. The point will be displayed only, if a
parent connection is made.

392 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 393

nVision User Guide, Release 2016.3

At the bottom of the Point node is a pin that allows it to connect children to the point widget. The parent, grandparent,
children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

Inputs

Point (Type: Point)

The position of the point. If this pin is connected, the incoming position is used and the point is fixed at this position. If
this pin is left open (not connected), at the beginning the default position of (0, 0) is used and the point can be dragged
around by pointing at it with the mouse, selecting it with a press of the left mouse button, and moving the mouse while
holding down the left mouse button.

Pen (Type: Pen)

The pen used to draw the point.

Outputs

Point (Type: Point)

The position of the point.

Example

Here is an example that shows how a Point widget is used as an anchor to position children.

15.3.81 Region

The Region node is used to display a region.

At the top of the Region node is a pin that allows it to connect to a parent widget. The region will be displayed only,
if a parent connection is made.

At the bottom of the Region node is a pin that allows it to connect children to the region widget. The parent, grand-
parent, children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

Inputs

Region (Type: Region)

The region to display inside the widget.

Brush (Type: SolidColorBrush)

A brush for the region display.

394 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 395

nVision User Guide, Release 2016.3

Example

Here is an example that displays a region on top of an image. This pipeline

shows the following result:

15.3.82 Regions

The Regions node is used to display a list of regions.

At the top of the Regions node is a pin that allows it to connect to a parent widget. The region will be displayed only,
if a parent connection is made.

At the bottom of the Regions node is a pin that allows it to connect children to the regions widget. The parent,
grandparent, children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

Inputs

RegionList (Type: RegionList)

The list of regions to display inside the widget. The different regions are colored with a total of six colors: red, green,
blue, yellow, cyan, magenta. These colors are used in turn, and recycled as needed.

Alpha (Type: Double)

The opacity for the regions display: 0 is fully transparent, 1 is fully opaque.

396 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 397

nVision User Guide, Release 2016.3

Example

Here is an example that displays a list of regions on top of an image. This pipeline

shows the following result:

15.3.83 Text

The Text node is used to display a text.

At the top of the Text node is a pin that allows it to connect to a parent widget. The region will be displayed only, if a
parent connection is made.

At the bottom of the Text node is a pin that allows it to connect children to the text widget. The parent, grandparent,
children and grandchildren define the layering of the widgets and the graphical outcome.

Children are layered on top of the parent.

Inputs

Text (Type: String)

The text to be displayed.

TextBrush (Type: SolidColorBrush)

The brush used to draw the text.

Font (Type: Font)

The font used to draw the text.

BackgroundBrush (Type: SolidColorBrush)

The brush used to draw the background.

398 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 399

nVision User Guide, Release 2016.3

Margin (Type: Thickness)

The margin around the text.

Comments

The position of the text is at the origin of the parent widget. If the text is displayed on top of an image, it appears in the
top-left position of the image. In order to move the text to some other position, you can use another widget to position
it, such as a Point widget.

If you connect the Point input of the Point widget, the connected position is used. Otherwise, you can drag the point
around interactively to specify the position.

Example

Here is an example that displays a text on top of an image. This pipeline

shows the following result:

15.3.84 Crop

Crops a an arbitrary region out of an image.

400 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 401

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

The region.

Outputs

Cropped (Type: Image)

The portion of the original image that is specified by the crop region.

Comments

This function cuts out an arbitraty portion of an image. Often this is used to constrain a subsequent processing
operation to a region of interest.

Sample

Here is an example, where the region is specified interactively with a circle widget:

15.3.85 Crop Box

Crops a rectangular portion out of an image.

402 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

CropBox (Type: Box)

The box geometry.

Outputs

Cropped (Type: Image)

The rectangular portion of the original image that is specified by the crop box.

Comments

This function cuts out a rectangular portion of an image. Often this is used to constrain a subsequent processing
operation to an area of interest.

Sample

Here is an example, where the box is specified interactively with a box widget:

15.3.86 C# Expression

This node interprets simple C# statements. Statements are written using a subset of C# language specifications. The
expression can be edited as long as no connections have been made to the inputs and outputs.

Inputs

The number and names of the inputs are determined when the expression has been specified. They are determined by
parsing the expression.

Outputs

The output type is determined when the expression has been specified. It is determined by parsing the expression.

15.3. Nodes 403

nVision User Guide, Release 2016.3

Comments

The expression parser is case sensitive.

Statements can be written using a subset of the C# syntax. Here you can find a list of the supported expressions:

Operators

Category

Operators

Primary

x.y f(x) a[x]

Unary

• – ! (T)x

Multiplicative

* / %

Additive

• –

Relational and type testing

< > <= >= is as

Equality

== !=

404 Chapter 15. Reference

nVision User Guide, Release 2016.3

Conditional AND

&&

Conditional OR

||

Conditional

?:

The assignment operator is not available.

Operators precedence is respected following C# rules (Operator precedence and associativity).

Types

From an expression alone, the types cannot be deduced reliably. For example, the following expression

x + y

could add two numbers together, or concatenate two strings. Thus, additional syntax allows you to specify the type of
the parameters of an expression. The expression

((int))x + ((int))y

ties the two parameters to the int type. If a type specification is missing, the parameter will be of type double by
default.

The C# built in types can be used in their short or expanded form:

Short

Expanded

bool

System.Boolean

byte

System.Byte

sbyte

System.SByte

char

System.Char

decimal

System.Decimal

double

System.Double

float

System.Single

int

15.3. Nodes 405

http://msdn.microsoft.com/en-us/library/aa691323(v=vs.71).aspx

nVision User Guide, Release 2016.3

System.Int32

uint

System.UInt32

long

System.Int64

ulong

System.UInt64

object

System.Object

short

System.Int16

ushort

System.UInt16

string

System.String

In addition, any types available inside nVision can be used, such as in the following expression:

((Ngi.Image))img.Width

Literals

Category

Operators

Constants

true false null

Numeric

f m

String/char

“” ‘’

The following character escape sequences are supported inside string or char literals:

• \' - single quote, needed for character literals

• \" - double quote, needed for string literals

• \\ - backslash

• \0 - Unicode character 0

• \a - Alert (character 7)

• \b - Backspace (character 8)

• \f - Form feed (character 12)

406 Chapter 15. Reference

nVision User Guide, Release 2016.3

• \n - New line (character 10)

• \r - Carriage return (character 13)

• \t - Horizontal tab (character 9)

• \v - Vertical quote (character 11)

License

The C# Expression node uses the Dynamic Expresso library from Davide Icardi.

[MIT License]

Copyright (c) 2015 Davide Icardi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

• The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

• THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

15.3.87 Cut

You can use Ctrl-X or the Cut (Ctrl-X) command from the pipeline menu to cut the selected nodes and their inside
connections to the clipboard.

You can select nodes by clicking them with the left mouse button. Hold down the Ctrl key if you want to add to (or
subtract from) the selection.

You can also select a set of nodes inside a rectangle that you drag while holding down the Ctrl key.

Once you have cut a set of nodes to the clipboard, you can paste them somewhere else.

15.3.88 Direction

Creates a direction.

A direction is a geometric entity, representing a direction in the two-dimensional cartesian plane. A direction is similar
to an angle, but is internally implemented as a direction vector (unit vector).

Inputs

Alpha (Type: Double)

The angle in radians.

15.3. Nodes 407

nVision User Guide, Release 2016.3

408 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Direction (Type: Direction)

The direction.

Sample

Here is an example:

15.3.89 Directory

Selects a directory.

Inputs

Directory (Type: String)

The directory (provided as a string, or selected via the . . . button.

Outputs

Directory (Type: Ngi.Path)

The directory as a path.

Comments

The purpose of this node is to make it easy for the user to select a directory from the filesystem.

15.3. Nodes 409

nVision User Guide, Release 2016.3

15.3.90 Display

The Display node is the root of the hierarchical widget system, which is used to display images, regions, palettes,
histograms, profiles and graphical items in a layered fashion.

The Display node creates the connection to the nVision workspace area.

If a Display node is available in the pipeline, it takes over the display. This means that the default of displaying the
first pipeline output is overridden, and the display along with its children is displayed instead.

If a Window node is also available in the pipeline, it takes precedence over the Display node.

At the bottom of the Display node is a pin that allows it to connect children to the display. The children and grand-
children define the layering of the widgets and the graphical outcome.

Inputs

Style (Type: Style)

Optional styling of the Display.

The Display respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Padding styles.

Background (Type: SolidColorBrushByte)

The background of the Display.

Outputs

RenderedDisplay (Type: Image)

The rendering (with all the children) in the form of an image.

Example

Here is an example that displays an image inside a display:

Below the Window node is a Display and below the Display is an Image.

Note: the Window node on top of the Display node is optional. The Style input is only respected, if the Window node
has a Display node parent.

15.3.91 Distance Transform

Calculates the distance transform given a region.

410 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Region (Type: Region)

The input region.

Size (Type: Extent3d)

The size of the resulting image.

Outputs

Image (Type: Image)

The resulting image.

Comments

Here is an example of a distance transform, given a rotated rectangular region on input:

15.3.92 Distance Transform Constrained

Calculates the constrained distance transform given a region.

15.3. Nodes 411

nVision User Guide, Release 2016.3

412 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Region (Type: Region)

The input region.

Size (Type: Extent3d)

The size of the resulting image.

MaxDistance (Type: Int32)

The maximum distance.

Outputs

Image (Type: Image)

The resulting image.

Comments

Here is an example of a constrained distance transform, given a rotated rectangular region on input:

The resulting values of the transform are constrained to the maximum distance input.

15.3.93 HMI DockPanel

The DockPanel docks its child controls to one of the four sides Left, Top, Right or Bottom, where the respective child
takes at much space as it needs.

At the bottom of the DockPanel node is a pin that allows it to connect several children.

Inputs

Style (Type: Style)

Optional styling of the DockPanel.

The DockPanel respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Background styles.

LastChildFill (Type: boolean)

If true, the last child added to the DockPanel takes all the available space. If false, the last child added takes only the
space it needs.

15.3. Nodes 413

nVision User Guide, Release 2016.3

414 Chapter 15. Reference

nVision User Guide, Release 2016.3

Background (Type: SolidColorBrushByte)

The background of the DockPanel.

Comments

Children of the DockPanel have the attached property Dock. This property can take the values Left, Top, Right and
Bottom and specifies to which side the child will be docked.

Example

Here is an example that docks a text label to the top and a webbrowser to the left, where the webbrowser fills the
available space fully. This definition

creates the following user interface:

15.3. Nodes 415

nVision User Guide, Release 2016.3

15.3.94 .NET Constructor Call

Call a constructor in a .Net assembly.

Inputs

The number and types of the inputs are determined when the assembly file name, the type name and the constructor
name have been specified. They are determined by reflection and are the parameters of the constructor.

Outputs

The output type is determined when the assembly file name, the type name and the constructor name have been
specified. It is determined by reflection and is of the selected type.

Comments

The parameters that specify which constructor to call are only editable when the ports of the node are not connected.

The first parameter is the filename of the assembly that contains the static method. You can use the browse but-
ton to browse to the desired assembly. An example of an assembly that you can try is: C:\Program Files
(x86)\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5.1\mscorlib.dll.

The second parameter is the class that contains the constructor, prefixed by its namespace, i.e. System.Version.

The third parameter is the constructor to call, i.e. GetEnvironmentVariable.

Once all parameters have been specified, and it is clear which constructor to call, the title of the node will adapt and
show a more suitable name.

Here is an example that calls the constructor Version(Int32 major, Int32 minor) from the System.
Version class in the mscorlib.dll assembly.

416 Chapter 15. Reference

nVision User Guide, Release 2016.3

The example reads the value of the windir environment value and returns the string C:\Windows.

15.3.95 .NET Instance Method Call

Call an instance method in a .Net assembly.

Inputs

The number and types of the inputs are determined when the assembly file name, the type name and the method name
have been specified. They are determined by reflection and are the parameters of the method..

The first input is the instance of the object, the other inputs are the parameters of the method.

Outputs

The output type is determined when the assembly file name, the type name and the method name have been specified.
It is determined by reflection and is the return value of the method (if not void).

Comments

The parameters that specify which method to call are only editable when the ports of the node are not connected.

The first parameter is the filename of the assembly that contains the static method. You can use the browse but-
ton to browse to the desired assembly. An example of an assembly that you can try is: C:\Program Files
(x86)\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5.1\mscorlib.dll.

The second parameter is the class that contains the method, prefixed by its namespace, i.e. System.String.

Once all parameters have been specified, and it is clear which method to call, the title of the node will adapt and show
a more suitable name.

The third parameter is the instance method to call, i.e. Contains(String value).

Here is an example that calls the method Contains(String value) from the System.String class in the
mscorlib.dll assembly.

The example checks if the string World is contained in the string Hello World!.

15.3.96 .NET Static Method Call

Call a static method in a .Net assembly.

15.3. Nodes 417

nVision User Guide, Release 2016.3

Inputs

The number and types of the inputs are determined when the assembly file name, the type name and the method name
have been specified. They are determined by reflection and are the parameters of the method.

Outputs

The output type is determined when the assembly file name, the type name and the method name have been specified.
It is determined by reflection and is the return value of the method (if not void).

Comments

The parameters that specify which method to call are only editable when the ports of the node are not connected.

The first parameter is the filename of the assembly that contains the static method. You can use the browse but-
ton to browse to the desired assembly. An example of an assembly that you can try is: C:\Program Files
(x86)\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5.1\mscorlib.dll.

The second parameter is the class that contains the method, prefixed by its namespace, i.e. System.Environment.

The third parameter is the static method to call, i.e. GetEnvironmentVariable(String variable).

Once all parameters have been specified, and it is clear which method to call, the title of the node will adapt and show
a more suitable name.

Here is an example that calls the method GetEnvironmentVariable(String variable) from the
System.Environment class in the mscorlib.dll assembly.

The example reads the value of the windir environment value and returns the string C:\Windows.

418 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.97 EditDouble

The EditDouble is a HMI control that can be used to enter floating point numbers.

Inputs

Style (Type: Style)

Optional styling of the EditDouble.

The EditDouble respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Back-
ground, Foreground and Font styles.

TextBrush (Type: SolidColorBrush)

The text color.

Font (Type: Font)

The font.

Outputs

Value (Type: Double)

The number entered by the user.

15.3. Nodes 419

nVision User Guide, Release 2016.3

420 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows the various edit controls. This definition:

creates the following user interface:

15.3.98 EditInt

The EditInt is a HMI control that can be used to enter integer numbers.

Inputs

Style (Type: Style)

Optional styling of the EditInt.

The EditInt respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Background,
Foreground and Font styles.

TextBrush (Type: SolidColorBrush)

The text color.

Font (Type: Font)

The font.

Outputs

Value (Type: Int32)

The number entered by the user.

15.3. Nodes 421

nVision User Guide, Release 2016.3

422 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows the various edit controls. This definition:

creates the following user interface:

15.3.99 EditText

The EditText is a HMI control that can be used to enter texts.

Inputs

Style (Type: Style)

Optional styling of the EditText.

The EditText respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Background,
Foreground and Font styles.

TextBrush (Type: SolidColorBrush)

The text color.

Font (Type: Font)

The font.

Outputs

Value (Type: string)

The text entered by the user.

15.3. Nodes 423

nVision User Guide, Release 2016.3

424 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows the various edit controls. This definition:

creates the following user interface:

15.3.100 Environment

Provides information about the current environment and platform.

Outputs

Environment (Type: Environment)

The environment object. Use the environment object properties to get at data in the environment.

Comments

This node provides an environment object that has some properties which provide access to environmental information.
The table shows the properties that can be accessed on an environment object.

15.3. Nodes 425

nVision User Guide, Release 2016.3

property description
Command-
Line

Gets the command line for this process.

CurrentDi-
retory

Gets the fully qualified path of the current working directory.

Environ-
mentVari-
ableNames

Retrieves all environment variable names from the current process.

Is64BitOperatingSystemDetermines whether the current operating system is a 64-bit operating system.
Is64BitProcessDetermines whether the current process is a 64-bit process.
Logi-
calDrive-
Names

Returns a list of strings containing the names of the logical drives on the current computer, where
each element contains the name of a logical drive. For example, if the computer’s hard drive is the
first logical drive, the first element returned is “C:”.

Machine-
Name

Gets the NetBIOS name of this local computer.

OSVersion Gets an OperatingSystem object that contains the current platform identifier and version number.
Processor-
Count

Gets the number of processors on the current machine.

SystemDi-
rectory

Gets the fully qualified path of the system directory.

UserDo-
mainName

Gets the network domain name associated with the current user.

UserInter-
active

Gets a value indicating whether the current process is running in user interactive mode.

UserName Gets the user name of the person who is currently logged on to the Windows operating system.

15.3.101 ExpandEnvironmentVariables

Replaces the name of each environment variable embedded in the specified string with the string equivalent of the
value of the variable, then returns the resulting string.

Inputs

In (Type: string)

A string containing the names of zero or more environment variables. Each environment variable is quoted with the
percent sign character (%).

426 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Out (Type: string)

A string with each environment variable replaced by its value.

15.3.102 HMI Expander

The Expander puts an expandable and collapsibal area around its child.

At the bottom of the Expander node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the Expander.

The Expander respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Back-
ground, Foreground and Font styles.

Header (Type: string)

The title of the Expander.

Example

Here is an example that puts an expander around a profile. This definition:

creates the following user interface:

The profile display can be hidden or shown by clicking the little arrow button at the top-right corner of the expander.

15.3.103 ExportDataTableToCsv

Exports the results of a blob analysis to a file with comma-separated values.

Inputs

Data (Type: ‘System.Data.DataTable’)

The blob analysis data.

15.3. Nodes 427

nVision User Guide, Release 2016.3

428 Chapter 15. Reference

nVision User Guide, Release 2016.3

Directory (Type: String)

A directory in the filesystem. This is the directory, where the saved files will be placed. If the directory does not exist,
an error message will be shown.

Filename (Type: String)

A filename. You can either enter a filename (with extension) or leave this empty. If you leave it empty, the system will
create a name in the form of “data_00000.csv”, where the number will be incremented automatically. If you enter a
filename, the file will be overwritten in every execution of the pipeline node.

ValueSeparator (Type: String)

This separates single values in one line of the output file. This must be a single character.

QuoteCharacter (Type: String)

This character is used to quote values. This must be a single character.

Culture (Type: String)

Cultural information used to format values.

Comments

The ExportDataTableToCsv node saves an csv file to the filesystem. The directory where the file will be saved can

either by typed, or selected with a Sewarch Folder dialog - by clicking on the button. If a file could not be saved
for some reason, an appropriate error message is shown.

The ExportDataTableToCsv node saves data only in two cases:

1. The export mode is on (the Export on/off button is pressed).

If the Export on/off button is pressed, any time the pipeline runs the file will be saved.

2. The Export once button will be clicked.

If the Export once button is clicked, the file will be saved.

15.3. Nodes 429

nVision User Guide, Release 2016.3

15.3.104 Export Image

Exports an image to a file.

Inputs

Image (Type: Image)

An image.

Directory (Type: String)

A directory in the filesystem. This is the directory, where the saved files will be placed. If the directory does not exist,
an error message will be shown.

Filename (Type: String)

A filename. You can either enter a filename (with extension) or leave this empty. If you leave it empty, the system will
create a name in the form of “image_00000.tif”, where the number will be incremented automatically. If you enter a
filename, the file will be overwritten in every execution of the pipeline node.

Comments

The ExportImage node saves an image to the filesystem. The directory where the file will be saved can either by

typed, or selected with a Search Folder dialog - by clicking on the button. The node supports a variety of image
file formats, such as TIF, PNG, JPG and BMP to name a few. If a file could not be saved for some reason, an appropriate
error message is shown.

The ExportImage node saves images only in two cases:

1. The export mode is on (the Export on/off button is pressed).

If the Export on/off button is pressed, any time the pipeline runs the file will be saved.

2. The Export once button will be clicked.

430 Chapter 15. Reference

nVision User Guide, Release 2016.3

If the Export once button is clicked, the file will be saved.

Sample

Here is an example that shows how to used the ExportImage node.

15.3.105 ExportPalette

Exports a palette to a file.

Inputs

Palette (Type: Palette)

A palette.

Directory (Type: String)

A directory in the filesystem. This is the directory, where the saved files will be placed. If the directory does not exist,
an error message will be shown.

Filename (Type: String)

A filename. The file will be overwritten in every execution of the pipeline node.

15.3. Nodes 431

nVision User Guide, Release 2016.3

Comments

The ExportImage node saves a palette to the filesystem. The directory where the file will be saved can either by

typed, or selected with a Sewarch Folder dialog - by clicking on the button.

The supported format is a binary file consisting of either 256 bytes (for a monochrome palette) or 768 bytes (for a
color palette).

The ExportImage node saves palettes only in two cases:

1. The export mode is on (the Export on/off button is pressed).

If the Export on/off button is pressed, any time the pipeline runs the file will be saved.

2. The Export once button will be clicked.

If the Export once button is clicked, the file will be saved.

15.3.106 Extract Channel

Extracts a specific color channel from a multi-channel image.

Inputs

Image (Type: Image)

The input image.

Channel (Type: String)

The channel that should be extracted.

432 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Channel (Type: Image)

The output image.

Comments

This function extracts a specific channel from a multi-channel color image.

The channel can be specified by meaning or by position.

Positional arguments are: First, Second and Third. The other arguments are Red, Green, Blue, Hue,
Lightness, Saturation, Intensity, L, A and B. If a channel is not valid (such as when trying to extract
the red channel from an HSI image), an error is shown.

Here is an example of the original color image:

And here are the three color channels red, green and blue from left to right:

The same color channels again with proper coloring:

Sample

Here is an example that extracts the three color channels from an RGB image.

15.3.107 Filename

Selects a file.

Inputs

Filename (Type: String)

The filename (provided as a string, or selected via the . . . button.

Outputs

Filename (Type: Ngi.Path)

The filename as a path.

Comments

The purpose of this node is to make it easy for the user to select a file from the filesystem.

15.3.108 Fill Holes

Fills holes in a list of objects.

15.3. Nodes 433

nVision User Guide, Release 2016.3

434 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 435

nVision User Guide, Release 2016.3

436 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Regions (Type: RegionList)

The list of regions.

Outputs

Regions (Type: RegionList)

The resulting list of regions, which have their holes filled.

Comments

Here is an example of a list of regions:

and here is the same list of regions with their holes filled:

15.3.109 Flip

Flips an image.

Inputs

Image (Type: Image)

The input image.

Outputs

Flipped (Type: Image)

The output image.

Comments

This function reverses an image in the vertical direction (turns it upside down).

Sample

Here is an example that flips an image.

15.3.110 Frame

Puts a frame around an image.

15.3. Nodes 437

nVision User Guide, Release 2016.3

438 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 439

nVision User Guide, Release 2016.3

440 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Size (Type: Int32)

The frame size.

Framing (Type: String)

The framing method (Nearest, Reflective (Middle), Reflective (Border), Periodic).

Outputs

Image (Type: Image)

The output image.

Comments

The Frame node puts a border around the input image.

The border can be put around in various ways. Nearest takes the nearest pixel value to the image border and repeats it.

Reflective (Middle) reflects the image at the middle of the border pixel.

Reflective (Border) reflects the image at the border of the border pixel.

Periodic periodically repeats the image.

Sample

Here is an example that puts a symmetric frame around an image.

15.3.111 Frame (Extent)

Puts a frame around an image.

Inputs

Image (Type: Image)

The input image.

Size (Type: Extent3d)

The frame size.

15.3. Nodes 441

nVision User Guide, Release 2016.3

442 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 443

nVision User Guide, Release 2016.3

444 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 445

nVision User Guide, Release 2016.3

Framing (Type: String)

The framing method (Nearest, Reflective (Middle), Reflective (Border), ‘Periodic‘‘).

Outputs

Image (Type: Image)

The output image.

Comments

The Frame (Extent) node puts a border around the input image.

The border can be put around in various ways. Nearest takes the nearest pixel value to the image border and repeats it.

Reflective (Middle) reflects the image at the middle of the border pixel.

Reflective (Border) reflects the image at the border of the border pixel.

Periodic periodically repeats the image.

15.3.112 GammaPalette

Creates a palette with a gamma transfer function.

446 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Type (Type: String)

The type of the palette. Choices are PaletteByte, PaletteUInt16, PaletteUInt32, PaletteDouble,
PaletteRgbByte, PaletteRgbUInt16, PaletteRgbUInt32 and PaletteRgbDouble.

Width (Type: Int32)

The width of the palette.

Gamma (Type: Double)

The gamma parameter.

Outputs

Palette (Type: Palette)

The output palette.

15.3. Nodes 447

nVision User Guide, Release 2016.3

Comments

This function creates a palette with a gamma function.

A gamma value below 1.0 compresses darks and expands brights. Here is an example of a gamma palette with a
gamma of 0.5:

A gamma value of exactly 1.0 creates a linear transfer function:

A gamma value above 1.0 expands darks and compresses brights. Here is an example of a gamma palette with a
gamma of 2.0:

15.3.113 Gauss

Filters an image using a gaussian kernel of size 3x3 or 5x5. A gaussian filter is a lowpass and blurs an image.

Inputs

Image (Type: Image)

The input image.

448 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 449

nVision User Guide, Release 2016.3

450 Chapter 15. Reference

nVision User Guide, Release 2016.3

KernelSize (Type: Int32)

The kernel size (3 -> 3x3, 5 -> 5x5).

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a gauss filter. The corresponding kernel is either a 3x3 matrix with the following values:

1 2 1
2 4 2
1 2 1

15.3. Nodes 451

nVision User Guide, Release 2016.3

or a 5x5 matrix with the following values:

2 7 12 7 2
7 31 52 31 7

12 52 127 52 12
7 31 52 31 7
2 7 12 7 2

The effect of a gauss filter is a lowpass. The lowpass filter emphasizes low frequencies and attenuates high frequencies.
The strength of the lowpass filter depends on the size of the kernel.

Here are a few results of the gauss filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

Sample

Here is an example that shows how to use the gauss filter.

452 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 453

nVision User Guide, Release 2016.3

454 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.114 Gaussian

Filters an image using a gaussian kernel. A gaussian filter is a lowpass and blurs an image. The amount of blurring is
determined by the parameter sigma, which in turn determines the size and the parameters of the convolution kernel.

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Specifies an optional area of interest.

Sigma (Type: Double)

Determines the size of the kernel.

Outputs

Image (Type: Image)

The output image.

Comments

The gaussian filter is considered an optimal lowpass or bluring filter. It is isotropic if the filter kernel is large enough
for a sufficient approximation (at least 5x5, i.e. sigma > 5/3). It behaves well in frequency space and is clearly superior
to a box filter. The kernel size of the gaussian is 3 times sigma, rounded up to the next odd integer.

The filter kernel corresponds to a two-dimensional gaussian, where sigma determines to the width of the bell-shaped
curve and

𝑟 = (𝑥2 + 𝑦2)

is the distance from the center:

𝐺(𝑥, 𝑦) = 𝑒−(𝑥2 + 𝑦2)/(2 * 𝑠𝑖𝑔𝑚𝑎2)

Here are a few results of the gaussian filter with increasing sigma values:

Original:

15.3. Nodes 455

nVision User Guide, Release 2016.3

456 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 457

nVision User Guide, Release 2016.3

Sigma = 2:

Sigma = 4:

Sigma = 8:

Sigma = 16:

Sigma = 32:

Sigma = 64:

Sample

Here is an example that shows how to use the gaussian filter.

15.3.115 GetEnvironmentVariable

Retrieves the value of an environment variable from the current process.

458 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 459

nVision User Guide, Release 2016.3

460 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 461

nVision User Guide, Release 2016.3

462 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Variable (Type: string)

The name of the environment variable.

Outputs

Value (Type: string)

The value of the environment variable specified by variable, or null if the environment variable is not found.

15.3.116 GetFolderPath

Gets the path to the system special folder that is identified by the specified enumeration.

Inputs

Folder (Type: string)

A string that identifies a system special folder.

Outputs

Path (Type: string)

The path to the specified system special folder, if that folder physically exists on your computer; otherwise, an empty
string (“”).

Comments

The following folders can be identified:

15.3. Nodes 463

nVision User Guide, Release 2016.3

folder description
Applica-
tionData

The directory that serves as a common repository for application-specific data for the current roaming
user. A roaming user works on more than one computer on a network. A roaming user’s profile is kept
on a server on the network and is loaded onto a system when the user logs on.

Com-
monAp-
plication-
Data

The directory that serves as a common repository for application-specific data that is used by all users.

Com-
mon-
Desk-
topDirec-
tory

The file system directory that contains files and folders that appear on the desktop for all users.

Com-
monDoc-
uments

The file system directory that contains documents that are common to all users.

Com-
monMu-
sic

The file system directory that serves as a repository for music files common to all users.

Com-
monPic-
tures

The file system directory that serves as a repository for image files common to all users.

Com-
monPro-
gram-
Files

The directory for components that are shared across applications.To get the x86 common program files
directory on a non-x86 system, use the ProgramFilesX86 member.

Com-
monPro-
gram-
FilesX86

The Program Files folder.

Com-
mon-
Videos

The file system directory that serves as a repository for video files common to all users.

Cookies The directory that serves as a common repository for Internet cookies.
Desktop The logical Desktop rather than the physical file system location.
Desk-
topDirec-
tory

The directory used to physically store file objects on the desktop.

Favorites The directory that serves as a common repository for the user’s favorite items.
LocalAp-
plication-
Data

The directory that serves as a common repository for application-specific data that is used by the
current, non-roaming user.

Local-
nVision-
Applica-
tionData

The directory where nVision stores local data.

MyDoc-
uments

The My Documents folder. This member is equivalent to Personal.

MyMu-
sic

The My Music folder.

MyPic-
tures

The My Pictures folder.

MyVideos The file system directory that serves as a repository for videos that belong to a user.
Personal The directory that serves as a common repository for documents. This member is equivalent to My-

Documents.
Pipeline The directory where the pipeline is located.
Program-
Files

The program files directory.On a non-x86 system, passing ProgramFiles to the GetFolderPath method
returns the path for non-x86 programs. To get the x86 program files directory on a non-x86 system,
use the ProgramFilesX86 member.

Program-
FilesX86

The Program Files folder. On an x86 system, passing the ProgramFilesX86 member to the
Environment.GetFolderPath method returns String.Empty; use the ProgramFiles member instead.
You can determine whether Windows is a 32-bit operating system by calling the Environ-
ment.Is64BitOperatingSystem property.

Programs The directory that contains the user’s program groups.
Recent The directory that contains the user’s most recently used documents.
System The System directory.
Sys-
temX86

The Windows System folder. Added in the .NET Framework 4.

Windows The Windows directory or SYSROOT. This corresponds to the %windir% or %SYSTEMROOT%
environment variables.

464 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.117 GetListItem

Takes a specific item out of a list.

Inputs

List (Type: List<T>)

The list.

Index (Type: Int32)

The zero-based index of the item. If the index is out of range, an error will be shown.

Outputs

Item (Type: T)

The specific item of the list.

Sample

Here is an example:

15.3. Nodes 465

nVision User Guide, Release 2016.3

15.3.118 GetPixelValue

Reads a pixel value from a buffer.

Inputs

Buffer

The buffer to read from. This can be an image, or a palette, histogram, profile, etc.

Index3d

The three-dimensional index of the pixel.

Outputs

PixelValue

The value of the pixel in the buffer.

Comments

Buffers are three-dimensional: x is the horizontal dimension (the positive x-axis extents to the right), y is the vertical
dimension (the positive y-axis extends downwards) and z is the planar dimension (the positive z-axis extends into the
paper/screen plane). The origin is at the upper left corner.

Buffers have a variant type: they can be greyscale or color (in different color spaces) with different numeric types (8
bit unsigned, 16 bit unsigned, 32 bit signed, or 64 bit float per channel).

Buffers come in various forms: images are most common, but palettes, histograms or profiles are also buffers.

Sample

Here is a sample pipeline that illustrates GetPixelValue:

15.3.119 HMI Grid

The Grid allows you to split the available area into a rectangular grid with m rows and n columns. The row and column
definitions are build with a list of GridLength nodes. The GridLength node specifies the size (absolute or relative)
of the specific row or column.

At the bottom of the Grid node is a pin that allows it to connect several children.

466 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the Grid.

The Grid respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Background styles.

RowDefinitions (Type: List<GridLength>)

A list of definitions that determines the number of rows of the grid, as well as their relative or absolute heights. By
default the grid has one row.

ColumnsDefinitions (Type: List<GridLength>)

A list of definitions that determines the number of columns of the grid, as well as their relative or absolute width. By
default the grid has one column.

Background (Type: SolidColorBrushByte)

The background of the Grid.

Comments

Children of the Grid have the attached properties Row, Col, as well as RowSpan and ColSpan. These properties
define in which grid cell(s) the respective child will be put.

15.3. Nodes 467

nVision User Guide, Release 2016.3

Example

Here is an example that splits the area into two columns and one row, where the left column has 3x size and the right
column has 1x size. An image is displayed in the left column and its histogram is displayed in the right column. This
definition:

creates the following user interface:

15.3.120 HMI GridLength

The GridLength node specifies the size (absolute or relative) of a specific row or column.

Inputs

Unit (Type: string)

The possible values are Auto, * or Absolute.

Value (Type: double)

The size of the row or column. The interpretation of the value is determined by the Unit as well.

If the Unit is Auto, the Value is ignored and the size is determined by the contents of the controls in the column or
row.

If the Unit is Absolute, the Value is interpreted as a size given in pixel.

If the Unit is *, the Value is interpreted as a relative size. The remaining space in the grid, after all Auto and
Abolute columns are taken is split in relation to the values given with *.

468 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

In order to use the GridLength to specify the settings for rows or columns, one or more GridLength nodes must be
put in a list.

15.3.121 HMI GridSplitter

The GridSplitter allows you to enter a splitter inside a grid that enables interactive resize of the neighboring columns
or rows.

Inputs

Style (Type: Style)

Optional styling of the GridSplitter.

The GridSplitter respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Background styles.

15.3. Nodes 469

nVision User Guide, Release 2016.3

Comments

The GridSplitter should get it’s own grid cell(s), so that it is always visible.

15.3.122 HMI GroupBox

The GroupBox puts a group box around its child.

At the bottom of the GroupBox node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the GroupBox.

The GroupBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Back-
ground, Foreground and Font styles.

Header (Type: string)

The header text is displayed at the top left corner or the GroupBox.

Example

Here is an example that puts a groupbox around three radio buttons. This definition:

creates the following user interface:

15.3.123 Hipass

Filters an image using a highpass kernel of size 3x3 or 5x5.

Inputs

Image (Type: Image)

The input image.

KernelSize (Type: Int32)

The kernel size (3 -> 3x3, 5 -> 5x5).

470 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 471

nVision User Guide, Release 2016.3

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a hipass filter. The corresponding kernel is either a 3x3 matrix with the following values:

::

-1 -1 -1 -1 8 -1 -1 -1 -1

or a 5x5 matrix with the following values:

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 24 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

The effect of a hipass filter is that it amplifies high frequencies and attenuates low frequencies. The strength of the
hiwpass filter depends on the size of the kernel.

Here are a few results of the hipass filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

Sample

Here is an example that shows how to use the hipass filter.

15.3.124 Histogram

Calculates a histogram of an image to show the greyscale/color distribution.

The Histogram node can be followed by several other nodes to yield statistic information about an image or find an
optimal threshold (Otsu).

Inputs

Image (Type: Image)

The input image.

472 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 473

nVision User Guide, Release 2016.3

474 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 475

nVision User Guide, Release 2016.3

Region (Type: Region)

An optional region of interest. If this parameter is connected, the histogram operation is constrained to pixels within
the region only.

Outputs

Histogram (Type: Histogram)

The histogram.

Sample

Here is an example:

15.3.125 Histogram Average

Calculates the average value of a buffer, given a histogram of the buffer.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Average (Type: Object)

The average value.

476 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

The Histogram Average node calculates the average value of a buffer, given a histogram to it.

If a color buffer is used, the average is calculated channel-wise.

Sample

Here is an example that calculates the average of histogram.

15.3.126 Histogram Maximum

Calculates the maximum value of a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Maximum (Type: Object)

The maximum value.

15.3. Nodes 477

nVision User Guide, Release 2016.3

Comments

The Histogram Maximum node calculates the maximum value of a buffer, given a histogram to it.

If a color buffer is used, the maximum is calculated channel-wise.

Sample

Here is an example that calculates the maximum of a histogram.

15.3.127 Histogram Minimum

Calculates the minimum value of a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Minimum (Type: Object)

The minimum value.

Comments

The Histogram Minimum node calculates the minimum value of a buffer, given a histogram to it.

If a color buffer is used, the minimum is calculated channel-wise.

478 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sample

Here is an example that calculates the minimum of a histogram.

15.3.128 Histogram Quantile

Calculates the quantile of a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Percentage (Type: Double)

Specifies the quantile.

Outputs

Quantile (Type: Object)

The quantile value.

Comments

The Histogram Quantile node calculates a quantile of a buffer, given a histogram to it.

If a color buffer is used, the quantile is calculated channel-wise.

15.3. Nodes 479

nVision User Guide, Release 2016.3

Sample

Here is an example that calculates the 50% quantile of a histogram.

15.3.129 Histogram StdDev

Calculates the standard deviation of all pixels in a buffer, given a histogram

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

StdDev (Type: Object)

The standard deviation.

Comments

The Histogram StdDev node calculates the standard deviation of all pixel values of a buffer, given a historam to it.

If a color buffer is used, the standard deviation is calculated channel-wise.

The standard deviation is a measure of statistical dispersion, averaging the squared distance of values from the mean
value. The standard deviation is a measure of how much a statistical distribution is spread out. The standard deviation
is the square root of the variance.

480 Chapter 15. Reference

nVision User Guide, Release 2016.3

The standard deviation is calculated according to this formula:

𝜎 =
√︁

1
𝑛

∑︀
𝑥2 − 𝜇2

Sample

Here is an example that calculates the standard deviation of a histogram.

15.3.130 Histogram Sum

Calculates the sum of all pixels in a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Sum (Type: Object)

The sum.

Comments

The Histogram Sum node calculates the sum of all pixel values of a buffer, given a histogram to it.

If a color buffer is used, the sum is calculated channel-wise.

15.3. Nodes 481

nVision User Guide, Release 2016.3

Sample

Here is an example that calculates the sum of a histogram.

15.3.131 Histogram Sum of Squares

Calculates the sum of squares of all pixels in a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Sum (Type: Object)

The sum of squares.

Comments

The Histogram Sum of Squares node calculates the sum of squares of all pixel values of a buffer, given a histogram
to it.

If a color buffer is used, the sum of squares is calculated channel-wise.

Sample

Here is an example that calculates the sum of squares of a histogram.

482 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.132 Histogram Variance

Calculates the variance of all pixels in a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Variance (Type: Object)

The variance.

Comments

The Histogram Variance node calculates the variance of all pixel values of a buffer, given a histogram to it.

If a color buffer is used, the variance is calculated channel-wise.

The variance is a measure of statistical dispersion, averaging the squared distance of values from the mean value. The
variance is a measure of how much a statistical distribution is spread out.

The variance is calculated according to this formula:

𝜎2 = 1
𝑛

∑︀
𝑥2 − 𝜇2

Sample

Here is an example that calculates the variance of a histogram.

15.3. Nodes 483

nVision User Guide, Release 2016.3

15.3.133 HistogramVariation

Calculates the coefficient of variation of all pixels in a buffer, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Variation (Type: Object)

The coefficient of variation.

Comments

The HistogramVariation node calculates the coefficient of variation of all pixel values of a buffer, given a histogram

If a color buffer is used, the coefficient of variation is calculated channel-wise.

The coefficient of variation is the standard deviation divided by the average.

The coefficient of variation is calculated according to this formula:

𝑐𝑣 = 𝜎
𝜇

Sample

Here is an example that calculates the coefficient of variation of a histogram:

484 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.134 Horizontal Prewitt

Filters an image using a horizontal prewitt kernel.

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a horizontal prewitt filter. The corresponding kernel is a 3x3 matrix with the following values:

1 1 1
0 0 0

-1 -1 -1

The filter attenuates horizontal edges while at the same time smoothing in the horizontal direction.

Here are a few results of the horizontal prewitt filter with increasing kernel sizes:

15.3. Nodes 485

nVision User Guide, Release 2016.3

486 Chapter 15. Reference

nVision User Guide, Release 2016.3

Original:

Result:

Sample

Here is an example that shows how to use the horizontal prewitt filter.

Often, you want to combine the horizontal and the vertical prewitt filter to create an edge map. A simple way to do
this is shown in the following sample:

Here is an example image of such an edge map:

15.3.135 Horizontal Profile

Calculates a horizontal profile of an image to show the greyscale/color distribution.

15.3. Nodes 487

nVision User Guide, Release 2016.3

488 Chapter 15. Reference

nVision User Guide, Release 2016.3

The Horizontal Profile node gives you information about the greyscale/color distribution along a horizontal line. The
line can have a certain thickness.

Inputs

Image (Type: Image)

The input image.

Position (Type: Int32)

The vertical coordinate of the horizontal line.

Thickness (Type: Int32)

The thickness in pixel of the horizontal line.

Outputs

Profile (Type: Profile)

The profile.

Sample

Here is an example:

15.3.136 Horizontal Scharr

Filters an image using a horizontal scharr kernel.

15.3. Nodes 489

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a horizontal prewitt filter. The corresponding kernel is a 3x3 matrix with the following values:

3 10 3
0 0 0

-3 -10 -3

The filter attenuates horizontal edges while at the same time smoothing in the horizontal direction.

Here are a few results of the horizontal scharr filter with increasing kernel sizes:

Original:

Result:

Sample

Here is an example that shows how to use the horizontal scharr filter.

Often, you want to combine the horizontal and the vertical scharr filter to create an edge map. A simple way to do this
is shown in the following sample:

Here is an example image of such an edge map:

15.3.137 Horizontal Sobel

Filters an image using a horizontal sobel kernel of size 3x3 or 5x5.

490 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 491

nVision User Guide, Release 2016.3

492 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 493

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

KernelSize (Type: Int32)

The kernel size (3 -> 3x3, 5 -> 5x5).

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a horizontal_sobel filter. The corresponding kernel is either a 3x3 matrix with the following
values:

1 2 1
0 0 0

-1 -2 -1

or a 5x5 kernel with the following values:

1 4 6 4 1
2 8 12 8 2
0 0 0 0 0

-2 -8 -12 -8 -2
-1 -4 -6 -4 -1

The effect of a horizontal sobel filter is that it amplifies horizontal edges and attenuates everything else. The strength
of the sobel filter depends on the size of the kernel.

Here are a few results of the horizontal sobel filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

494 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 495

nVision User Guide, Release 2016.3

496 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 497

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to use the horizontal sobel filter.

Often, you want to combine the horizontal and the vertical sobel filter to create an edge map. A simple way to do this
is shown in the following sample:

Here is an example image of such an edge map:

15.3.138 HybridMedian

Perform a hybrid median filter.

498 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

KernelSize (Type: Int32)

The kernel size.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The hybrid median is a noise-reduction filter, which often performs better than simple averaging, especially for salt-
and-pepper noise.

The hybrid median calculates the median of a cross-shaped kernel, the median of an x-shaped kernel, and finally the
median of the center pixel and these two intermediate reslts.

The hybrid median is more edge-preserving than the standard median filter.

Here are a few results of the median filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

Sample

Here is an example that shows how to use the hybrid median filter.

15.3. Nodes 499

nVision User Guide, Release 2016.3

500 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 501

nVision User Guide, Release 2016.3

502 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.139 HMI Image

An Image can be used to display an image.

Inputs

Style (Type: Style)

Optional styling of the Image.

The Image respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground, Back-
ground, Font and Padding styles.

Image (Type: Image)

The iamge.

Example

Here is an example that shows an Image. This definition:

creates the following user interface:

15.3.140 ImageRotate

Rotates an image by an angle.

Inputs

Image (Type: Image)

The input image.

15.3. Nodes 503

nVision User Guide, Release 2016.3

504 Chapter 15. Reference

nVision User Guide, Release 2016.3

Rotation (Type: Double)

The rotation angle in degrees. A positive value will rotate clockwise.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Extend Size (Type: bool)

The geometric transformation may produce pixels that are outside of the input image bounds. If the parameter is set,
the size of the output image is adapted to make room for these pixels. If the parameter is cleared, the size of the output
image is kept the same as the input image.

Outputs

Rotated (Type: Image)

The output image.

15.3.141 ImageScale

Scales an image by two scaling factors vector.

Inputs

Image (Type: Image)

The input image.

ScalingX (Type: Double)

The horizontal scaling factor.

15.3. Nodes 505

nVision User Guide, Release 2016.3

ScalingY (Type: Double)

The vertical scaling factor.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Extend Size (Type: bool)

The geometric transformation may produce pixels that are outside of the input image bounds. If the parameter is set,
the size of the output image is adapted to make room for these pixels. If the parameter is cleared, the size of the output
image is kept the same as the input image.

Outputs

Scaled (Type: Image)

The output image.

15.3.142 ImageTranslate

Translates an image by a translation vector.

Inputs

Image (Type: Image)

The input image.

Translation (Type: Ngi.VectorDouble)

The translation vector.

506 Chapter 15. Reference

nVision User Guide, Release 2016.3

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Extend Size (Type: bool)

The geometric transformation may produce pixels that are outside of the input image bounds. If the parameter is set,
the size of the output image is adapted to make room for these pixels. If the parameter is cleared, the size of the output
image is kept the same as the input image.

Outputs

Translated (Type: Image)

The output image.

15.3.143 Imago Device

A device implementation.

Inputs

System (Type: VIB_NET.VIBSystem)

The factory instance.

Index (Type: Int32)

The index of the device. The device itself is selected with the combobox inside the node.

Outputs

Device

The device. The specifiy type depends on the device type selected within the node.

15.3. Nodes 507

nVision User Guide, Release 2016.3

Comments

The first step in using any Imago device functionality is to create the system. With a system, you can then create an
Imago device, and with a device you can call any method or property on it to carry out the respective operation.

For a more detailed description see the Imago .NET documentation (VIBSystem::OpenDevice method).

15.3.144 Imago Device Operation

An operation on an Image device.

Inputs

Device

The device. The specifiy type depends on the device type selected within the node.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Sync (Type: object)

Synchronizing object. It is used to establish an order of execution.

Comments

The first step in using any Imago device functionality is to create the system. With a system, you can then create an
Imago device, and with a device you can call any method or property on it to carry out the respective operation.

An imago system may have the following devices:

508 Chapter 15. Reference

nVision User Guide, Release 2016.3

device purpose
CameraLink Represents the CameraLink-Input module which allows capturing images over CameraLink.
CameraTrig-
ger

Represents the camera trigger output.

DigitalInput Represents the digital inputs.
DigitalOutput Represents the digital outputs.
IOScheduler Controls the IOScheduler which allows to strobe out bit-values in hard real-time.
Led Represetns the Leds.
Multiplexer Represents the multiplexer between trigger sources and sinks.
PowerOverEth-
ernet

Represents the PowerOverEthernet (PoE) module, which allows gathering information about the
current state of attached PoE devices.

RS232 Represents the RS232 which allows sending and receiving date over a RS232 port.
RS422 Represents the RS422 differential IO lines.
Service Contains everything that is no physical interface.
Strobe Represent the strobe (current) sources.
TriggerGener-
ator

This module contains functions which control the FPGA Trigger Unit.

Trig-
gerOverEther-
net

Represents the TriggerOverEthernet (ToE) module which allows the generation of GigE Action
Commands.

For a more detailed description see the Imago .NET documentation (VIB_NET.iDevice interface and derived classes).

15.3.145 Imago System

Factory to acquire/release every device implementation.

Inputs

Index (Type: Int32)

The index of the desired system. The system itself is selected with the combobox inside the node.

Outputs

System (Type: VIB_NET.VIBSystem)

The factory instance.

15.3. Nodes 509

nVision User Guide, Release 2016.3

Comments

The first step in using any Imago device functionality is to create the system. With a system, you can then create an
Imago device, and with a device you can call any method or property on it to carry out the respective operation.

For a more detailed description see the Imago .NET documentation (VIBSystem::VIBSystem method).

15.3.146 Export Image (Immediate)

Exports an image to a file.

Inputs

Image (Type: Image)

An image.

Directory (Type: String)

A directory in the filesystem. This is the directory, where the saved files will be placed. If the directory does not exist,
an error message will be shown.

Filename (Type: String)

A filename. You can either enter a filename (with extension) or leave this empty. If you leave it empty, the system will
create a name in the form of “image_00000.tif”, where the number will be incremented automatically. If you enter a
filename, the file will be overwritten in every execution of the pipeline node.

Comments

The Export Image node saves an image to the filesystem. The directory where the file will be saved can either by

typed, or selected with a Search Folder dialog - by clicking on the button. The node supports a variety of image file
formats, such as TIF, PNG, JPG and BMP to name a few. If a file could not be saved for some reason, an appropriate
error message is shown.

Sample

Here is an example that shows how to used the Export Image node (click on the image to load the example):

510 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.147 Import Image

Imports an image from a file.

Inputs

Filename (Type: String)

A filename in the filesystem.

15.3. Nodes 511

nVision User Guide, Release 2016.3

Outputs

Image (Type: Image)

The loaded image.

Comments

The ImportImage node loads an image from the filesystem. The name of the file can either by typed, or selected with

a File Open dialog - by clicking on the button. The node supports a variety of image file formats, such as TIF,
PNG, JPG and BMP to name a few. If a file could not be loaded for some reason, an appropriate error message is
shown.

Sample

Here is an example that shows how to used the ImportImage node.

15.3.148 Import Image + Palette

Imports an image and its associated palette from a file.

Inputs

Filename (Type: String)

A filename in the filesystem.

Outputs

Image (Type: Image)

The loaded image.

512 Chapter 15. Reference

nVision User Guide, Release 2016.3

Palette (Type: Palette)

The loaded palette.

Comments

The ImportImage node loads an image and its associated palette from the filesystem. The name of the file can either

by typed, or selected with a File Open dialog - by clicking on the button. The node supports a variety of image file
formats, such as TIF, PNG, JPG and BMP to name a few. If a file could not be loaded for some reason, an appropriate
error message is shown.

The loaded image is not mapped over the palette, and you may need to do this if you want to make sure that the image
is displayed in a visual correct manner.

15.3.149 ImportPalette

Imports a palette from a file.

Inputs

Filename (Type: String)

A filename in the filesystem.

Outputs

Palette (Type: Palette)

The loaded palette.

Comments

The ImportPalette node loads a palette from the filesystem. The name of the file can either by typed, or selected with

a File Open dialog - by clicking on the button.

The supported format is a binary file consisting of either 256 bytes (for a monochrome palette) or 768 bytes (for a
color palette).

15.3. Nodes 513

nVision User Guide, Release 2016.3

15.3.150 Inner Boundary

Extracts the inner boundary from a list of regions.

The inner boundary of a region consists of the pixels of the region that touch the background. The inner boundary lies
on the object.

Inputs

Regions (Type: RegionList)

The list of regions.

Outputs

Boundary (Type: RegionList)

The objects reduced to their inner boundary.

Comments

Here is an example of an inner boundary:

15.3.151 Jaehne

Presets an image with a pattern designed by Prof. Bernd Jaehne.

Inputs

Center (Type: PointDouble)

The center of the Jaehne pattern. The default is 512, 512.

Center (Radius: Double)

The radius of the Jaehne pattern. The default is 512.

514 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 515

nVision User Guide, Release 2016.3

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

Dark (Type: String)

The value of a dark checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Bright (Type: String)

The value of a bright checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a Jaehne pattern.

Comments

The Jaehne node presets an image with a sinusoidal pattern designed by Prof. Bernd Jaehne. The size of the created
image, the radius and center of the pattern, the colors for dark and bright, the region of interest and the background
color can all be specified.

516 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to used the Jaehne node.

Here is the image created with the sample:

15.3.152 Laplace

Filters an image using a laplace kernel of size 3x3 or 5x5.

Inputs

Image (Type: Image)

The input image.

KernelSize (Type: Int32)

The kernel size (3 -> 3x3, 5 -> 5x5).

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

15.3. Nodes 517

nVision User Guide, Release 2016.3

518 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

The function applies a laplace filter. The corresponding kernel is either a 3x3 matrix with the following values:

-1 -1 -1
-1 8 -1
-1 -1 -1

or a 5x5 kernel with the following values:

-1 -3 -4 -3 -1
-3 0 6 0 -3
-4 6 20 6 -4
-3 0 6 0 -3
-1 -3 -4 -3 -1

The effect of a laplace filter is that it amplifies high frequencies and attenuates lowfrequencies. The strength of the
laplace filter depends on the size of the kernel.

Here are a few results of the laplace filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

15.3. Nodes 519

nVision User Guide, Release 2016.3

520 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 521

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to use the laplace filter.

15.3.153 HMI Led

An Led can be used to display a state.

Inputs

Style (Type: Style)

Optional styling of the Led.

The WebBrowser respects the Width, Height, HorizontalAlignment, VerticalAlignment and Margin styles.

State (Type: boolean)

The Led is one if this is True, the Led is off otherwise.

Foreground (Type: SolidColorBrush)

The color of the Led.

Example

Here is an example that shows an Led. This definition:

creates the following user interface:

15.3.154 HMI LedSegments

An LedSegments can be used to display text in a segmented led-style display.

522 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 523

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the Led.

The WebBrowser respects the Width, Height, HorizontalAlignment, VerticalAlignment and Margin styles.

Text (Type: string)

The text.

Length (Type: Int32)

The number of characters in the display.

State (Type: boolean)

The LedSegments is one if this is True, the LedSegments is off otherwise.

Foreground (Type: SolidColorBrush)

The color of the LedSegments.

Example

Here is an example that shows an LedSegments. This definition:

creates the following user interface:

524 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.155 LinearGradient

Presets an image with a linear gradient pattern.

Inputs

Start (Type: PointDouble)

The start point of the gradient. At this point the dark color is used. Between the start and stop points the colors are
interpolated linearily between dark and bright.

Stop (Type: PointDouble)

The stop point of the gradient. At this point the bright color is used. Between the start and stop points the colors are
interpolated linearily between dark and bright.

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

Dark (Type: String)

The value of a dark checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Bright (Type: String)

The value of a bright checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three

15.3. Nodes 525

nVision User Guide, Release 2016.3

numbers separated by a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a linear gradient pattern.

Comments

The LinearGradient node presets an image with a linear gradient pattern. The size of the created image, the points
and colors for dark and bright, the region of interest and the background color can all be specified.

Sample

Here is an example that shows how to used the LinearGradient node.

Here is the image created with the sample:

526 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 527

nVision User Guide, Release 2016.3

15.3.156 LinearPalette

Creates a palette with a linear transfer function.

Inputs

Type (Type: String)

The type of the palette. Choices are PaletteByte, PaletteUInt16, PaletteUInt32, PaletteDouble,
PaletteRgbByte, PaletteRgbUInt16, PaletteRgbUInt32 and PaletteRgbDouble.

Width (Type: Int32)

The width of the palette.

A (Type: Double)

The slope of the linear curve.

B (Type: Double)

The intercept of the linear curve.

Outputs

Palette (Type: Palette)

The output palette.

Comments

This function creates a palette with a linear function.

Here is an example of a linear curve with a slope of 2 and an intercept of -127:

15.3.157 Accumulate

Accumulate takes all items from a list and combines them into a single result. Calculating the sum, or the minimum
or the maximum are examples for accumulation. The accumulation is specified as a grafical pipeline, for a single item,
which combines a single item with the accumulation so far.

528 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outside View

At the outside, the Accumulate node appears like a single node, with inputs and outputs.

Inputs

List (Type: List<T>)

The input list.

Init (Type: U)

The initial accumulator value.

Outputs

Result (Type: U)

The resulting accumulator value.

15.3. Nodes 529

nVision User Guide, Release 2016.3

Inside View

Inside, the Accumulate node looks like a normal branched pipeline. This pipeline is used to specify the accumulation,
which is evaluated for each item.

Inputs

Item (Type: T)

One item of the input list.

ItemIndex (Type: Int32)

The index of the item of the input list.

Accumulator (Type: U)

The input accumulator value.

Outputs

Accumulator (Type: U)

The resulting accumulator value.

Comments

Accumulate nodes can be nested in similar ways as subpipelines.

The nesting is shown with a breadcrumbs control at the top.

Double-click an Accumulate node to enter it, and use the breadcrumbs control to exit it and go up one or more levels.

By default, a Accumulate node has three inputs and one output.

You can add additional inputs with the Add Input (Ctrl-I) command. You can edit the port names by clicking on
them and typing a new name. The type of the ports is determined by the first connection made to them, either from the
outside or from the inside.

530 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.158 Camera Infos

Lists information about the available cameras.

The preview shows the number of available cameras.

Outputs

CameraInfos (Type: List<CameraInfo>)

A list of CameraInfo objects. You can use GetItem to take a specific item from the list and GetProperty to read a
specific piece of information, such as the Model or the Vendor.

Example

Here is an example that lists some information about cameras:

15.3.159 Concatenate

Concatenates two lists of the same type.

Inputs

ListA (Type: List<T>)

The first input list.

ListB (Type: List<T>)

The second input list.

Outputs

List (Type: List<T>)

The output list, which consists of the items of the first input list followed by the items of the second input list.

15.3.160 List Files

Lists the available files in a directory.

15.3. Nodes 531

nVision User Guide, Release 2016.3

532 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Directory (Type: String)

The directory (provided as a string, or selected via the . . . button. This can be a relative or absolute path to the
directory to search. This string is not case-sensitive.

Filter (Type: String)

The filter string to match against the names of the files in the directory. This parameter can contain a combination of
valid literal path and wildcard characters (* to match zero or more characters and ? to match zero or one characters).

Subdirectories (Type: Boolean)

If this parameter is set to false, the files in the specified directory only are returned. If this parameter is set to true, the
files in the specified directory as well as in all its subdirectories are returned.

Outputs

Filenames (Type: List<String>)

The list of files.

15.3.161 Distinct

Removes duplicates from a list, so that only distinct items remain in the list.

Inputs

List (Type: List<T>)

The input list.

15.3. Nodes 533

nVision User Guide, Release 2016.3

Outputs

List (Type: List<T>)

The output list, which consists of the distinct items of the input list only.

Comments

The output list is a set in the mathematical sense, which can have distinct objects only.

15.3.162 Except

Calculates the difference of two sets.

Inputs

ListA (Type: List<T>)

The first input list, whose distinct elements form the first set for the set difference operation.

ListB (Type: List<T>)

The second input list, whose distinct elements form the second set for the set difference operation.

Outputs

List (Type: List<T>)

The output list, which consists of the set difference of the two lists, i.e. the output list consists of the items of the first
input list that are not also in the second input list.

Comments

The lists are treated as mathematical sets, which can have distinct objects only.

15.3.163 First

Takes the first item out of a list.

534 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

List (Type: List<T>)

The list.

Outputs

Item (Type: T)

The first item of the list.

Sample

Here is an example:

15.3.164 Intersect

Calculates the intersection of two sets.

15.3. Nodes 535

nVision User Guide, Release 2016.3

Inputs

ListA (Type: List<T>)

The first input list, whose distinct elements form the first set for the intersection.

ListB (Type: List<T>)

The second input list, whose distinct elements form the second set for the union.

Outputs

List (Type: List<T>)

The output list, which consists of the set intersection of the two lists.

Comments

The lists are treated as mathematical sets, which can have distinct objects only.

15.3.165 Last

Takes the last item out of a list.

Inputs

List (Type: List<T>)

The list.

536 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Item (Type: T)

The last item of the list.

Sample

Here is an example:

15.3.166 ListRange

Creates a list of increasing integer numbers.

By default the list starts at 0 and has 1 entry.

The ListRange node is often used to provide the equivalent of a loop in nVision’s dataflow pipelines.

Inputs

Start (Type: Int32)

The start of the list of numbers.

15.3. Nodes 537

nVision User Guide, Release 2016.3

Count (Type: Int32)

The count of increasing numbers.

Outputs

Range (Type: List<Int32>)

The list of numbers.

Sample

Here is an example that calculates the sum of all numbers from 0 to 9:

The summation is carried out with the following Accumulate node:

15.3.167 Reverse

Reverses a list.

Inputs

List (Type: List<T>)

The input list.

538 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Reverse (Type: List<T>)

The output list, with the items in reverse order.

15.3.168 Transform (Select)

Transform (Select) takes items from a list and transforms them to a list of different items. The transformation is
specified as a grafical pipeline, for a single item. All transformed items are added to the output list.

Outside View

At the outside, the Transform (Select) node appears like a single node, with inputs and outputs.

Inputs

List (Type: List<T>)

The input list.

Outputs

TransformedList (Type: List<U>)

The output list, consisting of a list of transformed itmes from the input list.

Inside View

Inside, the Transform (Select) node looks like a normal branched pipeline. This pipeline is used to specify the
transformation, which is evaluated for each item.

15.3. Nodes 539

nVision User Guide, Release 2016.3

Inputs

Item (Type: T)

One item of the input list.

ItemIndex (Type: Int32)

The index of the item of the input list.

Outputs

Result (Type: U)

The result item. The result item can be of the same type as the input item or of a different type.

Comments

Transform (Select) nodes can be nested in similar ways as subpipelines.

The nesting is shown with a breadcrumbs control at the top.

Double-click a Transform (Select) node to enter it, and use the breadcrumbs control to exit it and go up one or more
levels.

By default, a Transform (Select) node has one input and one output.

You can add additional inputs with the Add Input (Ctrl-I) command. You can edit the port names by clicking on
them and typing a new name. The type of the ports is determined by the first connection made to them, either from the
outside or from the inside.

Sample

Here is an example:

It takes items from the first list (0, 1, . . . , 9) and transforms it to a list with each item squared (0, 1, . . . , 81).

540 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.169 Skip

Skips a number of items at the beginning of a list. The remaining items are put in the output list.

Inputs

List (Type: List<T>)

The input list.

Count (Type: Int32)

The number of items to skip.

Outputs

List (Type: List<T>)

The output list, consisting of the part of the input list that remains after skipping.

15.3.170 Sort By

Sorts a list of items by some property.

Sort By can be applied on objects which have a property that can be used for sorting. The sort order can be specified.

15.3. Nodes 541

nVision User Guide, Release 2016.3

Inputs

List (Type: List<T>)

The list of items.

Property (Type: string)

A property or a property path, such as X (Point has an property named X) or Size.X (Image has a property named
Size, which in turn has a property named X).

Direction (Type: string)

The sort direction, use Ascending or Descending to sort in the respective direction.

Outputs

SortedList (Type: List<T>)

The sorted list.

15.3.171 Take

Takes a number of items at the beginning of a list. The remaining items are not put in the output list.

Inputs

List (Type: List<T>)

The input list.

Count (Type: Int32)

The number of items to take.

Outputs

List (Type: List<T>)

The output list, consisting of the beginning part of the input list that hast been taken.

542 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.172 Union

Calculates the union of two sets.

Inputs

ListA (Type: List<T>)

The first input list, whose distinct elements form the first set for the union.

ListB (Type: List<T>)

The second input list, whose distinct elements form the second set for the union.

Outputs

List (Type: List<T>)

The output list, which consists of the set union of the two lists.

Comments

The lists are treated as mathematical sets, which can have distinct objects only.

15.3.173 Filter (Where)

Filter (Where) takes those items from a list where a a predicate is true. The predicate is specified itself as a graphical
pipeline. The predicate is evaluated for each item of the list, beginning with the first item. Items where the predicate
evaluates to true are added to the output list.

Outside View

At the outside, the Filter (Where) node appears like a single node, with inputs and outputs.

15.3. Nodes 543

nVision User Guide, Release 2016.3

Inputs

List (Type: List<T>)

The input list.

Outputs

FilteredList (Type: List<T>)

The output list, consisting of a part of the input list, as determined by consecutive execution of the predicate.

Inside View

Inside, the Filter (Where) node looks like a normal branched pipeline. This pipeline is used to specify the predicate,
which is evaluated for each item.

Inputs

Item (Type: T)

One item of the input list.

ItemIndex (Type: Int32)

The index of the item of the input list.

Outputs

Result (Type: Boolean)

The boolean predicate.

Comments

Filter (Where) nodes can be nested in similar ways as subpipelines.

The nesting is shown with a breadcrumbs control at the top.

Double-click a Filter (Where) node to enter it, and use the breadcrumbs control to exit it and go up one or more levels.

544 Chapter 15. Reference

nVision User Guide, Release 2016.3

By default, a Filter (Where) node has one input and one output.

You can add additional inputs with the Add Input (Ctrl-I) command. You can edit the port names by clicking on
them and typing a new name. The type of the ports is determined by the first connection made to them, either from the
outside or from the inside.

Sample

Here is an example:

It takes items from the first list (0, 1, . . . , 9) where the predicate (is even) is true and returns the resulting list (0, 2, . . . ,
8).

15.3.174 Load File

Loads an entire file.

Inputs

Filename

The path to the file.

Outputs

Text

The contents of the file.

15.3. Nodes 545

nVision User Guide, Release 2016.3

Comments

The Load File node checks the time the file was last written to, and compares it with the time it last read from the file.
If the file has been written to after it has been last read, the node reads the file again.

Sample

You can use standard text operations to work with the file contents. Here is an example that splits a file into lines.

15.3.175 Lowpass

Perform a lowpass filter.

Inputs

Image (Type: Image)

The input image.

546 Chapter 15. Reference

nVision User Guide, Release 2016.3

KernelSizeX (Type: Int32)

The kernel width.

KernelSizeY (Type: Int32)

The kernel height.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a lowpass filter. The kernel is rectangular with all n x m values set to 1 / (n*m).

The effect of a lowpass filter is a lowpass. The lowpass filter emphasizes low frequencies and attenuates high frequen-
cies. The strength of the lowpass filter depends on the size of the kernel.

Here are a few results of the lowpass filter with increasing kernel sizes:

Original:

KernelSizeX = KernelSizeY = 3:

KernelSizeX = KernelSizeY = 5:

KernelSizeX = KernelSizeY = 7:

KernelSizeX = KernelSizeY = 9:

Sample

Here is an example that shows how to use the median filter.

15.3.176 Lowpass

Filters an image using a lowpass kernel of rectangular size. A lowpass filter blurs an image.

The lowpass filter emphasizes low frequencies and attenuates high frequencies. The strength of the lowpass filter
depends on the size of the kernel.

The kernel size is anisotropic and can be different in horizontal and vertical directions.

15.3. Nodes 547

nVision User Guide, Release 2016.3

548 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 549

nVision User Guide, Release 2016.3

550 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 551

nVision User Guide, Release 2016.3

552 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

KernelSizeX (Type: Int32)

The horizontal kernel size (>= 1).

KernelSizeY (Type: Int32)

The vertical kernel size (>= 1).

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Sample

Here is an example:

15.3.177 MapOverPalette

Maps an image over a palette.

15.3. Nodes 553

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Palette (Type: Palette)

The mapping palette.

Outputs

Mapped (Type: Image)

The output image.

Comments

For every pixel in the input image, the corresponding color entry in the palette is read and written to the output image.

15.3.178 MaskedTextBox

The MaskedTextBox is a HMI control that can be used to restrict user input based on a specified regular expression
mask.

Inputs

Style (Type: Style)

Optional styling of the MaskedTextBox.

The MaskedTextBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and
Background, Foreground and Font styles.

Mask (Type: string)

The desired input pattern.

554 Chapter 15. Reference

nVision User Guide, Release 2016.3

TextBrush (Type: SolidColorBrush)

The text color.

Font (Type: Font)

The font.

Outputs

Value (Type: string)

The text entered by the user.

Description

The Mask input is used to define the desired pattern that must be input. Any characters that violate the mask will be
discarded. This ensures that only data in the proper format is entered.

Regular Expression Maks

The mask is entered in the form of a regular expression, as described below.

Literals

Literal characters can be included in the regular expression, but special characters must be escaped using the backslash
character (\).

Character Classes

Character classes can be used to define one or more characters, using ranges or by explicitly defining individual
characters. Character classes are enclosed in square brackets. Ranges can be defined using a start character, followed
by a dash (-), followed by an end character. For example, the character class "[0-9]", includes all digits. Additional
ranges can be appended to specify discontiguous ranges. For example, the character class "[0-37-9]", includes all
digits except 4, 5, and 6.

The caret (^) can be used to negate the character class. For example, the character class "[^0-9]" includes all
characters except the digits.

Groups

Any number of regular expression elements can grouped together by enclosing them in parenthesis. Alternations,
which are described below, are a special type of group which are also enclosed in parenthesis. Groups can be repeated
using one of the support quantifiers after the closing paraenthesis.

For example, the regular expression "ABC*" requires A and B, then allows for zero or more of C. The regular
expression "(ABC)*", which groups ABC into a single element, allows for zero or more of ABC together.

15.3. Nodes 555

nVision User Guide, Release 2016.3

In terms of literal completion, only the A character would ever be entered by the end-user for the "(ABC)*" regular
expresssion. When the user types an A, then the BC are required and are therefore automatically inserted by the
control. If an additional A is typed, then again the BC would be auto completed, resulting in "ABCABC" as the text.

Alternation

Alternation allows for two or more alternate branches to be taken and is defined by using the vertical bar in parenthesis.
For example, the "(AB|CD)" regular expression can match the string AB or the string CD. The alternate branches
can be any other supported regular expression element, including other groups or alternations. This allows for very
complex scenarioes to be defined and used as a mask.

When showing prompt indicators for uncompleted sections of the maks, the control will choose the shortest branch of
an alternation that would result in completion of the mask.

Quantifier

Quantifiers can be used to specify the number of times a regular expression element should be repeated. There are
several methods for defining quantifiers, which are:

Quan-
ti-
fier

Description

? Indicates that the regular expression element is optional. For example, the regular expression "AB?C" will
match the string ABC or AC.

* Indicates that the regular expression element can be repeated zero or more times, with no upper limit. For
example, the regular expression "AB*C" will match the string ABC or AC, as well as ABBBBBBBC.

+ Indicates that the regular expression element must occur once, but can be repeat any number of times. For
example, the regular expression "AB+C" will match the string ABC or ABBBBBBBC, but will not match
AC.

{N} Indicates that the regular expression element must occur exactly N times, where N is a postive integer value.
For example, the regular expression "AB{2}C" will only match the string ABBC.

{N,
}

Indicates that the regular expression element must occur exactly N times, where N is a postive integer value,
but can be repeated any number of times. For example, the regular expression "AB{2,}C" will match the
string ABBC or ABBBBBBC.

{N,
M}

Indicates that the regular expression element must occur exactly N times, where N is a postive integer value,
but can be repeated M times, where M is a positive integer value greater than N. For example, the regular
expression "AB{2,3}C" will match the string ABBC or ABBBC, but not ABBBBC.

Prompt Indicators

The control will render one or more prompt indicators (a circle) when additional input is required. Literals will also
be rendered ahead of the user input, when possible.

Caret

The caret is used to indicate where the next typed character (or pasted text) will be inserted.

The caret is only shown when the control currently has the keyboard focus.

556 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows the various edit controls. This definition:

creates the following user interface:

15.3.179 Max

Finds the maximum of two or more numbers.

Inputs

A (Type: Double)

The first operand.

B (Type: Double)

The second operand.

C. . . Z (Type: Double)

Additional operands, added on demand.

Outputs

Max (Type: Double)

The maximum of all operands.

Comments

This node calculates the maximum of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.180 Median

Perform a median filter.

Inputs

Image (Type: Image)

The input image.

15.3. Nodes 557

nVision User Guide, Release 2016.3

558 Chapter 15. Reference

nVision User Guide, Release 2016.3

KernelSizeX (Type: Int32)

The kernel width.

KernelSizeY (Type: Int32)

The kernel height.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The median is a noise reduction filter, which often performs better than simple averaging, expecially for salt-and-
pepper noise.

For every pixel, the median filter selects the median value of all values in the neighborhood of the pixel.

Here are a few results of the median filter with increasing kernel sizes:

Original:

KernelSizeX = KernelSizeY = 3:

KernelSizeX = KernelSizeY = 5:

KernelSizeX = KernelSizeY = 7:

KernelSizeX = KernelSizeY = 9:

15.3. Nodes 559

nVision User Guide, Release 2016.3

560 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 561

nVision User Guide, Release 2016.3

562 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 563

nVision User Guide, Release 2016.3

564 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to use the median filter.

15.3.181 Min

Finds the minimum of two or more numbers.

Inputs

A (Type: Double)

The first operand.

B (Type: Double)

The second operand.

C. . . Z (Type: Double)

Additional operands, added on demand.

Outputs

Min (Type: Double)

The minimum of all operands.

15.3. Nodes 565

nVision User Guide, Release 2016.3

Comments

This node calculates the minimum of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.182 MinMaxScalingPalette

Creates a palette with a linear transfer function, given minimum and maximum values of an image.

Inputs

Type (Type: String)

The type of the palette. Choices are PaletteByte, PaletteUInt16, PaletteUInt32, PaletteDouble,
PaletteRgbByte, PaletteRgbUInt16, PaletteRgbUInt32 and PaletteRgbDouble.

Width (Type: Int32)

The width of the palette.

Minimum (Type: Double)

The minimal value.

Maximum (Type: Double)

The maximal value.

Outputs

Palette (Type: Palette)

The output palette.

566 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

This function creates a palette with a linear function.

The minimum and maximum values are usually determined by inspecting an image. When the image is then mapped
over a palette created with this function, it will be remapped to gray values between 0 and 255.

Here is an example of a linear curve with a minimum of 32 and a maximum of 200:

15.3.183 Mirror

Mirrors an image.

Inputs

Image (Type: Image)

The input image.

15.3. Nodes 567

nVision User Guide, Release 2016.3

Outputs

Mirrored (Type: Image)

The output image.

Comments

This function reverses an image in the horizontal direction (exchanges left and right).

Sample

Here is an example that mirrors an image.

568 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.184 Morphological Image Operation

Performs a morphological image operation. Possible operations are erosion, dilation, opening, closing and morpho-
logical gradient.

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Constrains the function to a region of interest.

Operator (Type: String)

Possible operators are Erosion, Dilation, Closing, Opening and MorphologicalGradient.

Structel (Type: Region)

A structuring element.

Outputs

Flipped (Type: Image)

The output image.

Comments

This function performs several morphological operations.

Given the following original image, we show the results of different morphological operations:

Here is an example of an erosion with a circular structuring element of diameter 10:

Here is an example of a dilation with a circular structuring element of diameter 10:

Here is an example of closing with a circular structuring element of diameter 10:

Here is an example of opening with a circular structuring element of diameter 10:

15.3. Nodes 569

nVision User Guide, Release 2016.3

570 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 571

nVision User Guide, Release 2016.3

572 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 573

nVision User Guide, Release 2016.3

574 Chapter 15. Reference

nVision User Guide, Release 2016.3

Here is an example of the morphological gradient with a circular structuring element of diameter 3:

Sample

Here is an example that erodes an image.

15.3.185 MorphologicalRegionListOperation

Applies a morphological operation to all regions in a list.

The following operators are available: erosion, dilation, closing, opening and morphological gradient.

Erosion

Calculates the erosion of regions in a list (regions are all the holes in the part).

(Erosion with a circular structuring element of radius 10).

Dilation

Calculates the erosion of regions in a list (regions are all the holes in the part).

(Dilation with a circular structuring element of radius 10).

Closing

15.3. Nodes 575

nVision User Guide, Release 2016.3

Calculates the closing of regions in a list (regions are all the holes in the part).

(Closing with a circular structuring element of radius 10).

Opening

Calculates the opening of regions in a list (regions are all the holes in the part).

(Opening with a circular structuring element of radius 10).

Morphological Gradient

Calculates the morphological gradient of regions in a list (regions are all the holes in the part).

(Morphological gradient with a circular structuring element of radius 5).

Inputs

Regions (Type: RegionList)

The list of regions.

Operator (Type: string)

Specifies the operator (Erosion, Dilation, Closing, Opening or MorphologicalGradient).

Structel (Type: Region)

The structuring element (in the form of a region).

576 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 577

nVision User Guide, Release 2016.3

578 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 579

nVision User Guide, Release 2016.3

580 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 581

nVision User Guide, Release 2016.3

Outputs

Regions (Type: RegionList)

The resulting list of regions.

15.3.186 Multiply

Multiplies two or more numbers.

Inputs

A (Type: Double)

The first operand.

B (Type: Double)

The second operand.

C. . . Z (Type: Double)

Additional operands, added on demand.

Outputs

Product (Type: Double)

The product of all operands.

Comments

This node calculates the product of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

582 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.187 HMI ListBox (Multi Select)

A multi select ListBox can be used to select one from a number of entries.

Inputs

Style (Type: Style)

Optional styling of the ListBox.

The ListBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Items (Type: List<string>)

A list of text items that is displayed in the ListBox.

Selection (Type: List<string>)

The initial selection of the ListBox. This value is used only when the Items pin is connected.

SelectionMode (Type: string)

Orientation of the ListBox, Extended or Multiple.

Outputs

SelectedItems (Type: List<string>)

The selected items.

Example

Here is an example that shows a ListBox. This definition:

creates the following user interface:

15.3. Nodes 583

nVision User Guide, Release 2016.3

584 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.188 MySql Connection

Establishes a connection to a MySql database.

Inputs

Server (Type: String)

The name or network address of the instance of MySql to which to connect. Examples are localhost, 127.0.0.1,
etc.

Database (Type: String)

The case-sensitive name of the database to use.

User (Type: String)

The MySql login account being used.

Password (Type: String)

The password for the MySql account being used.

Outputs

Connection (Type: MySql.Data.MySqlClient.MySqlConnection)

The database connection.

Comments

Establishing a database connection is the first step in communicating with a database. All other queries need the
connection. Therefore, establishing the database connection has a somewhat global nature, and in many cases it can
be put into the system globals pipeline or in the globals pipeline. If the connection is created in such a way it will be
available from everywhere in your pipeline.

See the MySql documentation for more information about how to establish connections to MySql databases.

15.3. Nodes 585

https://dev.mysql.com/doc/

nVision User Guide, Release 2016.3

15.3.189 Sql Insert

Inserts data into a database table.

Inputs

Connection (Type: MySql.Data.MySqlClient.MySqlConnection)

The database connection.

Sync (Type: Object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Sync (Type: Object)

This output can be connected to any other object. It is used to establish an order of execution.

Comments

Once the database connection has been established, the node will fill its selection combo box with the tables that are
available in the database. Once you have selected the desired table, the node will be populated dynamically with more
inputs of type String, which correspond to the column names of the selected table. You can either type values or
connect to outputs from elsewhere in the pipeline. If connections are made, you cannot change the table inside the
node, because this could break existing connections.

The following example assumes that you have MySql installed and that you can connect to the sakila sample
database.

15.3.190 Sql Query

Executes a query on a database connection.

586 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Connection (Type: MySql.Data.MySqlClient.MySqlConnection)

The database connection.

Query (Type: String)

The query string.

Sync (Type: Object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Rows (Type: List<List<String>>)

The result of the query.

15.3. Nodes 587

nVision User Guide, Release 2016.3

Comments

This command allows you to execute any query on a database.

See the MySql documentation for more information about how to construct SQL queries.

The MySql tutorial may help you in constructing query strings.

Here is an example taken from this tutorial that shows how to build a query (‘SELECT VERSION(), CUR-
RENT_DATE;’) and how to read the results. The example assumes that you have MySql installed and that you
can connect to the sakila sample database.

15.3.191 Sql Select

Selects data from a database table.

Inputs

Connection (Type: MySql.Data.MySqlClient.MySqlConnection)

The database connection.

588 Chapter 15. Reference

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/refman/5.7/en/entering-queries.html

nVision User Guide, Release 2016.3

QueryTail (Type: String)

The node constructs a query consisting of a Sql Select statement, such as SELECT column FROM table. The
contents of the query tail is appended to this string and allows you to add clauses like WHERE ..., ORDER BY ...,
etc. You do not need to add a semicolon, this will be appended automatically.

Sync (Type: Object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Sync (Type: Object)

This output can be connected to any other object. It is used to establish an order of execution.

Comments

Once the database connection has been established, the node will fill its selection combo box with the tables that are
available in the database. Once you have selected the desired table, the node will be populated dynamically with more
inputs of type Boolean, which correspond to the column names of the selected table. You can either select 1 (true)
or 0 (false) or connect to outputs from elsewhere in the pipeline. If connections are made, you cannot change the table
inside the node, because this could break existing connections.

See the MySql documentation for more information about how to construct SQL select statements.

The following example assumes that you have MySql installed and that you can connect to the sakila sample
database.

15.3.192 Nand

Logical Nand of two or more boolean values.

15.3. Nodes 589

https://dev.mysql.com/doc/

nVision User Guide, Release 2016.3

Inputs

A (Type: Boolean)

The first operand.

B (Type: Boolean)

The second operand.

C. . . Z (Type: Boolean)

Additional operands, added on demand.

Outputs

Nand (Type: Boolean)

The logical Nand of all operands.

Comments

This node calculates the locgical Nand of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.193 Noise

Presets an image with a noise pattern.

Inputs

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

590 Chapter 15. Reference

nVision User Guide, Release 2016.3

Dark (Type: String)

The dark value of the noise fill. This value is converted into the appropriate pixel type, depending on the Type
parameter. For monochrome images you should enter one number, for rgb color images you should enter three numbers
separated by a space.

Bright (Type: String)

The bright value of the noise fill. This value is converted into the appropriate pixel type, depending on the Type
parameter. For monochrome images you should enter one number, for rgb color images you should enter three numbers
separated by a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a noise pattern.

Comments

The Noise node presets an image with a noise pattern. The size of the created image, the range of the colors, the region
of interest and the background color can all be specified.

15.3. Nodes 591

nVision User Guide, Release 2016.3

Sample

Here is an example that shows how to used the Noise node.

Here is the image created with the sample:

15.3.194 Nor

Logical Nor of two or more boolean values.

Inputs

A (Type: Boolean)

The first operand.

B (Type: Boolean)

The second operand.

C. . . Z (Type: Boolean)

Additional operands, added on demand.

Outputs

Nor (Type: Boolean)

The logical Nor of all operands.

592 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 593

nVision User Guide, Release 2016.3

Comments

This node calculates the locgical Nor of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.195 OCR

Performs optical character recognition (OCR) or optical character verification (OCV).

Inputs

Image (Type: Image)

The input image.

Filtename (Type: String)

The OCR font file.

WhiteOnBlack (Type: Boolean)

Detect characters printed black on white (default, 0) or white on black (1).

LocalThreshold (Type: Boolean)

Use a global threshold (default, 0) or a local threshold (1) for character segmentation.

InsertNewlines (Type: Boolean)

Do not insert newline characters (default, 0) or insert newline characters (1) in decoded result.

594 Chapter 15. Reference

nVision User Guide, Release 2016.3

MinimumScore (Type: Double)

The minimum score for character acceptance. The recongition score is between 0 and 1. The higher the score, the
better the character.

DiscardBadScores (Type: Boolean)

Do not discard characters with bad scores (default, 0) or discard them (1).

Outputs

String (Type: String)

The decoded text string.

OcrInfo (Type: OcrCharacterInfo)

Additional information, such as bounding boxes and scores of segmented characters and the average score.

Comments

The OCR node tries to segment characters in the input image. After segmentation, the segmented patterns are com-
pared to teached characters from the font file. Finally, the relative position of the characters is analyzed and a text
result is created. Additional information, such as the position of the segmented characters and their match scores is
calculated.

15.3.196 OpenLayers Module

Establish a connection to an OpenLayers module from Data Translation, which allows you to read and write digital
signals.

This node initializes the module. If you connect its output to a GetProperty node, you can gather information about
the device. Usually you would connect the output to an OpenLayers DigIn node to read electrical input, or an
OpenLayers DigOut node to write electrical output.

The OpenLayers modules are connected via USB or PCI to a PC and support a variety of input/output lines. The
modules may have additional features, such as counters, etc., but these are not yet supported.

15.3. Nodes 595

nVision User Guide, Release 2016.3

module bus features
DT9817 USB 28 digital inputs/outputs
DT9817-H USB 28 digital inputs/outputs
DT9817-R USB 8 digital inputs, 8 digital outputs
DT9835 USB 64 digital inputs/outputs
DT335 PCI 32 digital inputs/outputs
DT251 PCI 8 digital inputs, 8 digital outputs
DT340 PCI 32 digital inputs, 8 digital outputs

Inputs

Name (Type: string)

The name of the OpenLayers module.

Outputs

Module (Type: OpenLayersModule)

The OpenLayers module instance.

15.3.197 OpenLayers DigIn

Reads digital electrical inputs from an OpenLayers Module from Data Translation.

This node reads digital signals from an OpenLayers module.

596 Chapter 15. Reference

nVision User Guide, Release 2016.3

If the clock button inside the node is pressed , the node polls the module regularly. The frequency of the polling is
controlled with the timer interval setting on the Pipeline tab on the ribbon.

If the clock button inside the node is released , the module is not polled, and the node executes during regular
pipeline updates only.

Inputs

Module (Type: OpenLayersModule)

An OpenLayers module instance.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Here, the digital input is read after the digital output has been written.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

DigIn (Type: Int32)

The digital input in the form of a 32 bit integer number.

15.3.198 OpenLayers DigOut

Writes digital electrical outputs to an OpenLayers module from Data Translation.

This node writes digital signals to an OpenLayers module.

15.3. Nodes 597

nVision User Guide, Release 2016.3

Inputs

Module (Type: OpenLayersModule)

An OpenLayers module instance.

DigOut (Type: Int32)

The numeric value that is written to the electrical outputs.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Here, the digital output is written after the digital input has been read.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

Outputs

Sync (Type: object)

Synchronizing object. It is used to establish an order of execution.

15.3.199 OpenLayers

Get information about the OpenLayers system of Data Translation.

This node initializes the OpenLayers system and delivers a list of connected module names.

598 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Modules (Type: List<string>)

A list of module names.

Version (Type: string)

The version of the installed OpenLayers software.

15.3.200 Or

Logical Or of two or more boolean values.

Inputs

A (Type: Boolean)

The first operand.

B (Type: Boolean)

The second operand.

15.3. Nodes 599

nVision User Guide, Release 2016.3

C. . . Z (Type: Boolean)

Additional operands, added on demand.

Outputs

Or (Type: Boolean)

The logical Or of all operands.

Comments

This node calculates the locgical Or of multiple operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.201 Otsu Threshold

Calculates an optimal threshold with the Otsu method, given a histogram.

Inputs

Histogram (Type: Histogram)

The input histogram.

Outputs

Threshold (Type: Double)

The threshold value.

Comments

The Otsu Threshold node calculates a threshold value that can be used to segment an image into foreground and
background. The algorithm assumes that the image contains two classes of pixels following bi-modal histogram
(foreground pixels and background pixels), it then calculates the optimum threshold separating the two classes so that
their combined spread (intra-class variance) is minimal.

600 Chapter 15. Reference

nVision User Guide, Release 2016.3

Sample

Here is an example that calculates a threshold with the Otsu method.

Here is the original image:

And here is the binary image thresholded with the Otsu threshold:

15.3.202 Outer Boundary

Extracts the outer boundary from a list of regions.

The outer boundary of a region consists of the pixels of the background that touch the object. The outer boundary lies
on the background.

15.3. Nodes 601

nVision User Guide, Release 2016.3

602 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Regions (Type: RegionList)

The list of regions.

Outputs

Boundary (Type: RegionList)

The objects reduced to their outer boundary.

Comments

Here is an example of an outer boundary:

15.3.203 Paste

You can use Ctrl-V or the Paste (Ctrl-V) command from the pipeline menu to paste previously copied nodes and
their inside connections from the clipboard.

15.3. Nodes 603

nVision User Guide, Release 2016.3

The nodes are pasted at the location of the mouse cursor.

Since outside connections are not copied, the pasted fragments may need to be reconnected to the rest of the pipeline.

15.3.204 Path

Make a path given a string.

Inputs

String (Type: String)

A string that should be converted to a path.

Outputs

Path (Type: Ngi.Path)

The path.

15.3.205 PathCombine

Combines three strings into a path.

Inputs

PathString1 (Type: String)

The first path to combine.

PathString2 (Type: String)

The second path to combine.

604 Chapter 15. Reference

nVision User Guide, Release 2016.3

PathString3 (Type: String)

The third path to combine.

Outputs

CombinedPath (Type: Ngi.Path)

The combined path.

Comments

PathString1 should be an absolute path (for example, “d:” or “\archives”). If PathString2 or PathString3 is also an
absolute path, the combine operation discards all previously combined paths and resets to that absolute path.

Empty strings are omitted from the combined path.

15.3.206 PerspectiveTransform

Geometrically transforms an image by a perspective transform.

Inputs

Image (Type: Image)

The input image.

Transform (Type: Ngi.PerspectiveMatrix)

The perspective transformation matrix.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

15.3. Nodes 605

nVision User Guide, Release 2016.3

Extend Size (Type: bool)

The geometric transformation may produce pixels that are outside of the input image bounds. If the parameter is set,
the size of the output image is adapted to make room for these pixels. If the parameter is cleared, the size of the output
image is kept the same as the input image.

Outputs

Transformed (Type: Image)

The output image.

15.3.207 Pixel Based Blob Feature

Measures pixel-based features of a region and an associated image.

606 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Blob (Type: Region)

The region that defines the blob.

Image (Type: Image)

The associated image.

Outputs

Feature

The blob analysis result data. The type of the result depends on the selected feature.

Comments

The Pixel Based Blob Feature node calculates the feature for a single region and an associated image.

The features can be selected inside the node. The full set of features is described in the Blob Analysis chapter of the
nVision User Guide.

15.3.208 Point

Creates a point.

A point is a geometric entity, representing a location in the two-dimensional cartesian plane.

15.3. Nodes 607

nVision User Guide, Release 2016.3

Inputs

X (Type: Double)

The horizontal coordinate.

Y (Type: Double)

The vertical coordinate.

Outputs

PointDouble (Type: PointDouble)

The point.

15.3.209 Point

Creates a point.

A point is a geometric entity, representing a location in the two-dimensional cartesian plane.

Inputs

X (Type: Int32)

The horizontal coordinate.

608 Chapter 15. Reference

nVision User Guide, Release 2016.3

Y (Type: Int32)

The vertical coordinate.

Outputs

PointInt32 (Type: PointInt32)

The point.

15.3.210 PredefinedPalette

Creates a palette with a predefined transfer function.

Inputs

name (Type: String)

The type of the palette. Choices are Linear, Inverse, Square, SquareInverse, Cube, CubeInverse,
CubicRoot, CubicRootInverse, Red, Green, Blue, Cyan, Magenta, Yellow, BlueOrange, Cool,
CyanHot, MagentaHot, OrangeHot, RedHot, YellowHot, Ice, Fire, GreenFireBlue, Rainbow and
Spectrum.

Outputs

Palette (Type: Palette)

The output palette.

Comments

This function creates a palette with a predefined function. It can be used to create monochrome or color palettes. The
following palettes can be chosen:

Linear

Inverse

Square

SquareInverse

Cube

15.3. Nodes 609

nVision User Guide, Release 2016.3

610 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 611

nVision User Guide, Release 2016.3

612 Chapter 15. Reference

nVision User Guide, Release 2016.3

CubeInverse

CubicRoot

CubicRootInverse

Red

Green

Blue

Cyan

Magenta

15.3. Nodes 613

nVision User Guide, Release 2016.3

614 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 615

nVision User Guide, Release 2016.3

Yellow

BlueOrange

Cool

CyanHot

MagentaHot

OrangeHot

RedHot

YellowHot

616 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 617

nVision User Guide, Release 2016.3

618 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 619

nVision User Guide, Release 2016.3

Ice

Fire

GreenFireBlue

Rainbow

Spectrum

620 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 621

nVision User Guide, Release 2016.3

622 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.211 HMI ProgressBar

A ProgressBar can be used to move to or visualize a position.

Inputs

Style (Type: Style)

Optional styling of the ProgressBar.

The ProgressBar respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Orientation (Type: string)

Orientation of the ProgressBar, Horizontal or Vertical.

Value (Type: double)

The position.

Minimum (Type: double)

The minimum value.

Maximum (Type: double)

The maximum value.

Foreground (Type: SolidColorBrush)

The foreground.

Background (Type: SolidColorBrush)

The background.

15.3. Nodes 623

nVision User Guide, Release 2016.3

Example

Here is an example that shows a ProgressBar coupled to a Slider. This definition:

creates the following user interface:

15.3.212 Quantize

Quantize an image down to 256 or less colors.

Inputs

Image (Type: Image)

The input image.

Colors (Type: Int32)

The number of colors in the output image.

624 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Image (Type: Image)

The output image.

Palette (Type: Palette)

The output color palette.

Comments

This function reduces the number of colors in an image to the specified number of 256 or less. The result is a one-
channel image and an associated color palette.

Color image quantized to 256 colors:

Color image quantized to 16 colors:

Color image quantized to 4 colors:

Sample

Here is an example:

15.3.213 RadialGradient

Presets an image with a radial gradient pattern.

Inputs

Center (Type: PointDouble)

The center of the gradient. The default is 512, 512.

Radius (Type: Double)

The radius of the gradient. The default is 512.

Type (Type: String)

The image type. The following types can be chosen: ImageByte, ImageUInt16, ImageUInt32, ImageDouble, Im-
ageRgbByte, ImageRgbUInt16, ImageRgbUInt32, ImageRgbDouble

15.3. Nodes 625

nVision User Guide, Release 2016.3

626 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 627

nVision User Guide, Release 2016.3

628 Chapter 15. Reference

nVision User Guide, Release 2016.3

Dark (Type: String)

The value of a dark checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Bright (Type: String)

The value of a bright checkerboard field. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Size (Type: Extent3d)

The size of the image that is created. The default value is 1024 x 1024 x 1 pixels.

Region (Type: Region)

An optional region that constrains the preset operation to inside the region only. Pixels outside the region are colored
with the Background color.

Background (Type: String)

The preset value outside of the region. This value is converted into the appropriate pixel type, depending on the
Type parameter. For monochrome images you should enter one number, for rgb color images you should enter three
numbers separated by a space.

Outputs

Image (Type: Image)

The image preset with a radial gradient pattern.

15.3. Nodes 629

nVision User Guide, Release 2016.3

Comments

The RadialGradient node presets an image with a radial gradient pattern. The size of the created image, the colors
for dark and bright checkerboard fields, the region of interest and the background color can all be specified.

Sample

Here is an example that shows how to used the RadialGradient node.

Here is the image created with the sample:

15.3.214 HMI RadioButton

Buttons are used to switch or visualize state, as well as to trigger actions. The RadioButton is used in groups, where
only one of the buttons can be checked.

A RadioButton is used in a group with other RadioButtons. Only one of them is checked at a time. If another
RadioButton in the same group is checked, the previously checked one is unchecked.

At the bottom of the RadioButton node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the RadioButton.

The RadioButton respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Name (Type: string)

The text that is displayed within the button. This text is only displayed, when no child is connected. If a child is
connected, the visual definition of the child is used.

630 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 631

nVision User Guide, Release 2016.3

Group (Type: string)

The group of the RadioButton. RadioButtons with the same group text are in the same group.

Outputs

IsChecked (Type: boolean)

True if the radio button is checked, False otherwise.

Example

Here is an example that shows a simple RadioButton. This definition:

creates the following user interface:

15.3.215 Read

Read data from an interface.

This node reads data from an interface (such as a serial port).

632 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Io (Type: IoResource)

The IO interface.

BytesToRead (Type: Int32)

The number of bytes to read from the interface.

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Data (Type: DataList)

The data that has been read in the form of a DataList (a list of bytes).

Comments

The Sync input and the Data output can be used to establish an order of execution.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

15.3.216 Read Ini File

Reads values from an Ini file. Ini files are used to store configuration information.

Inputs

Filename

The path to the file.

15.3. Nodes 633

nVision User Guide, Release 2016.3

Section

The section name in the Ini file.

Key

The key name inside the section.

Default

The default value, if the key could not be found.

Outputs

Text

The value read from the Ini file.

Comments

Wikipedia says the following about Ini files: The Ini file format is an informal standard for configuration files for some
platforms or software. Ini files are simple text files with a basic structure composed of sections, properties, and values.

The basic element contained in an Ini file is the key or property. Every key has a name and a value, delimited by an
equals sign (=). The name appears to the left of the equals sign.

name=value

Keys may (but need not) be grouped into arbitrarily named sections. The section name appears on a line by itself, in
square brackets ([and]). All keys after the section declaration are associated with that section. There is no explicit
“end of section” delimiter; sections end at the next section declaration, or the end of the file. Sections may not be
nested.

[section]
a=10
b=20

Section and property names are not case sensitive in the Windows implementation.

The Read Ini File checks the time the file was last written to, and compares it with the time it last read from the file. If
the file has been written to after it has been last read, the node reads the file again.

Sample

Here is a sample pipeline that illustrates ReadIniFile:

634 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.217 Group

You can use the Group command from the pipeline menu to move the selected nodes and their inside connections
to a newly created subpipeline. The outside connections are automatically turned into input and output ports of the
subpipeline.

You can select nodes by clicking them with the left mouse button. Hold down the Ctrl key if you want to add to (or
subtract from) the selection.

You can also select a set of nodes inside a rectangle that you drag while holding down the Ctrl key.

If the selected nodes have vertical widget or HMI connections to the outside, the command has no effect.

15.3.218 RegionComplement

Calculates the complement of a region.

Calculates the complement (yellow) of a region (dark).

15.3. Nodes 635

nVision User Guide, Release 2016.3

A -> Complement

Inputs

Region (Type: Region)

The input region.

Outputs

Result (Type: Region)

The result region.

15.3.219 RegionListFilter

Filters the regions in a list according to a criterium.

636 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Regions (Type: RegionList)

The list of regions.

PropertyPath (Type: string)

Specifies the property that is used for filtering. All the blob analysis features (Area, Perimeter, etc.) can be used for
filtering.

The full set of features is described in the Blob Analysis chapter of the nVision User Guide.

Some features have sub-features, such as the Centroid. For these features, you can use the dot (.), to specify the
desired feature, such as RegionCentroid.X.

ComparisonOperator (Type: string)

Specifies the operator (<, <=, >, >=, == or !=).

Constant (Type: Double)

The constant used for the comparison.

Outputs

FilteredRegions (Type: RegionList)

The resulting list of regions, which contains the regions that satisfy the criterium.

Comments

You can chain RegionListFilter nodes to filter for more than one criterium.

You can combine results of several RegionListFilter nodes with the set operations on available for lists (Union, Inter-
sect, Except) to create more complex filters.

15.3.220 ResamplePolar

Performs a transformation from a polar to a rectangular coordinate system.

Inputs

Image (Type: Image)

The input image.

15.3. Nodes 637

nVision User Guide, Release 2016.3

Center (Type: Ngi.PointDouble)

The polar center.

LengthOffset (Type: Double)

The radius from the center. This is mapped to the bottom of the resulting image.

LengthScale (Type: Double)

The scaling factor (radius to y-direction).

AngleOffset(Type: Double)

The starting angle in radians. This is mapped to the left of the resulting image.

AngleScale(Type: Double)

The scaling factor (angle to x-direction).

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Outputs

Resampled Polar (Type: Image)

The output image (has the same size as the input image).

638 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.221 ResampleRectangle

Resamples a rectangular portion of an image.

Inputs

Image (Type: Image)

The input image.

Rectangle (Type: Ngi.Rectangle)

The rectangle. A rectangle can be oriented at any angle.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Outputs

Image (Type: Image)

The output image (has the same size as the rectangle, but rounded to an integer).

15.3.222 Rescale2D

Rescales an image.

15.3. Nodes 639

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

XFactor (Type: Double)

The horizontal scaling factor.

YFactor (Type: Double)

The vertical scaling factor.

Filter (Type: String)

The geometric interpolation. Available values are NearestNeighbor, Box, Triangle, Cubic, Bspline,
Sinc , Lanczos and Kaiser. The accuracy of the interpolation increases from NearestNeighbor to Kaiser,
but the performance decreases. The default is set to Box.

Outputs

Image (Type: Image)

The output image. The size of the output image is determined by the width and height of the input image multiplied
by the horizontal and vertical scaling factors.

15.3.223 Rotate 180

Rotates an image by 180 degrees.

Inputs

Image (Type: Image)

The input image.

640 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Image (Type: Image)

The output image.

Comments

This function rotates an image by 180 degrees.

Sample

Here is an example that rotates an image.

15.3. Nodes 641

nVision User Guide, Release 2016.3

15.3.224 Rotate Clockwise

Rotates an image clockwise by 90 degrees.

Inputs

Image (Type: Image)

The input image.

Outputs

Image (Type: Image)

The output image.

Comments

This function rotates an image by 90 degrees in clockwise direction.

Sample

Here is an example that rotates an image.

15.3.225 Rotate Counter Clockwise

Rotates an image counter-clockwise by 90 degrees.

Inputs

Image (Type: Image)

The input image.

Outputs

Image (Type: Image)

The output image.

642 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 643

nVision User Guide, Release 2016.3

Comments

This function rotates an image by 90 degrees in counter-clockwise direction.

Sample

Here is an example that rotates an image.

15.3.226 Save File

Saves text to a file.

Inputs

Text (Type: String)

The text that is written to the file.

Directory (Type: String)

A directory. This is preset with the user’s documents folder.

Filename (Type: String)

A filename. This is preset with "data.txt".

Comments

The Save File node writes text to a file.

The directory and filename of the file can be specified. If no directory is used, the node uses the user’s documents
folder. If no filename is used, the node uses the name "data.txt". If the directory does not exist, it will be created.

The node only executes, if the Export On/Off mode has been turned on,

644 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 645

nVision User Guide, Release 2016.3

or if the Export Once button is clicked.

Otherwise, the node does not execute and has no effect.

15.3.227 HMI Scrollbar

A ScrollBar can be used to scroll to or visualize a position.

Inputs

Style (Type: Style)

Optional styling of the ScrollBar.

The Border respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground, Back-
ground, Font and Padding styles.

Orientation (Type: string)

Orientation of the Scrollbar, Horizontal or Vertical.

Minimum (Type: double)

The minimum value.

Maximum (Type: double)

The maximum value.

646 Chapter 15. Reference

nVision User Guide, Release 2016.3

images/HMIScrollbarNode.png

SmallChange (Type: double)

The amount that is subtracted from or added to the value when the Left or Right keyboard cursor keys are pressed.

LargeChange (Type: double)

The amount that is subtracted from or added to the value when the channel is clicked left or right of the thumb.

Outputs

Value (Type: double)

The position.

Example

Here is an example that shows a ScrollBar. This definition:

creates the following user interface:

15.3.228 HMI Separator

The Separator allows you to specify a separator inside a toolbar.

Inputs

Style (Type: Style)

Optional styling of the Separator.

15.3.229 SerialPort

Establish a connection to a serial port, which allows you to communicate over a serial interface.

15.3. Nodes 647

nVision User Guide, Release 2016.3

648 Chapter 15. Reference

nVision User Guide, Release 2016.3

This node initializes the serial port interface. You can connect the output to a Read node to read data from the serial
port, or a Write node to write data to the serial port.

Inputs

Port (Type: string)

The identifier of the serial port (COM1, COM2, etc.).

Baudrate (Type: UInt32)

The baudrate of the serial port (9600, 14400, 19200, etc.).

ByteSize (Type: UInt32)

The number of bits in the bytes transmitted and received (4 - 8).

Parity (Type: string)

The parity (No, Odd, Even, Mark or Space).

StopBits (Type: string)

The number of stop bits (One, OnePointFive or Two).

ReadTimeout (Type: UInt32)

The read timeout in milliseconds (0: polling, > 0: use the timeout for read operations).

Outputs

SerialPort (Type: SerialPort)

An instance of the serial port.

Comments

The output of the SerialPort node is usually connected to Read or Write nodes, in order to read from or write to the
serial port, respectively.

Since establishing a connection to a serial port is often an operation with a somewhat global character, the SerialPort
node is sometimes put into the pipeline globals or the system globals.

15.3.230 HMI ListBox (Single Select)

A single select ListBox can be used to select one from a number of entries.

15.3. Nodes 649

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the ListBox.

The ListBox respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

Items (Type: List<string>)

A list of text items that is displayed in the ListBox.

Index (Type: Int32)

The initial selection of the ListBox. This is a zero-based index. You can use -1 to specify no selection. This value is
used only when the Items pin is connected.

Outputs

SelectedItem (Type: string)

The selected item.

SelectedIndex (Type: Int32)

The zero-based index of the selected item, or -1 for no selection.

Example

Here is an example that shows a ListBox. This definition:

creates the following user interface:

15.3.231 Skip While

Skip While skips items from a list as long as a predicate is true. The predicate is specified itself as a graphical pipeline.
The predicate is evaluated for each item of the list, beginning with the first item. As long as the predicate evaluates
to true, list items are skipped. As soon as the predicate evaluates to false, the iteration is stopped, and the remaining
items are put in the output list.

650 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 651

nVision User Guide, Release 2016.3

Outside View

At the outside, the Skip While node appears like a single node, with inputs and outputs.

Inputs

List (Type: List<T>)

The input list.

Outputs

FilteredList (Type: List<T>)

The output list, consisting of a part of the input list, as determined by consecutive execution of the predicate.

Inside View

Inside, the Skip While node looks like a normal branched pipeline. This pipeline is used to specify the predicate,
which is evaluated for each item, until the predicate turns false.

Inputs

Item (Type: T)

One item of the input list.

ItemIndex (Type: Int32)

The index of the item of the input list.

Outputs

Result (Type: Boolean)

The boolean predicate.

652 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

Skip While nodes can be nested in similar ways as subpipelines.

The nesting is shown with a breadcrumbs control at the top.

Double-click a Skip While node to enter it, and use the breadcrumbs control to exit it and go up one or more levels.

By default, a Skip While node has one input and one output.

You can add additional inputs with the Add Input (Ctrl-I) command. You can edit the port names by clicking on
them and typing a new name. The type of the ports is determined by the first connection made to them, either from the
outside or from the inside.

Sample

Here is an example:

It skips items from the first list (0, 1, . . . , 9) while the predicate (< 3) is true and returns the resulting list (3, 4, . . . , 9).

15.3.232 HMI Slider

A Slider can be used to move to or visualize a position.

Inputs

Style (Type: Style)

Optional styling of the Slider.

The Slider respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground, Back-
ground, Font and Padding styles.

15.3. Nodes 653

nVision User Guide, Release 2016.3

Orientation (Type: string)

Orientation of the Slider, Horizontal or Vertical.

Minimum (Type: double)

The minimum value.

Maximum (Type: double)

The maximum value.

SmallChange (Type: double)

The amount that is subtracted from or added to the value when the Left or Right keyboard cursor keys are pressed.

LargeChange (Type: double)

The amount that is subtracted from or added to the value when the channel is clicked left or right of the thumb.

TickFrequency (Type: double)

The distance between tick marks.

TickPlacement (Type: string)

The placement of the ticks, Both, BottomLeft, None or TopRight.

Outputs

Value (Type: double)

The position.

654 Chapter 15. Reference

nVision User Guide, Release 2016.3

Example

Here is an example that shows a Slider. This definition:

creates the following user interface:

15.3.233 Split

Splits an image in two halfs.

Inputs

Image (Type: Image)

The input image.

15.3. Nodes 655

nVision User Guide, Release 2016.3

Direction (Type: String)

The direction to split the image. This can be Horizontal, Vertical or Planar to split in the X, Y, or Z
directions, respectively.

Size (Type: Double)

The split position as a number between 0 and 1 (both bounds are exclusive). A value of 0.5 splits the image in half.

Outputs

A (Type: Image)

The first output image.

B (Type: Image)

The second output image.

Comments

This function splits an image in two parts, in either the horizontal, vertical or planar directions.

Sample

Here is an example that extracts the three color channels from an RGB image.

15.3.234 Split

Splits text into a list of strings that contains the substrings that are delimited by elements of a specified text.

656 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

In

The text that shall be split into parts.

Separator

The separator characters. The default separator characters contain the space, comma, semicolon, colon and dash
charaters (,;:-).

If this input is empty, the string will be split at all whitespace characters.

To split the string at line ends, you can use \n.

To split the string at tabs, you can use \t.

Outputs

Out

A list of strings that are the substrings of the original strings.

Comments

The Split node is often used to break text into pieces that is read from file.

Since the output is a list, you can use the GetListItem node to pick out a specific item from the list.

Sample

Here is a sample pipeline that illustrates Split:

15.3.235 HMI StackPanel

The StackPanel stacks its child controls in the vertical or horizontal direction.

At the bottom of the StackPanel node is a pin that allows it to connect several children.

Inputs

Style (Type: Style)

Optional styling of the StackPanel.

The StackPanel respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Background styles.

Orientation (Type: string)

Orientation of the StackPanel, Horizontal or Vertical.

15.3. Nodes 657

nVision User Guide, Release 2016.3

658 Chapter 15. Reference

nVision User Guide, Release 2016.3

Background (Type: SolidColorBrushByte)

The background of the StackPanel.

Example

Here is an example that stacks a text label and an edit control vertically. This definition

creates the following úser interface:

15.3.236 Concat Text

Concatenates two or more text values.

Inputs

A (Type: String)

The first operand.

15.3. Nodes 659

nVision User Guide, Release 2016.3

B (Type: String)

The second operand.

C. . . Z (Type: String)

Additional operands, added on demand.

Outputs

Text (Type: String)

The concatenation of all operands.

Comments

This node concatenates multiple text operands.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.237 Compare Text

Compares two texts, ignoring or honoring their case, and returns an integer that indicates their relative position in the
sort order.

Inputs

A (Type: String)

The first text to compare.

B (Type: String)

The second text to compare.

IgnoreCase (Type: Boolean)

True to ignore case during the comparison, false otherwise.

660 Chapter 15. Reference

nVision User Guide, Release 2016.3

Outputs

Relation (Type: Int32)

An integer that indicates the relationship between the two texts:

value condition
< 0 A precedes B in the sort order.
0 A occurs in the same position as B in the sort order.
> 0 A follows B in the sort order.

15.3.238 Format Text

Formats a text using two or more text values.

Inputs

FormatString (Type: String)

todo

Culture (Type: ‘‘)

A (Type: String)

The first operand.

B (Type: String)

The second operand.

C. . . Z (Type: String)

Additional operands, added on demand.

15.3. Nodes 661

nVision User Guide, Release 2016.3

Outputs

Text (Type: String)

todo

Comments

todo.

The ports for the inputs are added dynamically on demand. The node starts with the two inputs A and B. If both are
connected, a third input named C is added. At a maximum, 26 inputs are possible. Inputs can also be deleted by
removing the connection to them.

15.3.239 SubPipeline

A subpipeline groups several nodes and their connections. This is a means to organize code.

At the outside, a subpipeline appears like a single node, with inputs and outputs. Inside, a subpipeline looks like a
normal branched pipeline.

images/SubPipeline_Inside.png

A subpipeline can be nested, that is you can have subpipelines inside other subpipelines.

The nesting of subpipelines is shown with a breadcrumbs control at the top.

Double-click a subpipeline to enter it, and use the breadcrumbs control to exit it and go up one or more levels.

By default, a subpipeline has one input and one output. You can add inputs and outputs with the Add Input (Ctrl-I)
and the Add Output (Ctrl-O) commands. You can edit the port names by clicking on them and typing a new name.
The type of the ports is determined by the first connection made to them, either from the outside or from the inside.

15.3.240 HMI TabControl

The TabControl creates a tab control and displays its children in tabs.

At the bottom of the TabControl node is a pin that allows it to connect multiple children (use TabItem here).

662 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the TabControl.

The TabControl respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Back-
ground, Foreground and Font styles.

TabStripPlacement (Type: string)

The placement of the tabstrip. The values Bottom, Left, Top and Right are possible.

Outputs

SelectedIndex (Type: Int32)

The index of the selected tab.

15.3.241 HMI TabItem

The TabItem puts an expandable and collapsibal area around its child.

At the bottom of the TabItem node is a pin that allows it to connect one child.

Inputs

Style (Type: Style)

Optional styling of the Expander.

The Expander respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding and Back-
ground, Foreground and Font styles.

Header (Type: string)

The title of the TabItem.

15.3. Nodes 663

nVision User Guide, Release 2016.3

15.3.242 Take While

Take While takes items from a list as long as a predicate is true. The predicate is specified itself as a graphical pipeline.
The predicate is evaluated for each item of the list, beginning with the first item. As long as the predicate evaluates to
true, list items are added to the output list. As soon as the predicate evaluates to false, the iteration is stopped.

Outside View

At the outside, the Take While node appears like a single node, with inputs and outputs.

Inputs

List (Type: List<T>)

The input list.

Outputs

FilteredList (Type: List<T>)

The output list, consisting of a part of the input list, as determined by consecutive execution of the predicate.

Inside View

Inside, the Take While node looks like a normal branched pipeline. This pipeline is used to specify the predicate,
which is evaluated for each item, until the predicate turns false.

Inputs

Item (Type: T)

One item of the input list.

664 Chapter 15. Reference

nVision User Guide, Release 2016.3

ItemIndex (Type: Int32)

The index of the item of the input list.

Outputs

Result (Type: Boolean)

The boolean predicate.

Comments

Take While nodes can be nested in similar ways as subpipelines.

The nesting is shown with a breadcrumbs control at the top.

Double-click a Take While node to enter it, and use the breadcrumbs control to exit it and go up one or more levels.

By default, a Take While node has one input and one output.

You can add additional inputs with the Add Input (Ctrl-I) command. You can edit the port names by clicking on
them and typing a new name. The type of the ports is determined by the first connection made to them, either from the
outside or from the inside.

Sample

Here is an example:

It takes items from the first list (0, 1, . . . , 9) while the predicate (< 2) is true and returns the resulting list (0, 1).

15.3.243 TCP/IP Client

Creates a TCP/IP Client.

15.3. Nodes 665

nVision User Guide, Release 2016.3

Inputs

Server (Type: String)

The server name that should be connected. Strings such as www.impuls-imaging.com, 81.169.145.169,
localhost, 127.0.0.1, etc., can be used.

Port (Type: String)

The port or service name. Strings such as 21, http, etc. can be used. Possible values for the service name are listed
in the file %WINDIR%\system32\drivers\etc\services.

Family (Type: String)

The address family for the connection. Ipv4 or Ipv6 are possible.

BufferSize (Type: String)

The size of the read and write buffers.

ReadTimeout (Type: String)

The timeout of a read operation.

Outputs

Client (Type: TcpipClient)

The TCP/IP client. You can use the PeerName property to check if the client is connected to a server.

666 Chapter 15. Reference

nVision User Guide, Release 2016.3

Comments

The TCP/IP Client node creates a client that communicates with a remote TCP/IP server over a network connection.

The remote server can be another PC, a PLC or another device such as a robot.

When a connection has been made, data can be sent or received through the connection. The Write nodes is used to
send data, the Read node is used to receive data.

Example

Here is an example that shows how to used the TCP/IP Client node (click on the image to load the example):

The example sends a GET command to www.impuls-imaging.com and retrieves the contents of the file hello.
txt.

15.3.244 TCP/IP Server

Creates a TCP/IP Server.

15.3. Nodes 667

nVision User Guide, Release 2016.3

Inputs

Port (Type: String)

The port or service name. Strings such as 21, http, etc. can be used. Possible values for the service name are listed
in the file %WINDIR%\system32\drivers\etc\services.

Family (Type: String)

The address family for the connection. Ipv4 or Ipv6 are possible.

BufferSize (Type: String)

The size of the read and write buffers.

ReadTimeout (Type: String)

The timeout of a read operation.

Outputs

Server (Type: TcpipServer)

The TCP/IP server.

Comments

The TCP/IP Server node creates a server that communicates with a remote TCP/IP client over a network connection.

The remote client can be another PC, a PLC or another device such as a robot.

When a connection has been made, data can be sent or received through the connection. The Write nodes is used to
send data, the Read node is used to receive data.

Establishing a connection is a two-step process, which executes asynchronously. First, the server is created and listens
for connections. Once a client connects, the TCP/IP Server executes again and completes the connection and updates
the connection.

Example

Here is an example that shows how to used the TCP/IP Server node (click on the image to load the example):

668 Chapter 15. Reference

nVision User Guide, Release 2016.3

The example starts a TCP/IP server which listens for a client connection. The server implements two commands:
HELLO and TIME. It polls for the command every 100 ms. If the server receives HELLO, it responds with Hi,
nVision talking here!, and if the server receives TIME, it responds with the actual date and time. Anything
else is ignored.

You can send the commands with any utility program that allows you to send text strings, such as telnet.

15.3.245 HMI TextBlock

A TextBlock can be used to display text.

Inputs

Style (Type: Style)

Optional styling of the TextBlock.

The TextBlock respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Foreground,
Background, Font and Padding styles.

15.3. Nodes 669

nVision User Guide, Release 2016.3

Text (Type: string)

The text.

Foreground (Type: SolidColorBrush)

The foreground.

Background (Type: SolidColorBrush)

The background.

Font (Type: Font)

The font.

Example

Here is an example that shows a TextBlock. This definition:

creates the following user interface:

15.3.246 Threshold

Binary thresholds an image at a threshold value and creates a region as a result.

Inputs

Image (Type: Image)

The input image.

670 Chapter 15. Reference

nVision User Guide, Release 2016.3

Region (Type: Region)

Constrains the function to a region of interest.

Comparison (Type: String)

The thresholding operation: <, <=, >, >=, == or !=.

Threshold (Type: Double)

The threshold value.

Outputs

Region (Type: Region)

A region that contains all the pixels of the input image that satisfy the thresholding operation.

Comments

The region may or may not be spatially contiguous. If you want to separate the region into spatially distinct regions,
use the Connected Components command.

15.3.247 HMI ToggleButton

Buttons are used to switch or visualize state, as well as to trigger actions. The ToggleButton has two states, up or
down.

A ToggleButton toggles between the up and down states when it is clicked.

At the bottom of the ToggleButton node is a pin that allows it to connect one child.

15.3. Nodes 671

nVision User Guide, Release 2016.3

Inputs

Style (Type: Style)

Optional styling of the ToggleButton.

The ToggleButton respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin, Padding, Fore-
ground, Background, Font and Padding styles.

Name (Type: string)

The text that is displayed within the button. This text is only displayed, when no child is connected. If a child is
connected, the visual definition of the child is used.

Outputs

IsChecked (Type: boolean)

True if the button is down, False otherwise.

Example

Here is an example that shows a simple toggle button. This definition:

creates the following user interface:

672 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.248 HMI ToolBar

The ToolBar allows you to create a horizontal or vertical toolbar.

At the bottom of the ToolBar node is a pin that allows it to connect several children.

Inputs

Style (Type: Style)

Optional styling of the ToolBar.

The ToolBar respects the Width, Height, HorizontalAlignment, VerticalAlignment, Margin and Background styles.

Orientation (Type: string)

Orientation of the ToolBar, Horizontal or Vertical.

15.3.249 Unary Image Operator

Applies a unary point operation to an image. Unary point operations are applied pixel by pixel, the same way for every
pixel.

The following operators are available:

Absolute

15.3. Nodes 673

nVision User Guide, Release 2016.3

Absolute.

abs (Image) -> Result

Decrement

Decrement by 1.

Image - 1 -> Result

Increment

Increment by 1.

Image + 1 -> Result

Negate

Negate (2’s complement).

• Image -> Result

Not

Not (1’s complement).

~ Image -> Result

Square Root

Square root.

sqrt(Image) -> Result

674 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 675

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Operator (Type: string)

Specifies the operator.

operator operation
++ increment
-- decrement
- negate (2’s complement)
! not (1’s complement)
abs absolute
sqrt square root

Outputs

Result (Type: Image)

The result image.

15.3.250 Square Root

Calculates the square root of every pixel.

Inputs

Image (Type: Image)

The input image.

Outputs

Result (Type: Image)

The result image.

676 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3.251 Vector

Creates a vector.

A vector is a geometric entity, representing a directed length in the two-dimensional cartesian plane.

Inputs

Dx (Type: Double)

The horizontal coordinate.

Dy (Type: Double)

The vertical coordinate.

Outputs

VectorDouble (Type: VectorDouble)

The vector.

15.3.252 Vertical Prewitt

Filters an image using a vertical prewitt kernel.

15.3. Nodes 677

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a vertical prewitt filter. The corresponding kernel is a 3x3 matrix with the following values:

1 0 -1
1 0 -1
1 0 -1

The filter attenuates vertical edges while at the same time smoothing in the vertical direction.

Here are a few results of the vertical prewitt filter with increasing kernel sizes:

Original:

Result:

Sample

Here is an example that shows how to use the vertical prewitt filter.

Often, you want to combine the horizontal and the vertical prewitt filter to create an edge map. A simple way to do
this is shown in the following sample:

Here is an example image of such an edge map:

678 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 679

nVision User Guide, Release 2016.3

680 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 681

nVision User Guide, Release 2016.3

15.3.253 Vertical Profile

Calculates a vertical profile of an image to show the greyscale/color distribution.

The Vertical Profile node gives you information about the greyscale/color distribution along a vertical line. The line
can have a certain thickness.

Inputs

Image (Type: Image)

The input image.

Position (Type: Int32)

The horizontal coordinate of the vertical line.

Thickness (Type: Int32)

The thickness in pixel of the vertical line.

Outputs

Profile (Type: Profile)

The profile.

Sample

Here is an example:

15.3.254 Vertical Scharr

Filters an image using a vertical scharr kernel.

682 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a vertical scharr filter. The corresponding kernel is a 3x3 matrix with the following values:

3 0 -3
10 0 -10
3 0 -3

The filter attenuates vertical edges while at the same time smoothing in the vertical direction.

Here are a few results of the horizontal sobel filter with increasing kernel sizes:

Original:

Result:

Sample

Here is an example that shows how to use the vertical scharr filter.

Often, you want to combine the horizontal and the vertical scharr filter to create an edge map. A simple way to do this
is shown in the following sample:

Here is an example image of such an edge map:

15.3.255 Vertical Sobel

Filters an image using a vertical sobel kernel of size 3x3 or 5x5.

15.3. Nodes 683

nVision User Guide, Release 2016.3

684 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 685

nVision User Guide, Release 2016.3

686 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Image (Type: Image)

The input image.

KernelSize (Type: Int32)

The kernel size (3 -> 3x3, 5 -> 5x5).

Region (Type: Region)

Specifies an optional area of interest.

Outputs

Image (Type: Image)

The output image.

Comments

The function applies a vertical_sobel filter. The corresponding kernel is either a 3x3 matrix with the following values:

-1 0 1
-2 0 2
-1 0 1

or a 5x5 kernel with the following values:

-1 - 2 0 2 1
-4 -8 0 8 4
-6 -12 0 12 6
-4 -8 0 8 4
-1 - 2 0 2 1

The effect of a vertical sobel filter is that it amplifies vertical edges and attenuates everything else. The strength of the
sobel filter depends on the size of the kernel.

Here are a few results of the vertical sobel filter with increasing kernel sizes:

Original:

KernelSize = 3:

KernelSize = 5:

Sample

Here is an example that shows how to use the vertical sobel filter.

Often, you want to combine the horizontal and the vertical sobel filter to create an edge map. A simple way to do this
is shown in the following sample:

15.3. Nodes 687

nVision User Guide, Release 2016.3

688 Chapter 15. Reference

nVision User Guide, Release 2016.3

15.3. Nodes 689

nVision User Guide, Release 2016.3

690 Chapter 15. Reference

nVision User Guide, Release 2016.3

Here is an example image of such an edge map:

15.3.256 HMI WebBrowser

A WebBrowser can be used to display a webpage.

Inputs

Style (Type: Style)

Optional styling of the WebBrowser.

The WebBrowser respects the Width, Height, HorizontalAlignment, VerticalAlignment and Margin styles.

15.3. Nodes 691

nVision User Guide, Release 2016.3

Source (Type: string)

The URL of the webpage.

Example

Here is an example that shows a WebBrowser. This definition:

creates the following user interface:

15.3.257 HMI Window

The Window node is the root of the HMI (Human Machine Interface) system.

The Window node creates the connection to the nVision workspace area.

If a Window node is available in the pipeline, it takes over the display. This means that the default of displaying the
first pipeline output is overridden, and the window along with its children is displayed instead.

At the bottom of the Window node is a pin that allows it to connect one child to the window. This child can take all
the space in the window. Usually, this will be a control from the layout group of controls.

692 Chapter 15. Reference

nVision User Guide, Release 2016.3

Inputs

Background (Type: SolidColorBrushByte)

The background of the Window.

Example

Here is an example:

Below the Window node is a GroupBox. Inside the GroupBox is a StackPanel and inside the StackPanel is an
ImageDisplay which displays an image and a BarChart which displays the image histogram, stacked in horizontal
direction.

15.3. Nodes 693

nVision User Guide, Release 2016.3

15.3.258 Write

Write data to an interface.

This node writes data to an interface (such as a serial port).

Inputs

Io (Type: IoResource)

The IO interface.

Data (Type: DataList)

The data to write in the form of a DataList (a list of bytes).

Sync (Type: object)

This input can be connected to any other object. It is used to establish an order of execution.

Outputs

Sync (Type: object)

Synchronizing object. It is used to establish an order of execution.

Comments

The Sync input and output can be used to establish an order of execution.

Sometimes, if this is necessary for technical reasons, you can add a Delay node in order to introduce additional delay
between synchronized nodes.

694 Chapter 15. Reference

CHAPTER 16

Credits

nVision uses some third party software components that come with various licenses. This section lists the software
packages and outlines their licenses.

16.1 Boost

Boost provides free peer-reviewed portable C++ source libraries. It comes with the following license:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software
and accompanying documentation covered by this license (the “Software”) to use, reproduce, display,
distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to
permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this
restriction and the following disclaimer, must be included in all copies of the Software, in whole or in
part, and all derivative works of the Software, unless such copies or derivative works are solely in the
form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LI-
ABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

16.2 zlib

zlib is a compression/decompression library. It comes with the following license:

695

nVision User Guide, Release 2016.3

zlib.h – interface of the ‘zlib’ general purpose compression library version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided ‘as-is’, without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the origi-
nal software. If you use this software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org Mark Adler madler@alumni.caltech.edu

16.3 bzip

bzip is a compression/decompression library. It comes with the following license:

This program, “bzip2” and associated library “libbzip2”, are copyright (C) 1996-2000 Julian R Seward.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. The origin of this software must not be misrepresented; you must not claim that you wrote the origi-
nal software. If you use this software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.

3. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

4. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

696 Chapter 16. Credits

mailto:jloup@gzip.org
mailto:madler@alumni.caltech.edu

nVision User Guide, Release 2016.3

16.4 FreeImage

FreeImage is a library which supports reading and writing from popular graphics images formats. nVision uses it
under the terms of the FreeImage Public License (FIPL):

1. Definitions.

2. (a) “Contributor” means each entity that creates or contributes to the creation of Modifications.

3. (a) “Contributor Version” means the combination of the Original Code, prior Modifications used
by a Contributor, and the Modifications made by that particular Contributor.

2. (a) “Covered Code” means the Original Code or Modifications or the combination of the Original
Code and Modifications, in each case including portions thereof.

3. (a) “Electronic Distribution Mechanism” means a mechanism generally accepted in the software
development community for the electronic transfer of data.

4. (a) “Executable” means Covered Code in any form other than Source Code.

5. (a) “Initial Developer” means the individual or entity identified as the Initial Developer in the
Source Code notice required by Exhibit A.

6. (a) “Larger Work” means a work which combines Covered Code or portions thereof with code not
governed by the terms of this License.

7. (a) “License” means this document.

8. (a) “Modifications” means any addition to or deletion from the substance or structure of either the
Original Code or any previous Modifications. When Covered Code is released as a series of
files, a Modification is:

1. Any addition to or deletion from the contents of a file containing Original Code or previous Modifi-
cations.

2. Any new file that contains any part of the Original Code or previous Modifications.

1.10. “Original Code” means Source Code of computer software code which is described in the Source
Code notice required by Exhibit A as Original Code, and which, at the time of its release under this
License is not already Covered Code governed by this License.

1.11. “Source Code” means the preferred form of the Covered Code for making modifications to it,
including all modules it contains, plus any associated interface definition files, scripts used to control
compilation and installation of an Executable, or a list of source code differential comparisons against
either the Original Code or another well known, available Covered Code of the Contributor’s choice.
The Source Code can be in a compressed or archival form, provided the appropriate decompression or
de-archiving software is widely available for no charge.

1.12. “You” means an individual or a legal entity exercising rights under, and complying with all of the
terms of, this License or a future version of this License issued under Section 6.1. For legal entities, “You”
includes any entity which controls, is controlled by, or is under common control with You. For purposes
of this definition, “control” means (a) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (b) ownership of fifty percent (50%) or more of the
outstanding shares or beneficial ownership of such entity.

2. Source Code License.

3. (a) The Initial Developer Grant. The Initial Developer hereby grants You a world-wide, royalty-
free, non-exclusive license, subject to third party intellectual property claims:

1. to use, reproduce, modify, display, perform, sublicense and distribute the Original Code (or portions
thereof) with or without Modifications, or as part of a Larger Work; and

16.4. FreeImage 697

nVision User Guide, Release 2016.3

2. under patents now or hereafter owned or controlled by Initial Developer, to make, have made, use
and sell (“Utilize”) the Original Code (or portions thereof), but solely to the extent that any such
patent is reasonably necessary to enable You to Utilize the Original Code (or portions thereof) and
not to any greater extent that may be necessary to Utilize further Modifications or combinations.

2.2. Contributor Grant. Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive
license, subject to third party intellectual property claims:

1. to use, reproduce, modify, display, perform, sublicense and distribute the Modifications created by
such Contributor (or portions thereof) either on an unmodified basis, with other Modifications, as
Covered Code or as part of a Larger Work; and

2. under patents now or hereafter owned or controlled by Contributor, to Utilize the Contributor Version
(or portions thereof), but solely to the extent that any such patent is reasonably necessary to enable
You to Utilize the Contributor Version (or portions thereof), and not to any greater extent that may
be necessary to Utilize further Modifications or combinations.

3. Distribution Obligations.

4. (a) Application of License. The Modifications which You create or to which You contribute are
governed by the terms of this License, including without limitation Section 2.2. The Source
Code version of Covered Code may be distributed only under the terms of this License or a
future version of this License released under Section 6.1, and You must include a copy of this
License with every copy of the Source Code You distribute. You may not offer or impose any
terms on any Source Code version that alters or restricts the applicable version of this License
or the recipients’ rights hereunder. However, You may include an additional document offering
the additional rights described in Section 3.5.

5. (a) Availability of Source Code. Any Modification which You create or to which You contribute
must be made available in Source Code form under the terms of this License either on the
same media as an Executable version or via an accepted Electronic Distribution Mechanism to
anyone to whom you made an Executable version available; and if made available via Electronic
Distribution Mechanism, must remain available for at least twelve (12) months after the date it
initially became available, or at least six (6) months after a subsequent version of that particular
Modification has been made available to such recipients. You are responsible for ensuring that
the Source Code version remains available even if the Electronic Distribution Mechanism is
maintained by a third party.

2. (a) Description of Modifications. You must cause all Covered Code to which you contribute to
contain a file documenting the changes You made to create that Covered Code and the date of
any change. You must include a prominent statement that the Modification is derived, directly
or indirectly, from Original Code provided by the Initial Developer and including the name of
the Initial Developer in (a) the Source Code, and (b) in any notice in an Executable version or
related documentation in which You describe the origin or ownership of the Covered Code.

3. (a) Intellectual Property Matters

1. Third Party Claims. If You have knowledge that a party claims an intellectual property right in par-
ticular functionality or code (or its utilization under this License), you must include a text file with
the source code distribution titled “LEGAL” which describes the claim and the party making the
claim in sufficient detail that a recipient will know whom to contact. If you obtain such knowledge
after You make Your Modification available as described in Section 3.2, You shall promptly modify
the LEGAL file in all copies You make available thereafter and shall take other steps (such as noti-
fying appropriate mailing lists or newsgroups) reasonably calculated to inform those who received
the Covered Code that new knowledge has been obtained.

2. Contributor APIs. If Your Modification is an application programming interface and You own or
control patents which are reasonably necessary to implement that API, you must also include this
information in the LEGAL file.

698 Chapter 16. Credits

nVision User Guide, Release 2016.3

3.5. Required Notices. You must duplicate the notice in Exhibit A in each file of the Source Code, and
this License in any documentation for the Source Code, where You describe recipients’ rights relating to
Covered Code. If You created one or more Modification(s), You may add your name as a Contributor
to the notice described in Exhibit A. If it is not possible to put such notice in a particular Source Code
file due to its structure, then you must include such notice in a location (such as a relevant directory file)
where a user would be likely to look for such a notice. You may choose to offer, and to charge a fee for,
warranty, support, indemnity or liability obligations to one or more recipients of Covered Code. However,
You may do so only on Your own behalf, and not on behalf of the Initial Developer or any Contributor.
You must make it absolutely clear than any such warranty, support, indemnity or liability obligation is
offered by You alone, and You hereby agree to indemnify the Initial Developer and every Contributor
for any liability incurred by the Initial Developer or such Contributor as a result of warranty, support,
indemnity or liability terms You offer.

3.6. Distribution of Executable Versions. You may distribute Covered Code in Executable form only if the
requirements of Section 3.1-3.5 have been met for that Covered Code, and if You include a notice stating
that the Source Code version of the Covered Code is available under the terms of this License, including
a description of how and where You have fulfilled the obligations of Section 3.2. The notice must be
conspicuously included in any notice in an Executable version, related documentation or collateral in
which You describe recipients’ rights relating to the Covered Code. You may distribute the Executable
version of Covered Code under a license of Your choice, which may contain terms different from this
License, provided that You are in compliance with the terms of this License and that the license for the
Executable version does not attempt to limit or alter the recipient’s rights in the Source Code version from
the rights set forth in this License. If You distribute the Executable version under a different license You
must make it absolutely clear that any terms which differ from this License are offered by You alone,
not by the Initial Developer or any Contributor. You hereby agree to indemnify the Initial Developer and
every Contributor for any liability incurred by the Initial Developer or such Contributor as a result of any
such terms You offer.

3.7. Larger Works. You may create a Larger Work by combining Covered Code with other code not
governed by the terms of this License and distribute the Larger Work as a single product. In such a case,
You must make sure the requirements of this License are fulfilled for the Covered Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of this License with respect to some or all of
the Covered Code due to statute or regulation then You must: (a) comply with the terms of this License to
the maximum extent possible; and (b) describe the limitations and the code they affect. Such description
must be included in the LEGAL file described in Section 3.4 and must be included with all distributions
of the Source Code. Except to the extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License.

This License applies to code to which the Initial Developer has attached the notice in Exhibit A, and to
related Covered Code.

6. Versions of the License.

7. (a) New Versions. Floris van den Berg may publish revised and/or new versions of the License
from time to time. Each version will be given a distinguishing version number.

8. (a) Effect of New Versions. Once Covered Code has been published under a particular version of
the License, You may always continue to use it under the terms of that version. You may also
choose to use such Covered Code under the terms of any subsequent version of the License
published by Floris van den Berg No one other than Floris van den Berg has the right to modify
the terms applicable to Covered Code created under this License.

2. (a) Derivative Works. If you create or use a modified version of this License (which you may
only do in order to apply it to code which is not already Covered Code governed by this Li-

16.4. FreeImage 699

nVision User Guide, Release 2016.3

cense), you must (a) rename Your license so that the phrases “FreeImage”, ‘FreeImage Public
License”, “FIPL”, or any confusingly similar phrase do not appear anywhere in your license
and (b) otherwise make it clear that your version of the license contains terms which differ from
the FreeImage Public License. (Filling in the name of the Initial Developer, Original Code
or Contributor in the notice described in Exhibit A shall not of themselves be deemed to be
modifications of this License.)

3. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN “AS IS” BASIS, WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, WARRANTIES THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE,
FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COV-
ERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR
ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR
OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART
OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT
UNDER THIS DISCLAIMER.

8. TERMINATION.

This License and the rights granted hereunder will terminate automatically if You fail to comply with
terms herein and fail to cure such breach within 30 days of becoming aware of the breach. All sublicenses
to the Covered Code which are properly granted shall survive any termination of this License. Provisions
which, by their nature, must remain in effect beyond the termination of this License shall survive.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUD-
ING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE INITIAL DEVELOPER, ANY
OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE, OR ANY SUPPLIER
OF ANY OF SUCH PARTIES, BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER IN-
CLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE,
COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAM-
AGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF THE POSSI-
BILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO LIA-
BILITY FOR DEATH OR PERSONAL INJURY RESULTING FROM SUCH PARTY’S NEGLIGENCE
TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THAT EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a “commercial item,” as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consist-
ing of “commercial computer software” and “commercial computer software documentation,” as such
terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R.
227.7202-1 through 227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Code with
only those rights set forth herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter hereof. If any provision of this
License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make
it enforceable. This License shall be governed by Dutch law provisions (except to the extent applicable
law, if any, provides otherwise), excluding its conflict-of-law provisions. With respect to disputes in
which at least one party is a citizen of, or an entity chartered or registered to do business in, the The
Netherlands: (a) unless otherwise agreed in writing, all disputes relating to this License (excepting any

700 Chapter 16. Credits

nVision User Guide, Release 2016.3

dispute relating to intellectual property rights) shall be subject to final and binding arbitration, with the
losing party paying all costs of arbitration; (b) any arbitration relating to this Agreement shall be held
in Almelo, The Netherlands; and (c) any litigation relating to this Agreement shall be subject to the
jurisdiction of the court of Almelo, The Netherlands with the losing party responsible for costs, including
without limitation, court costs and reasonable attorneys fees and expenses. Any law or regulation which
provides that the language of a contract shall be construed against the drafter shall not apply to this
License.

12. RESPONSIBILITY FOR CLAIMS.

Except in cases where another Contributor has failed to comply with Section 3.4, You are responsible for
damages arising, directly or indirectly, out of Your utilization of rights under this License, based on the
number of copies of Covered Code you made available, the revenues you received from utilizing such
rights, and other relevant factors. You agree to work with affected parties to distribute responsibility on
an equitable basis.

EXHIBIT A.

“The contents of this file are subject to the FreeImage Public License Version 1.0 (the “License”); you
may not use this file except in compliance with the License. You may obtain a copy of the License at
http://home.wxs.nl/~flvdberg/freeimage-license.txt

Software distributed under the License is distributed on an “AS IS” basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

16.5 DynamicExpresso

Dynamic Expresso is an interpreter for simple C# statements. It is licensed under the MIT license:

MIT License

Copyright (c) 2015 Davide Icardi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

16.6 KBCsv

KBCsv is an efficient, easy to use .NET parsing and writing library for the CSV (comma-separated values) format,
written by Kent Boogaart. It is licensed under the MIT license:

The MIT License (MIT)

16.5. DynamicExpresso 701

http://home.wxs.nl/~flvdberg/freeimage-license.txt

nVision User Guide, Release 2016.3

Copyright (c) 2014 Kent Boogaart

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

16.7 NetworkView

NetworkView is a WPF custom control that is used to display and edit networks, graphs and flow-charts. It is licensed
under the Code Project Open License (CPOL):

This License governs Your use of the Work. This License is intended to allow developers to use the Source
Code and Executable Files provided as part of the Work in any application in any form.

The main points subject to the terms of the License are:

• Source Code and Executable Files can be used in commercial applications;

• Source Code and Executable Files can be redistributed; and

• Source Code can be modified to create derivative works.

• No claim of suitability, guarantee, or any warranty whatsoever is provided. The software is provided
“as-is”.

• The Article(s) accompanying the Work may not be distributed or republished without the Author’s
consent

• This License is entered between You, the individual or other entity reading or otherwise making
use of the Work licensed pursuant to this License and the individual or other entity which offers the
Work under the terms of this License (“Author”).

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CODE
PROJECT OPEN LICENSE (“LICENSE”). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER
THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HEREIN, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. THE AUTHOR GRANTS YOU THE RIGHTS
CONTAINED HEREIN IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS. IF YOU DO NOT AGREE TO ACCEPT AND BE BOUND BY THE TERMS OF THIS
LICENSE, YOU CANNOT MAKE ANY USE OF THE WORK.

1. Definitions.

1. “Articles” means, collectively, all articles written by Author which describes how the Source Code
and Executable Files for the Work may be used by a user.

702 Chapter 16. Credits

nVision User Guide, Release 2016.3

2. “Author” means the individual or entity that offers the Work under the terms of this License.

3. “Derivative Work” means a work based upon the Work or upon the Work and other pre-existing
works.

4. “Executable Files” refer to the executables, binary files, configuration and any required data files
included in the Work.

5. “Publisher” means the provider of the website, magazine, CD-ROM, DVD or other medium from
or by which the Work is obtained by You.

6. “Source Code” refers to the collection of source code and configuration files used to create the
Executable Files.

7. “Standard Version” refers to such a Work if it has not been modified, or has been modified in
accordance with the consent of the Author, such consent being in the full discretion of the Author.

8. “Work” refers to the collection of files distributed by the Publisher, including the Source Code,
Executable Files, binaries, data files, documentation, whitepapers and the Articles.

9. “You” is you, an individual or entity wishing to use the Work and exercise your rights under this
License.

2. Fair Use/Fair Use Rights. Nothing in this License is intended to reduce, limit, or restrict any
rights arising from fair use, fair dealing, first sale or other limitations on the exclusive rights of the
copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, the Author hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

1. You may use the standard version of the Source Code or Executable Files in Your own applications.

2. You may apply bug fixes, portability fixes and other modifications obtained from the Public Domain
or from the Author. A Work modified in such a way shall still be considered the standard version
and will be subject to this License.

3. You may otherwise modify Your copy of this Work (excluding the Articles) in any way to create a
Derivative Work, provided that You insert a prominent notice in each changed file stating how, when
and where You changed that file.

4. You may distribute the standard version of the Executable Files and Source Code or Derivative Work
in aggregate with other (possibly commercial) programs as part of a larger (possibly commercial)
software distribution.

5. The Articles discussing the Work published in any form by the author may not be distributed or
republished without the Author’s consent. The author retains copyright to any such Articles. You
may use the Executable Files and Source Code pursuant to this License but you may not repost or
republish or otherwise distribute or make available the Articles, without the prior written consent of
the Author.

Any subroutines or modules supplied by You and linked into the Source Code or Executable Files of this
Work shall not be considered part of this Work and will not be subject to the terms of this License.

4. Patent License. Subject to the terms and conditions of this License, each Author hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in
this section) patent license to make, have made, use, import, and otherwise transfer the Work.

5. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

1. You agree not to remove any of the original copyright, patent, trademark, and attribution notices and
associated disclaimers that may appear in the Source Code or Executable Files.

16.7. NetworkView 703

nVision User Guide, Release 2016.3

2. You agree not to advertise or in any way imply that this Work is a product of Your own.

3. The name of the Author may not be used to endorse or promote products derived from the Work
without the prior written consent of the Author.

4. You agree not to sell, lease, or rent any part of the Work. This does not restrict you from including
the Work or any part of the Work inside a larger software distribution that itself is being sold. The
Work by itself, though, cannot be sold, leased or rented.

5. You may distribute the Executable Files and Source Code only under the terms of this License, and
You must include a copy of, or the Uniform Resource Identifier for, this License with every copy of
the Executable Files or Source Code You distribute and ensure that anyone receiving such Executable
Files and Source Code agrees that the terms of this License apply to such Executable Files and/or
Source Code. You may not offer or impose any terms on the Work that alter or restrict the terms of
this License or the recipients’ exercise of the rights granted hereunder. You may not sublicense the
Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties.
You may not distribute the Executable Files or Source Code with any technological measures that
control access or use of the Work in a manner inconsistent with the terms of this License.

6. You agree not to use the Work for illegal, immoral or improper purposes, or on pages containing
illegal, immoral or improper material. The Work is subject to applicable export laws. You agree
to comply with all such laws and regulations that may apply to the Work after Your receipt of the
Work.

6. Representations, Warranties and Disclaimer. THIS WORK IS PROVIDED “AS IS”, “WHERE
IS” AND “AS AVAILABLE”, WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES OR
CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, IN-
CLUDING COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC.
AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WAR-
RANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR
A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT,
OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DIS-
TRIBUTE THE WORK OR DERIVATIVE WORKS.

7. Indemnity. You agree to defend, indemnify and hold harmless the Author and the Publisher from
and against any claims, suits, losses, damages, liabilities, costs, and expenses (including reasonable
legal or attorneys’ fees) resulting from or relating to any use of the Work by You.

8. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL THE AUTHOR OR THE PUBLISHER BE LIABLE TO YOU ON ANY LE-
GAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EX-
EMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK OR
OTHERWISE, EVEN IF THE AUTHOR OR THE PUBLISHER HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

9. Termination.

1. This License and the rights granted hereunder will terminate automatically upon any breach by You
of any term of this License. Individuals or entities who have received Derivative Works from You
under this License, however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 6, 7, 8, 9, 10 and 11 will
survive any termination of this License.

2. If You bring a copyright, trademark, patent or any other infringement claim against any contributor
over infringements You claim are made by the Work, your License from such contributor to the
Work ends automatically.

704 Chapter 16. Credits

nVision User Guide, Release 2016.3

3. Subject to the above terms and conditions, this License is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, the Author reserves the right to release the Work
under different license terms or to stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

10. Publisher.
The parties hereby confirm that the Publisher shall not, under any circumstances, be responsible for
and shall not have any liability in respect of the subject matter of this License. The Publisher makes
no warranty whatsoever in connection with the Work and shall not be liable to You or any party on
any legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. The Publisher reserves
the right to cease making the Work available to You at any time without notice

11. Miscellaneous

1. This License shall be governed by the laws of the location of the head office of the Author or if the
Author is an individual, the laws of location of the principal place of residence of the Author.

2. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this License, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

3. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver or
consent.

4. This License constitutes the entire agreement between the parties with respect to the Work licensed
herein. There are no understandings, agreements or representations with respect to the Work not
specified herein. The Author shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Author and You.

16.8 TaskDialog

Task Dialog is a TaskDialog wrapper with fallback emulator. It is licensed under the Code Project Open License
(CPOL):

This License governs Your use of the Work. This License is intended to allow developers to use the Source
Code and Executable Files provided as part of the Work in any application in any form.

The main points subject to the terms of the License are:

• Source Code and Executable Files can be used in commercial applications;

• Source Code and Executable Files can be redistributed; and

• Source Code can be modified to create derivative works.

• No claim of suitability, guarantee, or any warranty whatsoever is provided. The software is provided
“as-is”.

• The Article(s) accompanying the Work may not be distributed or republished without the Author’s
consent

16.8. TaskDialog 705

nVision User Guide, Release 2016.3

• This License is entered between You, the individual or other entity reading or otherwise making
use of the Work licensed pursuant to this License and the individual or other entity which offers the
Work under the terms of this License (“Author”).

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CODE
PROJECT OPEN LICENSE (“LICENSE”). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER
THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HEREIN, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. THE AUTHOR GRANTS YOU THE RIGHTS
CONTAINED HEREIN IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS. IF YOU DO NOT AGREE TO ACCEPT AND BE BOUND BY THE TERMS OF THIS
LICENSE, YOU CANNOT MAKE ANY USE OF THE WORK.

1. Definitions.

1. “Articles” means, collectively, all articles written by Author which describes how the Source Code
and Executable Files for the Work may be used by a user.

2. “Author” means the individual or entity that offers the Work under the terms of this License.

3. “Derivative Work” means a work based upon the Work or upon the Work and other pre-existing
works.

4. “Executable Files” refer to the executables, binary files, configuration and any required data files
included in the Work.

5. “Publisher” means the provider of the website, magazine, CD-ROM, DVD or other medium from
or by which the Work is obtained by You.

6. “Source Code” refers to the collection of source code and configuration files used to create the
Executable Files.

7. “Standard Version” refers to such a Work if it has not been modified, or has been modified in
accordance with the consent of the Author, such consent being in the full discretion of the Author.

8. “Work” refers to the collection of files distributed by the Publisher, including the Source Code,
Executable Files, binaries, data files, documentation, whitepapers and the Articles.

9. “You” is you, an individual or entity wishing to use the Work and exercise your rights under this
License.

2. Fair Use/Fair Use Rights. Nothing in this License is intended to reduce, limit, or restrict any
rights arising from fair use, fair dealing, first sale or other limitations on the exclusive rights of the
copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, the Author hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

1. You may use the standard version of the Source Code or Executable Files in Your own applications.

2. You may apply bug fixes, portability fixes and other modifications obtained from the Public Domain
or from the Author. A Work modified in such a way shall still be considered the standard version
and will be subject to this License.

3. You may otherwise modify Your copy of this Work (excluding the Articles) in any way to create a
Derivative Work, provided that You insert a prominent notice in each changed file stating how, when
and where You changed that file.

706 Chapter 16. Credits

nVision User Guide, Release 2016.3

4. You may distribute the standard version of the Executable Files and Source Code or Derivative Work
in aggregate with other (possibly commercial) programs as part of a larger (possibly commercial)
software distribution.

5. The Articles discussing the Work published in any form by the author may not be distributed or
republished without the Author’s consent. The author retains copyright to any such Articles. You
may use the Executable Files and Source Code pursuant to this License but you may not repost or
republish or otherwise distribute or make available the Articles, without the prior written consent of
the Author.

Any subroutines or modules supplied by You and linked into the Source Code or Executable Files of this
Work shall not be considered part of this Work and will not be subject to the terms of this License.

4. Patent License. Subject to the terms and conditions of this License, each Author hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in
this section) patent license to make, have made, use, import, and otherwise transfer the Work.

5. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

1. You agree not to remove any of the original copyright, patent, trademark, and attribution notices and
associated disclaimers that may appear in the Source Code or Executable Files.

2. You agree not to advertise or in any way imply that this Work is a product of Your own.

3. The name of the Author may not be used to endorse or promote products derived from the Work
without the prior written consent of the Author.

4. You agree not to sell, lease, or rent any part of the Work. This does not restrict you from including
the Work or any part of the Work inside a larger software distribution that itself is being sold. The
Work by itself, though, cannot be sold, leased or rented.

5. You may distribute the Executable Files and Source Code only under the terms of this License, and
You must include a copy of, or the Uniform Resource Identifier for, this License with every copy of
the Executable Files or Source Code You distribute and ensure that anyone receiving such Executable
Files and Source Code agrees that the terms of this License apply to such Executable Files and/or
Source Code. You may not offer or impose any terms on the Work that alter or restrict the terms of
this License or the recipients’ exercise of the rights granted hereunder. You may not sublicense the
Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties.
You may not distribute the Executable Files or Source Code with any technological measures that
control access or use of the Work in a manner inconsistent with the terms of this License.

6. You agree not to use the Work for illegal, immoral or improper purposes, or on pages containing
illegal, immoral or improper material. The Work is subject to applicable export laws. You agree
to comply with all such laws and regulations that may apply to the Work after Your receipt of the
Work.

6. Representations, Warranties and Disclaimer. THIS WORK IS PROVIDED “AS IS”, “WHERE
IS” AND “AS AVAILABLE”, WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES OR
CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, IN-
CLUDING COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC.
AUTHOR EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WAR-
RANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION, WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR
A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT,
OR THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE
OR FREE OF VIRUSES. YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DIS-
TRIBUTE THE WORK OR DERIVATIVE WORKS.

16.8. TaskDialog 707

nVision User Guide, Release 2016.3

7. Indemnity. You agree to defend, indemnify and hold harmless the Author and the Publisher from
and against any claims, suits, losses, damages, liabilities, costs, and expenses (including reasonable
legal or attorneys’ fees) resulting from or relating to any use of the Work by You.

8. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL THE AUTHOR OR THE PUBLISHER BE LIABLE TO YOU ON ANY LE-
GAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EX-
EMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK OR
OTHERWISE, EVEN IF THE AUTHOR OR THE PUBLISHER HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

9. Termination.

1. This License and the rights granted hereunder will terminate automatically upon any breach by You
of any term of this License. Individuals or entities who have received Derivative Works from You
under this License, however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 6, 7, 8, 9, 10 and 11 will
survive any termination of this License.

2. If You bring a copyright, trademark, patent or any other infringement claim against any contributor
over infringements You claim are made by the Work, your License from such contributor to the
Work ends automatically.

3. Subject to the above terms and conditions, this License is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, the Author reserves the right to release the Work
under different license terms or to stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

10. Publisher.
The parties hereby confirm that the Publisher shall not, under any circumstances, be responsible for
and shall not have any liability in respect of the subject matter of this License. The Publisher makes
no warranty whatsoever in connection with the Work and shall not be liable to You or any party on
any legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. The Publisher reserves
the right to cease making the Work available to You at any time without notice

11. Miscellaneous

1. This License shall be governed by the laws of the location of the head office of the Author or if the
Author is an individual, the laws of location of the principal place of residence of the Author.

2. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this License, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

3. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver or
consent.

4. This License constitutes the entire agreement between the parties with respect to the Work licensed
herein. There are no understandings, agreements or representations with respect to the Work not
specified herein. The Author shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Author and You.

708 Chapter 16. Credits

	Program Editions
	nVision Designer
	nVision Runtime
	Module Matrix

	Requirements
	Licensing
	Camera and Device Interfaces
	Getting Started
	Particle Analysis

	Ribbon
	File
	Home
	Locate
	Measure
	Verify
	Identify
	Process
	Segmentation
	Pipeline
	Interactive Measurement

	Tools
	Location
	Measurement
	Verification
	Identification
	Miscellaneous

	Dataflow
	Linear Pipeline
	Sub-Pipeline

	Image Processing
	Point Algorithms
	Color

	Image Analysis
	Blob Analysis
	Region Features
	Pixel Based Features
	Object Filtering
	Gauging
	Identification
	Camera Calibration

	Geometry
	Geometry
	Geometric Primitives
	Geometric Transformations
	Graphics

	User Interface Creation
	Controls
	Widgets

	Graphic Programming Language
	Pipelines
	Nodes
	Pins
	Subpipelines
	Transform
	Types
	Conversions

	Miscellaneous
	Digital IO
	CAD Drawing Support
	Database Support

	Reference
	Ribbon
	Tools
	Nodes

	Credits
	Boost
	zlib
	bzip
	FreeImage
	DynamicExpresso
	KBCsv
	NetworkView
	TaskDialog

