
NURBS-Python Documentation
Release 5.3.1

Onur Rauf Bingol

Jan 23, 2021

Introduction

1 Motivation 3
1.1 References . 4
1.2 Author . 4

2 Citing NURBS-Python 5
2.1 Article . 5
2.2 BibTex . 5
2.3 Licenses . 5

3 Questions and Answers 7
3.1 What is NURBS? . 7
3.2 Why NURBS-Python? . 7
3.3 Why two packages on PyPI? . 8
3.4 Minimum Requirements . 8
3.5 Help and Support . 8
3.6 How can I add a new feature? . 8
3.7 Why doesn’t NURBS-Python have XYZ feature? . 8
3.8 Documentation references to the text books . 9
3.9 Why doesn’t NURBS-Python follow the algorithms? . 9
3.10 NURBS-Python API changes . 9

4 Contributing 11
4.1 Bugs reports . 11
4.2 Pull requests . 11
4.3 Feature requests . 11
4.4 Questions and comments . 11

5 Installation and Testing 13
5.1 Install via Pip . 13
5.2 Install via Conda . 13
5.3 Manual Install . 14
5.4 Development Mode . 14
5.5 Checking Installation . 14
5.6 Testing . 15
5.7 Compile with Cython . 15
5.8 Docker Containers . 16

i

6 Basics 17
6.1 Working with the curves . 17
6.2 Working with the surfaces . 22
6.3 Working with the volumes . 22

7 Examples Repository 23

8 Loading and Saving Data 25

9 Supported File Formats 27
9.1 Text Files . 27
9.2 Comma-Separated (CSV) . 30
9.3 OBJ Format . 30
9.4 STL Format . 31
9.5 Object File Format (OFF) . 31
9.6 Custom Formats (libconfig, YAML, JSON) . 31
9.7 Using Templates . 35

10 Compatibility 37

11 Surface Generator 39

12 Knot Refinement 43

13 Curve & Surface Fitting 49
13.1 Interpolation . 49
13.2 Approximation . 49

14 Visualization 55
14.1 Examples . 55

15 Splitting and Decomposition 65
15.1 Splitting . 65
15.2 Bézier Decomposition . 69

16 Exporting Plots as Image Files 75

17 Core Modules 77
17.1 User API . 77
17.2 Geometry Generators . 196
17.3 Advanced API . 205

18 Visualization Modules 277
18.1 Visualization Base . 277
18.2 Matplotlib Implementation . 278
18.3 Plotly Implementation . 286
18.4 VTK Implementation . 286

19 Command-line Application 293
19.1 Installation . 293
19.2 Documentation . 293
19.3 References . 293

20 Shapes Module 295
20.1 Installation . 295
20.2 Documentation . 295

ii

20.3 References . 295

21 Rhino Importer/Exporter 297
21.1 Use Cases . 297
21.2 Installation . 297
21.3 Using with geomdl . 297
21.4 References . 298

22 ACIS Importer 299
22.1 Use Cases . 299
22.2 Installation . 299
22.3 Using with geomdl . 299
22.4 References . 300

Python Module Index 301

Index 303

iii

iv

NURBS-Python Documentation, Release 5.3.1

Welcome to the NURBS-Python (geomdl) v5.x documentation!

NURBS-Python (geomdl) is a cross-platform (pure Python), object-oriented B-Spline and NURBS library. It is com-
patible with Python versions 2.7.x, 3.4.x and later. It supports rational and non-rational curves, surfaces and volumes.

NURBS-Python (geomdl) provides easy-to-use data structures for storing geometry descriptions in addition to the
fundamental and advanced evaluation algorithms.

This documentation is organized into a couple sections:

• Introduction

• Using the Library

• Modules

Introduction 1

https://doi.org/10.5281/zenodo.815010
https://pypi.org/project/geomdl/
https://anaconda.org/orbingol/geomdl
https://travis-ci.org/orbingol/NURBS-Python
https://ci.appveyor.com/project/orbingol/nurbs-python
https://circleci.com/gh/orbingol/NURBS-Python/tree/5.x

NURBS-Python Documentation, Release 5.3.1

2 Introduction

CHAPTER 1

Motivation

NURBS-Python (geomdl) is a self-contained, object-oriented pure Python B-Spline and NURBS library with im-
plementations of curve, surface and volume generation and evaluation algorithms. It also provides convenient and
easy-to-use data structures for storing curve, surface and volume descriptions.

Some significant features of NURBS-Python (geomdl):

• Self-contained, object-oriented, extensible and highly customizable API

• Convenient data structures for storing curve, surface and volume descriptions

• Surface and curve fitting with interpolation and least squares approximation

• Knot vector and surface grid generators

• Support for common geometric algorithms: tessellation, voxelization, ray intersection, etc.

• Construct surfaces and volumes, extract isosurfaces via construct module

• Customizable visualization and animation options with Matplotlib, Plotly and VTK modules

• Import geometry data from common CAD formats, such as 3DM and SAT.

• Export geometry data into common CAD formats, such as 3DM, STL, OBJ and VTK

• Support importing/exporting in JSON, YAML and libconfig formats

• Jinja2 support for file imports

• Pure Python, no external C/C++ or FORTRAN library dependencies

• Python compatibility: 2.7.x, 3.4.x and later

• For higher performance, optional Compile with Cython options are also available

• Easy to install via pip or conda

• Docker images are available

• geomdl-shapes module for generating common spline and analytic geometries

• geomdl-cli module for using the library from the command line

3

https://github.com/hyperrealm/libconfig
http://jinja.pocoo.org/
https://pypi.org/project/geomdl/
https://anaconda.org/orbingol/geomdl
https://hub.docker.com/r/idealabisu/nurbs-python

NURBS-Python Documentation, Release 5.3.1

NURBS-Python (geomdl) contains the following fundamental geometric algorithms:

• Point evaluation

• Derivative evaluation

• Knot insertion

• Knot removal

• Knot vector refinement

• Degree elevation

• Degree reduction

1.1 References

• Leslie Piegl and Wayne Tiller. The NURBS Book. Springer Science & Business Media, 2012.

• David F. Rogers. An Introduction to NURBS: With Historical Perspective. Academic Press, 2001.

• Elaine Cohen et al. Geometric Modeling with Splines: An Introduction. CRC Press, 2001.

• Mark de Berg et al. Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.

• John F. Hughes et al. Computer Graphics: Principles and Practice. Pearson Education, 2014.

• Fletcher Dunn and Ian Parberry. 3D Math Primer for Graphics and Game Development. CRC Press, 2015.

• Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 2010.

• Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

1.2 Author

• Onur R. Bingol (@orbingol)

4 Chapter 1. Motivation

https://github.com/orbingol

CHAPTER 2

Citing NURBS-Python

2.1 Article

We have published an article outlining the design and features of NURBS-Python (geomdl) on an open-access Elsevier
journal SoftwareX in the January-June 2019 issue.

Please refer to the following DOI link to access the article: https://doi.org/10.1016/j.softx.2018.12.005

2.2 BibTex

You can use the following BibTeX entry to cite the NURBS-Python paper:

@article{bingol2019geomdl,
title={{NURBS-Python}: An open-source object-oriented {NURBS} modeling framework in

→˓{Python}},
author={Bingol, Onur Rauf and Krishnamurthy, Adarsh},
journal={{SoftwareX}},
volume={9},
pages={85--94},
year={2019},
publisher={Elsevier}

}

2.3 Licenses

• Source code is released under the terms of the MIT License

• Examples are released under the terms of the MIT License

5

https://doi.org/10.5281/zenodo.815010
https://www.sciencedirect.com/journal/softwarex
https://doi.org/10.1016/j.softx.2018.12.005

NURBS-Python Documentation, Release 5.3.1

• Documentation is released under the terms of CC BY 4.0

6 Chapter 2. Citing NURBS-Python

CHAPTER 3

Questions and Answers

3.1 What is NURBS?

NURBS is an acronym for Non-Uniform Rational Basis Spline and it represents a mathematical model for generation
of geometric shapes in a flexible way. It is a well-accepted industry standard and used as a basis for nearly all of the
3-dimensional modeling and CAD/CAM software packages as well as modeling and visualization frameworks.

Although the mathematical theory of behind the splines dates back to early 1900s, the spline theory in the way we
know is coined by Isaac (Iso) Schoenberg and developed further by various researchers around the world.

The following books are recommended for individuals who prefer to investigate the technical details of NURBS:

• A Practical Guide to Splines

• The NURBS Book

• Geometric Modeling with Splines: An Introduction

3.2 Why NURBS-Python?

NURBS-Python started as a final project for M E 625 Surface Modeling course offered in 2016 Spring semester at
Iowa State University. The main purpose of the project was development of a free and open-source, object-oriented,
pure Python NURBS library and releasing it on the public domain. As an added challenge to the project, everything
was developed using Python Standard Library but no other external modules.

In years, NURBS-Python has grown up to a self-contained and extensible general-purpose pure Python spline library
with support for various computational geometry and linear algebra algorithms. Apart from the computational side,
user experience was also improved by introduction of visualization and CAD exchange modules.

NURBS-Python is a user-friendly library, regardless of the mathematical complexity of the splines. To give a head
start, it comes with 40+ examples for various use cases. It also provides several extension modules for

• Using the library directly from the command-line

• Generating common spline shapes

7

http://pages.cs.wisc.edu/~deboor/hat/people/schoenberg.html
https://www.springer.com/us/book/9780387953663
http://www.springer.com/gp/book/9783642973857
https://www.crcpress.com/p/book/9781568811376

NURBS-Python Documentation, Release 5.3.1

• Rhino .3dm file import/export support

• ACIS .sat file import support

Moreover, NURBS-Python and its extensions are free and open-source projects distributed under the MIT license.

NURBS-Python is not an another NURBS library but it is mostly considered as one of its kind. Please see the
Motivation page for more details.

3.3 Why two packages on PyPI?

Prior to NURBS-Python v4.0.0, the PyPI project name was NURBS-Python. The latest version of this package is
v3.9.0 which is an alias for the geomdl package. To get the latest features and bug fixes, please use geomdl package
and update whenever a new version is released. The simplest way to check if you are using the latest version is

$ pip list --outdated

3.4 Minimum Requirements

NURBS-Python (geomdl) is tested with Python versions 2.7.x, 3.4.x and higher.

3.5 Help and Support

Please join the email list on Google Groups. It is open for NURBS-Python users to ask questions, request new features
and submit any other comments you may have.

Alternatively, you may send an email to nurbs-python@googlegroups.com.

3.6 How can I add a new feature?

The library is designed to be extensible in mind. It provides a set of abstract classes for creating new geometry types.
All classes use evaluators which contain the evaluation algorithms. Evaluator classes can be extended for new type
of algorithms. Please refer to BSpline and NURBS modules for implementation examples. It would be also a good
idea to refer to the constructors of the abstract classes for more details.

3.7 Why doesn’t NURBS-Python have XYZ feature?

NURBS-Python tries to keep the geometric operations on the parametric space without any conversion to other rep-
resentations. This approach makes some operations and queries hard to implement. Keeping NURBS-Python inde-
pendent of libraries that require compilation caused including implementations some well-known geometric queries
and computations, as well as a simple linear algebra module. However, the main purpose is providing a base for
NURBS data and fundamental operations while keeping the external dependencies at minimum. It is users’
choice to extend the library and add new more advanced features (e.g. intersection computations) or capabilities (e.g.
a new file format import/export support).

All advanced features should be packaged separately. If you are developing a feature to replace an existing feature, it
might be a good idea to package it separately.

8 Chapter 3. Questions and Answers

https://pypi.org/project/NURBS-Python/
https://pypi.org/project/geomdl/
https://pypi.org/project/geomdl/
https://groups.google.com/forum/#!forum/nurbs-python

NURBS-Python Documentation, Release 5.3.1

NURBS-Python may seem to keep very high standards by means of accepting contributions. For instance, if you
implement a feature applicable to curves but not surfaces and volumes, such a pull request won’t be accepted till you
add that feature to surfaces and volumes. Similarly, if you change a single module and/or the function you use most
frequently, but that change is affecting the library as a whole, your pull request will be put on hold.

If you are not interested in such level of contributions, it is suggested to create a separate module and add geomdl
as its dependency. If you create a module which uses geomdl, please let the developers know via emailing
nurbs-python@googlegroups.com and you may be credited as a contributor.

3.8 Documentation references to the text books

NURBS-Python contains implementations of several algorithms and equations from the references stated in the In-
troduction section. Please be aware that there is always a difference between an algorithm and an implementation.
Depending on the function/method documentation you are looking, it might be an implementation of an algorithm, an
equation, a set of equations or the concept/the idea discussed in the given page range.

3.9 Why doesn’t NURBS-Python follow the algorithms?

Actually, NURBS-Python does follow the algorithms pretty much all the time. However, as stated above, the imple-
mentation that you are looking at might not belong to an algorithm, but an equation or a concept.

3.10 NURBS-Python API changes

Please refer to CHANGELOG file for details.

3.8. Documentation references to the text books 9

https://github.com/orbingol/NURBS-Python/blob/master/CHANGELOG.md

NURBS-Python Documentation, Release 5.3.1

10 Chapter 3. Questions and Answers

CHAPTER 4

Contributing

4.1 Bugs reports

You are encouraged to use the Bug Reporting Template on the issue tracker for reporting bugs. Please fill all required
fields and be clear as much as possible. You may attach scripts and sample data to the ticket.

All bug reports must be reproducable. Tickets with missing or unclear information may be ignored.

Please email the author if you have any questions about bug reporting.

4.2 Pull requests

Before working on a pull request, please contact the author or open a ticket on the issue tracker to discuss the details.
Otherwise, your pull requests may be ignored.

4.3 Feature requests

Please email the author for feature requests with the details of your feature request.

4.4 Questions and comments

Using nurbs-python@googlegroups.com is strongly encouraged for questions and comments.

11

https://github.com/orbingol/NURBS-Python/issues
https://github.com/orbingol/NURBS-Python/issues

NURBS-Python Documentation, Release 5.3.1

12 Chapter 4. Contributing

CHAPTER 5

Installation and Testing

Installation via pip or conda is the recommended method for all users. Manual method is only recommended for
advanced users. Please note that if you have used any of these methods to install NURBS-Python, please use the same
method to upgrade to the latest version.

Note: On some Linux and MacOS systems, you may encounter 2 different versions of Python installed. In that case
Python 2.x package would use python2 and pip2, whereas Python 3.x package would use python3 and pip3.
The default python and pip commands could be linked to one of those. Please check your installed Python version
via python -V to make sure that you are using the correct Python package.

5.1 Install via Pip

The easiest method to install/upgrade NURBS-Python is using pip. The following commands will download and
install NURBS-Python from Python Package Index.

$ pip install --user geomdl

Upgrading to the latest version:

$ pip install geomdl --upgrade

Installing a specific version:

$ pip install --user geomdl==5.0.0

5.2 Install via Conda

NURBS-Python can also be installed/upgraded via conda package manager from the Anaconda Cloud repository.

13

https://pip.pypa.io/en/stable/
https://pypi.org/project/geomdl
https://conda.io/
https://anaconda.org/orbingol/geomdl

NURBS-Python Documentation, Release 5.3.1

Installing:

$ conda install -c orbingol geomdl

Upgrading to the latest version:

$ conda upgrade -c orbingol geomdl

If you are experiencing problems with this method, you can try to upgrade conda package itself before installing the
NURBS-Python library.

5.3 Manual Install

The initial step of the manual install is cloning the repository via git or downloading the ZIP archive from the repos-
itory page on GitHub. The package includes a setup.py script which will take care of the installation and automatically
copy/link the required files to your Python distribution’s site-packages directory.

The most convenient method to install NURBS-Python manually is using pip:

$ pip install --user .

To upgrade, please pull the latest commits from the repository via git pull --rebase and then execute the
above command.

5.4 Development Mode

The following command enables development mode by creating a link from the directory where you cloned NURBS-
Python repository to your Python distribution’s site-packages directory:

$ pip install --user -e .

Since this command only generates a link to the library directory, pulling the latest commits from the repository would
be enough to update the library to the latest version.

5.5 Checking Installation

If you would like to check if you have installed the package correctly, you may try to print geomdl.__version__
variable after import. The following example illustrates installation check on a Windows PowerShell instance:

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\> python
Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)] on
→˓win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import geomdl
>>> geomdl.__version__
'4.0.2'
>>>

14 Chapter 5. Installation and Testing

https://github.com/orbingol/NURBS-Python
https://github.com/orbingol/NURBS-Python

NURBS-Python Documentation, Release 5.3.1

5.6 Testing

The package includes tests/ directory which contains all the automated testing scripts. These scripts require pytest
installed on your Python distribution. Then, you can execute the following from your favorite IDE or from the com-
mand line:

$ pytest

pytest will automatically find the tests under tests/ directory, execute them and show the results.

5.7 Compile with Cython

To improve performance, the Core Library of NURBS-Python can be compiled and installed using the following
command along with the pure Python version.

$ pip install --user . --install-option="--use-cython"

This command will generate .c files (i.e. cythonization) and compile the .c files into binary Python modules.

The following command can be used to directly compile and install from the existing .c files, skipping the cythonization
step:

$ pip install --user . --install-option="--use-source"

To update the compiled module with the latest changes, you need to re-cythonize the code.

To enable Cython-compiled module in development mode;

$ python setup.py build_ext --use-cython --inplace

After the successful execution of the command, the you can import and use the compiled library as follows:

1 # Importing NURBS module
2 from geomdl.core import NURBS
3 # Importing visualization module
4 from geomdl.visualization import VisMPL as vis
5

6 # Creating a curve instance
7 crv = NURBS.Curve()
8

9 # Make a quadratic curve
10 crv.degree = 2
11

12 ###
13 # Skipping control points and knot vector assignments #
14 ###
15

16 # Set the visualization component and render the curve
17 crv.vis = vis.VisCurve3D()
18 crv.render()

Before Cython compilation, please make sure that you have Cython module and a valid compiler installed for your
operating system.

5.6. Testing 15

https://pytest.readthedocs.io/en/latest
https://cython.org/

NURBS-Python Documentation, Release 5.3.1

5.8 Docker Containers

A collection of Docker containers is provided on Docker Hub containing NURBS-Python, Cython-compiled core and
the command-line application. To get started, first install Docker and then run the following on the Docker command
prompt to pull the image prepared with Python v3.5:

$ docker pull idealabisu/nurbs-python:py35

On the Docker Repository page, you can find containers tagged for Python versions and Debian (no suffix) and Alpine
Linux (-alpine suffix) operating systems. Please change the tag of the pull command above for downloading your
preferred image.

After pulling your preferred image, run the following command:

$ docker run --rm -it --name geomdl -p 8000:8000 idealabisu/nurbs-python:py35

In all images, Matplotlib is set to use webagg backend by default. Please follow the instructions on the command
line to view your figures.

Please refer to the Docker documentation for details on using Docker.

16 Chapter 5. Installation and Testing

https://hub.docker.com/r/idealabisu/nurbs-python/
https://geomdl-cli.readthedocs.io
https://www.docker.com/
https://hub.docker.com/r/idealabisu/nurbs-python/
https://www.debian.org/
https://alpinelinux.org/
https://alpinelinux.org/
https://docs.docker.com/

CHAPTER 6

Basics

In order to generate a spline shape with NURBS-Python, you need 3 components:

• degree

• knot vector

• control points

The number of components depend on the parametric dimensionality of the shape regardless of the spatial dimension-
ality.

• curve is parametrically 1-dimensional (or 1-manifold)

• surface is parametrically 2-dimensional (or 2-manifold)

• volume is parametrically 3-dimensional (or 3-manifold)

Parametric dimensions are defined by u, v, w and spatial dimensions are defined by x, y, z.

6.1 Working with the curves

In this section, we will cover the basics of spline curve generation using NURBS-Python. The following code snippet
is an example to a 3-dimensional curve.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

(continues on next page)

17

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]

As described in the introduction text, we set the 3 required components to generate a 3-dimensional spline curve.

6.1.1 Evaluating the curve points

The code snippet is updated to retrieve evaluated curve points.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Get curve points
16 points = crv.evalpts
17

18 # Do something with the evaluated points
19 for pt in points:
20 print(pt)

evalpts property will automatically call evaluate() function.

6.1.2 Getting the curve point at a specific parameter

evaluate_single method will return the point evaluated as the specified parameter.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Get curve point at u = 0.5
16 point = crv.evaluate_single(0.5)

18 Chapter 6. Basics

NURBS-Python Documentation, Release 5.3.1

6.1.3 Setting the evaluation delta

Evaluation delta is used to change the number of evaluated points. Increasing the number of points will result in
a bigger evaluated points array, as described with evalpts property and decreasing will reduce the size of the
evalpts array. Therefore, evaluation delta can also be used to change smoothness of the plots generated using the
visualization modules.

delta property will set the evaluation delta. It is also possible to use sample_size property to set the number of
evaluated points.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Set evaluation delta
16 crv.delta = 0.005
17

18 # Get evaluated points
19 points_a = crv.evalpts
20

21 # Update delta
22 crv.delta = 0.1
23

24 # The curve will be automatically re-evaluated
25 points_b = crv.evalpts

6.1.4 Inserting a knot

insert_knot method is recommended for this purpose.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Insert knot
16 crv.insert_knot(0.5)

6.1. Working with the curves 19

NURBS-Python Documentation, Release 5.3.1

6.1.5 Plotting

To plot the curve, a visualization module should be imported and curve should be updated to use the visualization
module.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Import Matplotlib visualization module
16 from geomdl.visualization import VisMPL
17

18 # Set the visualization component of the curve
19 crv.vis = VisMPL.VisCurve3D()
20

21 # Plot the curve
22 crv.render()

6.1.6 Convert non-rational to rational curve

The following code snippet generates a B-Spline (non-rational) curve and converts it into a NURBS (rational) curve.

1 from geomdl import BSpline
2

3 # Create the curve instance
4 crv = BSpline.Curve()
5

6 # Set degree
7 crv.degree = 2
8

9 # Set control points
10 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
11

12 # Set knot vector
13 crv.knotvector = [0, 0, 0, 1, 1, 1]
14

15 # Import convert module
16 from geomdl import convert
17

18 # BSpline to NURBS
19 crv_rat = convert.bspline_to_nurbs(crv)

6.1.7 Using knot vector generator

Knot vector generator is located in the knotvector module.

20 Chapter 6. Basics

NURBS-Python Documentation, Release 5.3.1

1 from geomdl import BSpline
2 from geomdl import knotvector
3

4 # Create the curve instance
5 crv = BSpline.Curve()
6

7 # Set degree
8 crv.degree = 2
9

10 # Set control points
11 crv.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
12

13 # Generate a uniform knot vector
14 crv.knotvector = knotvector.generate(crv.degree, crv.ctrlpts_size)

6.1.8 Plotting multiple curves

multi module can be used to plot multiple curves on the same figure.

1 from geomdl import BSpline
2 from geomdl import multi
3 from geomdl import knotvector
4

5 # Create the curve instance #1
6 crv1 = BSpline.Curve()
7

8 # Set degree
9 crv1.degree = 2

10

11 # Set control points
12 crv1.ctrlpts = [[1, 0, 0], [1, 1, 0], [0, 1, 0]]
13

14 # Generate a uniform knot vector
15 crv1.knotvector = knotvector.generate(crv1.degree, crv1.ctrlpts_size)
16

17 # Create the curve instance #2
18 crv2 = BSpline.Curve()
19

20 # Set degree
21 crv2.degree = 3
22

23 # Set control points
24 crv2.ctrlpts = [[1, 0, 0], [1, 1, 0], [2, 1, 0], [1, 1, 0]]
25

26 # Generate a uniform knot vector
27 crv2.knotvector = knotvector.generate(crv2.degree, crv2.ctrlpts_size)
28

29 # Create a curve container
30 mcrv = multi.CurveContainer(crv1, crv2)
31

32 # Import Matplotlib visualization module
33 from geomdl.visualization import VisMPL
34

35 # Set the visualization component of the curve container
36 mcrv.vis = VisMPL.VisCurve3D()
37

(continues on next page)

6.1. Working with the curves 21

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

38 # Plot the curves in the curve container
39 mcrv.render()

Please refer to the Examples Repository for more curve examples.

6.2 Working with the surfaces

The majority of the surface API is very similar to the curve API. Since a surface is defined on a 2-dimensional
parametric space, the getters/setters have a suffix of _u and _v; such as knotvector_u and knotvector_v.

For setting up the control points, please refer to the control points manager documentation.

Please refer to the Examples Repository for surface examples.

6.3 Working with the volumes

Volumes are defined on a 3-dimensional parametric space. Working with the volumes are very similar to working with
the surfaces. The only difference is the 3rd parametric dimension, w. For instance, to access the knot vectors, the
properties you will use are knotvector_u, knotvector_v and knotvector_w.

For setting up the control points, please refer to the control points manager documentation.

Please refer to the Examples Repository for volume examples.

22 Chapter 6. Basics

CHAPTER 7

Examples Repository

Although using NURBS-Python is straight-forward, it is always confusing to do the initial start with a new library. To
give you a headstart on working with NURBS-Python, an Examples repository over 50 example scripts which describe
usage scenarios of the library and its modules is provided. You can run the scripts from the command line, inside from
favorite IDE or copy them to a Jupyter notebook.

The Examples repository contains examples on

• Bézier curves and surfaces

• B-Spline & NURBS curves, surfaces and volumes

• Spline algorithms, e.g. knot insertion and removal, degree elevation and reduction

• Curve & surface splitting and Bézier decomposition (info)

• Surface and curve fitting using interpolation and least squares approximation (docs)

• Geometrical operations, e.g. tangent, normal, binormal (docs)

• Importing & exporting spline geometries into supported formats (docs)

• Compatibility module for control points conversion (docs)

• Surface grid generators (info and docs)

• Geometry containers (docs)

• Automatic uniform knot vector generation via knotvector.generate()

• Visualization components (info, Matplotlib, Plotly and VTK)

• Ray operations (docs)

• Voxelization (docs)

Matplotlib and Plotly visualization modules are compatible with Jupyter notebooks but VTK visualization module
is not. Please refer to the NURBS-Python wiki for more details on using NURBS-Python Matplotlib and Plotly
visualization modules with Jupyter notebooks.

23

https://github.com/orbingol/geomdl-examples
https://github.com/orbingol/geomdl-examples
https://github.com/orbingol/NURBS-Python/wiki/Using-the-library-with-Jupyter-notebooks

NURBS-Python Documentation, Release 5.3.1

24 Chapter 7. Examples Repository

CHAPTER 8

Loading and Saving Data

NURBS-Python provides the following API calls for exporting and importing spline geometry data:

• exchange.import_json()

• exchange.export_json()

JSON import/export works with all spline geometry and container objects. Please refer to File Formats for more
details.

The following code snippet illustrates a B-spline curve generation and its JSON export:

1 from geomdl import BSpline
2 from geomdl import utilities
3 from geomdl import exchange
4

5 # Create a B-Spline curve instance
6 curve = BSpline.Curve()
7

8 # Set the degree
9 curve.degree = 3

10

11 # Load control points from a text file
12 curve.ctrlpts = exchange.import_txt("control_points.txt")
13

14 # Auto-generate the knot vector
15 curve.knotvector = utilities.generate_knot_vector(curve.degree, len(curve.ctrlpts))
16

17 # Export the curve as a JSON file
18 exchange.export_json(curve, "curve.json")

The following code snippet illustrates importing from a JSON file and adding the result to a container object:

1 from geomdl import multi
2 from geomdl import exchange
3

4 # Import curve from a JSON file
(continues on next page)

25

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

5 curve_list = exchange.import_json("curve.json")
6

7 # Add curve list to the container
8 curve_container = multi.CurveContainer(curve_list)

26 Chapter 8. Loading and Saving Data

CHAPTER 9

Supported File Formats

NURBS-Python supports several input and output formats for importing and exporting B-Spline/NURBS curves and
surfaces. Please note that NURBS-Python uses right-handed notation on input and output files.

9.1 Text Files

NURBS-Python provides a simple way to import and export the control points and the evaluated control points as
ASCII text files. The details of the file format for curves and surfaces is described below:

9.1.1 NURBS-Python Custom Format

NURBS-Python provides import_txt() function for reading control points of curves and surfaces from a text file.
For saving the control points export_txt() function may be used.

The format of the text file depends on the type of the geometric element, i.e. curve or surface. The following sections
explain this custom format.

2D Curves

To generate a 2D B-Spline Curve, you need a list of (x, y) coordinates representing the control points (P), where

• x: value representing the x-coordinate

• y: value representing the y-coordinate

The format of the control points file for generating 2D B-Spline curves is as follows:

x y
x1 y1

x2 y2

x3 y3

27

NURBS-Python Documentation, Release 5.3.1

The control points file format of the NURBS curves are very similar to B-Spline ones with the difference of weights.
To generate a 2D NURBS curve, you need a list of (x*w, y*w, w) coordinates representing the weighted control points
(Pw) where,

• x: value representing the x-coordinate

• y: value representing the y-coordinate

• w: value representing the weight

The format of the control points file for generating 2D NURBS curves is as follows:

x*w y*w w
x1*w1 y1*w1 w1

x2*w2 y2*w2 w2

x3*w3 y3*w3 w3

Note: compatibility module provides several functions to manipulate & convert control point arrays into NURBS-
Python compatible ones and more.

3D Curves

To generate a 3D B-Spline curve, you need a list of (x, y, z) coordinates representing the control points (P), where

• x: value representing the x-coordinate

• y: value representing the y-coordinate

• z: value representing the z-coordinate

The format of the control points file for generating 3D B-Spline curves is as follows:

x y z
x1 y1 z1

x2 y2 z2

x3 y3 z3

To generate a 3D NURBS curve, you need a list of (x*w, y*w, z*w, w) coordinates representing the weighted control
points (Pw) where,

• x: value representing the x-coordinate

• y: value representing the y-coordinate

• z: value representing the z-coordinate

• w: value representing the weight

The format of the control points file for generating 3D NURBS curves is as follows:

x*w y*w z*w w
x1*w1 y1*w1 z1*w1 w1

x2*w2 y2*w2 z2*w2 w2

x3*w3 y3*w3 z3*w3 w3

28 Chapter 9. Supported File Formats

NURBS-Python Documentation, Release 5.3.1

Note: compatibility module provides several functions to manipulate & convert control point arrays into NURBS-
Python compatible ones and more.

Surfaces

Control points file for generating B-Spline and NURBS has 2 options:

First option is very similar to the curve control points files with one noticeable difference to process u and v indices.
In this list, the v index varies first. That is, a row of v control points for the first u value is found first. Then, the row of
v control points for the next u value.

The second option sets the rows as v and columns as u. To generate a B-Spline surface using this option, you need a
list of (x, y, z) coordinates representing the control points (P) where,

• x: value representing the x-coordinate

• y: value representing the y-coordinate

• z: value representing the z-coordinate

The format of the control points file for generating B-Spline surfaces is as follows:

v0 v1 v2 v3 v4
u0 (x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z)
u1 (x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z)
u2 (x, y, z) (x, y, z) (x, y, z) (x, y, z) (x, y, z)

To generate a NURBS surface using the 2nd option, you need a list of (x*w, y*w, z*w, w) coordinates representing the
weighted control points (Pw) where,

• x: value representing the x-coordinate

• y: value representing the y-coordinate

• z: value representing the z-coordinate

• w: value representing the weight

The format of the control points file for generating NURBS surfaces is as follows:

v0 v1 v2 v3
u0 (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w)
u1 (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w)
u2 (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w) (x*w, y*w, z*w, w)

Note: compatibility module provides several functions to manipulate & convert control point arrays into NURBS-
Python compatible ones and more.

Volumes

Parametric volumes can be considered as a stacked surfaces, which means that w-parametric axis comes the first and
then other parametric axes come.

9.1. Text Files 29

NURBS-Python Documentation, Release 5.3.1

9.2 Comma-Separated (CSV)

You may use export_csv() and import_csv() functions to save/load control points and/or evaluated points as
a CSV file. This function works with both curves and surfaces.

9.3 OBJ Format

You may use export_obj() function to export a NURBS surface as a Wavefront .obj file.

9.3.1 Example 1

The following example demonstrates saving surfaces as .obj files:

1 # ex_bezier_surface.py
2 from geomdl import BSpline
3 from geomdl import utilities
4 from geomdl import exchange
5

6 # Create a BSpline surface instance
7 surf = BSpline.Surface()
8

9 # Set evaluation delta
10 surf.delta = 0.01
11

12 # Set up the surface
13 surf.degree_u = 3
14 surf.degree_v = 2
15 control_points = [[0, 0, 0], [0, 1, 0], [0, 2, -3],
16 [1, 0, 6], [1, 1, 0], [1, 2, 0],
17 [2, 0, 0], [2, 1, 0], [2, 2, 3],
18 [3, 0, 0], [3, 1, -3], [3, 2, 0]]
19 surf.set_ctrlpts(control_points, 4, 3)
20 surf.knotvector_u = utilities.generate_knot_vector(surf.degree_u, 4)
21 surf.knotvector_v = utilities.generate_knot_vector(surf.degree_v, 3)
22

23 # Evaluate surface
24 surf.evaluate()
25

26 # Save surface as a .obj file
27 exchange.export_obj(surf, "bezier_surf.obj")

9.3.2 Example 2

The following example combines shapes module together with exchange module:

1 from geomdl.shapes import surface
2 from geomdl import exchange
3

4 # Generate cylindirical surface
5 surf = surface.cylinder(radius=5, height=12.5)
6

7 # Set evaluation delta

(continues on next page)

30 Chapter 9. Supported File Formats

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

8 surf.delta = 0.01
9

10 # Evaluate the surface
11 surf.evaluate()
12

13 # Save surface as a .obj file
14 exchange.export_obj(surf, "cylindirical_surf.obj")

9.4 STL Format

Exporting to STL files works in the same way explained in OBJ Files section. To export a NURBS surface as a .stl
file, you may use export_stl() function. This function saves in binary format by default but there is an option to
change the save file format to plain text. Please see the documentation for details.

9.5 Object File Format (OFF)

Very similar to exporting as OBJ and STL formats, you may use export_off() function to export a NURBS
surface as a .off file.

9.6 Custom Formats (libconfig, YAML, JSON)

NURBS-Python provides several custom formats, such as libconfig, YAML and JSON, for importing and exporting
complete NURBS shapes (i.e. degrees, knot vectors and control points of single and multi curves/surfaces).

9.6.1 libconfig

libconfig is a lightweight library for processing configuration files and it is often used on C/C++ projects. The library
doesn’t define a format but it defines a syntax for the files it can process. NURBS-Python uses export_cfg() and
import_cfg() functions to exporting and importing shape data which can be processed by libconfig-compatible
libraries. Although exporting does not require any external libraries, importing functionality depends on libconf
module, which is a pure Python library for parsing libconfig-formatted files.

9.6.2 YAML

YAML is a data serialization format and it is supported by the major programming languages. NURBS-Python uses
ruamel.yaml package as an external dependency for its YAML support since the package is well-maintained and
compatible with the latest YAML standards. NURBS-Python supports exporting and importing NURBS data to YAML
format with the functions export_yaml() and import_yaml(), respectively.

9.6.3 JSON

JSON is also a serialization and data interchange format and it is natively supported by Python via json module.
NURBS-Python supports exporting and importing NURBS data to JSON format with the functions export_json()
and import_json(), respectively.

9.4. STL Format 31

https://hyperrealm.github.io/libconfig/
https://pypi.org/project/libconf/
http://yaml.org/
https://pypi.org/project/ruamel.yaml/
https://www.json.org/

NURBS-Python Documentation, Release 5.3.1

9.6.4 Format Definition

Curve

The following example illustrates a 2-dimensional NURBS curve. 3-dimensional NURBS curves are also supported
and they can be generated by updating the control points.

1 shape:
2 type: curve # type of the geometry
3 count: 1 # number of curves in "data" list (optional)
4 data:
5 - rational: True # rational or non-rational (optional)
6 dimension: 2 # spatial dimension of the curve (optional)
7 degree: 2
8 knotvector: [0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1]
9 control_points:

10 points: # cartesian coordinates of the control points
11 - [0.0, -1.0] # each control point is defined as a list
12 - [-1.0, -1.0]
13 - [-1.0, 0.0]
14 - [-1.0, 1.0]
15 - [0.0, 1.0]
16 - [1.0, 1.0]
17 - [1.0, 0.0]
18 - [1.0, -1.0]
19 - [0.0, -1.0]
20 weights: # weights vector (required if rational)
21 - 1.0
22 - 0.707
23 - 1.0
24 - 0.707
25 - 1.0
26 - 0.707
27 - 1.0
28 - 0.707
29 - 1.0
30 delta: 0.01 # evaluation delta

• Shape section: This section contains the single or multi NURBS data. type and data sections are mandatory.

• Type section: This section defines the type of the NURBS shape. For NURBS curves, it should be set to curve.

• Data section: This section defines the NURBS data, i.e. degrees, knot vectors and control_points. weights
and delta sections are optional.

Surface

The following example illustrates a NURBS surface:

1 shape:
2 type: surface # type of the geometry
3 count: 1 # number of surfaces in "data" list (optional)
4 data:
5 - rational: True # rational or non-rational (optional)
6 dimension: 3 # spatial dimension of the surface (optional)
7 degree_u: 1 # degree of the u-direction
8 degree_v: 2 # degree of the v-direction

(continues on next page)

32 Chapter 9. Supported File Formats

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

9 knotvector_u: [0.0, 0.0, 1.0, 1.0]
10 knotvector_v: [0.0, 0.0, 0.0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1.0, 1.0, 1.0]
11 size_u: 2 # number of control points on the u-direction
12 size_v: 9 # number of control points on the v-direction
13 control_points:
14 points: # cartesian coordinates (x, y, z) of the control points
15 - [1.0, 0.0, 0.0] # each control point is defined as a list
16 - [1.0, 1.0, 0.0]
17 - [0.0, 1.0, 0.0]
18 - [-1.0, 1.0, 0.0]
19 - [-1.0, 0.0, 0.0]
20 - [-1.0, -1.0, 0.0]
21 - [0.0, -1.0, 0.0]
22 - [1.0, -1.0, 0.0]
23 - [1.0, 0.0, 0.0]
24 - [1.0, 0.0, 1.0]
25 - [1.0, 1.0, 1.0]
26 - [0.0, 1.0, 1.0]
27 - [-1.0, 1.0, 1.0]
28 - [-1.0, 0.0, 1.0]
29 - [-1.0, -1.0, 1.0]
30 - [0.0, -1.0, 1.0]
31 - [1.0, -1.0, 1.0]
32 - [1.0, 0.0, 1.0]
33 weights: # weights vector (required if rational)
34 - 1.0
35 - 0.7071
36 - 1.0
37 - 0.7071
38 - 1.0
39 - 0.7071
40 - 1.0
41 - 0.7071
42 - 1.0
43 - 1.0
44 - 0.7071
45 - 1.0
46 - 0.7071
47 - 1.0
48 - 0.7071
49 - 1.0
50 - 0.7071
51 - 1.0
52 delta:
53 - 0.05 # evaluation delta of the u-direction
54 - 0.05 # evaluation delta of the v-direction
55 trims: # define trim curves (optional)
56 count: 3 # number of trims in the "data" list (optional)
57 data:
58 - type: spline # type of the trim curve
59 rational: False # rational or non-rational (optional)
60 dimension: 2 # spatial dimension of the trim curve (optional)
61 degree: 2 # degree of the 1st trim
62 knotvector: [...] # knot vector of the 1st trim curve
63 control_points:
64 points: # parametric coordinates of the 1st trim curve
65 - [u1, v1] # expected to be 2-dimensional, corresponding to (u,v)

(continues on next page)

9.6. Custom Formats (libconfig, YAML, JSON) 33

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

66 - [u2, v2]
67 - ...
68 reversed: 0 # 0: trim inside, 1: trim outside (optional, default is 0)
69 - type: spline # type of the 2nd trim curve
70 rational: True # rational or non-rational (optional)
71 dimension: 2 # spatial dimension of the trim curve (optional)
72 degree: 1 # degree of the 2nd trim
73 knotvector: [...] # knot vector of the 2nd trim curve
74 control_points:
75 points: # parametric coordinates of the 2nd trim curve
76 - [u1, v1] # expected to be 2-dimensional, corresponding to (u,v)
77 - [u2, v2]
78 - ...
79 weights: # weights vector of the 2nd trim curve (required if rational)
80 - 1.0
81 - 1.0
82 - ...
83 delta: 0.01 # evaluation delta (optional)
84 reversed: 1 # 0: trim inside, 1: trim outside (optional, default is 0)
85 - type: freeform # type of the 3rd trim curve
86 dimension: 2 # spatial dimension of the trim curve (optional)
87 points: # parametric coordinates of the 3rd trim curve
88 - [u1, v1] # expected to be 2-dimensional, corresponding to (u,v)
89 - [u2, v2]
90 - ...
91 name: "my freeform curve" # optional
92 reversed: 1 # 0: trim inside, 1: trim outside (optional, default is 0)
93 - type: container # type of the 4th trim curve
94 dimension: 2 # spatial dimension of the trim curve (optional)
95 data: # a list of freeform and/or spline geometries
96 - ...
97 - ...
98 name: "my trim curves" # optional
99 reversed: 1 # 0: trim inside, 1: trim outside (optional, default is 0)

• Shape section: This section contains the single or multi NURBS data. type and data sections are mandatory.

• Type section: This section defines the type of the NURBS shape. For NURBS curves, it should be set to
surface.

• Data section: This section defines the NURBS data, i.e. degrees, knot vectors and control_points. weights
and delta sections are optional.

Surfaces can also contain trim curves. These curves can be stored in 2 geometry types inside the surface:

• spline corresponds to a spline geometry, which is defined by a set of degrees, knot vectors and control points

• container corresponds to a geometry container

• freeform corresponds to a freeform geometry; defined by a set of points

Volume

The following example illustrates a B-spline volume:

1 shape:
2 type: volume # type of the geometry

(continues on next page)

34 Chapter 9. Supported File Formats

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

3 count: 1 # number of volumes in "data" list (optional)
4 data:
5 - rational: False # rational or non-rational (optional)
6 degree_u: 1 # degree of the u-direction
7 degree_v: 2 # degree of the v-direction
8 degree_w: 1 # degree of the w-direction
9 knotvector_u: [0.0, 0.0, 1.0, 1.0]

10 knotvector_v: [0.0, 0.0, 0.0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1.0, 1.0, 1.0]
11 knotvector_w: [0.0, 0.0, 1.0, 1.0]
12 size_u: 2 # number of control points on the u-direction
13 size_v: 9 # number of control points on the v-direction
14 size_w: 2 # number of control points on the w-direction
15 control_points:
16 points: # cartesian coordinates (x, y, z) of the control points
17 - [x1, y1, x1] # each control point is defined as a list
18 - [x2, y2, z2]
19 - ...
20 delta:
21 - 0.25 # evaluation delta of the u-direction
22 - 0.25 # evaluation delta of the v-direction
23 - 0.10 # evaluation delta of the w-direction

The file organization is very similar to the surface example. The main difference is the parametric 3rd dimension, w.

9.6.5 Example: Reading .cfg Files with libconf

The following example illustrates reading the exported .cfg file with libconf module as a reference for libconfig-based
systems in different programming languages.

1 # Assuming that you have already installed 'libconf'
2 import libconf
3

4 # Skipping export steps and assuming that we have already exported the data as 'my_
→˓nurbs.cfg'

5 with open("my_nurbs.cfg", "r") as fp:
6 # Open the file and parse using libconf module
7 ns = libconf.load(fp)
8

9 # 'count' shows the number of shapes loaded from the file
10 print(ns['shape']['count']
11

12 # Traverse through the loaded shapes
13 for n in ns['shape']['data']:
14 # As an example, we get the control points
15 ctrlpts = n['control_points']['points']

NURBS-Python exports data in the way that allows processing any number of curves or surfaces with a simple for loop.
This approach simplifies implementation of file reading routines for different systems and programming languages.

9.7 Using Templates

NURBS-Python v5.x supports Jinja2 templates with the following functions:

• import_txt()

9.7. Using Templates 35

https://pypi.org/project/libconf/
https://hyperrealm.github.io/libconfig/
http://jinja.pocoo.org/

NURBS-Python Documentation, Release 5.3.1

• import_cfg()

• import_json()

• import_yaml()

To import files formatted as Jinja2 templates, an additional jinja2=True keyword argument should be passed to
the functions. For instance:

1 from geomdl import exchange
2

3 # Importing a .yaml file formatted as a Jinja2 template
4 data = exchange.import_yaml("surface.yaml", jinja2=True)

NURBS-Python also provides some custom Jinja2 template functions for user convenience. These are:

• knot_vector(d, np): generates a uniform knot vector. d: degree, np: number of control points

• sqrt(x): square root of x

• cubert(x): cube root of x

• pow(x, y): x to the power of y

Please see ex_cylinder_tmpl.py and ex_cylinder_tmpl.cptw files in the Examples repository for details
on using Jinja2 templates with control point text files.

36 Chapter 9. Supported File Formats

CHAPTER 10

Compatibility

Most of the time, users experience problems in converting data between different software packages. To aid this
problem a little bit, NURBS-Python provides a compatibility module for converting control points sets into NURBS-
Python compatible ones.

The following example illustrates the usage of compatibility module:

1 from geomdl import NURBS
2 from geomdl import utilities as utils
3 from geomdl import compatibility as compat
4 from geomdl.visualization import VisMPL
5

6 #
7 # Surface exported from your CAD software
8 #
9

10 # Dimensions of the control points grid
11 p_size_u = 4
12 p_size_v = 3
13

14 # Control points in u-row order
15 p_ctrlpts = [[0, 0, 0], [1, 0, 6], [2, 0, 0], [3, 0, 0],
16 [0, 1, 0], [1, 1, 0], [2, 1, 0], [3, 1, -3],
17 [0, 2, -3], [1, 2, 0], [2, 2, 3], [3, 2, 0]]
18

19 # Weights vector
20 p_weights = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
21

22 # Degrees
23 p_degree_u = 3
24 p_degree_v = 2
25

26

27 #
28 # Prepare data for import

(continues on next page)

37

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

29 #
30

31 # Combine weights vector with the control points list
32 t_ctrlptsw = compat.combine_ctrlpts_weights(p_ctrlpts, p_weights)
33

34 # Since NURBS-Python uses v-row order, we need to convert the exported ones
35 n_ctrlptsw = compat.flip_ctrlpts_u(t_ctrlptsw, p_size_u, p_size_v)
36

37 # Since we have no information on knot vectors, let's auto-generate them
38 n_knotvector_u = utils.generate_knot_vector(p_degree_u, p_size_u)
39 n_knotvector_v = utils.generate_knot_vector(p_degree_v, p_size_v)
40

41

42 #
43 # Import surface to NURBS-Python
44 #
45

46 # Create a NURBS surface instance
47 surf = NURBS.Surface()
48

49 # Fill the surface object
50 surf.degree_u = p_degree_u
51 surf.degree_v = p_degree_v
52 surf_set_ctrlpts(n_ctrlptsw, p_size_u, p_size_v)
53 surf.knotvector_u = n_knotvector_u
54 surf.knotvector_v = n_knotvector_v
55

56 # Set evaluation delta
57 surf.delta = 0.05
58

59 # Set visualization component
60 vis_comp = VisMPL.VisSurface()
61 surf.vis = vis_comp
62

63 # Render the surface
64 surf.render()

Please see Compatibility Module Documentation for more details on manipulating and exporting control points.

NURBS-Python has some other options for exporting and importing data. Please see File Formats page for details.

38 Chapter 10. Compatibility

CHAPTER 11

Surface Generator

NURBS-Python comes with a simple surface generator which is designed to generate a control points grid to be used as
a randomized input to BSpline.Surface and NURBS.Surface. It is capable of generating customized surfaces
with arbitrary divisions and generating hills (or bumps) on the surface. It is also possible to export the surface as a text
file in the format described under File Formats documentation.

The classes CPGen.Grid and CPGen.GridWeighted are responsible for generating the surfaces.

The following example illustrates a sample usage of the B-Spline surface generator:

1 from geomdl import CPGen
2 from geomdl import BSpline
3 from geomdl import utilities
4 from geomdl.visualization import VisMPL
5 from matplotlib import cm
6

7 # Generate a plane with the dimensions 50x100
8 surfgrid = CPGen.Grid(50, 100)
9

10 # Generate a grid of 25x30
11 surfgrid.generate(50, 60)
12

13 # Generate bumps on the grid
14 surfgrid.bumps(num_bumps=5, bump_height=20, base_extent=8)
15

16 # Create a BSpline surface instance
17 surf = BSpline.Surface()
18

19 # Set degrees
20 surf.degree_u = 3
21 surf.degree_v = 3
22

23 # Get the control points from the generated grid
24 surf.ctrlpts2d = surfgrid.grid
25

26 # Set knot vectors
(continues on next page)

39

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

27 surf.knotvector_u = utilities.generate_knot_vector(surf.degree_u, surf.ctrlpts_size_u)
28 surf.knotvector_v = utilities.generate_knot_vector(surf.degree_v, surf.ctrlpts_size_v)
29

30 # Set sample size
31 surf.sample_size = 100
32

33 # Set visualization component
34 surf.vis = VisMPL.VisSurface(ctrlpts=False, legend=False)
35

36 # Plot the surface
37 surf.render(colormap=cm.terrain)

x

20
0

20
40

60
80

y

0

20

40

60

80

100

z

40

20

0

20

40

60

CPGen.Grid.bumps() method takes the following keyword arguments:

• num_bumps: Number of hills to be generated

• bump_height: Defines the peak height of the generated hills

• base_extent: Due to the structure of the grid, the hill base can be defined as a square with the edge length
of a. base_extent is defined by the value of a/2.

• base_adjust: Defines the padding of the area where the hills are generated. It accepts positive and negative
values. A negative value means a padding to the inside of the grid and a positive value means padding to the

40 Chapter 11. Surface Generator

NURBS-Python Documentation, Release 5.3.1

outside of the grid.

41

NURBS-Python Documentation, Release 5.3.1

42 Chapter 11. Surface Generator

CHAPTER 12

Knot Refinement

New in version 5.1.

Knot refinement is simply the operation of inserting multiple knots at the same time. NURBS-Python (geomdl) sup-
ports knot refinement operation for the curves, surfaces and volumes via operations.refine_knotvector()
function.

One of the interesting features of the operations.refine_knotvector() function is the controlling of knot
refinement density. It can increase the number of knots to be inserted in a knot vector. Therefore, it increases the
number of control points.

The following code snippet and the figure illustrate a 2-dimensional spline curve with knot refinement:

1 from geomdl import BSpline
2 from geomdl import utilities
3 from geomdl import exchange
4 from geomdl.visualization import VisMPL
5

6 # Create a curve instance
7 curve = BSpline.Curve()
8

9 # Set degree
10 curve.degree = 4
11

12 # Set control points
13 curve.ctrlpts = [
14 [5.0, 10.0], [15.0, 25.0], [30.0, 30.0], [45.0, 5.0], [55.0, 5.0],
15 [70.0, 40.0], [60.0, 60.0], [35.0, 60.0], [20.0, 40.0]
16]
17

18 # Set knot vector
19 curve.knotvector = [0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0,

→˓1.0]
20

21 # Set visualization component
22 curve.vis = VisMPL.VisCurve2D()

(continues on next page)

43

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

23

24 # Refine knot vector
25 operations.refine_knotvector(curve, [1])
26

27 # Visualize
28 curve.render()

10 20 30 40 50 60
x

10

20

30

40

50

60

y

control points
curve

The default density value is 1 for the knot refinement operation. The following code snippet and the figure illustrate
the result of the knot refinement operation if density is set to 2.

1 from geomdl import BSpline
2 from geomdl import utilities
3 from geomdl import exchange
4 from geomdl.visualization import VisMPL
5

6 # Create a curve instance
7 curve = BSpline.Curve()
8

9 # Set degree
10 curve.degree = 4
11

(continues on next page)

44 Chapter 12. Knot Refinement

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

12 # Set control points
13 curve.ctrlpts = [
14 [5.0, 10.0], [15.0, 25.0], [30.0, 30.0], [45.0, 5.0], [55.0, 5.0],
15 [70.0, 40.0], [60.0, 60.0], [35.0, 60.0], [20.0, 40.0]
16]
17

18 # Set knot vector
19 curve.knotvector = [0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0,

→˓1.0]
20

21 # Set visualization component
22 curve.vis = VisMPL.VisCurve2D()
23

24 # Refine knot vector
25 operations.refine_knotvector(curve, [2])
26

27 # Visualize
28 curve.render()

10 20 30 40 50 60
x

10

20

30

40

50

60

y

control points
curve

The following code snippet and the figure illustrate the result of the knot refinement operation if density is set to 3.

45

NURBS-Python Documentation, Release 5.3.1

1 from geomdl import BSpline
2 from geomdl import utilities
3 from geomdl import exchange
4 from geomdl.visualization import VisMPL
5

6 # Create a curve instance
7 curve = BSpline.Curve()
8

9 # Set degree
10 curve.degree = 4
11

12 # Set control points
13 curve.ctrlpts = [
14 [5.0, 10.0], [15.0, 25.0], [30.0, 30.0], [45.0, 5.0], [55.0, 5.0],
15 [70.0, 40.0], [60.0, 60.0], [35.0, 60.0], [20.0, 40.0]
16]
17

18 # Set knot vector
19 curve.knotvector = [0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0,

→˓1.0]
20

21 # Set visualization component
22 curve.vis = VisMPL.VisCurve2D()
23

24 # Refine knot vector
25 operations.refine_knotvector(curve, [3])
26

27 # Visualize
28 curve.render()

The following code snippet and the figure illustrate the knot refinement operation applied to a surface with density
value of 3 for the u-direction. No refinement was applied for the v-direction.

1 from geomdl import NURBS
2 from geomdl import operations
3 from geomdl.visualization import VisMPL
4

5

6 # Control points
7 ctrlpts = [[[25.0, -25.0, 0.0, 1.0], [15.0, -25.0, 0.0, 1.0], [5.0, -25.0, 0.0, 1.0],
8 [-5.0, -25.0, 0.0, 1.0], [-15.0, -25.0, 0.0, 1.0], [-25.0, -25.0, 0.0, 1.

→˓0]],
9 [[25.0, -15.0, 0.0, 1.0], [15.0, -15.0, 0.0, 1.0], [5.0, -15.0, 0.0, 1.0],

10 [-5.0, -15.0, 0.0, 1.0], [-15.0, -15.0, 0.0, 1.0], [-25.0, -15.0, 0.0, 1.
→˓0]],

11 [[25.0, -5.0, 5.0, 1.0], [15.0, -5.0, 5.0, 1.0], [5.0, -5.0, 5.0, 1.0],
12 [-5.0, -5.0, 5.0, 1.0], [-15.0, -5.0, 5.0, 1.0], [-25.0, -5.0, 5.0, 1.0]],
13 [[25.0, 5.0, 5.0, 1.0], [15.0, 5.0, 5.0, 1.0], [5.0, 5.0, 5.0, 1.0],
14 [-5.0, 5.0, 5.0, 1.0], [-15.0, 5.0, 5.0, 1.0], [-25.0, 5.0, 5.0, 1.0]],
15 [[25.0, 15.0, 0.0, 1.0], [15.0, 15.0, 0.0, 1.0], [5.0, 15.0, 5.0, 1.0],
16 [-5.0, 15.0, 5.0, 1.0], [-15.0, 15.0, 0.0, 1.0], [-25.0, 15.0, 0.0, 1.0]],
17 [[25.0, 25.0, 0.0, 1.0], [15.0, 25.0, 0.0, 1.0], [5.0, 25.0, 5.0, 1.0],
18 [-5.0, 25.0, 5.0, 1.0], [-15.0, 25.0, 0.0, 1.0], [-25.0, 25.0, 0.0, 1.0]]]
19

20 # Generate surface
21 surf = NURBS.Surface()
22 surf.degree_u = 3

(continues on next page)

46 Chapter 12. Knot Refinement

NURBS-Python Documentation, Release 5.3.1

10 20 30 40 50 60
x

10

20

30

40

50

y

control points
curve

47

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

23 surf.degree_v = 3
24 surf.ctrlpts2d = ctrlpts
25 surf.knotvector_u = [0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0]
26 surf.knotvector_v = [0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0]
27 surf.sample_size = 30
28

29 # Set visualization component
30 surf.vis = VisMPL.VisSurface(VisMPL.VisConfig(alpha=0.75))
31

32 # Refine knot vectors
33 operations.refine_knotvector(surf, [3, 0])
34

35 # Visualize
36 surf.render()

x

20
10

0
10

20

y

20

10

0

10

20

z

20

10

0

10

20

30

control points
surface

48 Chapter 12. Knot Refinement

CHAPTER 13

Curve & Surface Fitting

geomdl includes 2 fitting methods for curves and surfaces: approximation and interpolation. Please refer to the Curve
and Surface Fitting page for more details on the curve and surface fitting API.

The following sections explain 2-dimensional curve fitting using the included fitting methods. geomdl also supports
3-dimensional curve and surface fitting (not shown here). Please refer to the Examples Repository for more examples
on curve and surface fitting.

13.1 Interpolation

The following code snippet and the figure illustrate interpolation for a 2-dimensional curve:

1 from geomdl import fitting
2 from geomdl.visualization import VisMPL as vis
3

4 # The NURBS Book Ex9.1
5 points = ((0, 0), (3, 4), (-1, 4), (-4, 0), (-4, -3))
6 degree = 3 # cubic curve
7

8 # Do global curve interpolation
9 curve = fitting.interpolate_curve(points, degree)

10

11 # Plot the interpolated curve
12 curve.delta = 0.01
13 curve.vis = vis.VisCurve2D()
14 curve.render()

The following figure displays the input data (sample) points in red and the evaluated curve after interpolation in blue:

13.2 Approximation

The following code snippet and the figure illustrate approximation method for a 2-dimensional curve:

49

NURBS-Python Documentation, Release 5.3.1

4 2 0 2 4 6
x

2

0

2

4

6

y

control points
curve

50 Chapter 13. Curve & Surface Fitting

NURBS-Python Documentation, Release 5.3.1

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4

13.2. Approximation 51

NURBS-Python Documentation, Release 5.3.1

1 from geomdl import fitting
2 from geomdl.visualization import VisMPL as vis
3

4 # The NURBS Book Ex9.1
5 points = ((0, 0), (3, 4), (-1, 4), (-4, 0), (-4, -3))
6 degree = 3 # cubic curve
7

8 # Do global curve approximation
9 curve = fitting.approximate_curve(points, degree)

10

11 # Plot the interpolated curve
12 curve.delta = 0.01
13 curve.vis = vis.VisCurve2D()
14 curve.render()

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

control points
curve

The following figure displays the input data (sample) points in red and the evaluated curve after approximation in blue:

Please note that a spline geometry with a constant set of evaluated points may be represented with an infinite set of
control points. The number and positions of the control points depend on the application and the method used to
generate the control points.

52 Chapter 13. Curve & Surface Fitting

NURBS-Python Documentation, Release 5.3.1

5 4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4

13.2. Approximation 53

NURBS-Python Documentation, Release 5.3.1

54 Chapter 13. Curve & Surface Fitting

CHAPTER 14

Visualization

NURBS-Python comes with the following visualization modules for direct plotting evaluated curves and surfaces:

• VisMPL module for Matplotlib

• VisPlotly module for Plotly

• VisVTK module for VTK

Examples repository contains over 40 examples on how to use the visualization components in various ways. Please
see Visualization Modules Documentation for more details.

14.1 Examples

The following figures illustrate some example NURBS and B-spline shapes that can be generated and directly visual-
ized via NURBS-Python.

14.1.1 Curves

14.1.2 Surfaces

14.1.3 Volumes

14.1.4 Advanced Visualization Examples

The following example scripts can be found in Examples repository under the visualization directory.

55

https://matplotlib.org
https://plot.ly/python/
https://vtk.org
https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python_Examples

NURBS-Python Documentation, Release 5.3.1

10 20 30 40 50 60 70
x

10

20

30

40

50

60

y

control points
curve

56 Chapter 14. Visualization

NURBS-Python Documentation, Release 5.3.1

x

2.5
0.0

2.5
5.0

7.5
10.0

12.5
15.0

17.5

y

2.5

0.0

2.5

5.0

7.5
10.0

12.5
15.0

17.5

z

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

control points
curve

14.1. Examples 57

NURBS-Python Documentation, Release 5.3.1

x

20
10

0
10

20

y

20

10

0

10

20

z

30

20

10

0

10

20

control points
surface

58 Chapter 14. Visualization

NURBS-Python Documentation, Release 5.3.1

x

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

y

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

z

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

control points
surface

14.1. Examples 59

NURBS-Python Documentation, Release 5.3.1

x

0
2

4
6

8
10

12
14

y

2

0

2
4

6
8

10
12

z

6

4

2

0

2

4

6

8

60 Chapter 14. Visualization

NURBS-Python Documentation, Release 5.3.1

mpl_curve2d_tangents.py

This example illustrates a more advanced visualization option for plotting the 2D curve tangents alongside with the
control points grid and the evaluated curve.

mpl_curve3d_tangents.py

This example illustrates a more advanced visualization option for plotting the 3D curve tangents alongside with the
control points grid and the evaluated curve.

14.1. Examples 61

NURBS-Python Documentation, Release 5.3.1

mpl_curve3d_vectors.py

This example illustrates a visualization option for plotting the 3D curve tangent, normal and binormal vectors alongside
with the control points grid and the evaluated curve.

62 Chapter 14. Visualization

NURBS-Python Documentation, Release 5.3.1

mpl_trisurf_vectors.py

The following figure illustrates tangent and normal vectors on ex_surface02.py example.

14.1. Examples 63

NURBS-Python Documentation, Release 5.3.1

64 Chapter 14. Visualization

CHAPTER 15

Splitting and Decomposition

NURBS-Python is also capable of splitting the curves and the surfaces, as well as applying Bézier decomposition.

Splitting of curves can be achieved via operations.split_curve() method. For the surfaces, there are 2
different splitting methods, operations.split_surface_u() for splitting the surface on the u-direction and
operations.split_surface_v() for splitting on the v-direction.

Bézier decomposition can be applied via operations.decompose_curve() and operations.
decompose_surface() methods for curves and surfaces, respectively.

The following figures are generated from the examples provided in the Examples repository.

15.1 Splitting

The following 2D curve is split at u = 0.6 and applied translation by the tangent vector using operations.
translate() method.

65

https://github.com/orbingol/NURBS-Python_Examples

NURBS-Python Documentation, Release 5.3.1

Splitting can also be applied to 3D curves (split at u = 0.3) without any translation.

66 Chapter 15. Splitting and Decomposition

NURBS-Python Documentation, Release 5.3.1

Surface splitting is also possible. The following figure compares splitting at u = 0.5 and v = 0.5.

Surfaces can also be translated too before or after splitting operation. The following figure illustrates translation after
splitting the surface at u = 0.5.

15.1. Splitting 67

NURBS-Python Documentation, Release 5.3.1

Multiple splitting is also possible for all curves and surfaces. The following figure describes multi splitting in surfaces.
The initial surface is split at u = 0.25 and then, one of the resultant surfaces is split at v = 0.75, finally resulting
3 surfaces.

68 Chapter 15. Splitting and Decomposition

NURBS-Python Documentation, Release 5.3.1

15.2 Bézier Decomposition

The following figures illustrate Bézier decomposition capabilities of NURBS-Python. Let’s start with the most obvious
one, a full circle with 9 control points. It also is possible to directly generate this shape via geomdl.shapesmodule.

15.2. Bézier Decomposition 69

NURBS-Python Documentation, Release 5.3.1

The following is a circular curve generated with 7 control points as illustrated on page 301 of The NURBS Book (2nd
Edition) by Piegl and Tiller. There is also an option to generate this shape via geomdl.shapes module.

70 Chapter 15. Splitting and Decomposition

NURBS-Python Documentation, Release 5.3.1

The following figures illustrate the possibility of Bézier decomposition in B-Spline and NURBS surfaces.

15.2. Bézier Decomposition 71

NURBS-Python Documentation, Release 5.3.1

72 Chapter 15. Splitting and Decomposition

NURBS-Python Documentation, Release 5.3.1

The colors are randomly generated via utilities.color_generator() function.

15.2. Bézier Decomposition 73

NURBS-Python Documentation, Release 5.3.1

74 Chapter 15. Splitting and Decomposition

CHAPTER 16

Exporting Plots as Image Files

The render() method allows users to directly plot the curves and surfaces using predefined visualization classes.
This method takes some keyword arguments to control plot properties at runtime. Please see the class documentation
on description of these keywords. The render() method also allows users to save the plots directly as a file and
to control the plot window visibility. The keyword arguments that control these features are filename and plot,
respectively.

The following example script illustrates creating a 3-dimensional Bézier curve and saving the plot as
bezier-curve3d.pdf without popping up the Matplotlib plot window. filename argument is a string value
defining the name of the file to be saved and plot flag controls the visibility of the plot window.

1 from geomdl import BSpline
2 from geomdl import utilities
3 from geomdl.visualization import VisMPL
4

5 # Create a 3D B-Spline curve instance (Bezier Curve)
6 curve = BSpline.Curve()
7

8 # Set up the Bezier curve
9 curve.degree = 3

10 curve.ctrlpts = [[10, 5, 10], [10, 20, -30], [40, 10, 25], [-10, 5, 0]]
11

12 # Auto-generate knot vector
13 curve.knotvector = utilities.generate_knot_vector(curve.degree, len(curve.ctrlpts))
14

15 # Set sample size
16 curve.sample_size = 40
17

18 # Evaluate curve
19 curve.evaluate()
20

21 # Plot the control point polygon and the evaluated curve
22 vis_comp = VisMPL.VisCurve3D()
23 curve.vis = vis_comp
24

(continues on next page)

75

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

25 # Don't pop up the plot window, instead save it as a PDF file
26 curve.render(filename="bezier-curve3d.pdf", plot=False)

This functionality strongly depends on the plotting library used. Please see the documentation of the plotting library
that you are using for more details on its figure exporting capabilities.

76 Chapter 16. Exporting Plots as Image Files

CHAPTER 17

Core Modules

The following are the lists of modules included in NURBS-Python (geomdl) Core Library. They are split into separate
groups to make the documentation more understandable.

17.1 User API

The User API is the main entrance point to the library. It provides geometry classes and containers, as well as the
geometric operators and support modules.

The following is the list of the geometry classes included in the library:

17.1.1 B-Spline Geometry

BSpline module provides data storage and evaluation functions for non-rational spline geometries.

Inheritance Diagram

geomdl.BSpline.Curvegeomdl.abstract.Curve

geomdl.BSpline.Surfacegeomdl.abstract.Surface

geomdl.BSpline.Volumegeomdl.abstract.Volume

geomdl.abstract.SplineGeometry

77

NURBS-Python Documentation, Release 5.3.1

B-Spline Curve

class geomdl.BSpline.Curve(**kwargs)
Bases: geomdl.abstract.Curve

Data storage and evaluation class for n-variate B-spline (non-rational) curves.

This class provides the following properties:

• type = spline

• id

• order

• degree

• knotvector

• ctrlpts

• delta

• sample_size

• bbox

• vis

• name

• dimension

• evaluator

• rational

The following code segment illustrates the usage of Curve class:

from geomdl import BSpline

Create a 3-dimensional B-spline Curve
curve = BSpline.Curve()

Set degree
curve.degree = 3

Set control points
curve.ctrlpts = [[10, 5, 10], [10, 20, -30], [40, 10, 25], [-10, 5, 0]]

Set knot vector
curve.knotvector = [0, 0, 0, 0, 1, 1, 1, 1]

Set evaluation delta (controls the number of curve points)
curve.delta = 0.05

Get curve points (the curve will be automatically evaluated)
curve_points = curve.evalpts

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

78 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Curve() documentation for more details.

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

binormal(parpos, **kwargs)
Evaluates the binormal vector of the curve at the given parametric position(s).

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns binormal vector as a tuple of the origin point and the vector components

Return type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

17.1. User API 79

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

degree
Degree.

Please refer to the wiki for details on using this class member.

Getter Gets the degree

Setter Sets the degree

Type int

delta
Evaluation delta.

Evaluation delta corresponds to the step size while evaluate function iterates on the knot vector to
generate curve points. Decreasing step size results in generation of more curve points. Therefore; smaller
the delta value, smoother the curve.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

Type float

derivatives(u, order=0, **kwargs)
Evaluates n-th order curve derivatives at the given parameter value.

The output of this method is list of n-th order derivatives. If order is 0, then it will only output the
evaluated point. Similarly, if order is 2, then it will output the evaluated point, 1st derivative and the 2nd
derivative. For instance;

Assuming a curve (crv) is defined on a parametric domain [0.0, 1.0]
Let's take the curve derivative at the parametric position u = 0.35
ders = crv.derivatives(u=0.35, order=2)
ders[0] # evaluated point, equal to crv.evaluate_single(0.35)
ders[1] # 1st derivative at u = 0.35
ders[2] @ 2nd derivative at u = 0.35

Parameters

• u (float) – parameter value

• order (int) – derivative order

Returns a list containing up to {order}-th derivative of the curve

Return type list

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

80 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the curve.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start: start parameter

• stop: stop parameter

The start and stop parameters allow evaluation of a curve segment in the range [start, stop], i.e. the
curve will also be evaluated at the stop parameter value.

The following examples illustrate the usage of the keyword arguments.

Start evaluating from u=0.2 to u=1.0
curve.evaluate(start=0.2)

Start evaluating from u=0.0 to u=0.7
curve.evaluate(stop=0.7)

Start evaluating from u=0.1 to u=0.5
curve.evaluate(start=0.1, stop=0.5)

Get the evaluated points
curve_points = curve.evalpts

evaluate_list(param_list)
Evaluates the curve for an input range of parameters.

Parameters param_list (list, tuple) – list of parameters

Returns evaluated surface points at the input parameters

Return type list

evaluate_single(param)
Evaluates the curve at the input parameter.

Parameters param (float) – parameter

Returns evaluated surface point at the given parameter

Return type list

evaluator
Evaluator instance.

17.1. User API 81

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

insert_knot(param, **kwargs)
Inserts the knot and updates the control points array and the knot vector.

Keyword Arguments:

• num: Number of knot insertions. Default: 1

Parameters param (float) – knot to be inserted

knotvector
Knot vector.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets the knot vector

Setter Sets the knot vector

Type list

load(file_name)
Loads the curve from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

normal(parpos, **kwargs)
Evaluates the normal to the tangent vector of the curve at the given parametric position(s).

82 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns normal vector as a tuple of the origin point and the vector components

Return type tuple

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order
Order.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the order

Setter Sets the order

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

17.1. User API 83

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

remove_knot(param, **kwargs)
Removes the knot and updates the control points array and the knot vector.

Keyword Arguments:

• num: Number of knot removals. Default: 1

Parameters param (float) – knot to be removed

render(**kwargs)
Renders the curve using the visualization component

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points polygon

• evalcolor: sets the color of the curve

• bboxcolor: sets the color of the bounding box

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

plot argument is useful when you would like to work on the command line without any window context.
If plot flag is False, this method saves the plot as an image file (.png file where possible) and disables
plot window popping out. If you don’t provide a file name, the name of the image file will be pulled from
the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2

(continues on next page)

84 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

9 points=[[7, 8, 9], [10, 11, 12]], # list of points
10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

reverse()
Reverses the curve

sample_size
Sample size.

Sample size defines the number of evaluated points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

Type int

save(file_name)
Saves the curve as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters ctrlpts (list) – input control points as a list of coordinates

tangent(parpos, **kwargs)
Evaluates the tangent vector of the curve at the given parametric position(s).

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns tangent vector as a tuple of the origin point and the vector components

17.1. User API 85

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Return type tuple

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

B-Spline Surface

class geomdl.BSpline.Surface(**kwargs)
Bases: geomdl.abstract.Surface

Data storage and evaluation class for B-spline (non-rational) surfaces.

This class provides the following properties:

• type = spline

• id

• order_u

• order_v

• degree_u

• degree_v

• knotvector_u

• knotvector_v

• ctrlpts

• ctrlpts_size_u

• ctrlpts_size_v

• ctrlpts2d

86 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• delta

• delta_u

• delta_v

• sample_size

• sample_size_u

• sample_size_v

• bbox

• name

• dimension

• vis

• evaluator

• tessellator

• rational

• trims

The following code segment illustrates the usage of Surface class:

1 from geomdl import BSpline
2

3 # Create a BSpline surface instance (Bezier surface)
4 surf = BSpline.Surface()
5

6 # Set degrees
7 surf.degree_u = 3
8 surf.degree_v = 2
9

10 # Set control points
11 control_points = [[0, 0, 0], [0, 4, 0], [0, 8, -3],
12 [2, 0, 6], [2, 4, 0], [2, 8, 0],
13 [4, 0, 0], [4, 4, 0], [4, 8, 3],
14 [6, 0, 0], [6, 4, -3], [6, 8, 0]]
15 surf.set_ctrlpts(control_points, 4, 3)
16

17 # Set knot vectors
18 surf.knotvector_u = [0, 0, 0, 0, 1, 1, 1, 1]
19 surf.knotvector_v = [0, 0, 0, 1, 1, 1]
20

21 # Set evaluation delta (control the number of surface points)
22 surf.delta = 0.05
23

24 # Get surface points (the surface will be automatically evaluated)
25 surface_points = surf.evalpts

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

17.1. User API 87

NURBS-Python Documentation, Release 5.3.1

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Surface() documentation for more details.

add_trim(trim)
Adds a trim to the surface.

A trim is a 2-dimensional curve defined on the parametric domain of the surface. Therefore, x-coordinate
of the trimming curve corresponds to u parametric direction of the surfaceand y-coordinate of the trimming
curve corresponds to v parametric direction of the surface.

trims uses this method to add trims to the surface.

Parameters trim (abstract.Geometry) – surface trimming curve

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points.

Note: The v index varies first. That is, a row of v control points for the first u value is found first. Then,
the row of v control points for the next u value.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts2d
2-dimensional array of control points.

The getter returns a tuple of 2D control points (weighted control points + weights if NURBS) in [u][v]
format. The rows of the returned tuple correspond to v-direction and the columns correspond to u-direction.

The following example can be used to traverse 2D control points:

88 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

1 # Create a BSpline surface
2 surf_bs = BSpline.Surface()
3

4 # Do degree, control points and knot vector assignments here
5

6 # Each u includes a row of v values
7 for u in surf_bs.ctrlpts2d:
8 # Each row contains the coordinates of the control points
9 for v in u:

10 print(str(v)) # will be something like (1.0, 2.0, 3.0)
11

12 # Create a NURBS surface
13 surf_nb = NURBS.Surface()
14

15 # Do degree, weighted control points and knot vector assignments here
16

17 # Each u includes a row of v values
18 for u in surf_nb.ctrlpts2d:
19 # Each row contains the coordinates of the weighted control points
20 for v in u:
21 print(str(v)) # will be something like (0.5, 1.0, 1.5, 0.5)

When using NURBS.Surface class, the output of ctrlpts2d property could be confusing since,
ctrlpts always returns the unweighted control points, i.e. ctrlpts property returns 3D control
points all divided by the weights and you can use weights property to access the weights vector, but
ctrlpts2d returns the weighted ones plus weights as the last element. This difference is intentionally
added for compatibility and interoperability purposes.

To explain this situation in a simple way;

• If you need the weighted control points directly, use ctrlpts2d

• If you need the control points and the weights separately, use ctrlpts and weights

Note: Please note that the setter doesn’t check for inconsistencies and using the setter is not recommended.
Instead of the setter property, please use set_ctrlpts() function.

Please refer to the wiki for details on using this class member.

Getter Gets the control points as a 2-dimensional array in [u][v] format

Setter Sets the control points as a 2-dimensional array in [u][v] format

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

17.1. User API 89

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points on the v-direction

Setter Sets number of control points on the v-direction

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u- and v-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

delta
Evaluation delta for both u- and v-directions.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u- and v-directions

Setter Sets evaluation delta for both u- and v-directions

Type float

90 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

derivatives(u, v, order=0, **kwargs)
Evaluates n-th order surface derivatives at the given (u, v) parameter pair.

• SKL[0][0] will be the surface point itself

• SKL[0][1] will be the 1st derivative w.r.t. v

• SKL[2][1] will be the 2nd derivative w.r.t. u and 1st derivative w.r.t. v

Parameters

• u (float) – parameter on the u-direction

• v (float) – parameter on the v-direction

• order (integer) – derivative order

Returns A list SKL, where SKL[k][l] is the derivative of the surface S(u,v) w.r.t. u k times and
v l times

Return type list

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

17.1. User API 91

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the surface.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start_u: start parameter on the u-direction

• stop_u: stop parameter on the u-direction

• start_v: start parameter on the v-direction

• stop_v: stop parameter on the v-direction

The start_u, start_v and stop_u and stop_v parameters allow evaluation of a surface segment
in the range [start_u, stop_u][start_v, stop_v] i.e. the surface will also be evaluated at the stop_u and
stop_v parameter values.

The following examples illustrate the usage of the keyword arguments.

1 # Start evaluating in range u=[0, 0.7] and v=[0.1, 1]
2 surf.evaluate(stop_u=0.7, start_v=0.1)
3

4 # Start evaluating in range u=[0, 1] and v=[0.1, 0.3]
5 surf.evaluate(start_v=0.1, stop_v=0.3)
6

7 # Get the evaluated points
8 surface_points = surf.evalpts

evaluate_list(param_list)
Evaluates the surface for a given list of (u, v) parameters.

Parameters param_list (list, tuple) – list of parameter pairs (u, v)

Returns evaluated surface point at the input parameter pairs

Return type tuple

evaluate_single(param)
Evaluates the surface at the input (u, v) parameter pair.

Parameters param (list, tuple) – parameter pair (u, v)

Returns evaluated surface point at the given parameter pair

Return type list

92 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

faces
Faces (triangles, quads, etc.) generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the faces

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

insert_knot(u=None, v=None, **kwargs)
Inserts knot(s) on the u- or v-directions

Keyword Arguments:

• num_u: Number of knot insertions on the u-direction. Default: 1

• num_v: Number of knot insertions on the v-direction. Default: 1

Parameters

• u (float) – knot to be inserted on the u-direction

• v (float) – knot to be inserted on the v-direction

knotvector
Knot vector for u- and v-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

17.1. User API 93

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type list

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

load(file_name)
Loads the surface from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

normal(parpos, **kwargs)
Evaluates the normal vector of the surface at the given parametric position(s).

Parameters parpos (list or tuple) – parametric position(s) where the evaluation will
be executed

Returns an array containing “point” and “vector” pairs

Return type tuple

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

94 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets order for the u-direction

Setter Sets order for the u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets surface order for the v-direction

Setter Sets surface order for the v-direction

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

17.1. User API 95

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

remove_knot(u=None, v=None, **kwargs)
Inserts knot(s) on the u- or v-directions

Keyword Arguments:

• num_u: Number of knot removals on the u-direction. Default: 1

• num_v: Number of knot removals on the v-direction. Default: 1

Parameters

• u (float) – knot to be removed on the u-direction

• v (float) – knot to be removed on the v-direction

render(**kwargs)
Renders the surface using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points grid

• evalcolor: sets the color of the surface

• trimcolor: sets the color of the trim curves

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

• colormap: sets the colormap of the surface

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Please note that colormap argument can only work with visualization classes that support colormaps.
As an example, please see VisMPL.VisSurfTriangle() class documentation. This method expects
a single colormap input.

96 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u- and v-directions

Setter Sets sample size for both u- and v-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of surface points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of surface points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

save(file_name)
Saves the surface as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input

17.1. User API 97

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

This method also generates 2D control points in [u][v] format which can be accessed via ctrlpts2d.

Note: The v index varies first. That is, a row of v control points for the first u value is found first. Then,
the row of v control points for the next u value.

Parameters ctrlpts (list) – input control points as a list of coordinates

tangent(parpos, **kwargs)
Evaluates the tangent vectors of the surface at the given parametric position(s).

Parameters parpos (list or tuple) – parametric position(s) where the evaluation will
be executed

Returns an array containing “point” and “vector”s on u- and v-directions, respectively

Return type tuple

tessellate(**kwargs)
Tessellates the surface.

Keyword arguments are directly passed to the tessellation component.

tessellator
Tessellation component.

Please refer to the wiki for details on using this class member.

Getter Gets the tessellation component

Setter Sets the tessellation component

transpose()
Transposes the surface by swapping u and v parametric directions.

trims
Curves for trimming the surface.

Surface trims are 2-dimensional curves which are introduced on the parametric space of the surfaces. Trim
curves can be a spline curve, an analytic curve or a 2-dimensional freeform shape. To visualize the trimmed
surfaces, you need to use a tessellator that supports trimming. The following code snippet illustrates chang-
ing the default surface tessellator to the trimmed surface tessellator, tessellate.TrimTessellate.

1 from geomdl import tessellate
2

3 # Assuming that "surf" variable stores the surface instance
4 surf.tessellator = tessellate.TrimTessellate()

In addition, using trims initialization argument of the visualization classes, trim curves can be visualized
together with their underlying surfaces. Please refer to the visualization configuration class initialization
arguments for more details.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim curves

Setter Sets the array of trim curves

98 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vertices
Vertices generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the vertices

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

B-Spline Volume

New in version 5.0.

class geomdl.BSpline.Volume(**kwargs)
Bases: geomdl.abstract.Volume

Data storage and evaluation class for B-spline (non-rational) volumes.

This class provides the following properties:

• type = spline

• id

• order_u

• order_v

• order_w

• degree_u

• degree_v

• degree_w

17.1. User API 99

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• knotvector_u

• knotvector_v

• knotvector_w

• ctrlpts

• ctrlpts_size_u

• ctrlpts_size_v

• ctrlpts_size_w

• delta

• delta_u

• delta_v

• delta_w

• sample_size

• sample_size_u

• sample_size_v

• sample_size_w

• bbox

• name

• dimension

• vis

• evaluator

• rational

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Volume() documentation for more details.

add_trim(trim)
Adds a trim to the volume.

trims uses this method to add trims to the volume.

Parameters trim (abstract.Surface) – trimming surface

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

100 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the v-direction

Setter Sets number of control points for the v-direction

ctrlpts_size_w
Number of control points for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the w-direction

Setter Sets number of control points for the w-direction

17.1. User API 101

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u-, v- and w-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

degree_w
Degree for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the w-direction

Setter Sets degree for the w-direction

Type int

delta
Evaluation delta for u-, v- and w-directions.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u-, v- and w-directions

Setter Sets evaluation delta for u-, v- and w-directions

Type float

102 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

delta_w
Evaluation delta for the w-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_w and sample_size_w properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_w will also set sample_size_w.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the w-direction

Setter Sets evaluation delta for the w-direction

Type float

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

17.1. User API 103

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the volume.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start_u: start parameter on the u-direction

• stop_u: stop parameter on the u-direction

• start_v: start parameter on the v-direction

• stop_v: stop parameter on the v-direction

• start_w: start parameter on the w-direction

• stop_w: stop parameter on the w-direction

evaluate_list(param_list)
Evaluates the volume for a given list of (u, v, w) parameters.

Parameters param_list (list, tuple) – list of parameters in format (u, v, w)

Returns evaluated surface point at the input parameter pairs

Return type tuple

evaluate_single(param)
Evaluates the volume at the input (u, v, w) parameter.

Parameters param (list, tuple) – parameter (u, v, w)

Returns evaluated surface point at the given parameter pair

Return type list

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

104 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

insert_knot(u=None, v=None, w=None, **kwargs)
Inserts knot(s) on the u-, v- and w-directions

Keyword Arguments:

• num_u: Number of knot insertions on the u-direction. Default: 1

• num_v: Number of knot insertions on the v-direction. Default: 1

• num_w: Number of knot insertions on the w-direction. Default: 1

Parameters

• u (float) – knot to be inserted on the u-direction

• v (float) – knot to be inserted on the v-direction

• w (float) – knot to be inserted on the w-direction

knotvector
Knot vector for u-, v- and w-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

Type list

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

17.1. User API 105

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

knotvector_w
Knot vector for the w-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the w-direction

Setter Sets knot vector for the w-direction

Type list

load(file_name)
Loads the volume from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

106 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for u-direction

Setter Sets the surface order for u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

order_w
Order for the w-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

17.1. User API 107

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

remove_knot(u=None, v=None, w=None, **kwargs)
Inserts knot(s) on the u-, v- and w-directions

Keyword Arguments:

• num_u: Number of knot removals on the u-direction. Default: 1

• num_v: Number of knot removals on the v-direction. Default: 1

• num_w: Number of knot removals on the w-direction. Default: 1

Parameters

• u (float) – knot to be removed on the u-direction

• v (float) – knot to be removed on the v-direction

• w (float) – knot to be removed on the w-direction

render(**kwargs)
Renders the volume using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points

• evalcolor: sets the color of the volume

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• grid_size: grid size for voxelization. Default: (8, 8, 8)

• use_cubes: use cube voxels instead of cuboid ones. Default: False

• num_procs: number of concurrent processes for voxelization. Default: 1

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

108 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u-, v- and w-directions

Setter Sets sample size value for both u-, v- and w-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

sample_size_w
Sample size for the w-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_w property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the w-direction

Setter Sets sample size for the w-direction

Type int

17.1. User API 109

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

save(file_name)
Saves the volume as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters

• ctrlpts (list) – input control points as a list of coordinates

• args (tuple[int, int, int]) – number of control points corresponding to each
parametric dimension

trims
Trimming surfaces.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim surfaces

Setter Sets the array of trim surfaces

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

110 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

17.1.2 NURBS Geometry

NURBS module provides data storage and evaluation functions for rational spline geometries.

Inheritance Diagram

geomdl.BSpline.Curve geomdl.NURBS.Curvegeomdl.abstract.Curve

geomdl.BSpline.Surface geomdl.NURBS.Surfacegeomdl.abstract.Surface

geomdl.BSpline.Volume geomdl.NURBS.Volumegeomdl.abstract.Volume

geomdl.abstract.SplineGeometry

NURBS Curve

class geomdl.NURBS.Curve(**kwargs)
Bases: geomdl.BSpline.Curve

Data storage and evaluation class for n-variate NURBS (rational) curves.

The rational shapes have some minor differences between the non-rational ones. This class is designed to operate
with weighted control points (Pw) as described in The NURBS Book by Piegl and Tiller. Therefore, it provides
a different set of properties (i.e. getters and setters):

• ctrlptsw: 1-dimensional array of weighted control points

• ctrlpts: 1-dimensional array of control points

• weights: 1-dimensional array of weights

You may also use set_ctrlpts() function which is designed to work with all types of control points.

This class provides the following properties:

• order

• degree

• knotvector

• ctrlptsw

• ctrlpts

• weights

• delta

• sample_size

• bbox

• vis

• name

• dimension

17.1. User API 111

NURBS-Python Documentation, Release 5.3.1

• evaluator

• rational

The following code segment illustrates the usage of Curve class:

from geomdl import NURBS

Create a 3-dimensional B-spline Curve
curve = NURBS.Curve()

Set degree
curve.degree = 3

Set control points (weights vector will be 1 by default)
Use curve.ctrlptsw is if you are using homogeneous points as Pw
curve.ctrlpts = [[10, 5, 10], [10, 20, -30], [40, 10, 25], [-10, 5, 0]]

Set knot vector
curve.knotvector = [0, 0, 0, 0, 1, 1, 1, 1]

Set evaluation delta (controls the number of curve points)
curve.delta = 0.05

Get curve points (the curve will be automatically evaluated)
curve_points = curve.evalpts

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Curve() documentation for more details.

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

binormal(parpos, **kwargs)
Evaluates the binormal vector of the curve at the given parametric position(s).

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns binormal vector as a tuple of the origin point and the vector components

Return type tuple

112 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
Control points (P).

Please refer to the wiki for details on using this class member.

Getter Gets unweighted control points. Use weights to get weights vector.

Setter Sets unweighted control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlptsw
Weighted control points (Pw).

Weighted control points are in (x*w, y*w, z*w, w) format; where x,y,z are the coordinates and w is the
weight.

Please refer to the wiki for details on using this class member.

Getter Gets the weighted control points

Setter Sets the weighted control points

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree.

Please refer to the wiki for details on using this class member.

Getter Gets the degree

Setter Sets the degree

Type int

delta
Evaluation delta.

Evaluation delta corresponds to the step size while evaluate function iterates on the knot vector to
generate curve points. Decreasing step size results in generation of more curve points. Therefore; smaller
the delta value, smoother the curve.

17.1. User API 113

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

Type float

derivatives(u, order=0, **kwargs)
Evaluates n-th order curve derivatives at the given parameter value.

The output of this method is list of n-th order derivatives. If order is 0, then it will only output the
evaluated point. Similarly, if order is 2, then it will output the evaluated point, 1st derivative and the 2nd
derivative. For instance;

Assuming a curve (crv) is defined on a parametric domain [0.0, 1.0]
Let's take the curve derivative at the parametric position u = 0.35
ders = crv.derivatives(u=0.35, order=2)
ders[0] # evaluated point, equal to crv.evaluate_single(0.35)
ders[1] # 1st derivative at u = 0.35
ders[2] @ 2nd derivative at u = 0.35

Parameters

• u (float) – parameter value

• order (int) – derivative order

Returns a list containing up to {order}-th derivative of the curve

Return type list

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

114 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evaluate(**kwargs)
Evaluates the curve.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start: start parameter

• stop: stop parameter

The start and stop parameters allow evaluation of a curve segment in the range [start, stop], i.e. the
curve will also be evaluated at the stop parameter value.

The following examples illustrate the usage of the keyword arguments.

Start evaluating from u=0.2 to u=1.0
curve.evaluate(start=0.2)

Start evaluating from u=0.0 to u=0.7
curve.evaluate(stop=0.7)

Start evaluating from u=0.1 to u=0.5
curve.evaluate(start=0.1, stop=0.5)

Get the evaluated points
curve_points = curve.evalpts

evaluate_list(param_list)
Evaluates the curve for an input range of parameters.

Parameters param_list (list, tuple) – list of parameters

Returns evaluated surface points at the input parameters

Return type list

evaluate_single(param)
Evaluates the curve at the input parameter.

Parameters param (float) – parameter

Returns evaluated surface point at the given parameter

Return type list

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

17.1. User API 115

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets the object ID

Type int

insert_knot(param, **kwargs)
Inserts the knot and updates the control points array and the knot vector.

Keyword Arguments:

• num: Number of knot insertions. Default: 1

Parameters param (float) – knot to be inserted

knotvector
Knot vector.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets the knot vector

Setter Sets the knot vector

Type list

load(file_name)
Loads the curve from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

normal(parpos, **kwargs)
Evaluates the normal to the tangent vector of the curve at the given parametric position(s).

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns normal vector as a tuple of the origin point and the vector components

Return type tuple

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string

(continues on next page)

116 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order
Order.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the order

Setter Sets the order

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

17.1. User API 117

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type bool

remove_knot(param, **kwargs)
Removes the knot and updates the control points array and the knot vector.

Keyword Arguments:

• num: Number of knot removals. Default: 1

Parameters param (float) – knot to be removed

render(**kwargs)
Renders the curve using the visualization component

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points polygon

• evalcolor: sets the color of the curve

• bboxcolor: sets the color of the bounding box

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

plot argument is useful when you would like to work on the command line without any window context.
If plot flag is False, this method saves the plot as an image file (.png file where possible) and disables
plot window popping out. If you don’t provide a file name, the name of the image file will be pulled from
the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

118 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• ctrlpts if True, then resets control points

reverse()
Reverses the curve

sample_size
Sample size.

Sample size defines the number of evaluated points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

Type int

save(file_name)
Saves the curve as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters ctrlpts (list) – input control points as a list of coordinates

tangent(parpos, **kwargs)
Evaluates the tangent vector of the curve at the given parametric position(s).

Parameters parpos (float, list or tuple) – parametric position(s) where the evalu-
ation will be executed

Returns tangent vector as a tuple of the origin point and the vector components

Return type tuple

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

17.1. User API 119

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type vis.VisAbstract

weights
Weights vector.

Please refer to the wiki for details on using this class member.

Getter Gets the weights vector

Setter Sets the weights vector

Type list

NURBS Surface

class geomdl.NURBS.Surface(**kwargs)
Bases: geomdl.BSpline.Surface

Data storage and evaluation class for NURBS (rational) surfaces.

The rational shapes have some minor differences between the non-rational ones. This class is designed to operate
with weighted control points (Pw) as described in The NURBS Book by Piegl and Tiller. Therefore, it provides
a different set of properties (i.e. getters and setters):

• ctrlptsw: 1-dimensional array of weighted control points

• ctrlpts2d: 2-dimensional array of weighted control points

• ctrlpts: 1-dimensional array of control points

• weights: 1-dimensional array of weights

You may also use set_ctrlpts() function which is designed to work with all types of control points.

This class provides the following properties:

• order_u

• order_v

• degree_u

• degree_v

• knotvector_u

• knotvector_v

• ctrlptsw

• ctrlpts

• weights

• ctrlpts_size_u

• ctrlpts_size_v

• ctrlpts2d

• delta

• delta_u

• delta_v

• sample_size

120 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• sample_size_u

• sample_size_v

• bbox

• name

• dimension

• vis

• evaluator

• tessellator

• rational

• trims

The following code segment illustrates the usage of Surface class:

1 from geomdl import NURBS
2

3 # Create a NURBS surface instance
4 surf = NURBS.Surface()
5

6 # Set degrees
7 surf.degree_u = 3
8 surf.degree_v = 2
9

10 # Set control points (weights vector will be 1 by default)
11 # Use curve.ctrlptsw is if you are using homogeneous points as Pw
12 control_points = [[0, 0, 0], [0, 4, 0], [0, 8, -3],
13 [2, 0, 6], [2, 4, 0], [2, 8, 0],
14 [4, 0, 0], [4, 4, 0], [4, 8, 3],
15 [6, 0, 0], [6, 4, -3], [6, 8, 0]]
16 surf.set_ctrlpts(control_points, 4, 3)
17

18 # Set knot vectors
19 surf.knotvector_u = [0, 0, 0, 0, 1, 1, 1, 1]
20 surf.knotvector_v = [0, 0, 0, 1, 1, 1]
21

22 # Set evaluation delta (control the number of surface points)
23 surf.delta = 0.05
24

25 # Get surface points (the surface will be automatically evaluated)
26 surface_points = surf.evalpts

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Surface() documentation for more details.

17.1. User API 121

NURBS-Python Documentation, Release 5.3.1

add_trim(trim)
Adds a trim to the surface.

A trim is a 2-dimensional curve defined on the parametric domain of the surface. Therefore, x-coordinate
of the trimming curve corresponds to u parametric direction of the surfaceand y-coordinate of the trimming
curve corresponds to v parametric direction of the surface.

trims uses this method to add trims to the surface.

Parameters trim (abstract.Geometry) – surface trimming curve

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points (P).

This property sets and gets the control points in 1-D.

Getter Gets unweighted control points. Use weights to get weights vector.

Setter Sets unweighted control points.

Type list

ctrlpts2d
2-dimensional array of control points.

The getter returns a tuple of 2D control points (weighted control points + weights if NURBS) in [u][v]
format. The rows of the returned tuple correspond to v-direction and the columns correspond to u-direction.

The following example can be used to traverse 2D control points:

1 # Create a BSpline surface
2 surf_bs = BSpline.Surface()
3

4 # Do degree, control points and knot vector assignments here
5

6 # Each u includes a row of v values
7 for u in surf_bs.ctrlpts2d:
8 # Each row contains the coordinates of the control points
9 for v in u:

(continues on next page)

122 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

10 print(str(v)) # will be something like (1.0, 2.0, 3.0)
11

12 # Create a NURBS surface
13 surf_nb = NURBS.Surface()
14

15 # Do degree, weighted control points and knot vector assignments here
16

17 # Each u includes a row of v values
18 for u in surf_nb.ctrlpts2d:
19 # Each row contains the coordinates of the weighted control points
20 for v in u:
21 print(str(v)) # will be something like (0.5, 1.0, 1.5, 0.5)

When using NURBS.Surface class, the output of ctrlpts2d property could be confusing since,
ctrlpts always returns the unweighted control points, i.e. ctrlpts property returns 3D control
points all divided by the weights and you can use weights property to access the weights vector, but
ctrlpts2d returns the weighted ones plus weights as the last element. This difference is intentionally
added for compatibility and interoperability purposes.

To explain this situation in a simple way;

• If you need the weighted control points directly, use ctrlpts2d

• If you need the control points and the weights separately, use ctrlpts and weights

Note: Please note that the setter doesn’t check for inconsistencies and using the setter is not recommended.
Instead of the setter property, please use set_ctrlpts() function.

Please refer to the wiki for details on using this class member.

Getter Gets the control points as a 2-dimensional array in [u][v] format

Setter Sets the control points as a 2-dimensional array in [u][v] format

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points on the v-direction

Setter Sets number of control points on the v-direction

17.1. User API 123

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

ctrlptsw
1-dimensional array of weighted control points (Pw).

Weighted control points are in (x*w, y*w, z*w, w) format; where x,y,z are the coordinates and w is the
weight.

This property sets and gets the control points in 1-D.

Getter Gets weighted control points

Setter Sets weighted control points

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u- and v-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

delta
Evaluation delta for both u- and v-directions.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u- and v-directions

Setter Sets evaluation delta for both u- and v-directions

124 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type float

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

derivatives(u, v, order=0, **kwargs)
Evaluates n-th order surface derivatives at the given (u, v) parameter pair.

• SKL[0][0] will be the surface point itself

• SKL[0][1] will be the 1st derivative w.r.t. v

• SKL[2][1] will be the 2nd derivative w.r.t. u and 1st derivative w.r.t. v

Parameters

• u (float) – parameter on the u-direction

• v (float) – parameter on the v-direction

• order (integer) – derivative order

Returns A list SKL, where SKL[k][l] is the derivative of the surface S(u,v) w.r.t. u k times and
v l times

Return type list

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

17.1. User API 125

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the surface.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start_u: start parameter on the u-direction

• stop_u: stop parameter on the u-direction

• start_v: start parameter on the v-direction

• stop_v: stop parameter on the v-direction

The start_u, start_v and stop_u and stop_v parameters allow evaluation of a surface segment
in the range [start_u, stop_u][start_v, stop_v] i.e. the surface will also be evaluated at the stop_u and
stop_v parameter values.

The following examples illustrate the usage of the keyword arguments.

1 # Start evaluating in range u=[0, 0.7] and v=[0.1, 1]
2 surf.evaluate(stop_u=0.7, start_v=0.1)
3

4 # Start evaluating in range u=[0, 1] and v=[0.1, 0.3]
5 surf.evaluate(start_v=0.1, stop_v=0.3)
6

7 # Get the evaluated points
8 surface_points = surf.evalpts

evaluate_list(param_list)
Evaluates the surface for a given list of (u, v) parameters.

Parameters param_list (list, tuple) – list of parameter pairs (u, v)

Returns evaluated surface point at the input parameter pairs

Return type tuple

evaluate_single(param)
Evaluates the surface at the input (u, v) parameter pair.

Parameters param (list, tuple) – parameter pair (u, v)

Returns evaluated surface point at the given parameter pair

Return type list

126 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

faces
Faces (triangles, quads, etc.) generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the faces

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

insert_knot(u=None, v=None, **kwargs)
Inserts knot(s) on the u- or v-directions

Keyword Arguments:

• num_u: Number of knot insertions on the u-direction. Default: 1

• num_v: Number of knot insertions on the v-direction. Default: 1

Parameters

• u (float) – knot to be inserted on the u-direction

• v (float) – knot to be inserted on the v-direction

knotvector
Knot vector for u- and v-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

17.1. User API 127

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type list

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

load(file_name)
Loads the surface from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

normal(parpos, **kwargs)
Evaluates the normal vector of the surface at the given parametric position(s).

Parameters parpos (list or tuple) – parametric position(s) where the evaluation will
be executed

Returns an array containing “point” and “vector” pairs

Return type tuple

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

128 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets order for the u-direction

Setter Sets order for the u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets surface order for the v-direction

Setter Sets surface order for the v-direction

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

17.1. User API 129

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

remove_knot(u=None, v=None, **kwargs)
Inserts knot(s) on the u- or v-directions

Keyword Arguments:

• num_u: Number of knot removals on the u-direction. Default: 1

• num_v: Number of knot removals on the v-direction. Default: 1

Parameters

• u (float) – knot to be removed on the u-direction

• v (float) – knot to be removed on the v-direction

render(**kwargs)
Renders the surface using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points grid

• evalcolor: sets the color of the surface

• trimcolor: sets the color of the trim curves

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

• colormap: sets the colormap of the surface

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Please note that colormap argument can only work with visualization classes that support colormaps.
As an example, please see VisMPL.VisSurfTriangle() class documentation. This method expects
a single colormap input.

130 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u- and v-directions

Setter Sets sample size for both u- and v-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of surface points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of surface points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

save(file_name)
Saves the surface as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input

17.1. User API 131

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

This method also generates 2D control points in [u][v] format which can be accessed via ctrlpts2d.

Note: The v index varies first. That is, a row of v control points for the first u value is found first. Then,
the row of v control points for the next u value.

Parameters ctrlpts (list) – input control points as a list of coordinates

tangent(parpos, **kwargs)
Evaluates the tangent vectors of the surface at the given parametric position(s).

Parameters parpos (list or tuple) – parametric position(s) where the evaluation will
be executed

Returns an array containing “point” and “vector”s on u- and v-directions, respectively

Return type tuple

tessellate(**kwargs)
Tessellates the surface.

Keyword arguments are directly passed to the tessellation component.

tessellator
Tessellation component.

Please refer to the wiki for details on using this class member.

Getter Gets the tessellation component

Setter Sets the tessellation component

transpose()
Transposes the surface by swapping u and v parametric directions.

trims
Curves for trimming the surface.

Surface trims are 2-dimensional curves which are introduced on the parametric space of the surfaces. Trim
curves can be a spline curve, an analytic curve or a 2-dimensional freeform shape. To visualize the trimmed
surfaces, you need to use a tessellator that supports trimming. The following code snippet illustrates chang-
ing the default surface tessellator to the trimmed surface tessellator, tessellate.TrimTessellate.

1 from geomdl import tessellate
2

3 # Assuming that "surf" variable stores the surface instance
4 surf.tessellator = tessellate.TrimTessellate()

In addition, using trims initialization argument of the visualization classes, trim curves can be visualized
together with their underlying surfaces. Please refer to the visualization configuration class initialization
arguments for more details.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim curves

Setter Sets the array of trim curves

132 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vertices
Vertices generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the vertices

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights vector.

Getter Gets the weights vector

Setter Sets the weights vector

Type list

NURBS Volume

New in version 5.0.

class geomdl.NURBS.Volume(**kwargs)
Bases: geomdl.BSpline.Volume

Data storage and evaluation class for NURBS (rational) volumes.

The rational shapes have some minor differences between the non-rational ones. This class is designed to operate
with weighted control points (Pw) as described in The NURBS Book by Piegl and Tiller. Therefore, it provides
a different set of properties (i.e. getters and setters):

• ctrlptsw: 1-dimensional array of weighted control points

• ctrlpts: 1-dimensional array of control points

• weights: 1-dimensional array of weights

This class provides the following properties:

• order_u

• order_v

• order_w

• degree_u

• degree_v

17.1. User API 133

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• degree_w

• knotvector_u

• knotvector_v

• knotvector_w

• ctrlptsw

• ctrlpts

• weights

• ctrlpts_size_u

• ctrlpts_size_v

• ctrlpts_size_w

• delta

• delta_u

• delta_v

• delta_w

• sample_size

• sample_size_u

• sample_size_v

• sample_size_w

• bbox

• name

• dimension

• vis

• evaluator

• rational

Keyword Arguments:

• precision: number of decimal places to round to. Default: 18

• normalize_kv: activates knot vector normalization. Default: True

• find_span_func: sets knot span search implementation. Default: helpers.
find_span_linear()

• insert_knot_func: sets knot insertion implementation. Default: operations.
insert_knot()

• remove_knot_func: sets knot removal implementation. Default: operations.remove_knot()

Please refer to the abstract.Volume() documentation for more details.

add_trim(trim)
Adds a trim to the volume.

trims uses this method to add trims to the volume.

Parameters trim (abstract.Surface) – trimming surface

134 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points (P).

This property sets and gets the control points in 1-D.

Getter Gets unweighted control points. Use weights to get weights vector.

Setter Sets unweighted control points.

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the v-direction

Setter Sets number of control points for the v-direction

ctrlpts_size_w
Number of control points for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the w-direction

17.1. User API 135

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets number of control points for the w-direction

ctrlptsw
1-dimensional array of weighted control points (Pw).

Weighted control points are in (x*w, y*w, z*w, w) format; where x,y,z are the coordinates and w is the
weight.

This property sets and gets the control points in 1-D.

Getter Gets weighted control points

Setter Sets weighted control points

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u-, v- and w-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

degree_w
Degree for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the w-direction

Setter Sets degree for the w-direction

Type int

delta
Evaluation delta for u-, v- and w-directions.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

136 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u-, v- and w-directions

Setter Sets evaluation delta for u-, v- and w-directions

Type float

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

delta_w
Evaluation delta for the w-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_w and sample_size_w properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_w will also set sample_size_w.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the w-direction

Setter Sets evaluation delta for the w-direction

17.1. User API 137

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type float

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the volume.

The evaluated points are stored in evalpts property.

Keyword arguments:

• start_u: start parameter on the u-direction

• stop_u: stop parameter on the u-direction

• start_v: start parameter on the v-direction

• stop_v: stop parameter on the v-direction

• start_w: start parameter on the w-direction

• stop_w: stop parameter on the w-direction

evaluate_list(param_list)
Evaluates the volume for a given list of (u, v, w) parameters.

Parameters param_list (list, tuple) – list of parameters in format (u, v, w)

Returns evaluated surface point at the input parameter pairs

Return type tuple

evaluate_single(param)
Evaluates the volume at the input (u, v, w) parameter.

Parameters param (list, tuple) – parameter (u, v, w)

Returns evaluated surface point at the given parameter pair

Return type list

138 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

insert_knot(u=None, v=None, w=None, **kwargs)
Inserts knot(s) on the u-, v- and w-directions

Keyword Arguments:

• num_u: Number of knot insertions on the u-direction. Default: 1

• num_v: Number of knot insertions on the v-direction. Default: 1

• num_w: Number of knot insertions on the w-direction. Default: 1

Parameters

• u (float) – knot to be inserted on the u-direction

• v (float) – knot to be inserted on the v-direction

• w (float) – knot to be inserted on the w-direction

knotvector
Knot vector for u-, v- and w-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

Type list

17.1. User API 139

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

knotvector_w
Knot vector for the w-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the w-direction

Setter Sets knot vector for the w-direction

Type list

load(file_name)
Loads the volume from a pickled file.

Deprecated since version 5.2.4: Use exchange.import_json() instead.

Parameters file_name (str) – name of the file to be loaded

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

(continues on next page)

140 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for u-direction

Setter Sets the surface order for u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

order_w
Order for the w-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

17.1. User API 141

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

remove_knot(u=None, v=None, w=None, **kwargs)
Inserts knot(s) on the u-, v- and w-directions

Keyword Arguments:

• num_u: Number of knot removals on the u-direction. Default: 1

• num_v: Number of knot removals on the v-direction. Default: 1

• num_w: Number of knot removals on the w-direction. Default: 1

Parameters

• u (float) – knot to be removed on the u-direction

• v (float) – knot to be removed on the v-direction

• w (float) – knot to be removed on the w-direction

render(**kwargs)
Renders the volume using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points

• evalcolor: sets the color of the volume

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• grid_size: grid size for voxelization. Default: (8, 8, 8)

• use_cubes: use cube voxels instead of cuboid ones. Default: False

• num_procs: number of concurrent processes for voxelization. Default: 1

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

142 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets the evaluated points

• ctrlpts if True, then resets the control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u-, v- and w-directions

Setter Sets sample size value for both u-, v- and w-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

17.1. User API 143

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

sample_size_w
Sample size for the w-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_w property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the w-direction

Setter Sets sample size for the w-direction

Type int

save(file_name)
Saves the volume as a pickled file.

Deprecated since version 5.2.4: Use exchange.export_json() instead.

Parameters file_name (str) – name of the file to be saved

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters

• ctrlpts (list) – input control points as a list of coordinates

• args (tuple[int, int, int]) – number of control points corresponding to each
parametric dimension

trims
Trimming surfaces.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim surfaces

Setter Sets the array of trim surfaces

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

144 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type vis.VisAbstract

weights
Weights vector.

Getter Gets the weights vector

Setter Sets the weights vector

Type list

17.1.3 Freeform Geometry

New in version 5.2.

freeform module provides classes for representing freeform geometry objects.

Freeform class provides a basis for storing freeform geometries. The points of the geometry can be set via the evalu-
ate() method using a keyword argument.

Inheritance Diagram

geomdl.abstract.Geometry geomdl.freeform.Freeform

Class Reference

class geomdl.freeform.Freeform(**kwargs)
Bases: geomdl.abstract.Geometry

n-dimensional freeform geometry

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

17.1. User API 145

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type list

evaluate(**kwargs)
Sets points that form the geometry.

Keyword Arguments:

• points: sets the points

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

146 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Returns the corresponding value, if the key exists. None, otherwise.

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

17.1.4 Geometry Containers

The multi module provides specialized geometry containers. A container is a holder object that stores a collection
of other objects, i.e. its elements. In NURBS-Python, containers can be generated as a result of

• A geometric operation, such as splitting

• File import, e.g. reading a file or a set of files containing multiple surfaces

The multi module contains the following classes:

• AbstractContainer abstract base class for containers

• CurveContainer for storing multiple curves

• SurfaceContainer for storing multiple surfaces

• VolumeContainer for storing multiple volumes

How to Use

These containers can be used for many purposes, such as visualization of a multi-component geometry or file export.
For instance, the following figure shows a heart valve with 3 leaflets:

17.1. User API 147

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Each leaflet is a NURBS surface added to a SurfaceContainer and rendered via Matplotlib visualization module.
It is possible to input a list of colors to the render method, otherwise it will automatically pick an arbitrary color.

Inheritance Diagram

geomdl.abstract.GeomdlBase geomdl.multi.AbstractContainer

geomdl.multi.CurveContainer

geomdl.multi.SurfaceContainer

geomdl.multi.VolumeContainer

Abstract Container

class geomdl.multi.AbstractContainer(*args, **kwargs)
Bases: geomdl.abstract.GeomdlBase

148 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Abstract class for geometry containers.

This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a
for loop.

This class provides the following properties:

• type = container

• id

• name

• dimension

• opt

• pdimension

• evalpts

• bbox

• vis

• delta

• sample_size

add(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

append(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

bbox
Bounding box.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box of all contained geometries

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

delta
Evaluation delta (for all parametric directions).

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta value, smoother the shape.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

17.1. User API 149

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets the delta value

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Since there are multiple geometry objects contained in the multi objects, the evaluated points will be
returned in the format of list of individual evaluated points which is also a list of Cartesian coordinates.

The following code example illustrates these details:

1 multi_obj = multi.SurfaceContainer() # it can also be multi.CurveContainer()
2 # Add geometries to multi_obj via multi_obj.add() method
3 # Then, the following loop will print all the evaluated points of the Multi

→˓object
4 for idx, mpt in enumerate(multi_obj.evalpts):
5 print("Shape", idx+1, "contains", len(mpt), "points. These points are:")
6 for pt in mpt:
7 line = ", ".join([str(p) for p in pt])
8 print(line)

Please refer to the wiki for details on using this class member.

Getter Gets the evaluated points of all contained geometries

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string

(continues on next page)

150 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

render(**kwargs)
Renders plots using the visualization component.

Note: This is an abstract method and it must be implemented in the subclass.

reset()
Resets the cache.

sample_size
Sample size (for all parametric directions).

Sample size defines the number of points to evaluate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

17.1. User API 151

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Curve Container

class geomdl.multi.CurveContainer(*args, **kwargs)
Bases: geomdl.multi.AbstractContainer

Container class for storing multiple curves.

This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a
for loop.

This class provides the following properties:

• type = container

• id

• name

• dimension

• opt

• pdimension

• evalpts

• bbox

• vis

• delta

• sample_size

The following code example illustrates the usage of the Python properties:

Create a multi-curve container instance
mcrv = multi.CurveContainer()

Add single or multi curves to the multi container using mcrv.add() command
Addition operator, e.g. mcrv1 + mcrv2, also works

Set the evaluation delta of the multi-curve
mcrv.delta = 0.05

Get the evaluated points
curve_points = mcrv.evalpts

152 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

add(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

append(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

bbox
Bounding box.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box of all contained geometries

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

delta
Evaluation delta (for all parametric directions).

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta value, smoother the shape.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Since there are multiple geometry objects contained in the multi objects, the evaluated points will be
returned in the format of list of individual evaluated points which is also a list of Cartesian coordinates.

The following code example illustrates these details:

1 multi_obj = multi.SurfaceContainer() # it can also be multi.CurveContainer()
2 # Add geometries to multi_obj via multi_obj.add() method
3 # Then, the following loop will print all the evaluated points of the Multi

→˓object
4 for idx, mpt in enumerate(multi_obj.evalpts):
5 print("Shape", idx+1, "contains", len(mpt), "points. These points are:")

(continues on next page)

17.1. User API 153

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

6 for pt in mpt:
7 line = ", ".join([str(p) for p in pt])
8 print(line)

Please refer to the wiki for details on using this class member.

Getter Gets the evaluated points of all contained geometries

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

154 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

render(**kwargs)
Renders the curves.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points grid

• evalcolor: sets the color of the surface

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• delta: if True, the evaluation delta of the container object will be used. Default: True

• reset_names: resets the name of the curves inside the container. Default: False

The cpcolor and evalcolor arguments can be a string or a list of strings corresponding to the color
values. Both arguments are processed separately, e.g. cpcolor can be a string whereas evalcolor can
be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows
customization over the color values. If none provided, a random color will be selected.

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

reset()
Resets the cache.

sample_size
Sample size (for all parametric directions).

Sample size defines the number of points to evaluate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

type
Geometry type

Please refer to the wiki for details on using this class member.

17.1. User API 155

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Surface Container

class geomdl.multi.SurfaceContainer(*args, **kwargs)
Bases: geomdl.multi.AbstractContainer

Container class for storing multiple surfaces.

This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a
for loop.

This class provides the following properties:

• type = container

• id

• name

• dimension

• opt

• pdimension

• evalpts

• bbox

• vis

• delta

• delta_u

• delta_v

• sample_size

• sample_size_u

• sample_size_v

• tessellator

• vertices

• faces

The following code example illustrates the usage of these Python properties:

156 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Create a multi-surface container instance
msurf = multi.SurfaceContainer()

Add single or multi surfaces to the multi container using msurf.add() command
Addition operator, e.g. msurf1 + msurf2, also works

Set the evaluation delta of the multi-surface
msurf.delta = 0.05

Get the evaluated points
surface_points = msurf.evalpts

add(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

append(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

bbox
Bounding box.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box of all contained geometries

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

delta
Evaluation delta (for all parametric directions).

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta value, smoother the shape.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta, smoother the shape.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

17.1. User API 157

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the delta value for the u-direction

Setter Sets the delta value for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta, smoother the shape.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets the delta value for the v-direction

Setter Sets the delta value for the v-direction

Type float

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Since there are multiple geometry objects contained in the multi objects, the evaluated points will be
returned in the format of list of individual evaluated points which is also a list of Cartesian coordinates.

The following code example illustrates these details:

1 multi_obj = multi.SurfaceContainer() # it can also be multi.CurveContainer()
2 # Add geometries to multi_obj via multi_obj.add() method
3 # Then, the following loop will print all the evaluated points of the Multi

→˓object
4 for idx, mpt in enumerate(multi_obj.evalpts):
5 print("Shape", idx+1, "contains", len(mpt), "points. These points are:")
6 for pt in mpt:
7 line = ", ".join([str(p) for p in pt])
8 print(line)

Please refer to the wiki for details on using this class member.

Getter Gets the evaluated points of all contained geometries

faces
Faces (triangles, quads, etc.) generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the faces

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

158 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

render(**kwargs)
Renders the surfaces.

17.1. User API 159

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points grids

• evalcolor: sets the color of the surface

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• colormap: sets the colormap of the surfaces

• delta: if True, the evaluation delta of the container object will be used. Default: True

• reset_names: resets the name of the surfaces inside the container. Default: False

• num_procs: number of concurrent processes for rendering the surfaces. Default: 1

The cpcolor and evalcolor arguments can be a string or a list of strings corresponding to the color
values. Both arguments are processed separately, e.g. cpcolor can be a string whereas evalcolor can
be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows
customization over the color values. If none provided, a random color will be selected.

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

Please note that colormap argument can only work with visualization classes that support colormaps.
As an example, please see VisMPL.VisSurfTriangle() class documentation. This method expects
multiple colormap inputs as a list or tuple, preferable the input list size is the same as the number of surfaces
contained in the class. In the case of number of surfaces is bigger than number of input colormaps, this
method will automatically assign a random color for the remaining surfaces.

reset()
Resets the cache.

sample_size
Sample size (for all parametric directions).

Sample size defines the number of points to evaluate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

sample_size_u
Sample size for the u-direction.

Sample size defines the number of points to evaluate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

160 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of points to evaluate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

tessellate(**kwargs)
Tessellates the surfaces inside the container.

Keyword arguments are directly passed to the tessellation component.

The following code snippet illustrates getting the vertices and faces of the surfaces inside the container:

1 # Tessellate the surfaces inside the container
2 surf_container.tessellate()
3

4 # Vertices and faces are stored inside the tessellator component
5 tsl = surf_container.tessellator
6

7 # Loop through all tessellator components
8 for t in tsl:
9 # Get the vertices

10 vertices = t.tessellator.vertices
11 # Get the faces (triangles, quads, etc.)
12 faces = t.tessellator.faces

Keyword Arguments:

• num_procs: number of concurrent processes for tessellating the surfaces. Default: 1

• delta: if True, the evaluation delta of the container object will be used. Default: True

• force: flag to force tessellation. Default: False

tessellator
Tessellation component of the surfaces inside the container.

Please refer to Tessellation documentation for details.

1 from geomdl import multi
2 from geomdl import tessellate
3

4 # Create the surface container
5 surf_container = multi.SurfaceContainer(surf_list)
6

7 # Set tessellator component
8 surf_container.tessellator = tessellate.TrimTessellate()

Getter gets the tessellation component

Setter sets the tessellation component

17.1. User API 161

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vertices
Vertices generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the vertices

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Volume Container

class geomdl.multi.VolumeContainer(*args, **kwargs)
Bases: geomdl.multi.AbstractContainer

Container class for storing multiple volumes.

This class implements Python Iterator Protocol and therefore any instance of this class can be directly used in a
for loop.

This class provides the following properties:

• type

• id

• name

• dimension

• opt

• pdimension

• evalpts

• bbox

• vis

• delta

• delta_u

• delta_v

• delta_w

• sample_size

• sample_size_u

• sample_size_v

162 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• sample_size_w

The following code example illustrates the usage of these Python properties:

Create a multi-volume container instance
mvol = multi.VolumeContainer()

Add single or multi volumes to the multi container using mvol.add() command
Addition operator, e.g. mvol1 + mvol2, also works

Set the evaluation delta of the multi-volume
mvol.delta = 0.05

Get the evaluated points
volume_points = mvol.evalpts

add(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

append(element)
Adds geometry objects to the container.

The input can be a single geometry, a list of geometry objects or a geometry container object.

Parameters element – geometry object

bbox
Bounding box.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box of all contained geometries

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

delta
Evaluation delta (for all parametric directions).

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta value, smoother the shape.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta, smoother the shape.

17.1. User API 163

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets the delta value for the u-direction

Setter Sets the delta value for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta, smoother the shape.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets the delta value for the v-direction

Setter Sets the delta value for the v-direction

Type float

delta_w
Evaluation delta for the w-direction.

Evaluation delta corresponds to the step size. Decreasing the step size results in evaluation of more points.
Therefore; smaller the delta, smoother the shape.

Please note that delta_w and sample_size_w properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_w will also set sample_size_w.

Please refer to the wiki for details on using this class member.

Getter Gets the delta value for the w-direction

Setter Sets the delta value for the w-direction

Type float

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Since there are multiple geometry objects contained in the multi objects, the evaluated points will be
returned in the format of list of individual evaluated points which is also a list of Cartesian coordinates.

The following code example illustrates these details:

1 multi_obj = multi.SurfaceContainer() # it can also be multi.CurveContainer()
2 # Add geometries to multi_obj via multi_obj.add() method
3 # Then, the following loop will print all the evaluated points of the Multi

→˓object

(continues on next page)

164 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

4 for idx, mpt in enumerate(multi_obj.evalpts):
5 print("Shape", idx+1, "contains", len(mpt), "points. These points are:")
6 for pt in mpt:
7 line = ", ".join([str(p) for p in pt])
8 print(line)

Please refer to the wiki for details on using this class member.

Getter Gets the evaluated points of all contained geometries

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

17.1. User API 165

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

render(**kwargs)
Renders the volumes.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points plot

• evalcolor: sets the color of the volume

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• delta: if True, the evaluation delta of the container object will be used. Default: True

• reset_names: resets the name of the volumes inside the container. Default: False

• grid_size: grid size for voxelization. Default: (16, 16, 16)

• num_procs: number of concurrent processes for voxelization. Default: 1

The cpcolor and evalcolor arguments can be a string or a list of strings corresponding to the color
values. Both arguments are processed separately, e.g. cpcolor can be a string whereas evalcolor can
be a list or a tuple, or vice versa. A single string value sets the color to the same value. List input allows
customization over the color values. If none provided, a random color will be selected.

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

reset()
Resets the cache.

sample_size
Sample size (for all parametric directions).

Sample size defines the number of points to evaluate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

166 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets sample size

sample_size_u
Sample size for the u-direction.

Sample size defines the number of points to evaluate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of points to evaluate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

sample_size_w
Sample size for the w-direction.

Sample size defines the number of points to evaluate. It also sets the delta_w property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the w-direction

Setter Sets sample size for the w-direction

Type int

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

The following is the list of the features and geometric operations included in the library:

17.1.5 Geometric Operations

This module provides common geometric operations for curves and surfaces. It includes the following operations:

• Knot insertion, removal and refinement

• Curve and surface splitting / Bézier decomposition

17.1. User API 167

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• Tangent, normal and binormal evaluations

• Hodograph curve and surface computations

• Translation, rotation and scaling

Function Reference

geomdl.operations.insert_knot(obj, param, num, **kwargs)
Inserts knots n-times to a spline geometry.

The following code snippet illustrates the usage of this function:

Insert knot u=0.5 to a curve 2 times
operations.insert_knot(curve, [0.5], [2])

Insert knot v=0.25 to a surface 1 time
operations.insert_knot(surface, [None, 0.25], [0, 1])

Insert knots u=0.75, v=0.25 to a surface 2 and 1 times, respectively
operations.insert_knot(surface, [0.75, 0.25], [2, 1])

Insert knot w=0.5 to a volume 1 time
operations.insert_knot(volume, [None, None, 0.5], [0, 0, 1])

Please note that input spline geometry object will always be updated if the knot insertion operation is successful.

Keyword Arguments:

• check_num: enables/disables operation validity checks. Default: True

Parameters

• obj (abstract.SplineGeometry) – spline geometry

• param (list, tuple) – knot(s) to be inserted in [u, v, w] format

• num (list, tuple) – number of knot insertions in [num_u, num_v, num_w] format

Returns updated spline geometry

geomdl.operations.remove_knot(obj, param, num, **kwargs)
Removes knots n-times from a spline geometry.

The following code snippet illustrates the usage of this function:

Remove knot u=0.5 from a curve 2 times
operations.remove_knot(curve, [0.5], [2])

Remove knot v=0.25 from a surface 1 time
operations.remove_knot(surface, [None, 0.25], [0, 1])

Remove knots u=0.75, v=0.25 from a surface 2 and 1 times, respectively
operations.remove_knot(surface, [0.75, 0.25], [2, 1])

Remove knot w=0.5 from a volume 1 time
operations.remove_knot(volume, [None, None, 0.5], [0, 0, 1])

Please note that input spline geometry object will always be updated if the knot removal operation is successful.

Keyword Arguments:

168 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• check_num: enables/disables operation validity checks. Default: True

Parameters

• obj (abstract.SplineGeometry) – spline geometry

• param (list, tuple) – knot(s) to be removed in [u, v, w] format

• num (list, tuple) – number of knot removals in [num_u, num_v, num_w] format

Returns updated spline geometry

geomdl.operations.refine_knotvector(obj, param, **kwargs)
Refines the knot vector(s) of a spline geometry.

The following code snippet illustrates the usage of this function:

Refines the knot vector of a curve
operations.refine_knotvector(curve, [1])

Refines the knot vector on the v-direction of a surface
operations.refine_knotvector(surface, [0, 1])

Refines the both knot vectors of a surface
operations.refine_knotvector(surface, [1, 1])

Refines the knot vector on the w-direction of a volume
operations.refine_knotvector(volume, [0, 0, 1])

The values of param argument can be used to set the knot refinement density. If density is bigger than 1, then
the algorithm finds the middle knots in each internal knot span to increase the number of knots to be refined.

Example: Let the degree is 2 and the knot vector to be refined is [0, 2, 4] with the superfluous knots from
the start and end are removed. Knot vectors with the changing density (d) value will be:

• d = 1, knot vector [0, 1, 1, 2, 2, 3, 3, 4]

• d = 2, knot vector [0, 0.5, 0.5, 1, 1, 1.5, 1.5, 2, 2, 2.5, 2.5, 3, 3, 3.5,
3.5, 4]

The following code snippet illustrates the usage of knot refinement densities:

Refines the knot vector of a curve with density = 3
operations.refine_knotvector(curve, [3])

Refines the knot vectors of a surface with density for
u-dir = 2 and v-dir = 3
operations.refine_knotvector(surface, [2, 3])

Refines only the knot vector on the v-direction of a surface with density = 1
operations.refine_knotvector(surface, [0, 1])

Refines the knot vectors of a volume with density for
u-dir = 1, v-dir = 3 and w-dir = 2
operations.refine_knotvector(volume, [1, 3, 2])

Please refer to helpers.knot_refinement() function for more usage options.

Keyword Arguments:

• check_num: enables/disables operation validity checks. Default: True

17.1. User API 169

NURBS-Python Documentation, Release 5.3.1

Parameters

• obj (abstract.SplineGeometry) – spline geometry

• param (list, tuple) – parametric dimensions to be refined in [u, v, w] format

Returns updated spline geometry

geomdl.operations.add_dimension(obj, **kwargs)
Elevates the spatial dimension of the spline geometry.

If you pass inplace=True keyword argument, the input will be updated. Otherwise, this function does not
change the input but returns a new instance with the updated data.

Parameters obj (abstract.SplineGeometry) – spline geometry

Returns updated spline geometry

Return type abstract.SplineGeometry

geomdl.operations.split_curve(obj, param, **kwargs)
Splits the curve at the input parametric coordinate.

This method splits the curve into two pieces at the given parametric coordinate, generates two different curve
objects and returns them. It does not modify the input curve.

Keyword Arguments:

• find_span_func: FindSpan implementation. Default: helpers.find_span_linear()

• insert_knot_func: knot insertion algorithm implementation. Default: operations.
insert_knot()

Parameters

• obj (abstract.Curve) – Curve to be split

• param (float) – parameter

Returns a list of curve segments

Return type list

geomdl.operations.decompose_curve(obj, **kwargs)
Decomposes the curve into Bezier curve segments of the same degree.

This operation does not modify the input curve, instead it returns the split curve segments.

Keyword Arguments:

• find_span_func: FindSpan implementation. Default: helpers.find_span_linear()

• insert_knot_func: knot insertion algorithm implementation. Default: operations.
insert_knot()

Parameters obj (abstract.Curve) – Curve to be decomposed

Returns a list of Bezier segments

Return type list

geomdl.operations.derivative_curve(obj)
Computes the hodograph (first derivative) curve of the input curve.

170 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

This function constructs the hodograph (first derivative) curve from the input curve by computing the degrees,
knot vectors and the control points of the derivative curve.

Parameters obj (abstract.Curve) – input curve

Returns derivative curve

geomdl.operations.length_curve(obj)
Computes the approximate length of the parametric curve.

Uses the following equation to compute the approximate length:

𝑛−1∑︁
𝑖=0

√︁
𝑃 2
𝑖+1 − 𝑃 2

𝑖

where 𝑛 is number of evaluated curve points and 𝑃 is the n-dimensional point.

Parameters obj (abstract.Curve) – input curve

Returns length

Return type float

geomdl.operations.split_surface_u(obj, param, **kwargs)
Splits the surface at the input parametric coordinate on the u-direction.

This method splits the surface into two pieces at the given parametric coordinate on the u-direction, generates
two different surface objects and returns them. It does not modify the input surface.

Keyword Arguments:

• find_span_func: FindSpan implementation. Default: helpers.find_span_linear()

• insert_knot_func: knot insertion algorithm implementation. Default: operations.
insert_knot()

Parameters

• obj (abstract.Surface) – surface

• param (float) – parameter for the u-direction

Returns a list of surface patches

Return type list

geomdl.operations.split_surface_v(obj, param, **kwargs)
Splits the surface at the input parametric coordinate on the v-direction.

This method splits the surface into two pieces at the given parametric coordinate on the v-direction, generates
two different surface objects and returns them. It does not modify the input surface.

Keyword Arguments:

• find_span_func: FindSpan implementation. Default: helpers.find_span_linear()

• insert_knot_func: knot insertion algorithm implementation. Default: operations.
insert_knot()

Parameters

• obj (abstract.Surface) – surface

• param (float) – parameter for the v-direction

17.1. User API 171

NURBS-Python Documentation, Release 5.3.1

Returns a list of surface patches

Return type list

geomdl.operations.decompose_surface(obj, **kwargs)
Decomposes the surface into Bezier surface patches of the same degree.

This operation does not modify the input surface, instead it returns the surface patches.

Keyword Arguments:

• find_span_func: FindSpan implementation. Default: helpers.find_span_linear()

• insert_knot_func: knot insertion algorithm implementation. Default: operations.
insert_knot()

Parameters obj (abstract.Surface) – surface

Returns a list of Bezier patches

Return type list

geomdl.operations.derivative_surface(obj)
Computes the hodograph (first derivative) surface of the input surface.

This function constructs the hodograph (first derivative) surface from the input surface by computing the degrees,
knot vectors and the control points of the derivative surface.

The return value of this function is a tuple containing the following derivative surfaces in the given order:

• U-derivative surface (derivative taken only on the u-direction)

• V-derivative surface (derivative taken only on the v-direction)

• UV-derivative surface (derivative taken on both the u- and the v-direction)

Parameters obj (abstract.Surface) – input surface

Returns derivative surfaces w.r.t. u, v and both u-v

Return type tuple

geomdl.operations.find_ctrlpts(obj, u, v=None, **kwargs)
Finds the control points involved in the evaluation of the curve/surface point defined by the input parameter(s).

Parameters

• obj (abstract.Curve or abstract.Surface) – curve or surface

• u (float) – parameter (for curve), parameter on the u-direction (for surface)

• v (float) – parameter on the v-direction (for surface only)

Returns control points; 1-dimensional array for curve, 2-dimensional array for surface

Return type list

geomdl.operations.tangent(obj, params, **kwargs)
Evaluates the tangent vector of the curves or surfaces at the input parameter values.

This function is designed to evaluate tangent vectors of the B-Spline and NURBS shapes at single or multiple
parameter positions.

Parameters

• obj (abstract.Curve or abstract.Surface) – input shape

172 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• params (float, list or tuple) – parameters

Returns a list containing “point” and “vector” pairs

Return type tuple

geomdl.operations.normal(obj, params, **kwargs)
Evaluates the normal vector of the curves or surfaces at the input parameter values.

This function is designed to evaluate normal vectors of the B-Spline and NURBS shapes at single or multiple
parameter positions.

Parameters

• obj (abstract.Curve or abstract.Surface) – input geometry

• params (float, list or tuple) – parameters

Returns a list containing “point” and “vector” pairs

Return type tuple

geomdl.operations.translate(obj, vec, **kwargs)
Translates curves, surface or volumes by the input vector.

Keyword Arguments:

• inplace: if False, operation applied to a copy of the object. Default: False

Parameters

• obj (abstract.SplineGeometry or multi.AbstractContainer) – input
geometry

• vec (list, tuple) – translation vector

Returns translated geometry object

geomdl.operations.rotate(obj, angle, **kwargs)
Rotates curves, surfaces or volumes about the chosen axis.

Keyword Arguments:

• axis: rotation axis; x, y, z correspond to 0, 1, 2 respectively. Default: 2

• inplace: if False, operation applied to a copy of the object. Default: False

Parameters

• obj (abstract.SplineGeometry, multi.AbstractGeometry) – input ge-
ometry

• angle (float) – angle of rotation (in degrees)

Returns rotated geometry object

geomdl.operations.scale(obj, multiplier, **kwargs)
Scales curves, surfaces or volumes by the input multiplier.

Keyword Arguments:

• inplace: if False, operation applied to a copy of the object. Default: False

Parameters

17.1. User API 173

NURBS-Python Documentation, Release 5.3.1

• obj (abstract.SplineGeometry, multi.AbstractGeometry) – input ge-
ometry

• multiplier (float) – scaling multiplier

Returns scaled geometry object

geomdl.operations.transpose(surf, **kwargs)
Transposes the input surface(s) by swapping u and v parametric directions.

Keyword Arguments:

• inplace: if False, operation applied to a copy of the object. Default: False

Parameters surf (abstract.Surface, multi.SurfaceContainer) – input surface(s)

Returns transposed surface(s)

geomdl.operations.flip(surf, **kwargs)
Flips the control points grid of the input surface(s).

Keyword Arguments:

• inplace: if False, operation applied to a copy of the object. Default: False

Parameters surf (abstract.Surface, multi.SurfaceContainer) – input surface(s)

Returns flipped surface(s)

17.1.6 Compatibility and Conversion

This module contains conversion operations related to control points, such as flipping arrays and adding weights.

Function Reference

geomdl.compatibility.combine_ctrlpts_weights(ctrlpts, weights=None)
Multiplies control points by the weights to generate weighted control points.

This function is dimension agnostic, i.e. control points can be in any dimension but weights should be 1D.

The weights function parameter can be set to None to let the function generate a weights vector composed of
1.0 values. This feature can be used to convert B-Spline basis to NURBS basis.

Parameters

• ctrlpts (list, tuple) – unweighted control points

• weights (list, tuple or None) – weights vector; if set to None, a weights vector
of 1.0s will be automatically generated

Returns weighted control points

Return type list

geomdl.compatibility.flip_ctrlpts(ctrlpts, size_u, size_v)
Flips a list of 1-dimensional control points from v-row order to u-row order.

u-row order: each row corresponds to a list of u values

v-row order: each row corresponds to a list of v values

Parameters

174 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• ctrlpts (list, tuple) – control points in v-row order

• size_u (int) – size in u-direction

• size_v (int) – size in v-direction

Returns control points in u-row order

Return type list

geomdl.compatibility.flip_ctrlpts2d(ctrlpts2d, size_u=0, size_v=0)
Flips a list of surface 2-D control points from [u][v] to [v][u] order.

Parameters

• ctrlpts2d (list, tuple) – 2-D control points

• size_u (int) – size in U-direction (row length)

• size_v (int) – size in V-direction (column length)

Returns flipped 2-D control points

Return type list

geomdl.compatibility.flip_ctrlpts2d_file(file_in=”, file_out=’ctrlpts_flip.txt’)
Flips u and v directions of a 2D control points file and saves flipped coordinates to a file.

Parameters

• file_in (str) – name of the input file (to be read)

• file_out (str) – name of the output file (to be saved)

Raises IOError – an error occurred reading or writing the file

geomdl.compatibility.flip_ctrlpts_u(ctrlpts, size_u, size_v)
Flips a list of 1-dimensional control points from u-row order to v-row order.

u-row order: each row corresponds to a list of u values

v-row order: each row corresponds to a list of v values

Parameters

• ctrlpts (list, tuple) – control points in u-row order

• size_u (int) – size in u-direction

• size_v (int) – size in v-direction

Returns control points in v-row order

Return type list

geomdl.compatibility.generate_ctrlpts2d_weights(ctrlpts2d)
Generates unweighted control points from weighted ones in 2-D.

This function

1. Takes in 2-D control points list whose coordinates are organized like (x*w, y*w, z*w, w)

2. Converts the input control points list into (x, y, z, w) format

3. Returns the result

Parameters ctrlpts2d (list) – 2-D control points (P)

Returns 2-D weighted control points (Pw)

17.1. User API 175

NURBS-Python Documentation, Release 5.3.1

Return type list

geomdl.compatibility.generate_ctrlpts2d_weights_file(file_in=”,
file_out=’ctrlpts_weights.txt’)

Generates unweighted control points from weighted ones in 2-D.

1. Takes in 2-D control points list whose coordinates are organized like (x*w, y*w, z*w, w)

2. Converts the input control points list into (x, y, z, w) format

3. Saves the result to a file

Parameters

• file_in (str) – name of the input file (to be read)

• file_out (str) – name of the output file (to be saved)

Raises IOError – an error occurred reading or writing the file

geomdl.compatibility.generate_ctrlpts_weights(ctrlpts)
Generates unweighted control points from weighted ones in 1-D.

This function

1. Takes in 1-D control points list whose coordinates are organized in (x*w, y*w, z*w, w) format

2. Converts the input control points list into (x, y, z, w) format

3. Returns the result

Parameters ctrlpts (list) – 1-D control points (P)

Returns 1-D weighted control points (Pw)

Return type list

geomdl.compatibility.generate_ctrlptsw(ctrlpts)
Generates weighted control points from unweighted ones in 1-D.

This function

1. Takes in a 1-D control points list whose coordinates are organized in (x, y, z, w) format

2. converts into (x*w, y*w, z*w, w) format

3. Returns the result

Parameters ctrlpts (list) – 1-D control points (P)

Returns 1-D weighted control points (Pw)

Return type list

geomdl.compatibility.generate_ctrlptsw2d(ctrlpts2d)
Generates weighted control points from unweighted ones in 2-D.

This function

1. Takes in a 2D control points list whose coordinates are organized in (x, y, z, w) format

2. converts into (x*w, y*w, z*w, w) format

3. Returns the result

Therefore, the returned list could be a direct input of the NURBS.Surface class.

176 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Parameters ctrlpts2d (list) – 2-D control points (P)

Returns 2-D weighted control points (Pw)

Return type list

geomdl.compatibility.generate_ctrlptsw2d_file(file_in=”, file_out=’ctrlptsw.txt’)
Generates weighted control points from unweighted ones in 2-D.

This function

1. Takes in a 2-D control points file whose coordinates are organized in (x, y, z, w) format

2. Converts into (x*w, y*w, z*w, w) format

3. Saves the result to a file

Therefore, the resultant file could be a direct input of the NURBS.Surface class.

Parameters

• file_in (str) – name of the input file (to be read)

• file_out (str) – name of the output file (to be saved)

Raises IOError – an error occurred reading or writing the file

geomdl.compatibility.separate_ctrlpts_weights(ctrlptsw)
Divides weighted control points by weights to generate unweighted control points and weights vector.

This function is dimension agnostic, i.e. control points can be in any dimension but the last element of the array
should indicate the weight.

Parameters ctrlptsw (list, tuple) – weighted control points

Returns unweighted control points and weights vector

Return type list

17.1.7 Geometry Converters

convert module provides functions for converting non-rational and rational geometries to each other.

Function Reference

geomdl.convert.bspline_to_nurbs(obj, **kwargs)
Converts non-rational splines to rational ones.

Parameters obj (BSpline.Curve, BSpline.Surface or BSpline.Volume) – non-
rational spline geometry

Returns rational spline geometry

Return type NURBS.Curve, NURBS.Surface or NURBS.Volume

Raises TypeError

geomdl.convert.nurbs_to_bspline(obj, **kwargs)
Converts rational splines to non-rational ones (if possible).

The possibility of converting a rational spline geometry to a non-rational one depends on the weights vector.

Parameters obj (NURBS.Curve, NURBS.Surface or NURBS.Volume) – rational spline
geometry

17.1. User API 177

NURBS-Python Documentation, Release 5.3.1

Returns non-rational spline geometry

Return type BSpline.Curve, BSpline.Surface or BSpline.Volume

Raises TypeError

17.1.8 Geometry Constructors and Extractors

New in version 5.0.

construct module provides functions for constructing and extracting parametric shapes. A surface can be con-
structed from curves and a volume can be constructed from surfaces. Moreover, a surface can be extracted to curves
and a volume can be extracted to surfaces in all parametric directions.

Function Reference

geomdl.construct.construct_surface(direction, *args, **kwargs)
Generates surfaces from curves.

Arguments:

• args: a list of curve instances

Keyword Arguments (optional):

• degree: degree of the 2nd parametric direction

• knotvector: knot vector of the 2nd parametric direction

• rational: flag to generate rational surfaces

Parameters direction (str) – the direction that the input curves lies, i.e. u or v

Returns Surface constructed from the curves on the given parametric direction

geomdl.construct.construct_volume(direction, *args, **kwargs)
Generates volumes from surfaces.

Arguments:

• args: a list of surface instances

Keyword Arguments (optional):

• degree: degree of the 3rd parametric direction

• knotvector: knot vector of the 3rd parametric direction

• rational: flag to generate rational volumes

Parameters direction (str) – the direction that the input surfaces lies, i.e. u, v, w

Returns Volume constructed from the surfaces on the given parametric direction

geomdl.construct.extract_curves(psurf, **kwargs)
Extracts curves from a surface.

The return value is a dict object containing the following keys:

• u: the curves which generate u-direction (or which lie on the v-direction)

• v: the curves which generate v-direction (or which lie on the u-direction)

178 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

As an example; if a curve lies on the u-direction, then its knotvector is equal to surface’s knotvector on the
v-direction and vice versa.

The curve extraction process can be controlled via extract_u and extract_v boolean keyword arguments.

Parameters psurf (abstract.Surface) – input surface

Returns extracted curves

Return type dict

geomdl.construct.extract_isosurface(pvol)
Extracts the largest isosurface from a volume.

The following example illustrates one of the usage scenarios:

1 from geomdl import construct, multi
2 from geomdl.visualization import VisMPL
3

4 # Assuming that "myvol" variable stores your spline volume information
5 isosrf = construct.extract_isosurface(myvol)
6

7 # Create a surface container to store extracted isosurface
8 msurf = multi.SurfaceContainer(isosrf)
9

10 # Set visualization components
11 msurf.vis = VisMPL.VisSurface(VisMPL.VisConfig(ctrlpts=False))
12

13 # Render isosurface
14 msurf.render()

Parameters pvol (abstract.Volume) – input volume

Returns isosurface (as a tuple of surfaces)

Return type tuple

geomdl.construct.extract_surfaces(pvol)
Extracts surfaces from a volume.

Parameters pvol (abstract.Volume) – input volume

Returns extracted surface

Return type dict

17.1.9 Curve and Surface Fitting

New in version 5.0.

fitting module provides functions for interpolating and approximating B-spline curves and surfaces from data
points. Approximation uses least squares algorithm.

Please see the following functions for details:

• interpolate_curve()

• interpolate_surface()

• approximate_curve()

• approximate_surface()

17.1. User API 179

NURBS-Python Documentation, Release 5.3.1

Surface fitting generates control points grid defined in u and v parametric dimensions. Therefore, the input requires
number of data points to be fitted in both parametric dimensions. In other words, size_u and size_v arguments
are used to fit curves of the surface on the corresponding parametric dimension.

Degree of the output spline geometry is important to determine the knot vector(s), compute the basis functions and
build the coefficient matrix, 𝐴. Most of the time, fitting to a quadratic (degree = 2) or a cubic (degree = 3)
B-spline geometry should be good enough.

In the array structure, the data points on the v-direction come the first and u-direction points come. The index of the
data points can be found using the following formula:

𝑖𝑛𝑑𝑒𝑥 = 𝑣 + (𝑢 * 𝑠𝑖𝑧𝑒𝑣)

Function Reference

geomdl.fitting.interpolate_curve(points, degree, **kwargs)
Curve interpolation through the data points.

Please refer to Algorithm A9.1 on The NURBS Book (2nd Edition), pp.369-370 for details.

Keyword Arguments:

• centripetal: activates centripetal parametrization method. Default: False

Parameters

• points (list, tuple) – data points

• degree (int) – degree of the output parametric curve

Returns interpolated B-Spline curve

Return type BSpline.Curve

geomdl.fitting.interpolate_surface(points, size_u, size_v, degree_u, degree_v, **kwargs)
Surface interpolation through the data points.

Please refer to the Algorithm A9.4 on The NURBS Book (2nd Edition), pp.380 for details.

Keyword Arguments:

• centripetal: activates centripetal parametrization method. Default: False

Parameters

• points (list, tuple) – data points

• size_u (int) – number of data points on the u-direction

• size_v (int) – number of data points on the v-direction

• degree_u (int) – degree of the output surface for the u-direction

• degree_v (int) – degree of the output surface for the v-direction

Returns interpolated B-Spline surface

Return type BSpline.Surface

geomdl.fitting.approximate_curve(points, degree, **kwargs)
Curve approximation using least squares method with fixed number of control points.

Please refer to The NURBS Book (2nd Edition), pp.410-413 for details.

180 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Keyword Arguments:

• centripetal: activates centripetal parametrization method. Default: False

• ctrlpts_size: number of control points. Default: len(points) - 1

Parameters

• points (list, tuple) – data points

• degree (int) – degree of the output parametric curve

Returns approximated B-Spline curve

Return type BSpline.Curve

geomdl.fitting.approximate_surface(points, size_u, size_v, degree_u, degree_v, **kwargs)
Surface approximation using least squares method with fixed number of control points.

This algorithm interpolates the corner control points and approximates the remaining control points. Please refer
to Algorithm A9.7 of The NURBS Book (2nd Edition), pp.422-423 for details.

Keyword Arguments:

• centripetal: activates centripetal parametrization method. Default: False

• ctrlpts_size_u: number of control points on the u-direction. Default: size_u - 1

• ctrlpts_size_v: number of control points on the v-direction. Default: size_v - 1

Parameters

• points (list, tuple) – data points

• size_u (int) – number of data points on the u-direction, 𝑟

• size_v (int) – number of data points on the v-direction, 𝑠

• degree_u (int) – degree of the output surface for the u-direction

• degree_v (int) – degree of the output surface for the v-direction

Returns approximated B-Spline surface

Return type BSpline.Surface

17.1.10 Tessellation

The tessellate module provides tessellation algorithms for surfaces. The following example illustrates the usage
scenario of the tessellation algorithms with surfaces.

1 from geomdl import NURBS
2 from geomdl import tessellate
3

4 # Create a surface instance
5 surf = NURBS.Surface()
6

7 # Set tessellation algorithm (you can use another algorithm)
8 surf.tessellator = tessellate.TriangularTessellate()
9

10 # Tessellate surface
11 surf.tessellate()

17.1. User API 181

NURBS-Python Documentation, Release 5.3.1

NURBS-Python uses TriangularTessellate class for surface tessellation by default.

Note: To get better results with the surface trimming, you need to use a relatively smaller evaluation delta or a bigger
sample size value. Recommended evaluation delta is 𝑑 = 0.01.

Class Reference

Abstract Tessellator

class geomdl.tessellate.AbstractTessellate(**kwargs)
Bases: object

Abstract base class for tessellation algorithms.

arguments
Arguments passed to the tessellation function.

This property allows customization of the tessellation algorithm, and mainly designed to allow users to
pass additional arguments to the tessellation function or change the behavior of the algorithm at runtime.
This property can be thought as a way to input and store extra data for the tessellation functionality.

Getter Gets the tessellation arguments (as a dict)

Setter Sets the tessellation arguments (as a dict)

faces
Objects generated after tessellation.

Getter Gets the faces

Type elements.AbstractEntity

is_tessellated()
Checks if vertices and faces are generated.

Returns tessellation status

Return type bool

reset()
Clears stored vertices and faces.

tessellate(points, **kwargs)
Abstract method for the implementation of the tessellation algorithm.

This algorithm should update vertices and faces properties.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters points – points to be tessellated

vertices
Vertex objects generated after tessellation.

Getter Gets the vertices

Type elements.AbstractEntity

182 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Triangular Tessellator

class geomdl.tessellate.TriangularTessellate(**kwargs)
Bases: geomdl.tessellate.AbstractTessellate

Triangular tessellation algorithm for surfaces.

arguments
Arguments passed to the tessellation function.

This property allows customization of the tessellation algorithm, and mainly designed to allow users to
pass additional arguments to the tessellation function or change the behavior of the algorithm at runtime.
This property can be thought as a way to input and store extra data for the tessellation functionality.

Getter Gets the tessellation arguments (as a dict)

Setter Sets the tessellation arguments (as a dict)

faces
Objects generated after tessellation.

Getter Gets the faces

Type elements.AbstractEntity

is_tessellated()
Checks if vertices and faces are generated.

Returns tessellation status

Return type bool

reset()
Clears stored vertices and faces.

tessellate(points, **kwargs)
Applies triangular tessellation.

This function does not check if the points have already been tessellated.

Keyword Arguments:

• size_u: number of points on the u-direction

• size_v: number of points on the v-direction

Parameters points (list, tuple) – array of points

vertices
Vertex objects generated after tessellation.

Getter Gets the vertices

Type elements.AbstractEntity

Trim Tessellator

New in version 5.0.

class geomdl.tessellate.TrimTessellate(**kwargs)
Bases: geomdl.tessellate.AbstractTessellate

Triangular tessellation algorithm for trimmed surfaces.

17.1. User API 183

NURBS-Python Documentation, Release 5.3.1

arguments
Arguments passed to the tessellation function.

This property allows customization of the tessellation algorithm, and mainly designed to allow users to
pass additional arguments to the tessellation function or change the behavior of the algorithm at runtime.
This property can be thought as a way to input and store extra data for the tessellation functionality.

Getter Gets the tessellation arguments (as a dict)

Setter Sets the tessellation arguments (as a dict)

faces
Objects generated after tessellation.

Getter Gets the faces

Type elements.AbstractEntity

is_tessellated()
Checks if vertices and faces are generated.

Returns tessellation status

Return type bool

reset()
Clears stored vertices and faces.

tessellate(points, **kwargs)
Applies triangular tessellation w/ trimming curves.

Keyword Arguments:

• size_u: number of points on the u-direction

• size_v: number of points on the v-direction

Parameters points (list, tuple) – array of points

vertices
Vertex objects generated after tessellation.

Getter Gets the vertices

Type elements.AbstractEntity

Quadrilateral Tessellator

New in version 5.2.

class geomdl.tessellate.QuadTessellate(**kwargs)
Bases: geomdl.tessellate.AbstractTessellate

Quadrilateral tessellation algorithm for surfaces.

arguments
Arguments passed to the tessellation function.

This property allows customization of the tessellation algorithm, and mainly designed to allow users to
pass additional arguments to the tessellation function or change the behavior of the algorithm at runtime.
This property can be thought as a way to input and store extra data for the tessellation functionality.

Getter Gets the tessellation arguments (as a dict)

184 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Setter Sets the tessellation arguments (as a dict)

faces
Objects generated after tessellation.

Getter Gets the faces

Type elements.AbstractEntity

is_tessellated()
Checks if vertices and faces are generated.

Returns tessellation status

Return type bool

reset()
Clears stored vertices and faces.

tessellate(points, **kwargs)
Applies quadrilateral tessellation.

This function does not check if the points have already been tessellated.

Keyword Arguments:

• size_u: number of points on the u-direction

• size_v: number of points on the v-direction

Parameters points (list, tuple) – array of points

vertices
Vertex objects generated after tessellation.

Getter Gets the vertices

Type elements.AbstractEntity

Function Reference

geomdl.tessellate.make_triangle_mesh(points, size_u, size_v, **kwargs)
Generates a triangular mesh from an array of points.

This function generates a triangular mesh for a NURBS or B-Spline surface on its parametric space. The input
is the surface points and the number of points on the parametric dimensions u and v, indicated as row and
column sizes in the function signature. This function should operate correctly if row and column sizes are input
correctly, no matter what the points are v-ordered or u-ordered. Please see the documentation of ctrlpts and
ctrlpts2d properties of the Surface class for more details on point ordering for the surfaces.

This function accepts the following keyword arguments:

• vertex_spacing: Defines the size of the triangles via setting the jump value between points

• trims: List of trim curves passed to the tessellation function

• tessellate_func: Function called for tessellation. Default: tessellate.
surface_tessellate()

• tessellate_args: Arguments passed to the tessellation function (as a dict)

17.1. User API 185

NURBS-Python Documentation, Release 5.3.1

The tessellation function is designed to generate triangles from 4 vertices. It takes 4 Vertex objects, index
values for setting the triangle and vertex IDs and additional parameters as its function arguments. It returns a
tuple of Vertex and Triangle object lists generated from the input vertices. A default triangle generator is
provided as a prototype for implementation in the source code.

The return value of this function is a tuple containing two lists. First one is the list of vertices and the second
one is the list of triangles.

Parameters

• points (list, tuple) – input points

• size_u (int) – number of elements on the u-direction

• size_v (int) – number of elements on the v-direction

Returns a tuple containing lists of vertices and triangles

Return type tuple

geomdl.tessellate.polygon_triangulate(tri_idx, *args)
Triangulates a monotone polygon defined by a list of vertices.

The input vertices must form a convex polygon and must be arranged in counter-clockwise order.

Parameters

• tri_idx (int) – triangle numbering start value

• args (Vertex) – list of Vertex objects

Returns list of Triangle objects

Return type list

geomdl.tessellate.make_quad_mesh(points, size_u, size_v)
Generates a mesh of quadrilateral elements.

Parameters

• points (list, tuple) – list of points

• size_u (int) – number of points on the u-direction (column)

• size_v (int) – number of points on the v-direction (row)

Returns a tuple containing lists of vertices and quads

Return type tuple

Helper Functions

geomdl.tessellate.surface_tessellate(v1, v2, v3, v4, vidx, tidx, trim_curves, tessellate_args)
Triangular tessellation algorithm for surfaces with no trims.

This function can be directly used as an input to make_triangle_mesh() using tessellate_func
keyword argument.

Parameters

• v1 (Vertex) – vertex 1

• v2 (Vertex) – vertex 2

• v3 (Vertex) – vertex 3

• v4 (Vertex) – vertex 4

186 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• vidx (int) – vertex numbering start value

• tidx (int) – triangle numbering start value

• trim_curves – trim curves

• tessellate_args (dict) – tessellation arguments

Type list, tuple

Returns lists of vertex and triangle objects in (vertex_list, triangle_list) format

Type tuple

geomdl.tessellate.surface_trim_tessellate(v1, v2, v3, v4, vidx, tidx, trims, tessellate_args)
Triangular tessellation algorithm for trimmed surfaces.

This function can be directly used as an input to make_triangle_mesh() using tessellate_func
keyword argument.

Parameters

• v1 (Vertex) – vertex 1

• v2 (Vertex) – vertex 2

• v3 (Vertex) – vertex 3

• v4 (Vertex) – vertex 4

• vidx (int) – vertex numbering start value

• tidx (int) – triangle numbering start value

• trims (list, tuple) – trim curves

• tessellate_args (dict) – tessellation arguments

Returns lists of vertex and triangle objects in (vertex_list, triangle_list) format

Type tuple

17.1.11 Trimming

Tessellation

Please refer to tessellate.TrimTessellate for tessellating the surfaces with trims.

Function Reference

Warning: The functions included in the trimming module are still work-in-progress and their functionality can
change or they can be removed from the library in the next releases.

Please contact the author if you encounter any problems.

geomdl.trimming.map_trim_to_geometry(obj, trim_idx=-1, **kwargs)
Generates 3-dimensional mapping of 2-dimensional trimming curves.

Description:

17.1. User API 187

NURBS-Python Documentation, Release 5.3.1

Trimming curves are defined on the parametric space of the surfaces. Therefore, all trimming curves are 2-
dimensional. The coordinates of the trimming curves correspond to (u, v) parameters of the underlying sur-
face geometry. When these (u, v) values are evaluated with respect to the underlying surface geometry, a
3-dimensional representation of the trimming curves is generated.

The resultant 3-dimensional curve is described using freeform.Freeform class. Using the fitting
module, it is possible to generate the B-spline form of the freeform curve.

Remarks:

If trim_idx=-1, the function maps all 2-dimensional trims to their 3-dimensional correspondants.

Parameters

• obj (abstract.SplineGeometry) – spline geometry

• trim_idx (int) – index of the trimming curve in the geometry object

Returns 3-dimensional mapping of trimming curve(s)

Return type freeform.Freeform

geomdl.trimming.fix_multi_trim_curves(obj, **kwargs)
Fixes direction, connectivity and similar issues of the trim curves.

This function works for surface trims in curve containers, i.e. trims consisting of multiple curves.

Keyword Arguments:

• tol: tolerance value for comparing floats. Default: 10e-8

• delta: evaluation delta of the trim curves. Default: 0.05

Parameters obj (abstract.BSplineGeometry, multi.AbstractContainer) – in-
put surface

Returns updated surface

geomdl.trimming.fix_trim_curves(obj)
Fixes direction, connectivity and similar issues of the trim curves.

This function works for surface trim curves consisting of a single curve.

Parameters obj (abstract.Surface) – input surface

17.1.12 Sweeping

Warning: sweeping is a highly experimental module. Please use it with caution.

Function Reference

geomdl.sweeping.sweep_vector(obj, vec, **kwargs)
Sweeps spline geometries along a vector.

This API call generates

• swept surfaces from curves

• swept volumes from surfaces

Parameters

188 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• obj (abstract.SplineGeometry) – spline geometry

• vec (list, tuple) – vector to sweep along

Returns swept geometry

17.1.13 Import and Export Data

This module allows users to export/import NURBS shapes in common CAD exchange formats. The functions starting
with import_ are used for generating B-spline and NURBS objects from the input files. The functions starting with
export_ are used for saving B-spline and NURBS objects as files.

The following functions import/export control points or export evaluated points:

• exchange.import_txt()

• exchange.export_txt()

• exchange.import_csv()

• exchange.export_csv()

The following functions work with single or multiple surfaces:

• exchange.import_obj()

• exchange.export_obj()

• exchange.export_stl()

• exchange.export_off()

• exchange.import_smesh()

• exchange.export_smesh()

The following functions work with single or multiple volumes:

• exchange.import_vmesh()

• exchange.export_vmesh()

The following functions can be used to import/export rational or non-rational spline geometries:

• exchange.import_yaml()

• exchange.export_yaml()

• exchange.import_cfg()

• exchange.export_cfg()

• exchange.import_json()

• exchange.export_json()

The following functions work with single or multiple curves and surfaces:

• exchange.import_3dm()

• exchange.export_3dm()

17.1. User API 189

NURBS-Python Documentation, Release 5.3.1

Function Reference

geomdl.exchange.import_txt(file_name, two_dimensional=False, **kwargs)
Reads control points from a text file and generates a 1-dimensional list of control points.

The following code examples illustrate importing different types of text files for curves and surfaces:

1 # Import curve control points from a text file
2 curve_ctrlpts = exchange.import_txt(file_name="control_points.txt")
3

4 # Import surface control points from a text file (1-dimensional file)
5 surf_ctrlpts = exchange.import_txt(file_name="control_points.txt")
6

7 # Import surface control points from a text file (2-dimensional file)
8 surf_ctrlpts, size_u, size_v = exchange.import_txt(file_name="control_points.txt",

→˓ two_dimensional=True)

If argument jinja2=True is set, then the input file is processed as a Jinja2 template. You can also use the
following convenience template functions which correspond to the given mathematical equations:

• sqrt(x):
√
𝑥

• cubert(x): 3
√
𝑥

• pow(x, y): 𝑥𝑦

You may set the file delimiters using the keyword arguments separator and col_separator, respectively.
separator is the delimiter between the coordinates of the control points. It could be comma 1, 2, 3 or
space 1 2 3 or something else. col_separator is the delimiter between the control points and is only valid
when two_dimensional is True. Assuming that separator is set to space, then col_operator could
be semi-colon 1 2 3; 4 5 6 or pipe 1 2 3| 4 5 6 or comma 1 2 3, 4 5 6 or something else.

The defaults for separator and col_separator are comma (,) and semi-colon (;), respectively.

The following code examples illustrate the usage of the keyword arguments discussed above.

1 # Import curve control points from a text file delimited with space
2 curve_ctrlpts = exchange.import_txt(file_name="control_points.txt", separator=" ")
3

4 # Import surface control points from a text file (2-dimensional file) w/ space
→˓and comma delimiters

5 surf_ctrlpts, size_u, size_v = exchange.import_txt(file_name="control_points.txt",
→˓ two_dimensional=True,

6 separator=" ", col_separator=",
→˓")

Please note that this function does not check whether the user set delimiters to the same value or not.

Parameters

• file_name (str) – file name of the text file

• two_dimensional (bool) – type of the text file

Returns list of control points, if two_dimensional, then also returns size in u- and v-directions

Return type list

Raises GeomdlException – an error occurred reading the file

geomdl.exchange.export_txt(obj, file_name, two_dimensional=False, **kwargs)
Exports control points as a text file.

190 Chapter 17. Core Modules

http://jinja.pocoo.org/

NURBS-Python Documentation, Release 5.3.1

For curves the output is always a list of control points. For surfaces, it is possible to generate a 2-dimensional
control point output file using two_dimensional.

Please see exchange.import_txt() for detailed description of the keyword arguments.

Parameters

• obj (abstract.SplineGeometry) – a spline geometry object

• file_name (str) – file name of the text file to be saved

• two_dimensional (bool) – type of the text file (only works for Surface objects)

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_csv(file_name, **kwargs)
Reads control points from a CSV file and generates a 1-dimensional list of control points.

It is possible to use a different value separator via separator keyword argument. The following code segment
illustrates the usage of separator keyword argument.

1 # By default, import_csv uses 'comma' as the value separator
2 ctrlpts = exchange.import_csv("control_points.csv")
3

4 # Alternatively, it is possible to import a file containing tab-separated values
5 ctrlpts = exchange.import_csv("control_points.csv", separator="\t")

The only difference of this function from exchange.import_txt() is skipping the first line of the input
file which generally contains the column headings.

Parameters file_name (str) – file name of the text file

Returns list of control points

Return type list

Raises GeomdlException – an error occurred reading the file

geomdl.exchange.export_csv(obj, file_name, point_type=’evalpts’, **kwargs)
Exports control points or evaluated points as a CSV file.

Parameters

• obj (abstract.SplineGeometry) – a spline geometry object

• file_name (str) – output file name

• point_type (str) – ctrlpts for control points or evalpts for evaluated points

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_cfg(file_name, **kwargs)
Imports curves and surfaces from files in libconfig format.

Note: Requires libconf package.

Use jinja2=True to activate Jinja2 template processing. Please refer to the documentation for details.

Parameters file_name (str) – name of the input file

Returns a list of rational spline geometries

Return type list

Raises GeomdlException – an error occurred writing the file

17.1. User API 191

https://pypi.org/project/libconf/

NURBS-Python Documentation, Release 5.3.1

geomdl.exchange.export_cfg(obj, file_name)
Exports curves and surfaces in libconfig format.

Note: Requires libconf package.

Libconfig format is also used by the geomdl command-line application as a way to input shape data from the
command line.

Parameters

• obj (abstract.SplineGeometry, multi.AbstractContainer) – input ge-
ometry

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_yaml(file_name, **kwargs)
Imports curves and surfaces from files in YAML format.

Note: Requires ruamel.yaml package.

Use jinja2=True to activate Jinja2 template processing. Please refer to the documentation for details.

Parameters file_name (str) – name of the input file

Returns a list of rational spline geometries

Return type list

Raises GeomdlException – an error occurred reading the file

geomdl.exchange.export_yaml(obj, file_name)
Exports curves and surfaces in YAML format.

Note: Requires ruamel.yaml package.

YAML format is also used by the geomdl command-line application as a way to input shape data from the
command line.

Parameters

• obj (abstract.SplineGeometry, multi.AbstractContainer) – input ge-
ometry

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_json(file_name, **kwargs)
Imports curves and surfaces from files in JSON format.

Use jinja2=True to activate Jinja2 template processing. Please refer to the documentation for details.

Parameters file_name (str) – name of the input file

Returns a list of rational spline geometries

Return type list

Raises GeomdlException – an error occurred reading the file

192 Chapter 17. Core Modules

https://pypi.org/project/libconf/
https://github.com/orbingol/geomdl-cli
https://pypi.org/project/ruamel.yaml/
https://pypi.org/project/ruamel.yaml/
https://github.com/orbingol/geomdl-cli

NURBS-Python Documentation, Release 5.3.1

geomdl.exchange.export_json(obj, file_name)
Exports curves and surfaces in JSON format.

JSON format is also used by the geomdl command-line application as a way to input shape data from the
command line.

Parameters

• obj (abstract.SplineGeometry, multi.AbstractContainer) – input ge-
ometry

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_obj(file_name, **kwargs)
Reads .obj files and generates faces.

Keyword Arguments:

• callback: reference to the function that processes the faces for customized output

The structure of the callback function is shown below:

def my_callback_function(face_list):
"face_list" will be a list of elements.Face class instances
The function should return a list
return list()

Parameters file_name (str) – file name

Returns output of the callback function (default is a list of faces)

Return type list

geomdl.exchange.export_obj(surface, file_name, **kwargs)
Exports surface(s) as a .obj file.

Keyword Arguments:

• vertex_spacing: size of the triangle edge in terms of surface points sampled. Default: 2

• vertex_normals: if True, then computes vertex normals. Default: False

• parametric_vertices: if True, then adds parameter space vertices. Default: False

• update_delta: use multi-surface evaluation delta for all surfaces. Default: True

Parameters

• surface (abstract.Surface or multi.SurfaceContainer) – surface or
surfaces to be saved

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.export_stl(surface, file_name, **kwargs)
Exports surface(s) as a .stl file in plain text or binary format.

Keyword Arguments:

• binary: flag to generate a binary STL file. Default: True

• vertex_spacing: size of the triangle edge in terms of points sampled on the surface. Default: 1

17.1. User API 193

https://github.com/orbingol/geomdl-cli

NURBS-Python Documentation, Release 5.3.1

• update_delta: use multi-surface evaluation delta for all surfaces. Default: True

Parameters

• surface (abstract.Surface or multi.SurfaceContainer) – surface or
surfaces to be saved

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.export_off(surface, file_name, **kwargs)
Exports surface(s) as a .off file.

Keyword Arguments:

• vertex_spacing: size of the triangle edge in terms of points sampled on the surface. Default: 1

• update_delta: use multi-surface evaluation delta for all surfaces. Default: True

Parameters

• surface (abstract.Surface or multi.SurfaceContainer) – surface or
surfaces to be saved

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_smesh(file)
Generates NURBS surface(s) from surface mesh (smesh) file(s).

smesh files are some text files which contain a set of NURBS surfaces. Each file in the set corresponds to
one NURBS surface. Most of the time, you receive multiple smesh files corresponding to an complete object
composed of several NURBS surfaces. The files have the extensions of txt or dat and they are named as

• smesh.X.Y.txt

• smesh.X.dat

where X and Y correspond to some integer value which defines the set the surface belongs to and part number
of the surface inside the complete object.

Parameters file (str) – path to a directory containing mesh files or a single mesh file

Returns list of NURBS surfaces

Return type list

Raises GeomdlException – an error occurred reading the file

geomdl.exchange.export_smesh(surface, file_name, **kwargs)
Exports surface(s) as surface mesh (smesh) files.

Please see import_smesh() for details on the file format.

Parameters

• surface (abstract.Surface or multi.SurfaceContainer) – surface(s) to
be exported

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

194 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

geomdl.exchange.import_vmesh(file)
Imports NURBS volume(s) from volume mesh (vmesh) file(s).

Parameters file (str) – path to a directory containing mesh files or a single mesh file

Returns list of NURBS volumes

Return type list

Raises GeomdlException – an error occurred reading the file

geomdl.exchange.export_vmesh(volume, file_name, **kwargs)
Exports volume(s) as volume mesh (vmesh) files.

Parameters

• volume (abstract.Volume) – volume(s) to be exported

• file_name (str) – name of the output file

Raises GeomdlException – an error occurred writing the file

geomdl.exchange.import_3dm(file_name, **kwargs)
Imports curves and surfaces from Rhinoceros/OpenNURBS .3dm files.

Deprecated since version 5.2.2: rw3dm Python module is replaced by on2json. It can be used to convert
.3dm files to geomdl JSON format. Please refer to https://github.com/orbingol/rw3dm for more details.

Parameters file_name (str) – input file name

geomdl.exchange.export_3dm(obj, file_name, **kwargs)
Exports NURBS curves and surfaces to Rhinoceros/OpenNURBS .3dm files.

Deprecated since version 5.2.2: rw3dm Python module is replaced by json2on. It can be used to convert
geomdl JSON format to .3dm files. Please refer to https://github.com/orbingol/rw3dm for more details.

Parameters

• obj (abstract.Curve, abstract.Surface, multi.CurveContainer,
multi.SurfaceContainer) – curves/surfaces to be exported

• file_name (str) – file name

VTK Support

The following functions export control points and evaluated points as VTK files (in legacy format).

geomdl.exchange_vtk.export_polydata(obj, file_name, **kwargs)
Exports control points or evaluated points in VTK Polydata format.

Please see the following document for details: http://www.vtk.org/VTK/img/file-formats.pdf

Keyword Arguments:

• point_type: ctrlpts for control points or evalpts for evaluated points

• tessellate: tessellates the points (works only for surfaces)

Parameters

• obj (abstract.SplineGeometry, multi.AbstractContainer) – geometry
object

• file_name (str) – output file name

Raises GeomdlException – an error occurred writing the file

17.1. User API 195

https://github.com/orbingol/rw3dm
https://github.com/orbingol/rw3dm
http://www.vtk.org/VTK/img/file-formats.pdf

NURBS-Python Documentation, Release 5.3.1

17.2 Geometry Generators

The following list contains the geometry generators/managers included in the library:

17.2.1 Knot Vector Generator

The knotvector module provides utility functions related to knot vector generation and validation.

Function Reference

geomdl.knotvector.generate(degree, num_ctrlpts, **kwargs)
Generates an equally spaced knot vector.

It uses the following equality to generate knot vector: 𝑚 = 𝑛+ 𝑝+ 1

where;

• 𝑝, degree

• 𝑛+ 1, number of control points

• 𝑚+ 1, number of knots

Keyword Arguments:

• clamped: Flag to choose from clamped or unclamped knot vector options. Default: True

Parameters

• degree (int) – degree

• num_ctrlpts (int) – number of control points

Returns knot vector

Return type list

geomdl.knotvector.normalize(knot_vector, decimals=18)
Normalizes the input knot vector to [0, 1] domain.

Parameters

• knot_vector (list, tuple) – knot vector to be normalized

• decimals (int) – rounding number

Returns normalized knot vector

Return type list

geomdl.knotvector.check(degree, knot_vector, num_ctrlpts)
Checks the validity of the input knot vector.

Please refer to The NURBS Book (2nd Edition), p.50 for details.

Parameters

• degree (int) – degree of the curve or the surface

• knot_vector (list, tuple) – knot vector to be checked

• num_ctrlpts (int) – number of control points

196 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns True if the knot vector is valid, False otherwise

Return type bool

17.2.2 Control Points Manager

The control_points module provides helper functions for managing control points. It is a better alternative to
the compatibility module for managing control points. Please refer to the following class references for more details.

• control_points.CurveManager

• control_points.SurfaceManager

• control_points.VolumeManager

Class Reference

class geomdl.control_points.AbstractManager(*args, **kwargs)
Bases: object

Abstract base class for control points manager classes.

Control points manager class provides an easy way to set control points without knowing the internal data
structure of the geometry classes. The manager class is initialized with the number of control points in all
parametric dimensions.

All classes extending this class should implement the following methods:

• find_index

This class provides the following properties:

• ctrlpts

This class provides the following methods:

• get_ctrlpt()

• set_ctrlpt()

• get_ptdata()

• set_ptdata()

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

find_index(*args)
Finds the array index from the given parametric positions.

Note: This is an abstract method and it must be implemented in the subclass.

get_ctrlpt(*args)
Gets the control point from the given location in the array.

17.2. Geometry Generators 197

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

get_ptdata(dkey, *args)
Gets the data attached to the control point.

Parameters

• dkey – key of the attachment dictionary

• dkey – str

reset()
Resets/initializes the internal control points array.

set_ctrlpt(pt, *args)
Puts the control point to the given location in the array.

Parameters pt (list, tuple) – control point

set_ptdata(adct, *args)
Attaches the data to the control point.

Parameters

• adct – attachment dictionary

• adct – dict

class geomdl.control_points.CurveManager(*args, **kwargs)
Bases: geomdl.control_points.AbstractManager

Curve control points manager.

Control points manager class provides an easy way to set control points without knowing the internal data
structure of the geometry classes. The manager class is initialized with the number of control points in all
parametric dimensions.

B-spline curves are defined in one parametric dimension. Therefore, this manager class should be initialized
with a single integer value.

Assuming that the curve has 10 control points
manager = CurveManager(10)

Getting the control points:

Number of control points in all parametric dimensions
size_u = spline.ctrlpts_size_u

Generate control points manager
cpt_manager = control_points.SurfaceManager(size_u)
cpt_manager.ctrlpts = spline.ctrlpts

Control points array to be used externally
control_points = []

Get control points from the spline geometry
for u in range(size_u):

pt = cpt_manager.get_ctrlpt(u)
control_points.append(pt)

Setting the control points:

Number of control points in all parametric dimensions
size_u = 5

(continues on next page)

198 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

Create control points manager
points = control_points.SurfaceManager(size_u)

Set control points
for u in range(size_u):

'pt' is the control point, e.g. [10, 15, 12]
points.set_ctrlpt(pt, u, v)

Create spline geometry
curve = BSpline.Curve()

Set control points
curve.ctrlpts = points.ctrlpts

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

find_index(*args)
Finds the array index from the given parametric positions.

Note: This is an abstract method and it must be implemented in the subclass.

get_ctrlpt(*args)
Gets the control point from the given location in the array.

get_ptdata(dkey, *args)
Gets the data attached to the control point.

Parameters

• dkey – key of the attachment dictionary

• dkey – str

reset()
Resets/initializes the internal control points array.

set_ctrlpt(pt, *args)
Puts the control point to the given location in the array.

Parameters pt (list, tuple) – control point

set_ptdata(adct, *args)
Attaches the data to the control point.

Parameters

• adct – attachment dictionary

• adct – dict

class geomdl.control_points.SurfaceManager(*args, **kwargs)
Bases: geomdl.control_points.AbstractManager

17.2. Geometry Generators 199

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Surface control points manager.

Control points manager class provides an easy way to set control points without knowing the internal data
structure of the geometry classes. The manager class is initialized with the number of control points in all
parametric dimensions.

B-spline surfaces are defined in one parametric dimension. Therefore, this manager class should be initialized
with two integer values.

Assuming that the surface has size_u = 5 and size_v = 7 control points
manager = SurfaceManager(5, 7)

Getting the control points:

Number of control points in all parametric dimensions
size_u = spline.ctrlpts_size_u
size_v = spline.ctrlpts_size_v

Generate control points manager
cpt_manager = control_points.SurfaceManager(size_u, size_v)
cpt_manager.ctrlpts = spline.ctrlpts

Control points array to be used externally
control_points = []

Get control points from the spline geometry
for u in range(size_u):

for v in range(size_v):
pt = cpt_manager.get_ctrlpt(u, v)
control_points.append(pt)

Setting the control points:

Number of control points in all parametric dimensions
size_u = 5
size_v = 3

Create control points manager
points = control_points.SurfaceManager(size_u, size_v)

Set control points
for u in range(size_u):

for v in range(size_v):
'pt' is the control point, e.g. [10, 15, 12]
points.set_ctrlpt(pt, u, v)

Create spline geometry
surf = BSpline.Surface()

Set control points
surf.ctrlpts = points.ctrlpts

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

200 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

find_index(*args)
Finds the array index from the given parametric positions.

Note: This is an abstract method and it must be implemented in the subclass.

get_ctrlpt(*args)
Gets the control point from the given location in the array.

get_ptdata(dkey, *args)
Gets the data attached to the control point.

Parameters

• dkey – key of the attachment dictionary

• dkey – str

reset()
Resets/initializes the internal control points array.

set_ctrlpt(pt, *args)
Puts the control point to the given location in the array.

Parameters pt (list, tuple) – control point

set_ptdata(adct, *args)
Attaches the data to the control point.

Parameters

• adct – attachment dictionary

• adct – dict

class geomdl.control_points.VolumeManager(*args, **kwargs)
Bases: geomdl.control_points.AbstractManager

Volume control points manager.

Control points manager class provides an easy way to set control points without knowing the internal data
structure of the geometry classes. The manager class is initialized with the number of control points in all
parametric dimensions.

B-spline volumes are defined in one parametric dimension. Therefore, this manager class should be initialized
with there integer values.

Assuming that the volume has size_u = 5, size_v = 12 and size_w = 3 control
→˓points
manager = VolumeManager(5, 12, 3)

Gettting the control points:

Number of control points in all parametric dimensions
size_u = spline.ctrlpts_size_u
size_v = spline.ctrlpts_size_v
size_w = spline.ctrlpts_size_w

Generate control points manager
cpt_manager = control_points.SurfaceManager(size_u, size_v, size_w)
cpt_manager.ctrlpts = spline.ctrlpts

(continues on next page)

17.2. Geometry Generators 201

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

Control points array to be used externally
control_points = []

Get control points from the spline geometry
for u in range(size_u):

for v in range(size_v):
for w in range(size_w):

pt = cpt_manager.get_ctrlpt(u, v, w)
control_points.append(pt)

Setting the control points:

Number of control points in all parametric dimensions
size_u = 5
size_v = 3
size_w = 2

Create control points manager
points = control_points.VolumeManager(size_u, size_v, size_w)

Set control points
for u in range(size_u):

for v in range(size_v):
for w in range(size_w):

'pt' is the control point, e.g. [10, 15, 12]
points.set_ctrlpt(pt, u, v, w)

Create spline geometry
volume = BSpline.Volume()

Set control points
volume.ctrlpts = points.ctrlpts

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

find_index(*args)
Finds the array index from the given parametric positions.

Note: This is an abstract method and it must be implemented in the subclass.

get_ctrlpt(*args)
Gets the control point from the given location in the array.

get_ptdata(dkey, *args)
Gets the data attached to the control point.

Parameters

• dkey – key of the attachment dictionary

• dkey – str

202 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

reset()
Resets/initializes the internal control points array.

set_ctrlpt(pt, *args)
Puts the control point to the given location in the array.

Parameters pt (list, tuple) – control point

set_ptdata(adct, *args)
Attaches the data to the control point.

Parameters

• adct – attachment dictionary

• adct – dict

17.2.3 Surface Generator

CPGen module allows users to generate control points grids as an input to BSpline.Surface and NURBS.
Surface classes. This module is designed to enable more testing cases in a very simple way and it doesn’t have
the capabilities of a fully-featured grid generator, but it should be enough to be used side by side with BSpline and
NURBS modules.

CPGen.Grid class provides an easy way to generate control point grids for use with BSpline.Surface class
and CPGen.GridWeighted does the same for NURBS.Surface class.

Grid

class geomdl.CPGen.Grid(size_x, size_y, **kwargs)
Bases: object

Simple control points grid generator to use with non-rational surfaces.

This class stores grid points in [x, y, z] format and the grid (control) points can be retrieved from the grid
attribute. The z-coordinate of the control points can be set via the keyword argument z_valuewhile initializing
the class.

Parameters

• size_x (float) – width of the grid

• size_y (float) – height of the grid

bumps(num_bumps, **kwargs)
Generates arbitrary bumps (i.e. hills) on the 2-dimensional grid.

This method generates hills on the grid defined by the num_bumps argument. It is possible to control the
z-value using bump_height argument. bump_height can be a positive or negative numeric value or it can
be a list of numeric values.

Please note that, not all grids can be modified to have num_bumps number of bumps. Therefore, this
function uses a brute-force algorithm to determine whether the bumps can be generated or not. For in-
stance:

test_grid = Grid(5, 10) # generates a 5x10 rectangle
test_grid.generate(4, 4) # splits the rectangle into 2x2 pieces
test_grid.bumps(100) # impossible, it will return an error message
test_grid.bumps(1) # You will get a bump at the center of the generated grid

17.2. Geometry Generators 203

NURBS-Python Documentation, Release 5.3.1

This method accepts the following keyword arguments:

• bump_height: z-value of the generated bumps on the grid. Default: 5.0

• base_extent: extension of the hill base from its center in terms of grid points. Default: 2

• base_adjust: padding between the bases of the hills. Default: 0

Parameters num_bumps (int) – number of bumps (i.e. hills) to be generated on the 2D grid

generate(num_u, num_v)
Generates grid using the input division parameters.

Parameters

• num_u (int) – number of divisions in x-direction

• num_v (int) – number of divisions in y-direction

grid
Grid points.

Please refer to the wiki for details on using this class member.

Getter Gets the 2-dimensional list of points in [u][v] format

reset()
Resets the grid.

Weighted Grid

class geomdl.CPGen.GridWeighted(size_x, size_y, **kwargs)
Bases: geomdl.CPGen.Grid

Simple control points grid generator to use with rational surfaces.

This class stores grid points in [x*w, y*w, z*w, w] format and the grid (control) points can be retrieved from the
grid attribute. The z-coordinate of the control points can be set via the keyword argument z_value while
initializing the class.

Parameters

• size_x (float) – width of the grid

• size_y (float) – height of the grid

bumps(num_bumps, **kwargs)
Generates arbitrary bumps (i.e. hills) on the 2-dimensional grid.

This method generates hills on the grid defined by the num_bumps argument. It is possible to control the
z-value using bump_height argument. bump_height can be a positive or negative numeric value or it can
be a list of numeric values.

Please note that, not all grids can be modified to have num_bumps number of bumps. Therefore, this
function uses a brute-force algorithm to determine whether the bumps can be generated or not. For in-
stance:

test_grid = Grid(5, 10) # generates a 5x10 rectangle
test_grid.generate(4, 4) # splits the rectangle into 2x2 pieces
test_grid.bumps(100) # impossible, it will return an error message
test_grid.bumps(1) # You will get a bump at the center of the generated grid

This method accepts the following keyword arguments:

204 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• bump_height: z-value of the generated bumps on the grid. Default: 5.0

• base_extent: extension of the hill base from its center in terms of grid points. Default: 2

• base_adjust: padding between the bases of the hills. Default: 0

Parameters num_bumps (int) – number of bumps (i.e. hills) to be generated on the 2D grid

generate(num_u, num_v)
Generates grid using the input division parameters.

Parameters

• num_u (int) – number of divisions in x-direction

• num_v (int) – number of divisions in y-direction

grid
Weighted grid points.

Please refer to the wiki for details on using this class member.

Getter Gets the 2-dimensional list of weighted points in [u][v] format

reset()
Resets the grid.

weight
Weight (w) component of the grid points.

The input can be a single int or a float value, then all weights will be set to the same value.

Please refer to the wiki for details on using this class member.

Getter Gets the weights vector

Setter Sets the weights vector

17.3 Advanced API

The following list contains the modules for advanced use:

17.3.1 Geometry Base

abstract module provides base classes for parametric curves, surfaces and volumes contained in this library and
therefore, it provides an easy way to extend the library in the most proper way.

17.3. Advanced API 205

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Inheritance Diagram

geomdl.abstract.Curve

geomdl.abstract.SplineGeometry geomdl.abstract.Surface

geomdl.abstract.Volume

geomdl.abstract.GeomdlBase geomdl.abstract.Geometry

Abstract Curve

class geomdl.abstract.Curve(**kwargs)
Bases: geomdl.abstract.SplineGeometry

Abstract base class for defining spline curves.

Curve ABC is inherited from abc.ABCMeta class which is included in Python standard library by default. Due
to differences between Python 2 and 3 on defining a metaclass, the compatibility module six is employed.
Using six to set metaclass allows users to use the abstract classes in a correct way.

The abstract base classes in this module are implemented using a feature called Python Properties. This feature
allows users to use some of the functions as if they are class fields. You can also consider properties as a
pythonic way to set getters and setters. You will see “getter” and “setter” descriptions on the documentation of
these properties.

The Curve ABC allows users to set the FindSpan function to be used in evaluations with find_span_func
keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of
the FindSpan function in the helpers module. You may also implement and use your own FindSpan function.
Please see the helpers module for details.

Code segment below illustrates a possible implementation of Curve abstract base class:

1 from geomdl import abstract
2

3 class MyCurveClass(abstract.Curve):
4 def __init__(self, **kwargs):
5 super(MyCurveClass, self).__init__(**kwargs)
6 # Add your constructor code here
7

8 def evaluate(self, **kwargs):
9 # Implement this function

10 pass
11

12 def evaluate_single(self, uv):
13 # Implement this function
14 pass
15

16 def evaluate_list(self, uv_list):
17 # Implement this function
18 pass
19

20 def derivatives(self, u, v, order, **kwargs):

(continues on next page)

206 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

21 # Implement this function
22 pass

The properties and functions defined in the abstract base class will be automatically available in the subclasses.

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

• normalize_kv: if True, knot vector(s) will be normalized to [0,1] domain. Default: True

• find_span_func: default knot span finding algorithm. Default: helpers.
find_span_linear()

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

17.3. Advanced API 207

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

degree
Degree.

Please refer to the wiki for details on using this class member.

Getter Gets the degree

Setter Sets the degree

Type int

delta
Evaluation delta.

Evaluation delta corresponds to the step size while evaluate function iterates on the knot vector to
generate curve points. Decreasing step size results in generation of more curve points. Therefore; smaller
the delta value, smoother the curve.

The following figure illustrates the working principles of the delta property:

[𝑢𝑠𝑡𝑎𝑟𝑡, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets the delta value

Setter Sets the delta value

Type float

derivatives(u, order, **kwargs)
Evaluates the derivatives of the curve at parameter u.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters

• u (float) – parameter (u)

• order (int) – derivative order

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

208 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the curve.

Note: This is an abstract method and it must be implemented in the subclass.

evaluate_list(param_list)
Evaluates the curve for an input range of parameters.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param_list – array of parameters

evaluate_single(param)
Evaluates the curve at the given parameter.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param – parameter (u)

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

knotvector
Knot vector.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets the knot vector

17.3. Advanced API 209

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets the knot vector

Type list

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order
Order.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the order

Setter Sets the order

Type int

210 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

render(**kwargs)
Renders the curve using the visualization component

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points polygon

• evalcolor: sets the color of the curve

• bboxcolor: sets the color of the bounding box

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

plot argument is useful when you would like to work on the command line without any window context.
If plot flag is False, this method saves the plot as an image file (.png file where possible) and disables
plot window popping out. If you don’t provide a file name, the name of the image file will be pulled from
the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

(continues on next page)

17.3. Advanced API 211

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

reverse()
Reverses the curve

sample_size
Sample size.

Sample size defines the number of evaluated points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size

Setter Sets sample size

Type int

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters ctrlpts (list) – input control points as a list of coordinates

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

212 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

Abstract Surface

class geomdl.abstract.Surface(**kwargs)
Bases: geomdl.abstract.SplineGeometry

Abstract base class for defining spline surfaces.

Surface ABC is inherited from abc.ABCMeta class which is included in Python standard library by default.
Due to differences between Python 2 and 3 on defining a metaclass, the compatibility module six is employed.
Using six to set metaclass allows users to use the abstract classes in a correct way.

The abstract base classes in this module are implemented using a feature called Python Properties. This feature
allows users to use some of the functions as if they are class fields. You can also consider properties as a
pythonic way to set getters and setters. You will see “getter” and “setter” descriptions on the documentation of
these properties.

The Surface ABC allows users to set the FindSpan function to be used in evaluations with find_span_func
keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of
the FindSpan function in the helpers module. You may also implement and use your own FindSpan function.
Please see the helpers module for details.

Code segment below illustrates a possible implementation of Surface abstract base class:

1 from geomdl import abstract
2

3 class MySurfaceClass(abstract.Surface):
4 def __init__(self, **kwargs):
5 super(MySurfaceClass, self).__init__(**kwargs)
6 # Add your constructor code here
7

8 def evaluate(self, **kwargs):
9 # Implement this function

10 pass
11

12 def evaluate_single(self, uv):
13 # Implement this function
14 pass
15

16 def evaluate_list(self, uv_list):
17 # Implement this function
18 pass
19

20 def derivatives(self, u, v, order, **kwargs):

(continues on next page)

17.3. Advanced API 213

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

21 # Implement this function
22 pass

The properties and functions defined in the abstract base class will be automatically available in the subclasses.

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

• normalize_kv: if True, knot vector(s) will be normalized to [0,1] domain. Default: True

• find_span_func: default knot span finding algorithm. Default: helpers.
find_span_linear()

add_trim(trim)
Adds a trim to the surface.

A trim is a 2-dimensional curve defined on the parametric domain of the surface. Therefore, x-coordinate
of the trimming curve corresponds to u parametric direction of the surfaceand y-coordinate of the trimming
curve corresponds to v parametric direction of the surface.

trims uses this method to add trims to the surface.

Parameters trim (abstract.Geometry) – surface trimming curve

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points.

Note: The v index varies first. That is, a row of v control points for the first u value is found first. Then,
the row of v control points for the next u value.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

214 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points on the v-direction

Setter Sets number of control points on the v-direction

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u- and v-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

delta
Evaluation delta for both u- and v-directions.

17.3. Advanced API 215

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u- and v-directions

Setter Sets evaluation delta for both u- and v-directions

Type float

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

derivatives(u, v, order, **kwargs)
Evaluates the derivatives of the parametric surface at parameter (u, v).

Note: This is an abstract method and it must be implemented in the subclass.

Parameters

• u (float) – parameter on the u-direction

216 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• v (float) – parameter on the v-direction

• order (int) – derivative order

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the parametric surface.

Note: This is an abstract method and it must be implemented in the subclass.

evaluate_list(param_list)
Evaluates the parametric surface for an input range of (u, v) parameters.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param_list – array of parameters (u, v)

evaluate_single(param)
Evaluates the parametric surface at the given (u, v) parameter.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param – parameter (u, v)

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

17.3. Advanced API 217

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

faces
Faces (triangles, quads, etc.) generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the faces

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

knotvector
Knot vector for u- and v-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

Type list

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

218 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets order for the u-direction

Setter Sets order for the u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets surface order for the v-direction

Setter Sets surface order for the v-direction

Type int

17.3. Advanced API 219

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

render(**kwargs)
Renders the surface using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points grid

• evalcolor: sets the color of the surface

• trimcolor: sets the color of the trim curves

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• extras: adds line plots to the figure. Default: None

• colormap: sets the colormap of the surface

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),

(continues on next page)

220 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Please note that colormap argument can only work with visualization classes that support colormaps.
As an example, please see VisMPL.VisSurfTriangle() class documentation. This method expects
a single colormap input.

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

• ctrlpts if True, then resets control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u- and v-directions

Setter Sets sample size for both u- and v-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of surface points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of surface points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

17.3. Advanced API 221

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type int

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Note: The v index varies first. That is, a row of v control points for the first u value is found first. Then,
the row of v control points for the next u value.

Parameters

• ctrlpts (list) – input control points as a list of coordinates

• args (tuple[int, int]) – number of control points corresponding to each paramet-
ric dimension

tessellate(**kwargs)
Tessellates the surface.

Keyword arguments are directly passed to the tessellation component.

tessellator
Tessellation component.

Please refer to the wiki for details on using this class member.

Getter Gets the tessellation component

Setter Sets the tessellation component

trims
Curves for trimming the surface.

Surface trims are 2-dimensional curves which are introduced on the parametric space of the surfaces. Trim
curves can be a spline curve, an analytic curve or a 2-dimensional freeform shape. To visualize the trimmed
surfaces, you need to use a tessellator that supports trimming. The following code snippet illustrates chang-
ing the default surface tessellator to the trimmed surface tessellator, tessellate.TrimTessellate.

1 from geomdl import tessellate
2

3 # Assuming that "surf" variable stores the surface instance
4 surf.tessellator = tessellate.TrimTessellate()

In addition, using trims initialization argument of the visualization classes, trim curves can be visualized
together with their underlying surfaces. Please refer to the visualization configuration class initialization
arguments for more details.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim curves

Setter Sets the array of trim curves

type
Geometry type

Please refer to the wiki for details on using this class member.

222 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the geometry type

Type str

vertices
Vertices generated by the tessellation operation.

If the tessellation component is set to None, the result will be an empty list.

Getter Gets the vertices

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

Abstract Volume

class geomdl.abstract.Volume(**kwargs)
Bases: geomdl.abstract.SplineGeometry

Abstract base class for defining spline volumes.

Volume ABC is inherited from abc.ABCMeta class which is included in Python standard library by default.
Due to differences between Python 2 and 3 on defining a metaclass, the compatibility module six is employed.
Using six to set metaclass allows users to use the abstract classes in a correct way.

The abstract base classes in this module are implemented using a feature called Python Properties. This feature
allows users to use some of the functions as if they are class fields. You can also consider properties as a
pythonic way to set getters and setters. You will see “getter” and “setter” descriptions on the documentation of
these properties.

The Volume ABC allows users to set the FindSpan function to be used in evaluations with find_span_func
keyword as an input to the class constructor. NURBS-Python includes a binary and a linear search variation of
the FindSpan function in the helpers module. You may also implement and use your own FindSpan function.
Please see the helpers module for details.

Code segment below illustrates a possible implementation of Volume abstract base class:

1 from geomdl import abstract
2

3 class MyVolumeClass(abstract.Volume):
4 def __init__(self, **kwargs):

(continues on next page)

17.3. Advanced API 223

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

5 super(MyVolumeClass, self).__init__(**kwargs)
6 # Add your constructor code here
7

8 def evaluate(self, **kwargs):
9 # Implement this function

10 pass
11

12 def evaluate_single(self, uvw):
13 # Implement this function
14 pass
15

16 def evaluate_list(self, uvw_list):
17 # Implement this function
18 pass

The properties and functions defined in the abstract base class will be automatically available in the subclasses.

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

• normalize_kv: if True, knot vector(s) will be normalized to [0,1] domain. Default: True

• find_span_func: default knot span finding algorithm. Default: helpers.
find_span_linear()

add_trim(trim)
Adds a trim to the volume.

trims uses this method to add trims to the volume.

Parameters trim (abstract.Surface) – trimming surface

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
1-dimensional array of control points.

224 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

ctrlpts_size_u
Number of control points for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the u-direction

Setter Sets number of control points for the u-direction

ctrlpts_size_v
Number of control points for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the v-direction

Setter Sets number of control points for the v-direction

ctrlpts_size_w
Number of control points for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets number of control points for the w-direction

Setter Sets number of control points for the w-direction

data
Returns a dict which contains the geometry data.

Please refer to the wiki for details on using this class member.

degree
Degree for u-, v- and w-directions

Getter Gets the degree

Setter Sets the degree

Type list

degree_u
Degree for the u-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the u-direction

Setter Sets degree for the u-direction

Type int

17.3. Advanced API 225

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

degree_v
Degree for the v-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the v-direction

Setter Sets degree for the v-direction

Type int

degree_w
Degree for the w-direction.

Please refer to the wiki for details on using this class member.

Getter Gets degree for the w-direction

Setter Sets degree for the w-direction

Type int

delta
Evaluation delta for u-, v- and w-directions.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta and sample_size properties correspond to the same variable with different
descriptions. Therefore, setting delta will also set sample_size.

The following figure illustrates the working principles of the delta property:

[𝑢0, 𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿, (𝑢𝑠𝑡𝑎𝑟𝑡 + 𝛿) + 𝛿, . . . , 𝑢𝑒𝑛𝑑]

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta as a tuple of values corresponding to u-, v- and w-directions

Setter Sets evaluation delta for u-, v- and w-directions

Type float

delta_u
Evaluation delta for the u-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_u and sample_size_u properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_u will also set sample_size_u.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the u-direction

Setter Sets evaluation delta for the u-direction

Type float

delta_v
Evaluation delta for the v-direction.

226 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_v and sample_size_v properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_v will also set sample_size_v.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the v-direction

Setter Sets evaluation delta for the v-direction

Type float

delta_w
Evaluation delta for the w-direction.

Evaluation delta corresponds to the step size while evaluate() function iterates on the knot vector to
generate surface points. Decreasing step size results in generation of more surface points. Therefore;
smaller the delta value, smoother the surface.

Please note that delta_w and sample_size_w properties correspond to the same variable with differ-
ent descriptions. Therefore, setting delta_w will also set sample_size_w.

Please refer to the wiki for details on using this class member.

Getter Gets evaluation delta for the w-direction

Setter Sets evaluation delta for the w-direction

Type float

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Evaluates the parametric volume.

Note: This is an abstract method and it must be implemented in the subclass.

17.3. Advanced API 227

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evaluate_list(param_list)
Evaluates the parametric volume for an input range of (u, v, w) parameter pairs.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param_list – array of parameter pairs (u, v, w)

evaluate_single(param)
Evaluates the parametric surface at the given (u, v, w) parameter.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters param – parameter pair (u, v, w)

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

knotvector
Knot vector for u-, v- and w-directions

Getter Gets the knot vector

Setter Sets the knot vector

Type list

knotvector_u
Knot vector for the u-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the u-direction

Setter Sets knot vector for the u-direction

Type list

228 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

knotvector_v
Knot vector for the v-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the v-direction

Setter Sets knot vector for the v-direction

Type list

knotvector_w
Knot vector for the w-direction.

The knot vector will be normalized to [0, 1] domain if the class is initialized with normalize_kv=True
argument.

Please refer to the wiki for details on using this class member.

Getter Gets knot vector for the w-direction

Setter Sets knot vector for the w-direction

Type list

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

17.3. Advanced API 229

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

order_u
Order for the u-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for u-direction

Setter Sets the surface order for u-direction

Type int

order_v
Order for the v-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

order_w
Order for the w-direction.

Defined as order = degree + 1

Please refer to the wiki for details on using this class member.

Getter Gets the surface order for v-direction

Setter Sets the surface order for v-direction

Type int

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

230 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

render(**kwargs)
Renders the volume using the visualization component.

The visualization component must be set using vis property before calling this method.

Keyword Arguments:

• cpcolor: sets the color of the control points

• evalcolor: sets the color of the volume

• filename: saves the plot with the input name

• plot: controls plot window visibility. Default: True

• animate: activates animation (if supported). Default: False

• grid_size: grid size for voxelization. Default: (8, 8, 8)

• use_cubes: use cube voxels instead of cuboid ones. Default: False

• num_procs: number of concurrent processes for voxelization. Default: 1

The plot argument is useful when you would like to work on the command line without any window
context. If plot flag is False, this method saves the plot as an image file (.png file where possible) and
disables plot window popping out. If you don’t provide a file name, the name of the image file will be
pulled from the configuration class.

extras argument can be used to add extra line plots to the figure. This argument expects a list of dicts in
the format described below:

1 [
2 dict(# line plot 1
3 points=[[1, 2, 3], [4, 5, 6]], # list of points
4 name="My line Plot 1", # name displayed on the legend
5 color="red", # color of the line plot
6 size=6.5 # size of the line plot
7),
8 dict(# line plot 2
9 points=[[7, 8, 9], [10, 11, 12]], # list of points

10 name="My line Plot 2", # name displayed on the legend
11 color="navy", # color of the line plot
12 size=12.5 # size of the line plot
13)
14]

Returns the figure object

reset(**kwargs)
Resets control points and/or evaluated points.

Keyword Arguments:

• evalpts: if True, then resets evaluated points

17.3. Advanced API 231

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• ctrlpts if True, then resets control points

sample_size
Sample size for both u- and v-directions.

Sample size defines the number of surface points to generate. It also sets the delta property.

The following figure illustrates the working principles of sample size property:

[𝑢𝑠𝑡𝑎𝑟𝑡, . . . , 𝑢𝑒𝑛𝑑]⏟ ⏞
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Please refer to the wiki for details on using this class member.

Getter Gets sample size as a tuple of values corresponding to u-, v- and w-directions

Setter Sets sample size value for both u-, v- and w-directions

Type int

sample_size_u
Sample size for the u-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_u property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the u-direction

Setter Sets sample size for the u-direction

Type int

sample_size_v
Sample size for the v-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_v property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the v-direction

Setter Sets sample size for the v-direction

Type int

sample_size_w
Sample size for the w-direction.

Sample size defines the number of evaluated points to generate. It also sets the delta_w property.

Please refer to the wiki for details on using this class member.

Getter Gets sample size for the w-direction

Setter Sets sample size for the w-direction

Type int

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets the control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Parameters

232 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• ctrlpts (list) – input control points as a list of coordinates

• args (tuple[int, int, int]) – number of control points corresponding to each
parametric dimension

trims
Trimming surfaces.

Please refer to the wiki for details on using this class member.

Getter Gets the array of trim surfaces

Setter Sets the array of trim surfaces

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

Low Level API

The following classes provide the low level API for the geometry abstract base.

• GeomdlBase

• Geometry

• SplineGeometry

Geometry abstract base class can be used for implementation of any geometry object, whereas SplineGeometry
abstract base class is designed specifically for spline geometries, including basis splines.

class geomdl.abstract.GeomdlBase(**kwargs)
Bases: object

Abstract base class for defining geomdl objects.

This class provides the following properties:

17.3. Advanced API 233

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

• type

• id

• name

• dimension

• opt

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

(continues on next page)

234 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

class geomdl.abstract.Geometry(**kwargs)
Bases: geomdl.abstract.GeomdlBase

Abstract base class for defining geometry objects.

This class provides the following properties:

• type

• id

• name

• dimension

• evalpts

• opt

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

dimension
Spatial dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

17.3. Advanced API 235

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type list

evaluate(**kwargs)
Abstract method for the implementation of evaluation algorithm.

Note: This is an abstract method and it must be implemented in the subclass.

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

236 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Returns the corresponding value, if the key exists. None, otherwise.

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

class geomdl.abstract.SplineGeometry(**kwargs)
Bases: geomdl.abstract.Geometry

Abstract base class for defining spline geometry objects.

This class provides the following properties:

• type = spline

• id

• name

• rational

• dimension

• pdimension

• degree

• knotvector

• ctrlpts

• ctrlpts_size

• weights (for completeness with the rational spline implementations)

• evalpts

• bbox

• evaluator

• vis

• opt

Keyword Arguments:

• id: object ID (as integer)

• precision: number of decimal places to round to. Default: 18

• normalize_kv: if True, knot vector(s) will be normalized to [0,1] domain. Default: True

• find_span_func: default knot span finding algorithm. Default: helpers.
find_span_linear()

bbox
Bounding box.

Evaluates the bounding box and returns the minimum and maximum coordinates.

Please refer to the wiki for details on using this class member.

Getter Gets the bounding box

17.3. Advanced API 237

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type tuple

cpsize
Number of control points in all parametric directions.

Note: This is an expert property for getting and setting control point size(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the number of control points

Setter Sets the number of control points

Type list

ctrlpts
Control points.

Please refer to the wiki for details on using this class member.

Getter Gets the control points

Setter Sets the control points

Type list

ctrlpts_size
Total number of control points.

Getter Gets the total number of control points

Type int

degree
Degree

Note: This is an expert property for getting and setting the degree(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the degree

Setter Sets the degree

Type list

dimension
Spatial dimension.

Spatial dimension will be automatically estimated from the first element of the control points array.

Please refer to the wiki for details on using this class member.

Getter Gets the spatial dimension, e.g. 2D, 3D, etc.

Type int

domain
Domain.

Domain is determined using the knot vector(s).

Getter Gets the domain

238 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

evalpts
Evaluated points.

Please refer to the wiki for details on using this class member.

Getter Gets the coordinates of the evaluated points

Type list

evaluate(**kwargs)
Abstract method for the implementation of evaluation algorithm.

Note: This is an abstract method and it must be implemented in the subclass.

evaluator
Evaluator instance.

Evaluators allow users to use different algorithms for B-Spline and NURBS evaluations. Please see the
documentation on Evaluator classes.

Please refer to the wiki for details on using this class member.

Getter Gets the current Evaluator instance

Setter Sets the Evaluator instance

Type evaluators.AbstractEvaluator

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

knotvector
Knot vector

Note: This is an expert property for getting and setting the knot vector(s) of the geometry.

Please refer to the wiki for details on using this class member.

Getter Gets the knot vector

Setter Sets the knot vector

Type list

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

17.3. Advanced API 239

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Please refer to the wiki for details on using this class member.

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

pdimension
Parametric dimension.

Please refer to the wiki for details on using this class member.

Getter Gets the parametric dimension

Type int

range
Domain range.

Getter Gets the range

rational
Defines the rational and non-rational B-spline shapes.

Rational shapes use homogeneous coordinates which includes a weight alongside with the Cartesian coor-
dinates. Rational B-splines are also named as NURBS (Non-uniform rational basis spline) and non-rational
B-splines are sometimes named as NUBS (Non-uniform basis spline) or directly as B-splines.

Please refer to the wiki for details on using this class member.

Getter Returns True is the B-spline object is rational (NURBS)

Type bool

240 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

render(**kwargs)
Abstract method for spline rendering and visualization.

Note: This is an abstract method and it must be implemented in the subclass.

set_ctrlpts(ctrlpts, *args, **kwargs)
Sets control points and checks if the data is consistent.

This method is designed to provide a consistent way to set control points whether they are weighted or not.
It directly sets the control points member of the class, and therefore it doesn’t return any values. The input
will be an array of coordinates. If you are working in the 3-dimensional space, then your coordinates will
be an array of 3 elements representing (x, y, z) coordinates.

Keyword Arguments:

• array_init: initializes the control points array in the instance

• array_check_for: defines the types for input validation

• callback: defines the callback function for processing input points

• dimension: defines the spatial dimension of the input points

Parameters

• ctrlpts (list) – input control points as a list of coordinates

• args (tuple) – number of control points corresponding to each parametric dimension

type
Geometry type

Please refer to the wiki for details on using this class member.

Getter Gets the geometry type

Type str

vis
Visualization component.

Please refer to the wiki for details on using this class member.

Getter Gets the visualization component

Setter Sets the visualization component

Type vis.VisAbstract

weights
Weights.

Note: Only available for rational spline geometries. Getter return None otherwise.

Please refer to the wiki for details on using this class member.

Getter Gets the weights

Setter Sets the weights

17.3. Advanced API 241

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

17.3.2 Evaluators

Evaluators allow users to change the evaluation algorithms that are used to evaluate curves, surfaces and volumes,
take derivatives and more. All geometry classes set an evaluator by default. Users may switch between the evaluation
algorithms at runtime. It is also possible to implement different algorithms (e.g. T-splines) or extend existing ones.

How to Use

All geometry classes come with a default specialized evaluator class, the algorithms are generally different for
rational and non-rational geometries. The evaluator class instance can be accessed and/or updated using evaluator
property. For instance, the following code snippet changes the evaluator of a B-Spline curve.

from geomdl import BSpline
from geomdl import evaluators

crv = BSpline.Curve()
cevaltr = evaluators.CurveEvaluator2()
crv.evaluator = cevaltr

Curve "evaluate" method will use CurveEvaluator2.evaluate() method
crv.evaluate()

Get evaluated points
curve_points = crv.evalpts

Implementing Evaluators

All evaluators should be extended from evaluators.AbstractEvaluator abstract base class. This class pro-
vides a point evaluation and a derivative computation methods. Both methods take a data input which contains the
geometry data as a dict object (refer to BSpline.Surface.data property as an example). The derivative compu-
tation method also takes additional arguments, such as the parametric position and the derivative order.

Inheritance Diagram

geomdl.evaluators.AbstractEvaluator

geomdl.evaluators.CurveEvaluator

geomdl.evaluators.SurfaceEvaluator

geomdl.evaluators.VolumeEvaluator

geomdl.evaluators.CurveEvaluator2

geomdl.evaluators.CurveEvaluatorRational

geomdl.evaluators.SurfaceEvaluator2

geomdl.evaluators.SurfaceEvaluatorRational

geomdl.evaluators.VolumeEvaluatorRational

242 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Abstract Base

class geomdl.evaluators.AbstractEvaluator(**kwargs)
Bases: object

Abstract base class for implementations of fundamental spline algorithms, such as evaluate and derivative.

Abstract Methods:

• evaluate is used for computation of the complete spline shape

• derivative_single is used for computation of derivatives at a single parametric coordinate

Please note that this class requires the keyword argument find_span_func to be set to a valid find_span
function implementation. Please see helpers module for details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Abstract method for evaluation of the n-th order derivatives at the input parametric position.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

evaluate(datadict, **kwargs)
Abstract method for evaluation of points on the spline geometry.

Note: This is an abstract method and it must be implemented in the subclass.

Parameters datadict (dict) – data dictionary containing the necessary variables

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

Curve Evaluators

class geomdl.evaluators.CurveEvaluator(**kwargs)
Bases: geomdl.evaluators.AbstractEvaluator

Sequential curve evaluation algorithms.

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A3.1: CurvePoint

• Algorithm A3.2: CurveDerivsAlg1

17.3. Advanced API 243

NURBS-Python Documentation, Release 5.3.1

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the curve.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

class geomdl.evaluators.CurveEvaluatorRational(**kwargs)
Bases: geomdl.evaluators.CurveEvaluator

Sequential rational curve evaluation algorithms.

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A3.1: CurvePoint

• Algorithm A4.2: RatCurveDerivs

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

244 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the rational curve.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

class geomdl.evaluators.CurveEvaluator2(**kwargs)
Bases: geomdl.evaluators.CurveEvaluator

Sequential curve evaluation algorithms (alternative).

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A3.1: CurvePoint

• Algorithm A3.3: CurveDerivCpts

• Algorithm A3.4: CurveDerivsAlg2

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the curve.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

17.3. Advanced API 245

NURBS-Python Documentation, Release 5.3.1

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

Surface Evaluators

class geomdl.evaluators.SurfaceEvaluator(**kwargs)
Bases: geomdl.evaluators.AbstractEvaluator

Sequential surface evaluation algorithms.

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A3.5: SurfacePoint

• Algorithm A3.6: SurfaceDerivsAlg1

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the surface.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

246 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Type str

class geomdl.evaluators.SurfaceEvaluatorRational(**kwargs)
Bases: geomdl.evaluators.SurfaceEvaluator

Sequential rational surface evaluation algorithms.

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A4.3: SurfacePoint

• Algorithm A4.4: RatSurfaceDerivs

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the rational surface.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

class geomdl.evaluators.SurfaceEvaluator2(**kwargs)
Bases: geomdl.evaluators.SurfaceEvaluator

Sequential surface evaluation algorithms (alternative).

This evaluator implements the following algorithms from The NURBS Book:

• Algorithm A3.5: SurfacePoint

• Algorithm A3.7: SurfaceDerivCpts

• Algorithm A3.8: SurfaceDerivsAlg2

17.3. Advanced API 247

NURBS-Python Documentation, Release 5.3.1

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the surface.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

Volume Evaluators

class geomdl.evaluators.VolumeEvaluator(**kwargs)
Bases: geomdl.evaluators.AbstractEvaluator

Sequential volume evaluation algorithms.

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

248 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Return type list

evaluate(datadict, **kwargs)
Evaluates the volume.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

Getter Gets the name of the evaluator

Type str

class geomdl.evaluators.VolumeEvaluatorRational(**kwargs)
Bases: geomdl.evaluators.VolumeEvaluator

Sequential rational volume evaluation algorithms.

Please note that knot vector span finding function may be changed by setting find_span_func keyword
argument during the initialization. By default, this function is set to helpers.find_span_linear().
Please see Helpers Module Documentation for more details.

derivatives(datadict, parpos, deriv_order=0, **kwargs)
Evaluates the n-th order derivatives at the input parametric position.

Parameters

• datadict (dict) – data dictionary containing the necessary variables

• parpos (list, tuple) – parametric position where the derivatives will be computed

• deriv_order (int) – derivative order; to get the i-th derivative

Returns evaluated derivatives

Return type list

evaluate(datadict, **kwargs)
Evaluates the rational volume.

Keyword Arguments:

• start: starting parametric position for evaluation

• stop: ending parametric position for evaluation

Parameters datadict (dict) – data dictionary containing the necessary variables

Returns evaluated points

Return type list

name
Evaluator name.

17.3. Advanced API 249

NURBS-Python Documentation, Release 5.3.1

Getter Gets the name of the evaluator

Type str

17.3.3 Utility Functions

These modules contain common utility and helper functions for B-Spline / NURBS curve and surface evaluation
operations.

Utilities

The utilities module contains common utility functions for NURBS-Python library and its extensions.

geomdl.utilities.check_params(params)
Checks if the parameters are defined in the domain [0, 1].

Parameters params (list, tuple) – parameters (u, v, w)

Returns True if defined in the domain [0, 1]. False, otherwise.

Return type bool

geomdl.utilities.color_generator(seed=None)
Generates random colors for control and evaluated curve/surface points plots.

The seed argument is used to set the random seed by directly passing the value to random.seed() function.
Please see the Python documentation for more details on the random module .

Inspired from https://stackoverflow.com/a/14019260

Parameters seed – Sets the random seed

Returns list of color strings in hex format

Return type list

geomdl.utilities.evaluate_bounding_box(ctrlpts)
Computes the minimum bounding box of the point set.

The (minimum) bounding box is the smallest enclosure in which all the input points lie.

Parameters ctrlpts (list, tuple) – points

Returns bounding box in the format [min, max]

Return type tuple

geomdl.utilities.make_quad(points, size_u, size_v)
Converts linear sequence of input points into a quad structure.

Parameters

• points (list, tuple) – list of points to be ordered

• size_v (int) – number of elements in a row

• size_u (int) – number of elements in a column

Returns re-ordered points

Return type list

250 Chapter 17. Core Modules

https://stackoverflow.com/a/14019260

NURBS-Python Documentation, Release 5.3.1

geomdl.utilities.make_quadtree(points, size_u, size_v, **kwargs)
Generates a quadtree-like structure from surface control points.

This function generates a 2-dimensional list of control point coordinates. Considering the object-oriented rep-
resentation of a quadtree data structure, first dimension of the generated list corresponds to a list of QuadTree
classes. Second dimension of the generated list corresponds to a QuadTree data structure. The first element of
the 2nd dimension is the mid-point of the bounding box and the remaining elements are corner points of the
bounding box organized in counter-clockwise order.

To maintain stability for the data structure on the edges and corners, the function accepts extrapolate
keyword argument. If it is True, then the function extrapolates the surface on the corners and edges to complete
the quad-like structure for each control point. If it is False, no extrapolation will be applied. By default,
extrapolate is set to True.

Please note that this function’s intention is not generating a real quadtree structure but reorganizing the control
points in a very similar fashion to make them available for various geometric operations.

Parameters

• points (list, tuple) – 1-dimensional array of surface control points

• size_u (int) – number of control points on the u-direction

• size_v (int) – number of control points on the v-direction

Returns control points organized in a quadtree-like structure

Return type tuple

geomdl.utilities.make_zigzag(points, num_cols)
Converts linear sequence of points into a zig-zag shape.

This function is designed to create input for the visualization software. It orders the points to draw a zig-zag
shape which enables generating properly connected lines without any scanlines. Please see the below sketch on
the functionality of the num_cols parameter:

num cols
<-=============->
------->>-------|
|------<<-------|
|------>>-------|
-------<<-------|

Please note that this function does not detect the ordering of the input points to detect the input points have
already been processed to generate a zig-zag shape.

Parameters

• points (list) – list of points to be ordered

• num_cols (int) – number of elements in a row which the zig-zag is generated

Returns re-ordered points

Return type list

Helpers

The helpers module contains common functions required for evaluating both surfaces and curves, such as basis
function computations, knot vector span finding, etc.

17.3. Advanced API 251

NURBS-Python Documentation, Release 5.3.1

geomdl.helpers.basis_function(degree, knot_vector, span, knot)
Computes the non-vanishing basis functions for a single parameter.

Implementation of Algorithm A2.2 from The NURBS Book by Piegl & Tiller. Uses recurrence to compute the
basis functions, also known as Cox - de Boor recursion formula.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• span (int) – knot span, 𝑖

• knot (float) – knot or parameter, 𝑢

Returns basis functions

Return type list

geomdl.helpers.basis_function_all(degree, knot_vector, span, knot)
Computes all non-zero basis functions of all degrees from 0 up to the input degree for a single parameter.

A slightly modified version of Algorithm A2.2 from The NURBS Book by Piegl & Tiller. Wrapper for
helpers.basis_function() to compute multiple basis functions. Uses recurrence to compute the basis
functions, also known as Cox - de Boor recursion formula.

For instance; if degree = 2, then this function will compute the basis function values of degrees 0, 1 and 2
for the knot value at the input knot span of the knot_vector.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• span (int) – knot span, 𝑖

• knot (float) – knot or parameter, 𝑢

Returns basis functions

Return type list

geomdl.helpers.basis_function_ders(degree, knot_vector, span, knot, order)
Computes derivatives of the basis functions for a single parameter.

Implementation of Algorithm A2.3 from The NURBS Book by Piegl & Tiller.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• span (int) – knot span, 𝑖

• knot (float) – knot or parameter, 𝑢

• order (int) – order of the derivative

Returns derivatives of the basis functions

Return type list

geomdl.helpers.basis_function_ders_one(degree, knot_vector, span, knot, order)
Computes the derivative of one basis functions for a single parameter.

Implementation of Algorithm A2.5 from The NURBS Book by Piegl & Tiller.

252 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot_vector, 𝑈

• span (int) – knot span, 𝑖

• knot (float) – knot or parameter, 𝑢

• order (int) – order of the derivative

Returns basis function derivatives

Return type list

geomdl.helpers.basis_function_one(degree, knot_vector, span, knot)
Computes the value of a basis function for a single parameter.

Implementation of Algorithm 2.4 from The NURBS Book by Piegl & Tiller.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector

• span (int) – knot span, 𝑖

• knot (float) – knot or parameter, 𝑢

Returns basis function, 𝑁𝑖,𝑝

Return type float

geomdl.helpers.basis_functions(degree, knot_vector, spans, knots)
Computes the non-vanishing basis functions for a list of parameters.

Wrapper for helpers.basis_function() to process multiple span and knot values. Uses recurrence to
compute the basis functions, also known as Cox - de Boor recursion formula.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• spans (list, tuple) – list of knot spans

• knots (list, tuple) – list of knots or parameters

Returns basis functions

Return type list

geomdl.helpers.basis_functions_ders(degree, knot_vector, spans, knots, order)
Computes derivatives of the basis functions for a list of parameters.

Wrapper for helpers.basis_function_ders() to process multiple span and knot values.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• spans (list, tuple) – list of knot spans

• knots (list, tuple) – list of knots or parameters

17.3. Advanced API 253

NURBS-Python Documentation, Release 5.3.1

• order (int) – order of the derivative

Returns derivatives of the basis functions

Return type list

geomdl.helpers.curve_deriv_cpts(dim, degree, kv, cpts, rs, deriv_order=0)
Compute control points of curve derivatives.

Implementation of Algorithm A3.3 from The NURBS Book by Piegl & Tiller.

Parameters

• dim (int) – spatial dimension of the curve

• degree (int) – degree of the curve

• kv (list, tuple) – knot vector

• cpts (list, tuple) – control points

• rs – minimum (r1) and maximum (r2) knot spans that the curve derivative will be computed

• deriv_order (int) – derivative order, i.e. the i-th derivative

Returns control points of the derivative curve over the input knot span range

Return type list

geomdl.helpers.degree_elevation(degree, ctrlpts, **kwargs)
Computes the control points of the rational/non-rational spline after degree elevation.

Implementation of Eq. 5.36 of The NURBS Book by Piegl & Tiller, 2nd Edition, p.205

Keyword Arguments:

• num: number of degree elevations

Please note that degree elevation algorithm can only operate on Bezier shapes, i.e. curves, surfaces, volumes.

Parameters

• degree (int) – degree

• ctrlpts (list, tuple) – control points

Returns control points of the degree-elevated shape

Return type list

geomdl.helpers.degree_reduction(degree, ctrlpts, **kwargs)
Computes the control points of the rational/non-rational spline after degree reduction.

Implementation of Eqs. 5.41 and 5.42 of The NURBS Book by Piegl & Tiller, 2nd Edition, p.220

Please note that degree reduction algorithm can only operate on Bezier shapes, i.e. curves, surfaces, volumes
and this implementation does NOT compute the maximum error tolerance as described via Eqs. 5.45 and 5.46
of The NURBS Book by Piegl & Tiller, 2nd Edition, p.221 to determine whether the shape is degree reducible
or not.

Parameters

• degree (int) – degree

• ctrlpts (list, tuple) – control points

Returns control points of the degree-reduced shape

Return type list

254 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

geomdl.helpers.find_multiplicity(knot, knot_vector, **kwargs)
Finds knot multiplicity over the knot vector.

Keyword Arguments:

• tol: tolerance (delta) value for equality checking

Parameters

• knot (float) – knot or parameter, 𝑢

• knot_vector (list, tuple) – knot vector, 𝑈

Returns knot multiplicity, 𝑠

Return type int

geomdl.helpers.find_span_binsearch(degree, knot_vector, num_ctrlpts, knot, **kwargs)
Finds the span of the knot over the input knot vector using binary search.

Implementation of Algorithm A2.1 from The NURBS Book by Piegl & Tiller.

The NURBS Book states that the knot span index always starts from zero, i.e. for a knot vector [0, 0, 1, 1]; if
FindSpan returns 1, then the knot is between the half-open interval [0, 1).

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• num_ctrlpts (int) – number of control points, 𝑛+ 1

• knot (float) – knot or parameter, 𝑢

Returns knot span

Return type int

geomdl.helpers.find_span_linear(degree, knot_vector, num_ctrlpts, knot, **kwargs)
Finds the span of a single knot over the knot vector using linear search.

Alternative implementation for the Algorithm A2.1 from The NURBS Book by Piegl & Tiller.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• num_ctrlpts (int) – number of control points, 𝑛+ 1

• knot (float) – knot or parameter, 𝑢

Returns knot span

Return type int

geomdl.helpers.find_spans(degree, knot_vector, num_ctrlpts, knots, func=<function
find_span_linear>)

Finds spans of a list of knots over the knot vector.

Parameters

• degree (int) – degree, 𝑝

• knot_vector (list, tuple) – knot vector, 𝑈

• num_ctrlpts (int) – number of control points, 𝑛+ 1

17.3. Advanced API 255

NURBS-Python Documentation, Release 5.3.1

• knots (list, tuple) – list of knots or parameters

• func – function for span finding, e.g. linear or binary search

Returns list of spans

Return type list

geomdl.helpers.knot_insertion(degree, knotvector, ctrlpts, u, **kwargs)
Computes the control points of the rational/non-rational spline after knot insertion.

Part of Algorithm A5.1 of The NURBS Book by Piegl & Tiller, 2nd Edition.

Keyword Arguments:

• num: number of knot insertions. Default: 1

• s: multiplicity of the knot. Default: computed via :func:‘.find_multiplicity‘

• span: knot span. Default: computed via :func:‘.find_span_linear‘

Parameters

• degree (int) – degree

• knotvector (list, tuple) – knot vector

• ctrlpts (list) – control points

• u (float) – knot to be inserted

Returns updated control points

Return type list

geomdl.helpers.knot_insertion_alpha
Computes 𝛼 coefficient for knot insertion algorithm.

Parameters

• u (float) – knot

• knotvector (tuple) – knot vector

• span (int) – knot span

• idx (int) – index value (degree-dependent)

• leg (int) – i-th leg of the control points polygon

Returns coefficient value

Return type float

geomdl.helpers.knot_insertion_kv(knotvector, u, span, r)
Computes the knot vector of the rational/non-rational spline after knot insertion.

Part of Algorithm A5.1 of The NURBS Book by Piegl & Tiller, 2nd Edition.

Parameters

• knotvector (list, tuple) – knot vector

• u (float) – knot

• span (int) – knot span

• r (int) – number of knot insertions

256 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Returns updated knot vector

Return type list

geomdl.helpers.knot_refinement(degree, knotvector, ctrlpts, **kwargs)
Computes the knot vector and the control points of the rational/non-rational spline after knot refinement.

Implementation of Algorithm A5.4 of The NURBS Book by Piegl & Tiller, 2nd Edition.

The algorithm automatically find the knots to be refined, i.e. the middle knots in the knot vector, and their
multiplicities, i.e. number of same knots in the knot vector. This is the basis of knot refinement algorithm.
This operation can be overridden by providing a list of knots via knot_list argument. In addition, users can
provide a list of additional knots to be inserted in the knot vector via add_knot_list argument.

Moreover, a numerical density argument can be used to automate extra knot insertions. If density is bigger
than 1, then the algorithm finds the middle knots in each internal knot span to increase the number of knots to
be refined.

Example: Let the degree is 2 and the knot vector to be refined is [0, 2, 4] with the superfluous knots from
the start and end are removed. Knot vectors with the changing density (d) value will be:

• d = 1, knot vector [0, 1, 1, 2, 2, 3, 3, 4]

• d = 2, knot vector [0, 0.5, 0.5, 1, 1, 1.5, 1.5, 2, 2, 2.5, 2.5, 3, 3, 3.5,
3.5, 4]

Keyword Arguments:

• knot_list: knot list to be refined. Default: list of internal knots

• add_knot_list: additional list of knots to be refined. Default: []

• density: Density of the knots. Default: 1

Parameters

• degree (int) – degree

• knotvector (list, tuple) – knot vector

• ctrlpts – control points

Returns updated control points and knot vector

Return type tuple

geomdl.helpers.knot_removal(degree, knotvector, ctrlpts, u, **kwargs)
Computes the control points of the rational/non-rational spline after knot removal.

Implementation based on Algorithm A5.8 and Equation 5.28 of The NURBS Book by Piegl & Tiller

Keyword Arguments:

• num: number of knot removals

Parameters

• degree (int) – degree

• knotvector (list, tuple) – knot vector

• ctrlpts (list) – control points

• u (float) – knot to be removed

Returns updated control points

17.3. Advanced API 257

NURBS-Python Documentation, Release 5.3.1

Return type list

geomdl.helpers.knot_removal_alpha_i
Computes 𝛼𝑖 coefficient for knot removal algorithm.

Please refer to Eq. 5.29 of The NURBS Book by Piegl & Tiller, 2nd Edition, p.184 for details.

Parameters

• u (float) – knot

• degree (int) – degree

• knotvector (tuple) – knot vector

• num (int) – knot removal index

• idx (int) – iterator index

Returns coefficient value

Return type float

geomdl.helpers.knot_removal_alpha_j
Computes 𝛼𝑗 coefficient for knot removal algorithm.

Please refer to Eq. 5.29 of The NURBS Book by Piegl & Tiller, 2nd Edition, p.184 for details.

Parameters

• u (float) – knot

• degree (int) – degree

• knotvector (tuple) – knot vector

• num (int) – knot removal index

• idx (int) – iterator index

Returns coefficient value

Return type float

geomdl.helpers.knot_removal_kv(knotvector, span, r)
Computes the knot vector of the rational/non-rational spline after knot removal.

Part of Algorithm A5.8 of The NURBS Book by Piegl & Tiller, 2nd Edition.

Parameters

• knotvector (list, tuple) – knot vector

• span (int) – knot span

• r (int) – number of knot removals

Returns updated knot vector

Return type list

geomdl.helpers.surface_deriv_cpts(dim, degree, kv, cpts, cpsize, rs, ss, deriv_order=0)
Compute control points of surface derivatives.

Implementation of Algorithm A3.7 from The NURBS Book by Piegl & Tiller.

Parameters

• dim (int) – spatial dimension of the surface

258 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

• degree (list, tuple) – degrees

• kv (list, tuple) – knot vectors

• cpts (list, tuple) – control points

• cpsize (list, tuple) – number of control points in all parametric directions

• rs (list, tuple) – minimum (r1) and maximum (r2) knot spans for the u-direction

• ss (list, tuple) – minimum (s1) and maximum (s2) knot spans for the v-direction

• deriv_order (int) – derivative order, i.e. the i-th derivative

Returns control points of the derivative surface over the input knot span ranges

Return type list

Linear Algebra

The linalg module contains some basic functions for point, vector and matrix operations.

Although most of the functions are designed for internal usage, the users can still use some of the functions for
their advantage, especially the point and vector manipulation and generation functions. Functions related to point
manipulation have point_ prefix and the ones related to vectors have vector_ prefix.

geomdl.linalg.backward_substitution(matrix_u, matrix_y)
Backward substitution method for the solution of linear systems.

Solves the equation 𝑈𝑥 = 𝑦 using backward substitution method where 𝑈 is a upper triangular matrix and 𝑦 is
a column matrix.

Parameters

• matrix_u (list, tuple) – U, upper triangular matrix

• matrix_y (list, tuple) – y, column matrix

Returns x, column matrix

Return type list

geomdl.linalg.binomial_coefficient
Computes the binomial coefficient (denoted by k choose i).

Please see the following website for details: http://mathworld.wolfram.com/BinomialCoefficient.html

Parameters

• k (int) – size of the set of distinct elements

• i (int) – size of the subsets

Returns combination of k and i

Return type float

geomdl.linalg.convex_hull(points)
Returns points on convex hull in counterclockwise order according to Graham’s scan algorithm.

Reference: https://gist.github.com/arthur-e/5cf52962341310f438e96c1f3c3398b8

Note: This implementation only works in 2-dimensional space.

17.3. Advanced API 259

http://mathworld.wolfram.com/BinomialCoefficient.html
https://gist.github.com/arthur-e/5cf52962341310f438e96c1f3c3398b8

NURBS-Python Documentation, Release 5.3.1

Parameters points (list, tuple) – list of 2-dimensional points

Returns convex hull of the input points

Return type list

geomdl.linalg.forward_substitution(matrix_l, matrix_b)
Forward substitution method for the solution of linear systems.

Solves the equation 𝐿𝑦 = 𝑏 using forward substitution method where 𝐿 is a lower triangular matrix and 𝑏 is a
column matrix.

Parameters

• matrix_l (list, tuple) – L, lower triangular matrix

• matrix_b (list, tuple) – b, column matrix

Returns y, column matrix

Return type list

geomdl.linalg.frange(start, stop, step=1.0)
Implementation of Python’s range() function which works with floats.

Reference to this implementation: https://stackoverflow.com/a/36091634

Parameters

• start (float) – start value

• stop (float) – end value

• step (float) – increment

Returns float

Return type generator

geomdl.linalg.is_left(point0, point1, point2)
Tests if a point is Left|On|Right of an infinite line.

Ported from the C++ version: on http://geomalgorithms.com/a03-_inclusion.html

Note: This implementation only works in 2-dimensional space.

Parameters

• point0 – Point P0

• point1 – Point P1

• point2 – Point P2

Returns >0 for P2 left of the line through P0 and P1 =0 for P2 on the line <0 for P2 right of the line

geomdl.linalg.linspace(start, stop, num, decimals=18)
Returns a list of evenly spaced numbers over a specified interval.

Inspired from Numpy’s linspace function: https://github.com/numpy/numpy/blob/master/numpy/core/function_
base.py

Parameters

• start (float) – starting value

260 Chapter 17. Core Modules

https://stackoverflow.com/a/36091634
http://geomalgorithms.com/a03-_inclusion.html
https://github.com/numpy/numpy/blob/master/numpy/core/function_base.py
https://github.com/numpy/numpy/blob/master/numpy/core/function_base.py

NURBS-Python Documentation, Release 5.3.1

• stop (float) – end value

• num (int) – number of samples to generate

• decimals (int) – number of significands

Returns a list of equally spaced numbers

Return type list

geomdl.linalg.lu_decomposition(matrix_a)
LU-Factorization method using Doolittle’s Method for solution of linear systems.

Decomposes the matrix 𝐴 such that 𝐴 = 𝐿𝑈 .

The input matrix is represented by a list or a tuple. The input matrix is 2-dimensional, i.e. list of lists of integers
and/or floats.

Parameters matrix_a (list, tuple) – Input matrix (must be a square matrix)

Returns a tuple containing matrices L and U

Return type tuple

geomdl.linalg.lu_factor(matrix_a, b)
Computes the solution to a system of linear equations with partial pivoting.

This function solves 𝐴𝑥 = 𝑏 using LUP decomposition. 𝐴 is a 𝑁 ×𝑁 matrix, 𝑏 is 𝑁 ×𝑀 matrix of 𝑀 column
vectors. Each column of 𝑥 is a solution for corresponding column of 𝑏.

Parameters

• matrix_a – matrix A

• b (list) – matrix of M column vectors

Returns x, the solution matrix

Return type list

geomdl.linalg.lu_solve(matrix_a, b)
Computes the solution to a system of linear equations.

This function solves 𝐴𝑥 = 𝑏 using LU decomposition. 𝐴 is a 𝑁 ×𝑁 matrix, 𝑏 is 𝑁 ×𝑀 matrix of 𝑀 column
vectors. Each column of 𝑥 is a solution for corresponding column of 𝑏.

Parameters

• matrix_a – matrix A

• b (list) – matrix of M column vectors

Returns x, the solution matrix

Return type list

geomdl.linalg.matrix_determinant(m)
Computes the determinant of the square matrix 𝑀 via LUP decomposition.

Parameters m (list, tuple) – input matrix

Returns determinant of the matrix

Return type float

geomdl.linalg.matrix_identity
Generates a 𝑁 ×𝑁 identity matrix.

Parameters n (int) – size of the matrix

17.3. Advanced API 261

NURBS-Python Documentation, Release 5.3.1

Returns identity matrix

Return type list

geomdl.linalg.matrix_inverse(m)
Computes the inverse of the matrix via LUP decomposition.

Parameters m (list, tuple) – input matrix

Returns inverse of the matrix

Return type list

geomdl.linalg.matrix_multiply(mat1, mat2)
Matrix multiplication (iterative algorithm).

The running time of the iterative matrix multiplication algorithm is 𝑂(𝑛3).

Parameters

• mat1 (list, tuple) – 1st matrix with dimensions (𝑛× 𝑝)

• mat2 (list, tuple) – 2nd matrix with dimensions (𝑝×𝑚)

Returns resultant matrix with dimensions (𝑛×𝑚)

Return type list

geomdl.linalg.matrix_pivot(m, sign=False)
Computes the pivot matrix for M, a square matrix.

This function computes

• the permutation matrix, 𝑃

• the product of M and P, 𝑀 × 𝑃

• determinant of P, 𝑑𝑒𝑡(𝑃) if sign = True

Parameters

• m (list, tuple) – input matrix

• sign (bool) – flag to return the determinant of the permutation matrix, P

Returns a tuple containing the matrix product of M x P, P and det(P)

Return type tuple

geomdl.linalg.matrix_scalar(m, sc)
Matrix multiplication by a scalar value (iterative algorithm).

The running time of the iterative matrix multiplication algorithm is 𝑂(𝑛2).

Parameters

• m (list, tuple) – input matrix

• sc (int, float) – scalar value

Returns resultant matrix

Return type list

geomdl.linalg.matrix_transpose(m)
Transposes the input matrix.

The input matrix 𝑚 is a 2-dimensional array.

262 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

Parameters m (list, tuple) – input matrix with dimensions (𝑛×𝑚)

Returns transpose matrix with dimensions (𝑚× 𝑛)

Return type list

geomdl.linalg.point_distance(pt1, pt2)
Computes distance between two points.

Parameters

• pt1 (list, tuple) – point 1

• pt2 (list, tuple) – point 2

Returns distance between input points

Return type float

geomdl.linalg.point_mid(pt1, pt2)
Computes the midpoint of the input points.

Parameters

• pt1 (list, tuple) – point 1

• pt2 (list, tuple) – point 2

Returns midpoint

Return type list

geomdl.linalg.point_translate(point_in, vector_in)
Translates the input points using the input vector.

Parameters

• point_in (list, tuple) – input point

• vector_in (list, tuple) – input vector

Returns translated point

Return type list

geomdl.linalg.triangle_center(tri, uv=False)
Computes the center of mass of the input triangle.

Parameters

• tri (elements.Triangle) – triangle object

• uv (bool) – if True, then finds parametric position of the center of mass

Returns center of mass of the triangle

Return type tuple

geomdl.linalg.triangle_normal(tri)
Computes the (approximate) normal vector of the input triangle.

Parameters tri (elements.Triangle) – triangle object

Returns normal vector of the triangle

Return type tuple

17.3. Advanced API 263

NURBS-Python Documentation, Release 5.3.1

geomdl.linalg.vector_angle_between(vector1, vector2, **kwargs)
Computes the angle between the two input vectors.

If the keyword argument degrees is set to True, then the angle will be in degrees. Otherwise, it will be in
radians. By default, degrees is set to True.

Parameters

• vector1 (list, tuple) – vector

• vector2 (list, tuple) – vector

Returns angle between the vectors

Return type float

geomdl.linalg.vector_cross(vector1, vector2)
Computes the cross-product of the input vectors.

Parameters

• vector1 (list, tuple) – input vector 1

• vector2 (list, tuple) – input vector 2

Returns result of the cross product

Return type tuple

geomdl.linalg.vector_dot(vector1, vector2)
Computes the dot-product of the input vectors.

Parameters

• vector1 (list, tuple) – input vector 1

• vector2 (list, tuple) – input vector 2

Returns result of the dot product

Return type float

geomdl.linalg.vector_generate(start_pt, end_pt, normalize=False)
Generates a vector from 2 input points.

Parameters

• start_pt (list, tuple) – start point of the vector

• end_pt (list, tuple) – end point of the vector

• normalize (bool) – if True, the generated vector is normalized

Returns a vector from start_pt to end_pt

Return type list

geomdl.linalg.vector_is_zero(vector_in, tol=1e-07)
Checks if the input vector is a zero vector.

Parameters

• vector_in (list, tuple) – input vector

• tol (float) – tolerance value

Returns True if the input vector is zero, False otherwise

Return type bool

264 Chapter 17. Core Modules

NURBS-Python Documentation, Release 5.3.1

geomdl.linalg.vector_magnitude(vector_in)
Computes the magnitude of the input vector.

Parameters vector_in (list, tuple) – input vector

Returns magnitude of the vector

Return type float

geomdl.linalg.vector_mean(*args)
Computes the mean (average) of a list of vectors.

The function computes the arithmetic mean of a list of vectors, which are also organized as a list of integers or
floating point numbers.

1 # Create a list of vectors as an example
2 vector_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3

4 # Compute mean vector
5 mean_vector = vector_mean(*vector_list)
6

7 # Alternative usage example (same as above):
8 mean_vector = vector_mean([1, 2, 3], [4, 5, 6], [7, 8, 9])

Parameters args (list, tuple) – list of vectors

Returns mean vector

Return type list

geomdl.linalg.vector_multiply(vector_in, scalar)
Multiplies the vector with a scalar value.

This operation is also called vector scaling.

Parameters

• vector_in (list, tuple) – vector

• scalar (int, float) – scalar value

Returns updated vector

Return type tuple

geomdl.linalg.vector_normalize(vector_in, decimals=18)
Generates a unit vector from the input.

Parameters

• vector_in (list, tuple) – vector to be normalized

• decimals (int) – number of significands

Returns the normalized vector (i.e. the unit vector)

Return type list

geomdl.linalg.vector_sum(vector1, vector2, coeff=1.0)
Sums the vectors.

This function computes the result of the vector operation 𝑣1 + 𝑐 * 𝑣2, where 𝑣1 is vector1, 𝑣2 is vector2
and 𝑐 is coeff.

Parameters

17.3. Advanced API 265

NURBS-Python Documentation, Release 5.3.1

• vector1 (list, tuple) – vector 1

• vector2 (list, tuple) – vector 2

• coeff (float) – multiplier for vector 2

Returns updated vector

Return type list

geomdl.linalg.wn_poly(point, vertices)
Winding number test for a point in a polygon.

Ported from the C++ version: http://geomalgorithms.com/a03-_inclusion.html

Note: This implementation only works in 2-dimensional space.

Parameters

• point (list, tuple) – point to be tested

• vertices (list, tuple) – vertex points of a polygon vertices[n+1] with vertices[n] =
vertices[0]

Returns True if the point is inside the input polygon, False otherwise

Return type bool

17.3.4 Voxelization

New in version 5.0.

voxelize module provides functions for voxelizing NURBS volumes. voxelize() also supports multi-threaded
operations via multiporcessing module.

Function Reference

geomdl.voxelize.voxelize(obj, **kwargs)
Generates binary voxel representation of the surfaces and volumes.

Keyword Arguments:

• grid_size: size of the voxel grid. Default: (8, 8, 8)

• padding: voxel padding for in-outs finding. Default: 10e-8

• use_cubes: use cube voxels instead of cuboid ones. Default: False

• num_procs: number of concurrent processes for voxelization. Default: 1

Parameters obj (abstract.Surface or abstract.Volume) – input surface(s) or vol-
ume(s)

Returns voxel grid and filled information

Return type tuple

266 Chapter 17. Core Modules

http://geomalgorithms.com/a03-_inclusion.html
https://docs.python.org/2/library/multiprocessing.html

NURBS-Python Documentation, Release 5.3.1

geomdl.voxelize.save_voxel_grid(voxel_grid, file_name)
Saves binary voxel grid as a binary file.

The binary file is structured in little-endian unsigned int format.

Parameters

• voxel_grid (list, tuple) – binary voxel grid

• file_name (str) – file name to save

17.3.5 Geometric Entities

The geometric entities are used for advanced algorithms, such as tessellation. The AbstractEntity class provides
the abstract base for all geometric and topological entities.

This module provides the following geometric and topological entities:

• Vertex

• Triangle

• Quad

• Face

• Body

Class Reference

class geomdl.elements.Vertex(*args, **kwargs)
Bases: geomdl.elements.AbstractEntity

3-dimensional Vertex entity with spatial and parametric position.

data
(x,y,z) components of the vertex.

Getter Gets the 3-dimensional components

Setter Sets the 3-dimensional components

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

inside
Inside-outside flag

Getter Gets the flag

Setter Sets the flag

Type bool

17.3. Advanced API 267

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

u
Parametric u-component of the vertex

Getter Gets the u-component of the vertex

Setter Sets the u-component of the vertex

Type float

uv
Parametric (u,v) pair of the vertex

Getter Gets the uv-component of the vertex

Setter Sets the uv-component of the vertex

Type list, tuple

268 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

v
Parametric v-component of the vertex

Getter Gets the v-component of the vertex

Setter Sets the v-component of the vertex

Type float

x
x-component of the vertex

Getter Gets the x-component of the vertex

Setter Sets the x-component of the vertex

Type float

y
y-component of the vertex

Getter Gets the y-component of the vertex

Setter Sets the y-component of the vertex

Type float

z
z-component of the vertex

Getter Gets the z-component of the vertex

Setter Sets the z-component of the vertex

Type float

class geomdl.elements.Triangle(*args, **kwargs)
Bases: geomdl.elements.AbstractEntity

Triangle entity which represents a triangle composed of vertices.

A Triangle entity stores the vertices in its data structure. data returns the vertex IDs and vertices return the
Vertex instances that compose the triangular structure.

add_vertex(*args)
Adds vertices to the Triangle object.

This method takes a single or a list of vertices as its function arguments.

data
Vertices composing the triangular structure.

Getter Gets the vertex indices (as int values)

Setter Sets the vertices (as Vertex objects)

edges
Edges of the triangle

Getter Gets the list of vertices that generates the edges of the triangle

Type list

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

17.3. Advanced API 269

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Getter Gets the object ID

Setter Sets the object ID

Type int

inside
Inside-outside flag

Getter Gets the flag

Setter Sets the flag

Type bool

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

vertex_ids
Vertex indices

270 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Note: Please use data instead of this property.

Getter Gets the vertex indices

Type list

vertices
Vertices of the triangle

Getter Gets the list of vertices

Type tuple

vertices_closed
Vertices which generates a closed triangle

Adds the first vertex as a last element of the return value (good for plotting)

Getter Gets the list of vertices

Type list

class geomdl.elements.Quad(*args, **kwargs)
Bases: geomdl.elements.AbstractEntity

Quad entity which represents a quadrilateral structure composed of vertices.

A Quad entity stores the vertices in its data structure. data returns the vertex IDs and vertices return the
Vertex instances that compose the quadrilateral structure.

add_vertex(*args)
Adds vertices to the Quad object.

This method takes a single or a list of vertices as its function arguments.

data
Vertices composing the quadrilateral structure.

Getter Gets the vertex indices (as int values)

Setter Sets the vertices (as Vertex objects)

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

17.3. Advanced API 271

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

vertices
Vertices composing the quadrilateral structure.

Getter Gets the vertices

class geomdl.elements.Face(*args, **kwargs)
Bases: geomdl.elements.AbstractEntity

Representation of Face entity which is composed of triangles or quads.

add_triangle(*args)
Adds triangles to the Face object.

This method takes a single or a list of triangles as its function arguments.

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

272 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

triangles
Triangles of the face

Getter Gets the list of triangles

Type tuple

class geomdl.elements.Body(*args, **kwargs)
Bases: geomdl.elements.AbstractEntity

Representation of Body entity which is composed of faces.

add_face(*args)
Adds faces to the Body object.

This method takes a single or a list of faces as its function arguments.

faces
Faces of the body

Getter Gets the list of faces

17.3. Advanced API 273

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

Type tuple

id
Object ID (as an integer).

Please refer to the wiki for details on using this class member.

Getter Gets the object ID

Setter Sets the object ID

Type int

name
Object name (as a string)

Please refer to the wiki for details on using this class member.

Getter Gets the object name

Setter Sets the object name

Type str

opt
Dictionary for storing custom data in the current geometry object.

opt is a wrapper to a dict in key => value format, where key is string, value is any Python object. You can
use opt property to store custom data inside the geometry object. For instance:

geom.opt = ["face_id", 4] # creates "face_id" key and sets its value to an
→˓integer
geom.opt = ["contents", "data values"] # creates "face_id" key and sets its
→˓value to a string
print(geom.opt) # will print: {'face_id': 4, 'contents': 'data values'}

del geom.opt # deletes the contents of the hash map
print(geom.opt) # will print: {}

geom.opt = ["body_id", 1] # creates "body_id" key and sets its value to 1
geom.opt = ["body_id", 12] # changes the value of "body_id" to 12
print(geom.opt) # will print: {'body_id': 12}

geom.opt = ["body_id", None] # deletes "body_id"
print(geom.opt) # will print: {}

Getter Gets the dict

Setter Adds key and value pair to the dict

Deleter Deletes the contents of the dict

opt_get(value)
Safely query for the value from the opt property.

Parameters value (str) – a key in the opt property

Returns the corresponding value, if the key exists. None, otherwise.

274 Chapter 17. Core Modules

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

17.3.6 Ray Module

ray module provides utilities for ray operations. A ray (half-line) is defined by two distinct points represented by
Ray class. This module also provides a function to compute intersection of 2 rays.

Function and Class Reference

class geomdl.ray.Ray(point1, point2)
Representation of a n-dimensional ray generated from 2 points.

A ray is defined by 𝑟(𝑡) = 𝑝1+ 𝑡×𝑑 where :math‘t‘ is the parameter value, 𝑑 = 𝑝2−𝑝1 is the vector component
of the ray, 𝑝1 is the origin point and 𝑝2 is the second point which is required to define a line segment

Parameters

• point1 (list, tuple) – 1st point of the line segment

• point2 (list, tuple) – 2nd point of the line segment

d
Vector component of the ray (d)

Please refer to the wiki for details on using this class member.

Getter Gets the vector component of the ray

dimension
Spatial dimension of the ray

Please refer to the wiki for details on using this class member.

Getter Gets the dimension of the ray

eval(t=0)
Finds the point on the line segment defined by the input parameter.

𝑡 = 0 returns the origin (1st) point, defined by the input argument point1 and 𝑡 = 1 returns the end (2nd)
point, defined by the input argument point2.

Parameters t (float) – parameter

Returns point at the parameter value

Return type tuple

p
Origin point of the ray (p)

Please refer to the wiki for details on using this class member.

Getter Gets the origin point of the ray

points
Start and end points of the line segment that the ray was generated

Please refer to the wiki for details on using this class member.

Getter Gets the points

class geomdl.ray.RayIntersection
The status of the ray intersection operation

17.3. Advanced API 275

https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties
https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties

NURBS-Python Documentation, Release 5.3.1

geomdl.ray.intersect(ray1, ray2, **kwargs)
Finds intersection of 2 rays.

This functions finds the parameter values for the 1st and 2nd input rays and returns a tuple of (parameter
for ray1, parameter for ray2, intersection status). status value is a enum type
which reports the case which the intersection operation encounters.

The intersection operation can encounter 3 different cases:

• Intersecting: This is the anticipated solution. Returns (t1, t2, RayIntersection.INTERSECT)

• Colinear: The rays can be parallel or coincident. Returns (t1, t2, RayIntersection.
COLINEAR)

• Skew: The rays are neither parallel nor intersecting. Returns (t1, t2, RayIntersection.SKEW)

For the colinear case, t1 and t2 are the parameter values that give the starting point of the ray2 and ray1,
respectively. Therefore;

ray1.eval(t1) == ray2.p
ray2.eval(t2) == ray1.p

Please note that this operation is only implemented for 2- and 3-dimensional rays.

Parameters

• ray1 – 1st ray

• ray2 – 2nd ray

Returns a tuple of the parameter (t) for ray1 and ray2, and status of the intersection

Return type tuple

276 Chapter 17. Core Modules

CHAPTER 18

Visualization Modules

NURBS-Python provides an abstract base for visualization modules. It is a part of the Core Library and it can be used
to implement various visualization backends.

NURBS-Python comes with the following visualization modules:

18.1 Visualization Base

The visualization component in the NURBS-Python package provides an easy way to visualise the surfaces and the
2D/3D curves generated using the library. The following are the list of abstract classes for the visualization system
and its configuration.

18.1.1 Class Reference

Abstract base class for visualization

Defines an abstract base for NURBS-Python (geomdl) visualization modules.

param config configuration class

type config VisConfigAbstract

geomdl.vis.VisAbstract.ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

geomdl.vis.VisAbstract.mconf
Configuration directives for the visualization module (internal).

277

NURBS-Python Documentation, Release 5.3.1

This property controls the internal configuration of the visualization module. It is for advanced use and testing
only.

The visualization module is mainly designed to plot the control points (ctrlpts) and the surface points (evalpts).
These are called as plot types. However, there is more than one way to plot the control points and the surface
points. For instance, a control points plot can be a scatter plot or a quad mesh, and a surface points plot can be
a scatter plot or a tessellated surface plot.

This function allows you to change the type of the plot, e.g. from scatter plot to tessellated surface plot. On the
other than, some visualization modules also defines some specialized classes for this purpose as it might not be
possible to change the type of the plot at the runtime due to visualization library internal API differences (i.e.
different backends for 2- and 3-dimensional plots).

By default, the following plot types and values are available:

Curve:

• For control points (ctrlpts): points

• For evaluated points (evalpts): points

Surface:

• For control points (ctrlpts): points, quads

• For evaluated points (evalpts): points, quads, triangles

Volume:

• For control points (ctrlpts): points

• For evaluated points (evalpts): points, voxels

Getter Gets the visualization module configuration

Setter Sets the visualization module configuration

geomdl.vis.VisAbstract.vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

Abstract base class for user configuration of the visualization module

Defines an abstract base for NURBS-Python (geomdl) visualization configuration.

18.2 Matplotlib Implementation

This module provides Matplotlib visualization implementation for NURBS-Python.

Note: Please make sure that you have installed matplotlib package before using this visualization module.

18.2.1 Class Reference

class geomdl.visualization.VisMPL.VisConfig(**kwargs)
Bases: geomdl.vis.VisConfigAbstract

278 Chapter 18. Visualization Modules

https://matplotlib.org/

NURBS-Python Documentation, Release 5.3.1

Configuration class for Matplotlib visualization module.

This class is only required when you would like to change the visual defaults of the plots and the figure, such as
hiding control points plot or legend.

The VisMPL module has the following configuration variables:

• ctrlpts (bool): Control points polygon/grid visibility. Default: True

• evalpts (bool): Curve/surface points visibility. Default: True

• bbox (bool): Bounding box visibility. Default: False

• legend (bool): Figure legend visibility. Default: True

• axes (bool): Axes and figure grid visibility. Default: True

• labels (bool): Axis labels visibility. Default: True

• trims (bool): Trim curves visibility. Default: True

• axes_equal (bool): Enables or disables equal aspect ratio for the axes. Default: True

• figure_size (list): Size of the figure in (x, y). Default: [10, 8]

• figure_dpi (int): Resolution of the figure in DPI. Default: 96

• trim_size (int): Size of the trim curves. Default: 20

• alpha (float): Opacity of the evaluated points. Default: 1.0

There is also a debug configuration variable which currently adds quiver plots to 2-dimensional curves to show
their directions.

The following example illustrates the usage of the configuration class.

1 # Create a curve (or a surface) instance
2 curve = NURBS.Curve()
3

4 # Skipping degree, knot vector and control points assignments
5

6 # Create a visualization configuration instance with no legend, no axes and set
→˓the resolution to 120 dpi

7 vis_config = VisMPL.VisConfig(legend=False, axes=False, figure_dpi=120)
8

9 # Create a visualization method instance using the configuration above
10 vis_obj = VisMPL.VisCurve2D(vis_config)
11

12 # Set the visualization method of the curve object
13 curve.vis = vis_obj
14

15 # Plot the curve
16 curve.render()

Please refer to the Examples Repository for more details.

is_notebook()
Detects if Jupyter notebook GUI toolkit is active

return: True if the module is running inside a Jupyter notebook rtype: bool

static save_figure_as(fig, filename)
Saves the figure as a file.

Parameters

18.2. Matplotlib Implementation 279

NURBS-Python Documentation, Release 5.3.1

• fig – a Matplotlib figure instance

• filename – file name to save

static set_axes_equal(ax)
Sets equal aspect ratio across the three axes of a 3D plot.

Contributed by Xuefeng Zhao.

Parameters ax – a Matplotlib axis, e.g., as output from plt.gca().

class geomdl.visualization.VisMPL.VisCurve2D(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for 2D curves

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the 2D curve and the control points polygon.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

280 Chapter 18. Visualization Modules

NURBS-Python Documentation, Release 5.3.1

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisCurve3D(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for 3D curves.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the 3D curve and the control points polygon.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisSurfScatter(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for surfaces.

18.2. Matplotlib Implementation 281

NURBS-Python Documentation, Release 5.3.1

Wireframe plot for the control points and scatter plot for the surface points.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the surface and the control points grid.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisSurfWireframe(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for surfaces.

Scatter plot for the control points and wireframe plot for the surface points.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

282 Chapter 18. Visualization Modules

NURBS-Python Documentation, Release 5.3.1

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the surface and the control points grid.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisSurface(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for surfaces.

Wireframe plot for the control points and triangulated plot (using plot_trisurf) for the surface points. The
surface is triangulated externally using utilities.make_triangle_mesh() function.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

18.2. Matplotlib Implementation 283

NURBS-Python Documentation, Release 5.3.1

• color (int) – plot color

• color – plot index

animate(**kwargs)
Animates the surface.

This function only animates the triangulated surface. There will be no other elements, such as control
points grid or bounding box.

Keyword arguments:

• colormap: applies colormap to the surface

Colormaps are a visualization feature of Matplotlib. They can be used for several types of surface plots via
the following import statement: from matplotlib import cm

The following link displays the list of Matplolib colormaps and some examples on colormaps: https:
//matplotlib.org/tutorials/colors/colormaps.html

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the surface and the control points grid.

Keyword arguments:

• colormap: applies colormap to the surface

Colormaps are a visualization feature of Matplotlib. They can be used for several types of surface plots via
the following import statement: from matplotlib import cm

The following link displays the list of Matplolib colormaps and some examples on colormaps: https:
//matplotlib.org/tutorials/colors/colormaps.html

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisVolume(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for volumes.

284 Chapter 18. Visualization Modules

https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html

NURBS-Python Documentation, Release 5.3.1

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the volume and the control points.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisMPL.VisVoxel(config=<geomdl.visualization.VisMPL.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

Matplotlib visualization module for voxel representation of the volumes.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

18.2. Matplotlib Implementation 285

NURBS-Python Documentation, Release 5.3.1

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Displays the voxels and the control points.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

18.3 Plotly Implementation

This module provides Plotly visualization implementation for NURBS-Python.

Note: Please make sure that you have installed plotly package before using this visualization module.

18.3.1 Class Reference

18.4 VTK Implementation

New in version 5.0.

This module provides VTK visualization implementation for NURBS-Python.

286 Chapter 18. Visualization Modules

https://plot.ly/
https://www.vtk.org/

NURBS-Python Documentation, Release 5.3.1

Note: Please make sure that you have installed vtk package before using this visualization module.

18.4.1 Class Reference

class geomdl.visualization.VisVTK.VisConfig(**kwargs)
Bases: geomdl.vis.VisConfigAbstract

Configuration class for VTK visualization module.

This class is only required when you would like to change the visual defaults of the plots and the figure.

The VisVTK module has the following configuration variables:

• ctrlpts (bool): Control points polygon/grid visibility. Default: True

• evalpts (bool): Curve/surface points visibility. Default: True

• trims (bool): Trim curve visibility. Default: True

• trim_size (int): Size of the trim curves. Default: 4

• figure_size (list): Size of the figure in (x, y). Default: (800, 600)

• line_width (int): Thickness of the lines on the figure. Default: 1.0

keypress_callback(obj, ev)
VTK callback for keypress events.

Keypress events:

• e: exit the application

• p: pick object (hover the mouse and then press to pick)

• f: fly to point (click somewhere in the window and press to fly)

• r: reset the camera

• s and w: switch between solid and wireframe modes

• b: change background color

• m: change color of the picked object

• d: print debug information (of picked object, point, etc.)

• h: change object visibility

• n: reset object visibility

• arrow keys: pan the model

Please refer to vtkInteractorStyle class reference for more details.

Parameters

• obj (vtkRenderWindowInteractor) – render window interactor

• ev (str) – event name

geomdl.visualization.VisVTK.VisCurve2D
alias of geomdl.visualization.VisVTK.VisCurve3D

18.4. VTK Implementation 287

https://vtk.org/doc/nightly/html/classvtkInteractorStyle.html

NURBS-Python Documentation, Release 5.3.1

class geomdl.visualization.VisVTK.VisCurve3D(config=<geomdl.visualization.VisVTK.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

VTK visualization module for curves.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the curve and the control points polygon.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisVTK.VisSurface(config=<geomdl.visualization.VisVTK.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

VTK visualization module for surfaces.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

288 Chapter 18. Visualization Modules

NURBS-Python Documentation, Release 5.3.1

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the surface and the control points grid.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisVTK.VisVolume(config=<geomdl.visualization.VisVTK.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

VTK visualization module for volumes.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

18.4. VTK Implementation 289

NURBS-Python Documentation, Release 5.3.1

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the volume and the control points.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

class geomdl.visualization.VisVTK.VisVoxel(config=<geomdl.visualization.VisVTK.VisConfig
object>, **kwargs)

Bases: geomdl.vis.VisAbstract

VTK visualization module for voxel representation of the volumes.

add(ptsarr, plot_type, name=”, color=”, idx=0)
Adds points sets to the visualization instance for plotting.

Parameters

• ptsarr (list, tuple) – control or evaluated points

• plot_type (str) – type of the plot, e.g. ctrlpts, evalpts, bbox, etc.

• name (str) – name of the plot displayed on the legend

• color (int) – plot color

• color – plot index

animate(**kwargs)
Generates animated plots (if supported).

If the implemented visualization module supports animations, this function will create an animated figure.
Otherwise, it will call render() method by default.

290 Chapter 18. Visualization Modules

NURBS-Python Documentation, Release 5.3.1

clear()
Clears the points, colors and names lists.

ctrlpts_offset
Defines an offset value for the control points grid plots

Only makes sense to use with surfaces with dense control points grid.

Getter Gets the offset value

Setter Sets the offset value

Type float

render(**kwargs)
Plots the volume and the control points.

size(plot_type)
Returns the number of plots defined by the plot type.

Parameters plot_type (str) – plot type

Returns number of plots defined by the plot type

Return type int

vconf
User configuration class for visualization

Getter Gets the user configuration class

Type vis.VisConfigAbstract

geomdl.visualization.VisVTK.random()→ x in the interval [0, 1).

The users are not limited with these visualization backends. For instance, control points and evaluated points can be
in various formats. Please refer to the Exchange module documentation for details.

18.4. VTK Implementation 291

NURBS-Python Documentation, Release 5.3.1

292 Chapter 18. Visualization Modules

CHAPTER 19

Command-line Application

You can use NURBS-Python (geomdl) with the command-line application geomdl-cli. The command-line application
is designed for automation and input files are highly customizable using Jinja2 templates.

geomdl-cli is highly extensible via via the configuration file. It is very easy to generate custom commands as well
as variables to change behavior of the existing commands or independently use for the custom commands. Since it
runs inside the user’s Python environment, it is possible to create commands that use the existing Python libraries and
even integrate NURBS-Python (geomdl) with these libraries.

19.1 Installation

The easiest method to install is via pip. It will install all the required modules.

$ pip install --user geomdl.cli

Please refer to geomdl-cli documentation for more installation options.

19.2 Documentation

geomdl-cli has a very detailed online documentation which describes the usage and customization options of the
command-line application.

19.3 References

• PyPI: https://pypi.org/project/geomdl.cli

• Documentation: https://geomdl-cli.readthedocs.io

• Development: https://github.com/orbingol/geomdl-cli

293

https://pypi.org/project/geomdl.cli/
http://jinja.pocoo.org/
https://pypi.org/project/geomdl.cli
https://geomdl-cli.readthedocs.io
https://github.com/orbingol/geomdl-cli

NURBS-Python Documentation, Release 5.3.1

294 Chapter 19. Command-line Application

CHAPTER 20

Shapes Module

The shapes module provides simple functions to generate commonly used analytic and spline geometries using
NURBS-Python (geomdl).

Prior to NURBS-Python (geomdl) v5.0.0, the shapes module was automatically installed with the main package.
Currently, it is maintained as a separate package.

20.1 Installation

The easiest method to install is via pip.

$ pip install --user geomdl.shapes

Please refer to geomdl-shapes documentation for more installation options.

20.2 Documentation

You can find the class and function references in the geomdl-shapes documentation.

20.3 References

• PyPI: https://pypi.org/project/geomdl.shapes

• Documentation: https://geomdl-shapes.readthedocs.io

• Development: https://github.com/orbingol/geomdl-shapes

295

https://pypi.org/project/geomdl.shapes
https://geomdl-shapes.readthedocs.io
https://github.com/orbingol/geomdl-shapes

NURBS-Python Documentation, Release 5.3.1

296 Chapter 20. Shapes Module

CHAPTER 21

Rhino Importer/Exporter

The Rhino importer/exporter, rw3dm uses OpenNURBS to read and write .3dm files.

rw3dm comes with the following list of programs:

• on2json converts OpenNURBS .3dm files to geomdl JSON format

• json2on converts geomdl JSON format to OpenNURBS .3dm files

21.1 Use Cases

• Import geometry data from .3dm files and use it with exchange.import_json()

• Export geometry data with exchange.export_json() and convert to a .3dm file

• Convert OpenNURBS file format to OBJ, STL, OFF and other formats supported by geomdl

21.2 Installation

Please refer to the rw3dm repository for installation options. The binary files can be downloaded under Releases
section of the GitHub repository.

21.3 Using with geomdl

The following code snippet illustrates importing the surface data converted from .3dm file:

1 from geomdl import exchange
2 from geomdl import multi
3 from geomdl.visualization import VisMPL as vis
4

(continues on next page)

297

https://www.rhino3d.com/opennurbs
https://github.com/orbingol/rw3dm
https://github.com/orbingol/rw3dm/releases

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

5 # Import converted data
6 data = exchange.import_json("converted_rhino.json")
7

8 # Add the imported data to a surface container
9 surf_cont = multi.SurfaceContainer(data)

10 surf_cont.sample_size = 30
11

12 # Visualize
13 surf_cont.vis = vis.VisSurface(ctrlpts=False, trims=False)
14 surf_cont.render()

21.4 References

• Development: https://github.com/orbingol/rw3dm

• Downloads: https://github.com/orbingol/rw3dm/releases

298 Chapter 21. Rhino Importer/Exporter

https://github.com/orbingol/rw3dm
https://github.com/orbingol/rw3dm/releases

CHAPTER 22

ACIS Importer

The ACIS importer, rwsat uses 3D ACIS Modeler to convert .sat files to geomdl JSON format.

rwsat comes with the following list of programs:

• sat2json converts ACIS .sat files to geomdl JSON format

• satgen generates sample geometries

22.1 Use Cases

• Import geometry data from .sat files and use it with exchange.import_json()

• Convert ACIS file format to OBJ, STL, OFF and other formats supported by geomdl

22.2 Installation

Please refer to the rwsat repository for installation options. Due to ACIS licensing, no binary files are distributed
within the repository.

22.3 Using with geomdl

The following code snippet illustrates importing the surface data converted from .sat file:

1 from geomdl import exchange
2 from geomdl import multi
3 from geomdl.visualization import VisMPL as vis
4

5 # Import converted data
6 data = exchange.import_json("converted_acis.json")

(continues on next page)

299

https://www.spatial.com/
https://github.com/orbingol/rwsat

NURBS-Python Documentation, Release 5.3.1

(continued from previous page)

7

8 # Add the imported data to a surface container
9 surf_cont = multi.SurfaceContainer(data)

10 surf_cont.sample_size = 30
11

12 # Visualize
13 surf_cont.vis = vis.VisSurface(ctrlpts=False, trims=False)
14 surf_cont.render()

22.4 References

• Development: https://github.com/orbingol/rwsat

• Documentation: https://github.com/orbingol/rwsat

300 Chapter 22. ACIS Importer

https://github.com/orbingol/rwsat
https://github.com/orbingol/rwsat

Python Module Index

c
compatibility (Unix, Windows), 174
construct (Unix, Windows), 178
control_points (Unix, Windows), 197
convert (Unix, Windows), 177

e
elements (Unix, Windows), 267
exchange (Unix, Windows), 190
exchange_vtk (Unix, Windows), 195

g
geomdl.compatibility, 174
geomdl.construct, 178
geomdl.control_points, 197
geomdl.convert, 177
geomdl.elements, 267
geomdl.exchange, 190
geomdl.exchange_vtk, 195
geomdl.fitting, 180
geomdl.helpers, 251
geomdl.knotvector, 196
geomdl.linalg, 259
geomdl.operations, 168
geomdl.ray, 275
geomdl.sweeping, 188
geomdl.trimming, 187
geomdl.utilities, 250
geomdl.vis.VisAbstract, 277
geomdl.vis.VisConfigAbstract, 278
geomdl.visualization.VisMPL, 278
geomdl.visualization.VisVTK, 287
geomdl.voxelize, 266

h
helpers (Unix, Windows), 251

i
interpolate (Unix, Windows), 180

k
knotvector (Unix, Windows), 196

l
linalg (Unix, Windows), 259

o
operations (Unix, Windows), 168

r
ray (Unix, Windows), 275

s
sweeping (Unix, Windows), 188

t
trimming (Unix, Windows), 187

u
utilities (Unix, Windows), 250

v
VisMPL (Unix, Windows), 278
VisVTK (Unix, Windows), 287
voxelize (Unix, Windows), 266

301

NURBS-Python Documentation, Release 5.3.1

302 Python Module Index

Index

A
AbstractContainer (class in geomdl.multi), 148
AbstractEvaluator (class in geomdl.evaluators),

243
AbstractManager (class in geomdl.control_points),

197
AbstractTessellate (class in geomdl.tessellate),

182
add() (geomdl.multi.AbstractContainer method), 149
add() (geomdl.multi.CurveContainer method), 152
add() (geomdl.multi.SurfaceContainer method), 157
add() (geomdl.multi.VolumeContainer method), 163
add() (geomdl.visualization.VisMPL.VisCurve2D

method), 280
add() (geomdl.visualization.VisMPL.VisCurve3D

method), 281
add() (geomdl.visualization.VisMPL.VisSurface

method), 283
add() (geomdl.visualization.VisMPL.VisSurfScatter

method), 282
add() (geomdl.visualization.VisMPL.VisSurfWireframe

method), 282
add() (geomdl.visualization.VisMPL.VisVolume

method), 284
add() (geomdl.visualization.VisMPL.VisVoxel method),

285
add() (geomdl.visualization.VisVTK.VisCurve3D

method), 288
add() (geomdl.visualization.VisVTK.VisSurface

method), 288
add() (geomdl.visualization.VisVTK.VisVolume

method), 289
add() (geomdl.visualization.VisVTK.VisVoxel method),

290
add_dimension() (in module geomdl.operations),

170
add_face() (geomdl.elements.Body method), 273
add_triangle() (geomdl.elements.Face method),

272

add_trim() (geomdl.abstract.Surface method), 214
add_trim() (geomdl.abstract.Volume method), 224
add_trim() (geomdl.BSpline.Surface method), 88
add_trim() (geomdl.BSpline.Volume method), 100
add_trim() (geomdl.NURBS.Surface method), 121
add_trim() (geomdl.NURBS.Volume method), 134
add_vertex() (geomdl.elements.Quad method), 271
add_vertex() (geomdl.elements.Triangle method),

269
animate() (geomdl.visualization.VisMPL.VisCurve2D

method), 280
animate() (geomdl.visualization.VisMPL.VisCurve3D

method), 281
animate() (geomdl.visualization.VisMPL.VisSurface

method), 284
animate() (geomdl.visualization.VisMPL.VisSurfScatter

method), 282
animate() (geomdl.visualization.VisMPL.VisSurfWireframe

method), 283
animate() (geomdl.visualization.VisMPL.VisVolume

method), 285
animate() (geomdl.visualization.VisMPL.VisVoxel

method), 286
animate() (geomdl.visualization.VisVTK.VisCurve3D

method), 288
animate() (geomdl.visualization.VisVTK.VisSurface

method), 289
animate() (geomdl.visualization.VisVTK.VisVolume

method), 290
animate() (geomdl.visualization.VisVTK.VisVoxel

method), 290
append() (geomdl.multi.AbstractContainer method),

149
append() (geomdl.multi.CurveContainer method), 153
append() (geomdl.multi.SurfaceContainer method),

157
append() (geomdl.multi.VolumeContainer method),

163
approximate_curve() (in module geomdl.fitting),

180

303

NURBS-Python Documentation, Release 5.3.1

approximate_surface() (in module ge-
omdl.fitting), 181

arguments (geomdl.tessellate.AbstractTessellate at-
tribute), 182

arguments (geomdl.tessellate.QuadTessellate at-
tribute), 184

arguments (geomdl.tessellate.TriangularTessellate at-
tribute), 183

arguments (geomdl.tessellate.TrimTessellate at-
tribute), 183

B
backward_substitution() (in module ge-

omdl.linalg), 259
basis_function() (in module geomdl.helpers), 251
basis_function_all() (in module ge-

omdl.helpers), 252
basis_function_ders() (in module ge-

omdl.helpers), 252
basis_function_ders_one() (in module ge-

omdl.helpers), 252
basis_function_one() (in module ge-

omdl.helpers), 253
basis_functions() (in module geomdl.helpers),

253
basis_functions_ders() (in module ge-

omdl.helpers), 253
bbox (geomdl.abstract.Curve attribute), 207
bbox (geomdl.abstract.SplineGeometry attribute), 237
bbox (geomdl.abstract.Surface attribute), 214
bbox (geomdl.abstract.Volume attribute), 224
bbox (geomdl.BSpline.Curve attribute), 79
bbox (geomdl.BSpline.Surface attribute), 88
bbox (geomdl.BSpline.Volume attribute), 100
bbox (geomdl.multi.AbstractContainer attribute), 149
bbox (geomdl.multi.CurveContainer attribute), 153
bbox (geomdl.multi.SurfaceContainer attribute), 157
bbox (geomdl.multi.VolumeContainer attribute), 163
bbox (geomdl.NURBS.Curve attribute), 112
bbox (geomdl.NURBS.Surface attribute), 122
bbox (geomdl.NURBS.Volume attribute), 134
binomial_coefficient (in module geomdl.linalg),

259
binormal() (geomdl.BSpline.Curve method), 79
binormal() (geomdl.NURBS.Curve method), 112
Body (class in geomdl.elements), 273
bspline_to_nurbs() (in module geomdl.convert),

177
bumps() (geomdl.CPGen.Grid method), 203
bumps() (geomdl.CPGen.GridWeighted method), 204

C
check() (in module geomdl.knotvector), 196
check_params() (in module geomdl.utilities), 250

clear() (geomdl.visualization.VisMPL.VisCurve2D
method), 280

clear() (geomdl.visualization.VisMPL.VisCurve3D
method), 281

clear() (geomdl.visualization.VisMPL.VisSurface
method), 284

clear() (geomdl.visualization.VisMPL.VisSurfScatter
method), 282

clear() (geomdl.visualization.VisMPL.VisSurfWireframe
method), 283

clear() (geomdl.visualization.VisMPL.VisVolume
method), 285

clear() (geomdl.visualization.VisMPL.VisVoxel
method), 286

clear() (geomdl.visualization.VisVTK.VisCurve3D
method), 288

clear() (geomdl.visualization.VisVTK.VisSurface
method), 289

clear() (geomdl.visualization.VisVTK.VisVolume
method), 290

clear() (geomdl.visualization.VisVTK.VisVoxel
method), 290

color_generator() (in module geomdl.utilities),
250

combine_ctrlpts_weights() (in module ge-
omdl.compatibility), 174

compatibility (module), 174
construct (module), 178
construct_surface() (in module ge-

omdl.construct), 178
construct_volume() (in module geomdl.construct),

178
control_points (module), 197
convert (module), 177
convex_hull() (in module geomdl.linalg), 259
cpsize (geomdl.abstract.Curve attribute), 207
cpsize (geomdl.abstract.SplineGeometry attribute),

238
cpsize (geomdl.abstract.Surface attribute), 214
cpsize (geomdl.abstract.Volume attribute), 224
cpsize (geomdl.BSpline.Curve attribute), 79
cpsize (geomdl.BSpline.Surface attribute), 88
cpsize (geomdl.BSpline.Volume attribute), 101
cpsize (geomdl.NURBS.Curve attribute), 112
cpsize (geomdl.NURBS.Surface attribute), 122
cpsize (geomdl.NURBS.Volume attribute), 135
ctrlpts (geomdl.abstract.Curve attribute), 207
ctrlpts (geomdl.abstract.SplineGeometry attribute),

238
ctrlpts (geomdl.abstract.Surface attribute), 214
ctrlpts (geomdl.abstract.Volume attribute), 224
ctrlpts (geomdl.BSpline.Curve attribute), 79
ctrlpts (geomdl.BSpline.Surface attribute), 88
ctrlpts (geomdl.BSpline.Volume attribute), 101

304 Index

NURBS-Python Documentation, Release 5.3.1

ctrlpts (geomdl.control_points.AbstractManager at-
tribute), 197

ctrlpts (geomdl.control_points.CurveManager
attribute), 199

ctrlpts (geomdl.control_points.SurfaceManager at-
tribute), 200

ctrlpts (geomdl.control_points.VolumeManager at-
tribute), 202

ctrlpts (geomdl.NURBS.Curve attribute), 113
ctrlpts (geomdl.NURBS.Surface attribute), 122
ctrlpts (geomdl.NURBS.Volume attribute), 135
ctrlpts2d (geomdl.BSpline.Surface attribute), 88
ctrlpts2d (geomdl.NURBS.Surface attribute), 122
ctrlpts_offset (ge-

omdl.visualization.VisMPL.VisCurve2D at-
tribute), 280

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisCurve3D at-
tribute), 281

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisSurface at-
tribute), 284

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisSurfScatter
attribute), 282

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisSurfWireframe
attribute), 283

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisVolume at-
tribute), 285

ctrlpts_offset (ge-
omdl.visualization.VisMPL.VisVoxel attribute),
286

ctrlpts_offset (ge-
omdl.visualization.VisVTK.VisCurve3D at-
tribute), 288

ctrlpts_offset (ge-
omdl.visualization.VisVTK.VisSurface at-
tribute), 289

ctrlpts_offset (ge-
omdl.visualization.VisVTK.VisVolume at-
tribute), 290

ctrlpts_offset (ge-
omdl.visualization.VisVTK.VisVoxel attribute),
291

ctrlpts_offset (in module geomdl.vis.VisAbstract),
277

ctrlpts_size (geomdl.abstract.Curve attribute), 207
ctrlpts_size (geomdl.abstract.SplineGeometry at-

tribute), 238
ctrlpts_size (geomdl.abstract.Surface attribute),

215
ctrlpts_size (geomdl.abstract.Volume attribute),

225
ctrlpts_size (geomdl.BSpline.Curve attribute), 79
ctrlpts_size (geomdl.BSpline.Surface attribute), 89
ctrlpts_size (geomdl.BSpline.Volume attribute),

101
ctrlpts_size (geomdl.NURBS.Curve attribute), 113
ctrlpts_size (geomdl.NURBS.Surface attribute),

123
ctrlpts_size (geomdl.NURBS.Volume attribute),

135
ctrlpts_size_u (geomdl.abstract.Surface attribute),

215
ctrlpts_size_u (geomdl.abstract.Volume attribute),

225
ctrlpts_size_u (geomdl.BSpline.Surface attribute),

89
ctrlpts_size_u (geomdl.BSpline.Volume attribute),

101
ctrlpts_size_u (geomdl.NURBS.Surface attribute),

123
ctrlpts_size_u (geomdl.NURBS.Volume attribute),

135
ctrlpts_size_v (geomdl.abstract.Surface attribute),

215
ctrlpts_size_v (geomdl.abstract.Volume attribute),

225
ctrlpts_size_v (geomdl.BSpline.Surface attribute),

89
ctrlpts_size_v (geomdl.BSpline.Volume attribute),

101
ctrlpts_size_v (geomdl.NURBS.Surface attribute),

123
ctrlpts_size_v (geomdl.NURBS.Volume attribute),

135
ctrlpts_size_w (geomdl.abstract.Volume attribute),

225
ctrlpts_size_w (geomdl.BSpline.Volume attribute),

101
ctrlpts_size_w (geomdl.NURBS.Volume attribute),

135
ctrlptsw (geomdl.NURBS.Curve attribute), 113
ctrlptsw (geomdl.NURBS.Surface attribute), 123
ctrlptsw (geomdl.NURBS.Volume attribute), 136
Curve (class in geomdl.abstract), 206
Curve (class in geomdl.BSpline), 78
Curve (class in geomdl.NURBS), 111
curve_deriv_cpts() (in module geomdl.helpers),

254
CurveContainer (class in geomdl.multi), 152
CurveEvaluator (class in geomdl.evaluators), 243
CurveEvaluator2 (class in geomdl.evaluators), 245
CurveEvaluatorRational (class in ge-

omdl.evaluators), 244
CurveManager (class in geomdl.control_points), 198

Index 305

NURBS-Python Documentation, Release 5.3.1

D
d (geomdl.ray.Ray attribute), 275
data (geomdl.abstract.Curve attribute), 207
data (geomdl.abstract.Surface attribute), 215
data (geomdl.abstract.Volume attribute), 225
data (geomdl.BSpline.Curve attribute), 79
data (geomdl.BSpline.Surface attribute), 90
data (geomdl.BSpline.Volume attribute), 101
data (geomdl.elements.Quad attribute), 271
data (geomdl.elements.Triangle attribute), 269
data (geomdl.elements.Vertex attribute), 267
data (geomdl.freeform.Freeform attribute), 145
data (geomdl.multi.AbstractContainer attribute), 149
data (geomdl.multi.CurveContainer attribute), 153
data (geomdl.multi.SurfaceContainer attribute), 157
data (geomdl.multi.VolumeContainer attribute), 163
data (geomdl.NURBS.Curve attribute), 113
data (geomdl.NURBS.Surface attribute), 124
data (geomdl.NURBS.Volume attribute), 136
decompose_curve() (in module geomdl.operations),

170
decompose_surface() (in module ge-

omdl.operations), 172
degree (geomdl.abstract.Curve attribute), 207
degree (geomdl.abstract.SplineGeometry attribute),

238
degree (geomdl.abstract.Surface attribute), 215
degree (geomdl.abstract.Volume attribute), 225
degree (geomdl.BSpline.Curve attribute), 79
degree (geomdl.BSpline.Surface attribute), 90
degree (geomdl.BSpline.Volume attribute), 102
degree (geomdl.NURBS.Curve attribute), 113
degree (geomdl.NURBS.Surface attribute), 124
degree (geomdl.NURBS.Volume attribute), 136
degree_elevation() (in module geomdl.helpers),

254
degree_reduction() (in module geomdl.helpers),

254
degree_u (geomdl.abstract.Surface attribute), 215
degree_u (geomdl.abstract.Volume attribute), 225
degree_u (geomdl.BSpline.Surface attribute), 90
degree_u (geomdl.BSpline.Volume attribute), 102
degree_u (geomdl.NURBS.Surface attribute), 124
degree_u (geomdl.NURBS.Volume attribute), 136
degree_v (geomdl.abstract.Surface attribute), 215
degree_v (geomdl.abstract.Volume attribute), 225
degree_v (geomdl.BSpline.Surface attribute), 90
degree_v (geomdl.BSpline.Volume attribute), 102
degree_v (geomdl.NURBS.Surface attribute), 124
degree_v (geomdl.NURBS.Volume attribute), 136
degree_w (geomdl.abstract.Volume attribute), 226
degree_w (geomdl.BSpline.Volume attribute), 102
degree_w (geomdl.NURBS.Volume attribute), 136
delta (geomdl.abstract.Curve attribute), 208

delta (geomdl.abstract.Surface attribute), 215
delta (geomdl.abstract.Volume attribute), 226
delta (geomdl.BSpline.Curve attribute), 80
delta (geomdl.BSpline.Surface attribute), 90
delta (geomdl.BSpline.Volume attribute), 102
delta (geomdl.multi.AbstractContainer attribute), 149
delta (geomdl.multi.CurveContainer attribute), 153
delta (geomdl.multi.SurfaceContainer attribute), 157
delta (geomdl.multi.VolumeContainer attribute), 163
delta (geomdl.NURBS.Curve attribute), 113
delta (geomdl.NURBS.Surface attribute), 124
delta (geomdl.NURBS.Volume attribute), 136
delta_u (geomdl.abstract.Surface attribute), 216
delta_u (geomdl.abstract.Volume attribute), 226
delta_u (geomdl.BSpline.Surface attribute), 90
delta_u (geomdl.BSpline.Volume attribute), 103
delta_u (geomdl.multi.SurfaceContainer attribute),

157
delta_u (geomdl.multi.VolumeContainer attribute),

163
delta_u (geomdl.NURBS.Surface attribute), 125
delta_u (geomdl.NURBS.Volume attribute), 137
delta_v (geomdl.abstract.Surface attribute), 216
delta_v (geomdl.abstract.Volume attribute), 226
delta_v (geomdl.BSpline.Surface attribute), 91
delta_v (geomdl.BSpline.Volume attribute), 103
delta_v (geomdl.multi.SurfaceContainer attribute),

158
delta_v (geomdl.multi.VolumeContainer attribute),

164
delta_v (geomdl.NURBS.Surface attribute), 125
delta_v (geomdl.NURBS.Volume attribute), 137
delta_w (geomdl.abstract.Volume attribute), 227
delta_w (geomdl.BSpline.Volume attribute), 103
delta_w (geomdl.multi.VolumeContainer attribute),

164
delta_w (geomdl.NURBS.Volume attribute), 137
derivative_curve() (in module ge-

omdl.operations), 170
derivative_surface() (in module ge-

omdl.operations), 172
derivatives() (geomdl.abstract.Curve method), 208
derivatives() (geomdl.abstract.Surface method),

216
derivatives() (geomdl.BSpline.Curve method), 80
derivatives() (geomdl.BSpline.Surface method), 91
derivatives() (ge-

omdl.evaluators.AbstractEvaluator method),
243

derivatives() (geomdl.evaluators.CurveEvaluator
method), 244

derivatives() (geomdl.evaluators.CurveEvaluator2
method), 245

derivatives() (ge-

306 Index

NURBS-Python Documentation, Release 5.3.1

omdl.evaluators.CurveEvaluatorRational
method), 244

derivatives() (ge-
omdl.evaluators.SurfaceEvaluator method),
246

derivatives() (ge-
omdl.evaluators.SurfaceEvaluator2 method),
248

derivatives() (ge-
omdl.evaluators.SurfaceEvaluatorRational
method), 247

derivatives() (geomdl.evaluators.VolumeEvaluator
method), 248

derivatives() (ge-
omdl.evaluators.VolumeEvaluatorRational
method), 249

derivatives() (geomdl.NURBS.Curve method), 114
derivatives() (geomdl.NURBS.Surface method),

125
dimension (geomdl.abstract.Curve attribute), 208
dimension (geomdl.abstract.GeomdlBase attribute),

234
dimension (geomdl.abstract.Geometry attribute), 235
dimension (geomdl.abstract.SplineGeometry at-

tribute), 238
dimension (geomdl.abstract.Surface attribute), 217
dimension (geomdl.abstract.Volume attribute), 227
dimension (geomdl.BSpline.Curve attribute), 80
dimension (geomdl.BSpline.Surface attribute), 91
dimension (geomdl.BSpline.Volume attribute), 103
dimension (geomdl.freeform.Freeform attribute), 145
dimension (geomdl.multi.AbstractContainer at-

tribute), 150
dimension (geomdl.multi.CurveContainer attribute),

153
dimension (geomdl.multi.SurfaceContainer attribute),

158
dimension (geomdl.multi.VolumeContainer attribute),

164
dimension (geomdl.NURBS.Curve attribute), 114
dimension (geomdl.NURBS.Surface attribute), 125
dimension (geomdl.NURBS.Volume attribute), 138
dimension (geomdl.ray.Ray attribute), 275
domain (geomdl.abstract.Curve attribute), 208
domain (geomdl.abstract.SplineGeometry attribute),

238
domain (geomdl.abstract.Surface attribute), 217
domain (geomdl.abstract.Volume attribute), 227
domain (geomdl.BSpline.Curve attribute), 80
domain (geomdl.BSpline.Surface attribute), 92
domain (geomdl.BSpline.Volume attribute), 103
domain (geomdl.NURBS.Curve attribute), 114
domain (geomdl.NURBS.Surface attribute), 126
domain (geomdl.NURBS.Volume attribute), 138

E
edges (geomdl.elements.Triangle attribute), 269
elements (module), 267
eval() (geomdl.ray.Ray method), 275
evalpts (geomdl.abstract.Curve attribute), 208
evalpts (geomdl.abstract.Geometry attribute), 235
evalpts (geomdl.abstract.SplineGeometry attribute),

238
evalpts (geomdl.abstract.Surface attribute), 217
evalpts (geomdl.abstract.Volume attribute), 227
evalpts (geomdl.BSpline.Curve attribute), 81
evalpts (geomdl.BSpline.Surface attribute), 92
evalpts (geomdl.BSpline.Volume attribute), 104
evalpts (geomdl.freeform.Freeform attribute), 145
evalpts (geomdl.multi.AbstractContainer attribute),

150
evalpts (geomdl.multi.CurveContainer attribute), 153
evalpts (geomdl.multi.SurfaceContainer attribute),

158
evalpts (geomdl.multi.VolumeContainer attribute),

164
evalpts (geomdl.NURBS.Curve attribute), 114
evalpts (geomdl.NURBS.Surface attribute), 126
evalpts (geomdl.NURBS.Volume attribute), 138
evaluate() (geomdl.abstract.Curve method), 209
evaluate() (geomdl.abstract.Geometry method), 236
evaluate() (geomdl.abstract.SplineGeometry

method), 239
evaluate() (geomdl.abstract.Surface method), 217
evaluate() (geomdl.abstract.Volume method), 227
evaluate() (geomdl.BSpline.Curve method), 81
evaluate() (geomdl.BSpline.Surface method), 92
evaluate() (geomdl.BSpline.Volume method), 104
evaluate() (geomdl.evaluators.AbstractEvaluator

method), 243
evaluate() (geomdl.evaluators.CurveEvaluator

method), 244
evaluate() (geomdl.evaluators.CurveEvaluator2

method), 245
evaluate() (geomdl.evaluators.CurveEvaluatorRational

method), 245
evaluate() (geomdl.evaluators.SurfaceEvaluator

method), 246
evaluate() (geomdl.evaluators.SurfaceEvaluator2

method), 248
evaluate() (geomdl.evaluators.SurfaceEvaluatorRational

method), 247
evaluate() (geomdl.evaluators.VolumeEvaluator

method), 249
evaluate() (geomdl.evaluators.VolumeEvaluatorRational

method), 249
evaluate() (geomdl.freeform.Freeform method), 146
evaluate() (geomdl.NURBS.Curve method), 114
evaluate() (geomdl.NURBS.Surface method), 126

Index 307

NURBS-Python Documentation, Release 5.3.1

evaluate() (geomdl.NURBS.Volume method), 138
evaluate_bounding_box() (in module ge-

omdl.utilities), 250
evaluate_list() (geomdl.abstract.Curve method),

209
evaluate_list() (geomdl.abstract.Surface

method), 217
evaluate_list() (geomdl.abstract.Volume method),

227
evaluate_list() (geomdl.BSpline.Curve method),

81
evaluate_list() (geomdl.BSpline.Surface method),

92
evaluate_list() (geomdl.BSpline.Volume method),

104
evaluate_list() (geomdl.NURBS.Curve method),

115
evaluate_list() (geomdl.NURBS.Surface method),

126
evaluate_list() (geomdl.NURBS.Volume method),

138
evaluate_single() (geomdl.abstract.Curve

method), 209
evaluate_single() (geomdl.abstract.Surface

method), 217
evaluate_single() (geomdl.abstract.Volume

method), 228
evaluate_single() (geomdl.BSpline.Curve

method), 81
evaluate_single() (geomdl.BSpline.Surface

method), 92
evaluate_single() (geomdl.BSpline.Volume

method), 104
evaluate_single() (geomdl.NURBS.Curve

method), 115
evaluate_single() (geomdl.NURBS.Surface

method), 126
evaluate_single() (geomdl.NURBS.Volume

method), 138
evaluator (geomdl.abstract.Curve attribute), 209
evaluator (geomdl.abstract.SplineGeometry at-

tribute), 239
evaluator (geomdl.abstract.Surface attribute), 217
evaluator (geomdl.abstract.Volume attribute), 228
evaluator (geomdl.BSpline.Curve attribute), 81
evaluator (geomdl.BSpline.Surface attribute), 92
evaluator (geomdl.BSpline.Volume attribute), 104
evaluator (geomdl.NURBS.Curve attribute), 115
evaluator (geomdl.NURBS.Surface attribute), 126
evaluator (geomdl.NURBS.Volume attribute), 138
exchange (module), 190
exchange_vtk (module), 195
export_3dm() (in module geomdl.exchange), 195
export_cfg() (in module geomdl.exchange), 191

export_csv() (in module geomdl.exchange), 191
export_json() (in module geomdl.exchange), 192
export_obj() (in module geomdl.exchange), 193
export_off() (in module geomdl.exchange), 194
export_polydata() (in module ge-

omdl.exchange_vtk), 195
export_smesh() (in module geomdl.exchange), 194
export_stl() (in module geomdl.exchange), 193
export_txt() (in module geomdl.exchange), 190
export_vmesh() (in module geomdl.exchange), 195
export_yaml() (in module geomdl.exchange), 192
extract_curves() (in module geomdl.construct),

178
extract_isosurface() (in module ge-

omdl.construct), 179
extract_surfaces() (in module geomdl.construct),

179

F
Face (class in geomdl.elements), 272
faces (geomdl.abstract.Surface attribute), 218
faces (geomdl.BSpline.Surface attribute), 93
faces (geomdl.elements.Body attribute), 273
faces (geomdl.multi.SurfaceContainer attribute), 158
faces (geomdl.NURBS.Surface attribute), 127
faces (geomdl.tessellate.AbstractTessellate attribute),

182
faces (geomdl.tessellate.QuadTessellate attribute), 185
faces (geomdl.tessellate.TriangularTessellate at-

tribute), 183
faces (geomdl.tessellate.TrimTessellate attribute), 184
find_ctrlpts() (in module geomdl.operations), 172
find_index() (geomdl.control_points.AbstractManager

method), 197
find_index() (geomdl.control_points.CurveManager

method), 199
find_index() (geomdl.control_points.SurfaceManager

method), 200
find_index() (geomdl.control_points.VolumeManager

method), 202
find_multiplicity() (in module geomdl.helpers),

254
find_span_binsearch() (in module ge-

omdl.helpers), 255
find_span_linear() (in module geomdl.helpers),

255
find_spans() (in module geomdl.helpers), 255
fix_multi_trim_curves() (in module ge-

omdl.trimming), 188
fix_trim_curves() (in module geomdl.trimming),

188
flip() (in module geomdl.operations), 174
flip_ctrlpts() (in module geomdl.compatibility),

174

308 Index

NURBS-Python Documentation, Release 5.3.1

flip_ctrlpts2d() (in module ge-
omdl.compatibility), 175

flip_ctrlpts2d_file() (in module ge-
omdl.compatibility), 175

flip_ctrlpts_u() (in module ge-
omdl.compatibility), 175

forward_substitution() (in module ge-
omdl.linalg), 260

frange() (in module geomdl.linalg), 260
Freeform (class in geomdl.freeform), 145

G
generate() (geomdl.CPGen.Grid method), 204
generate() (geomdl.CPGen.GridWeighted method),

205
generate() (in module geomdl.knotvector), 196
generate_ctrlpts2d_weights() (in module ge-

omdl.compatibility), 175
generate_ctrlpts2d_weights_file() (in

module geomdl.compatibility), 176
generate_ctrlpts_weights() (in module ge-

omdl.compatibility), 176
generate_ctrlptsw() (in module ge-

omdl.compatibility), 176
generate_ctrlptsw2d() (in module ge-

omdl.compatibility), 176
generate_ctrlptsw2d_file() (in module ge-

omdl.compatibility), 177
geomdl.compatibility (module), 174
geomdl.construct (module), 178
geomdl.control_points (module), 197
geomdl.convert (module), 177
geomdl.elements (module), 267
geomdl.exchange (module), 190
geomdl.exchange_vtk (module), 195
geomdl.fitting (module), 180
geomdl.helpers (module), 251
geomdl.knotvector (module), 196
geomdl.linalg (module), 259
geomdl.operations (module), 168
geomdl.ray (module), 275
geomdl.sweeping (module), 188
geomdl.trimming (module), 187
geomdl.utilities (module), 250
geomdl.vis.VisAbstract (module), 277
geomdl.vis.VisConfigAbstract (module), 278
geomdl.visualization.VisMPL (module), 278
geomdl.visualization.VisVTK (module), 287
geomdl.voxelize (module), 266
GeomdlBase (class in geomdl.abstract), 233
Geometry (class in geomdl.abstract), 235
get_ctrlpt() (geomdl.control_points.AbstractManager

method), 197

get_ctrlpt() (geomdl.control_points.CurveManager
method), 199

get_ctrlpt() (geomdl.control_points.SurfaceManager
method), 201

get_ctrlpt() (geomdl.control_points.VolumeManager
method), 202

get_ptdata() (geomdl.control_points.AbstractManager
method), 197

get_ptdata() (geomdl.control_points.CurveManager
method), 199

get_ptdata() (geomdl.control_points.SurfaceManager
method), 201

get_ptdata() (geomdl.control_points.VolumeManager
method), 202

Grid (class in geomdl.CPGen), 203
grid (geomdl.CPGen.Grid attribute), 204
grid (geomdl.CPGen.GridWeighted attribute), 205
GridWeighted (class in geomdl.CPGen), 204

H
helpers (module), 251

I
id (geomdl.abstract.Curve attribute), 209
id (geomdl.abstract.GeomdlBase attribute), 234
id (geomdl.abstract.Geometry attribute), 236
id (geomdl.abstract.SplineGeometry attribute), 239
id (geomdl.abstract.Surface attribute), 218
id (geomdl.abstract.Volume attribute), 228
id (geomdl.BSpline.Curve attribute), 82
id (geomdl.BSpline.Surface attribute), 93
id (geomdl.BSpline.Volume attribute), 104
id (geomdl.elements.Body attribute), 274
id (geomdl.elements.Face attribute), 272
id (geomdl.elements.Quad attribute), 271
id (geomdl.elements.Triangle attribute), 269
id (geomdl.elements.Vertex attribute), 267
id (geomdl.freeform.Freeform attribute), 146
id (geomdl.multi.AbstractContainer attribute), 150
id (geomdl.multi.CurveContainer attribute), 154
id (geomdl.multi.SurfaceContainer attribute), 158
id (geomdl.multi.VolumeContainer attribute), 165
id (geomdl.NURBS.Curve attribute), 115
id (geomdl.NURBS.Surface attribute), 127
id (geomdl.NURBS.Volume attribute), 139
import_3dm() (in module geomdl.exchange), 195
import_cfg() (in module geomdl.exchange), 191
import_csv() (in module geomdl.exchange), 191
import_json() (in module geomdl.exchange), 192
import_obj() (in module geomdl.exchange), 193
import_smesh() (in module geomdl.exchange), 194
import_txt() (in module geomdl.exchange), 190
import_vmesh() (in module geomdl.exchange), 194
import_yaml() (in module geomdl.exchange), 192

Index 309

NURBS-Python Documentation, Release 5.3.1

insert_knot() (geomdl.BSpline.Curve method), 82
insert_knot() (geomdl.BSpline.Surface method), 93
insert_knot() (geomdl.BSpline.Volume method),

105
insert_knot() (geomdl.NURBS.Curve method), 116
insert_knot() (geomdl.NURBS.Surface method),

127
insert_knot() (geomdl.NURBS.Volume method),

139
insert_knot() (in module geomdl.operations), 168
inside (geomdl.elements.Triangle attribute), 270
inside (geomdl.elements.Vertex attribute), 267
interpolate (module), 180
interpolate_curve() (in module geomdl.fitting),

180
interpolate_surface() (in module ge-

omdl.fitting), 180
intersect() (in module geomdl.ray), 275
is_left() (in module geomdl.linalg), 260
is_notebook() (ge-

omdl.visualization.VisMPL.VisConfig method),
279

is_tessellated() (ge-
omdl.tessellate.AbstractTessellate method),
182

is_tessellated() (ge-
omdl.tessellate.QuadTessellate method),
185

is_tessellated() (ge-
omdl.tessellate.TriangularTessellate method),
183

is_tessellated() (ge-
omdl.tessellate.TrimTessellate method), 184

K
keypress_callback() (ge-

omdl.visualization.VisVTK.VisConfig method),
287

knot_insertion() (in module geomdl.helpers), 256
knot_insertion_alpha (in module ge-

omdl.helpers), 256
knot_insertion_kv() (in module geomdl.helpers),

256
knot_refinement() (in module geomdl.helpers),

257
knot_removal() (in module geomdl.helpers), 257
knot_removal_alpha_i (in module ge-

omdl.helpers), 258
knot_removal_alpha_j (in module ge-

omdl.helpers), 258
knot_removal_kv() (in module geomdl.helpers),

258
knotvector (geomdl.abstract.Curve attribute), 209

knotvector (geomdl.abstract.SplineGeometry at-
tribute), 239

knotvector (geomdl.abstract.Surface attribute), 218
knotvector (geomdl.abstract.Volume attribute), 228
knotvector (geomdl.BSpline.Curve attribute), 82
knotvector (geomdl.BSpline.Surface attribute), 93
knotvector (geomdl.BSpline.Volume attribute), 105
knotvector (geomdl.NURBS.Curve attribute), 116
knotvector (geomdl.NURBS.Surface attribute), 127
knotvector (geomdl.NURBS.Volume attribute), 139
knotvector (module), 196
knotvector_u (geomdl.abstract.Surface attribute),

218
knotvector_u (geomdl.abstract.Volume attribute),

228
knotvector_u (geomdl.BSpline.Surface attribute), 93
knotvector_u (geomdl.BSpline.Volume attribute),

105
knotvector_u (geomdl.NURBS.Surface attribute),

127
knotvector_u (geomdl.NURBS.Volume attribute),

139
knotvector_v (geomdl.abstract.Surface attribute),

218
knotvector_v (geomdl.abstract.Volume attribute),

228
knotvector_v (geomdl.BSpline.Surface attribute), 94
knotvector_v (geomdl.BSpline.Volume attribute),

105
knotvector_v (geomdl.NURBS.Surface attribute),

128
knotvector_v (geomdl.NURBS.Volume attribute),

139
knotvector_w (geomdl.abstract.Volume attribute),

229
knotvector_w (geomdl.BSpline.Volume attribute),

105
knotvector_w (geomdl.NURBS.Volume attribute),

140

L
length_curve() (in module geomdl.operations), 171
linalg (module), 259
linspace() (in module geomdl.linalg), 260
load() (geomdl.BSpline.Curve method), 82
load() (geomdl.BSpline.Surface method), 94
load() (geomdl.BSpline.Volume method), 106
load() (geomdl.NURBS.Curve method), 116
load() (geomdl.NURBS.Surface method), 128
load() (geomdl.NURBS.Volume method), 140
lu_decomposition() (in module geomdl.linalg),

261
lu_factor() (in module geomdl.linalg), 261
lu_solve() (in module geomdl.linalg), 261

310 Index

NURBS-Python Documentation, Release 5.3.1

M
make_quad() (in module geomdl.utilities), 250
make_quad_mesh() (in module geomdl.tessellate),

186
make_quadtree() (in module geomdl.utilities), 250
make_triangle_mesh() (in module ge-

omdl.tessellate), 185
make_zigzag() (in module geomdl.utilities), 251
map_trim_to_geometry() (in module ge-

omdl.trimming), 187
matrix_determinant() (in module geomdl.linalg),

261
matrix_identity (in module geomdl.linalg), 261
matrix_inverse() (in module geomdl.linalg), 262
matrix_multiply() (in module geomdl.linalg), 262
matrix_pivot() (in module geomdl.linalg), 262
matrix_scalar() (in module geomdl.linalg), 262
matrix_transpose() (in module geomdl.linalg),

262
mconf (in module geomdl.vis.VisAbstract), 277

N
name (geomdl.abstract.Curve attribute), 210
name (geomdl.abstract.GeomdlBase attribute), 234
name (geomdl.abstract.Geometry attribute), 236
name (geomdl.abstract.SplineGeometry attribute), 239
name (geomdl.abstract.Surface attribute), 218
name (geomdl.abstract.Volume attribute), 229
name (geomdl.BSpline.Curve attribute), 82
name (geomdl.BSpline.Surface attribute), 94
name (geomdl.BSpline.Volume attribute), 106
name (geomdl.elements.Body attribute), 274
name (geomdl.elements.Face attribute), 272
name (geomdl.elements.Quad attribute), 271
name (geomdl.elements.Triangle attribute), 270
name (geomdl.elements.Vertex attribute), 267
name (geomdl.evaluators.AbstractEvaluator attribute),

243
name (geomdl.evaluators.CurveEvaluator attribute), 244
name (geomdl.evaluators.CurveEvaluator2 attribute),

246
name (geomdl.evaluators.CurveEvaluatorRational at-

tribute), 245
name (geomdl.evaluators.SurfaceEvaluator attribute),

246
name (geomdl.evaluators.SurfaceEvaluator2 attribute),

248
name (geomdl.evaluators.SurfaceEvaluatorRational at-

tribute), 247
name (geomdl.evaluators.VolumeEvaluator attribute),

249
name (geomdl.evaluators.VolumeEvaluatorRational at-

tribute), 249
name (geomdl.freeform.Freeform attribute), 146

name (geomdl.multi.AbstractContainer attribute), 150
name (geomdl.multi.CurveContainer attribute), 154
name (geomdl.multi.SurfaceContainer attribute), 159
name (geomdl.multi.VolumeContainer attribute), 165
name (geomdl.NURBS.Curve attribute), 116
name (geomdl.NURBS.Surface attribute), 128
name (geomdl.NURBS.Volume attribute), 140
normal() (geomdl.BSpline.Curve method), 82
normal() (geomdl.BSpline.Surface method), 94
normal() (geomdl.NURBS.Curve method), 116
normal() (geomdl.NURBS.Surface method), 128
normal() (in module geomdl.operations), 173
normalize() (in module geomdl.knotvector), 196
nurbs_to_bspline() (in module geomdl.convert),

177

O
operations (module), 168
opt (geomdl.abstract.Curve attribute), 210
opt (geomdl.abstract.GeomdlBase attribute), 234
opt (geomdl.abstract.Geometry attribute), 236
opt (geomdl.abstract.SplineGeometry attribute), 239
opt (geomdl.abstract.Surface attribute), 219
opt (geomdl.abstract.Volume attribute), 229
opt (geomdl.BSpline.Curve attribute), 83
opt (geomdl.BSpline.Surface attribute), 94
opt (geomdl.BSpline.Volume attribute), 106
opt (geomdl.elements.Body attribute), 274
opt (geomdl.elements.Face attribute), 273
opt (geomdl.elements.Quad attribute), 271
opt (geomdl.elements.Triangle attribute), 270
opt (geomdl.elements.Vertex attribute), 268
opt (geomdl.freeform.Freeform attribute), 146
opt (geomdl.multi.AbstractContainer attribute), 150
opt (geomdl.multi.CurveContainer attribute), 154
opt (geomdl.multi.SurfaceContainer attribute), 159
opt (geomdl.multi.VolumeContainer attribute), 165
opt (geomdl.NURBS.Curve attribute), 116
opt (geomdl.NURBS.Surface attribute), 128
opt (geomdl.NURBS.Volume attribute), 140
opt_get() (geomdl.abstract.Curve method), 210
opt_get() (geomdl.abstract.GeomdlBase method),

235
opt_get() (geomdl.abstract.Geometry method), 236
opt_get() (geomdl.abstract.SplineGeometry method),

240
opt_get() (geomdl.abstract.Surface method), 219
opt_get() (geomdl.abstract.Volume method), 230
opt_get() (geomdl.BSpline.Curve method), 83
opt_get() (geomdl.BSpline.Surface method), 95
opt_get() (geomdl.BSpline.Volume method), 106
opt_get() (geomdl.elements.Body method), 274
opt_get() (geomdl.elements.Face method), 273
opt_get() (geomdl.elements.Quad method), 272

Index 311

NURBS-Python Documentation, Release 5.3.1

opt_get() (geomdl.elements.Triangle method), 270
opt_get() (geomdl.elements.Vertex method), 268
opt_get() (geomdl.freeform.Freeform method), 146
opt_get() (geomdl.multi.AbstractContainer method),

151
opt_get() (geomdl.multi.CurveContainer method),

154
opt_get() (geomdl.multi.SurfaceContainer method),

159
opt_get() (geomdl.multi.VolumeContainer method),

165
opt_get() (geomdl.NURBS.Curve method), 117
opt_get() (geomdl.NURBS.Surface method), 129
opt_get() (geomdl.NURBS.Volume method), 141
order (geomdl.abstract.Curve attribute), 210
order (geomdl.BSpline.Curve attribute), 83
order (geomdl.NURBS.Curve attribute), 117
order_u (geomdl.abstract.Surface attribute), 219
order_u (geomdl.abstract.Volume attribute), 230
order_u (geomdl.BSpline.Surface attribute), 95
order_u (geomdl.BSpline.Volume attribute), 107
order_u (geomdl.NURBS.Surface attribute), 129
order_u (geomdl.NURBS.Volume attribute), 141
order_v (geomdl.abstract.Surface attribute), 219
order_v (geomdl.abstract.Volume attribute), 230
order_v (geomdl.BSpline.Surface attribute), 95
order_v (geomdl.BSpline.Volume attribute), 107
order_v (geomdl.NURBS.Surface attribute), 129
order_v (geomdl.NURBS.Volume attribute), 141
order_w (geomdl.abstract.Volume attribute), 230
order_w (geomdl.BSpline.Volume attribute), 107
order_w (geomdl.NURBS.Volume attribute), 141

P
p (geomdl.ray.Ray attribute), 275
pdimension (geomdl.abstract.Curve attribute), 210
pdimension (geomdl.abstract.SplineGeometry at-

tribute), 240
pdimension (geomdl.abstract.Surface attribute), 219
pdimension (geomdl.abstract.Volume attribute), 230
pdimension (geomdl.BSpline.Curve attribute), 83
pdimension (geomdl.BSpline.Surface attribute), 95
pdimension (geomdl.BSpline.Volume attribute), 107
pdimension (geomdl.multi.AbstractContainer at-

tribute), 151
pdimension (geomdl.multi.CurveContainer attribute),

155
pdimension (geomdl.multi.SurfaceContainer at-

tribute), 159
pdimension (geomdl.multi.VolumeContainer at-

tribute), 166
pdimension (geomdl.NURBS.Curve attribute), 117
pdimension (geomdl.NURBS.Surface attribute), 129
pdimension (geomdl.NURBS.Volume attribute), 141

point_distance() (in module geomdl.linalg), 263
point_mid() (in module geomdl.linalg), 263
point_translate() (in module geomdl.linalg), 263
points (geomdl.ray.Ray attribute), 275
polygon_triangulate() (in module ge-

omdl.tessellate), 186

Q
Quad (class in geomdl.elements), 271
QuadTessellate (class in geomdl.tessellate), 184

R
random() (in module geomdl.visualization.VisVTK),

291
range (geomdl.abstract.Curve attribute), 211
range (geomdl.abstract.SplineGeometry attribute), 240
range (geomdl.abstract.Surface attribute), 220
range (geomdl.abstract.Volume attribute), 230
range (geomdl.BSpline.Curve attribute), 83
range (geomdl.BSpline.Surface attribute), 95
range (geomdl.BSpline.Volume attribute), 107
range (geomdl.NURBS.Curve attribute), 117
range (geomdl.NURBS.Surface attribute), 129
range (geomdl.NURBS.Volume attribute), 141
rational (geomdl.abstract.Curve attribute), 211
rational (geomdl.abstract.SplineGeometry attribute),

240
rational (geomdl.abstract.Surface attribute), 220
rational (geomdl.abstract.Volume attribute), 230
rational (geomdl.BSpline.Curve attribute), 84
rational (geomdl.BSpline.Surface attribute), 95
rational (geomdl.BSpline.Volume attribute), 107
rational (geomdl.NURBS.Curve attribute), 117
rational (geomdl.NURBS.Surface attribute), 129
rational (geomdl.NURBS.Volume attribute), 142
Ray (class in geomdl.ray), 275
ray (module), 275
RayIntersection (class in geomdl.ray), 275
refine_knotvector() (in module ge-

omdl.operations), 169
remove_knot() (geomdl.BSpline.Curve method), 84
remove_knot() (geomdl.BSpline.Surface method), 95
remove_knot() (geomdl.BSpline.Volume method),

107
remove_knot() (geomdl.NURBS.Curve method), 118
remove_knot() (geomdl.NURBS.Surface method),

129
remove_knot() (geomdl.NURBS.Volume method),

142
remove_knot() (in module geomdl.operations), 168
render() (geomdl.abstract.Curve method), 211
render() (geomdl.abstract.SplineGeometry method),

240
render() (geomdl.abstract.Surface method), 220

312 Index

NURBS-Python Documentation, Release 5.3.1

render() (geomdl.abstract.Volume method), 231
render() (geomdl.BSpline.Curve method), 84
render() (geomdl.BSpline.Surface method), 96
render() (geomdl.BSpline.Volume method), 108
render() (geomdl.multi.AbstractContainer method),

151
render() (geomdl.multi.CurveContainer method), 155
render() (geomdl.multi.SurfaceContainer method),

159
render() (geomdl.multi.VolumeContainer method),

166
render() (geomdl.NURBS.Curve method), 118
render() (geomdl.NURBS.Surface method), 130
render() (geomdl.NURBS.Volume method), 142
render() (geomdl.visualization.VisMPL.VisCurve2D

method), 280
render() (geomdl.visualization.VisMPL.VisCurve3D

method), 281
render() (geomdl.visualization.VisMPL.VisSurface

method), 284
render() (geomdl.visualization.VisMPL.VisSurfScatter

method), 282
render() (geomdl.visualization.VisMPL.VisSurfWireframe

method), 283
render() (geomdl.visualization.VisMPL.VisVolume

method), 285
render() (geomdl.visualization.VisMPL.VisVoxel

method), 286
render() (geomdl.visualization.VisVTK.VisCurve3D

method), 288
render() (geomdl.visualization.VisVTK.VisSurface

method), 289
render() (geomdl.visualization.VisVTK.VisVolume

method), 290
render() (geomdl.visualization.VisVTK.VisVoxel

method), 291
reset() (geomdl.abstract.Curve method), 212
reset() (geomdl.abstract.Surface method), 221
reset() (geomdl.abstract.Volume method), 231
reset() (geomdl.BSpline.Curve method), 85
reset() (geomdl.BSpline.Surface method), 97
reset() (geomdl.BSpline.Volume method), 109
reset() (geomdl.control_points.AbstractManager

method), 198
reset() (geomdl.control_points.CurveManager

method), 199
reset() (geomdl.control_points.SurfaceManager

method), 201
reset() (geomdl.control_points.VolumeManager

method), 202
reset() (geomdl.CPGen.Grid method), 204
reset() (geomdl.CPGen.GridWeighted method), 205
reset() (geomdl.multi.AbstractContainer method),

151

reset() (geomdl.multi.CurveContainer method), 155
reset() (geomdl.multi.SurfaceContainer method), 160
reset() (geomdl.multi.VolumeContainer method), 166
reset() (geomdl.NURBS.Curve method), 118
reset() (geomdl.NURBS.Surface method), 131
reset() (geomdl.NURBS.Volume method), 143
reset() (geomdl.tessellate.AbstractTessellate method),

182
reset() (geomdl.tessellate.QuadTessellate method),

185
reset() (geomdl.tessellate.TriangularTessellate

method), 183
reset() (geomdl.tessellate.TrimTessellate method),

184
reverse() (geomdl.abstract.Curve method), 212
reverse() (geomdl.BSpline.Curve method), 85
reverse() (geomdl.NURBS.Curve method), 119
rotate() (in module geomdl.operations), 173

S
sample_size (geomdl.abstract.Curve attribute), 212
sample_size (geomdl.abstract.Surface attribute), 221
sample_size (geomdl.abstract.Volume attribute), 232
sample_size (geomdl.BSpline.Curve attribute), 85
sample_size (geomdl.BSpline.Surface attribute), 97
sample_size (geomdl.BSpline.Volume attribute), 109
sample_size (geomdl.multi.AbstractContainer

attribute), 151
sample_size (geomdl.multi.CurveContainer at-

tribute), 155
sample_size (geomdl.multi.SurfaceContainer at-

tribute), 160
sample_size (geomdl.multi.VolumeContainer at-

tribute), 166
sample_size (geomdl.NURBS.Curve attribute), 119
sample_size (geomdl.NURBS.Surface attribute), 131
sample_size (geomdl.NURBS.Volume attribute), 143
sample_size_u (geomdl.abstract.Surface attribute),

221
sample_size_u (geomdl.abstract.Volume attribute),

232
sample_size_u (geomdl.BSpline.Surface attribute),

97
sample_size_u (geomdl.BSpline.Volume attribute),

109
sample_size_u (geomdl.multi.SurfaceContainer at-

tribute), 160
sample_size_u (geomdl.multi.VolumeContainer at-

tribute), 167
sample_size_u (geomdl.NURBS.Surface attribute),

131
sample_size_u (geomdl.NURBS.Volume attribute),

143

Index 313

NURBS-Python Documentation, Release 5.3.1

sample_size_v (geomdl.abstract.Surface attribute),
221

sample_size_v (geomdl.abstract.Volume attribute),
232

sample_size_v (geomdl.BSpline.Surface attribute),
97

sample_size_v (geomdl.BSpline.Volume attribute),
109

sample_size_v (geomdl.multi.SurfaceContainer at-
tribute), 161

sample_size_v (geomdl.multi.VolumeContainer at-
tribute), 167

sample_size_v (geomdl.NURBS.Surface attribute),
131

sample_size_v (geomdl.NURBS.Volume attribute),
143

sample_size_w (geomdl.abstract.Volume attribute),
232

sample_size_w (geomdl.BSpline.Volume attribute),
109

sample_size_w (geomdl.multi.VolumeContainer at-
tribute), 167

sample_size_w (geomdl.NURBS.Volume attribute),
144

save() (geomdl.BSpline.Curve method), 85
save() (geomdl.BSpline.Surface method), 97
save() (geomdl.BSpline.Volume method), 109
save() (geomdl.NURBS.Curve method), 119
save() (geomdl.NURBS.Surface method), 131
save() (geomdl.NURBS.Volume method), 144
save_figure_as() (ge-

omdl.visualization.VisMPL.VisConfig static
method), 279

save_voxel_grid() (in module geomdl.voxelize),
266

scale() (in module geomdl.operations), 173
separate_ctrlpts_weights() (in module ge-

omdl.compatibility), 177
set_axes_equal() (ge-

omdl.visualization.VisMPL.VisConfig static
method), 280

set_ctrlpt() (geomdl.control_points.AbstractManager
method), 198

set_ctrlpt() (geomdl.control_points.CurveManager
method), 199

set_ctrlpt() (geomdl.control_points.SurfaceManager
method), 201

set_ctrlpt() (geomdl.control_points.VolumeManager
method), 203

set_ctrlpts() (geomdl.abstract.Curve method), 212
set_ctrlpts() (geomdl.abstract.SplineGeometry

method), 241
set_ctrlpts() (geomdl.abstract.Surface method),

222

set_ctrlpts() (geomdl.abstract.Volume method),
232

set_ctrlpts() (geomdl.BSpline.Curve method), 85
set_ctrlpts() (geomdl.BSpline.Surface method), 97
set_ctrlpts() (geomdl.BSpline.Volume method),

110
set_ctrlpts() (geomdl.NURBS.Curve method), 119
set_ctrlpts() (geomdl.NURBS.Surface method),

131
set_ctrlpts() (geomdl.NURBS.Volume method),

144
set_ptdata() (geomdl.control_points.AbstractManager

method), 198
set_ptdata() (geomdl.control_points.CurveManager

method), 199
set_ptdata() (geomdl.control_points.SurfaceManager

method), 201
set_ptdata() (geomdl.control_points.VolumeManager

method), 203
size() (geomdl.visualization.VisMPL.VisCurve2D

method), 280
size() (geomdl.visualization.VisMPL.VisCurve3D

method), 281
size() (geomdl.visualization.VisMPL.VisSurface

method), 284
size() (geomdl.visualization.VisMPL.VisSurfScatter

method), 282
size() (geomdl.visualization.VisMPL.VisSurfWireframe

method), 283
size() (geomdl.visualization.VisMPL.VisVolume

method), 285
size() (geomdl.visualization.VisMPL.VisVoxel

method), 286
size() (geomdl.visualization.VisVTK.VisCurve3D

method), 288
size() (geomdl.visualization.VisVTK.VisSurface

method), 289
size() (geomdl.visualization.VisVTK.VisVolume

method), 290
size() (geomdl.visualization.VisVTK.VisVoxel

method), 291
SplineGeometry (class in geomdl.abstract), 237
split_curve() (in module geomdl.operations), 170
split_surface_u() (in module geomdl.operations),

171
split_surface_v() (in module geomdl.operations),

171
Surface (class in geomdl.abstract), 213
Surface (class in geomdl.BSpline), 86
Surface (class in geomdl.NURBS), 120
surface_deriv_cpts() (in module ge-

omdl.helpers), 258
surface_tessellate() (in module ge-

omdl.tessellate), 186

314 Index

NURBS-Python Documentation, Release 5.3.1

surface_trim_tessellate() (in module ge-
omdl.tessellate), 187

SurfaceContainer (class in geomdl.multi), 156
SurfaceEvaluator (class in geomdl.evaluators), 246
SurfaceEvaluator2 (class in geomdl.evaluators),

247
SurfaceEvaluatorRational (class in ge-

omdl.evaluators), 247
SurfaceManager (class in geomdl.control_points),

199
sweep_vector() (in module geomdl.sweeping), 188
sweeping (module), 188

T
tangent() (geomdl.BSpline.Curve method), 85
tangent() (geomdl.BSpline.Surface method), 98
tangent() (geomdl.NURBS.Curve method), 119
tangent() (geomdl.NURBS.Surface method), 132
tangent() (in module geomdl.operations), 172
tessellate() (geomdl.abstract.Surface method), 222
tessellate() (geomdl.BSpline.Surface method), 98
tessellate() (geomdl.multi.SurfaceContainer

method), 161
tessellate() (geomdl.NURBS.Surface method), 132
tessellate() (geomdl.tessellate.AbstractTessellate

method), 182
tessellate() (geomdl.tessellate.QuadTessellate

method), 185
tessellate() (geomdl.tessellate.TriangularTessellate

method), 183
tessellate() (geomdl.tessellate.TrimTessellate

method), 184
tessellator (geomdl.abstract.Surface attribute), 222
tessellator (geomdl.BSpline.Surface attribute), 98
tessellator (geomdl.multi.SurfaceContainer at-

tribute), 161
tessellator (geomdl.NURBS.Surface attribute), 132
translate() (in module geomdl.operations), 173
transpose() (geomdl.BSpline.Surface method), 98
transpose() (geomdl.NURBS.Surface method), 132
transpose() (in module geomdl.operations), 174
Triangle (class in geomdl.elements), 269
triangle_center() (in module geomdl.linalg), 263
triangle_normal() (in module geomdl.linalg), 263
triangles (geomdl.elements.Face attribute), 273
TriangularTessellate (class in ge-

omdl.tessellate), 183
trimming (module), 187
trims (geomdl.abstract.Surface attribute), 222
trims (geomdl.abstract.Volume attribute), 233
trims (geomdl.BSpline.Surface attribute), 98
trims (geomdl.BSpline.Volume attribute), 110
trims (geomdl.NURBS.Surface attribute), 132
trims (geomdl.NURBS.Volume attribute), 144

TrimTessellate (class in geomdl.tessellate), 183
type (geomdl.abstract.Curve attribute), 212
type (geomdl.abstract.GeomdlBase attribute), 235
type (geomdl.abstract.Geometry attribute), 237
type (geomdl.abstract.SplineGeometry attribute), 241
type (geomdl.abstract.Surface attribute), 222
type (geomdl.abstract.Volume attribute), 233
type (geomdl.BSpline.Curve attribute), 86
type (geomdl.BSpline.Surface attribute), 98
type (geomdl.BSpline.Volume attribute), 110
type (geomdl.freeform.Freeform attribute), 147
type (geomdl.multi.AbstractContainer attribute), 151
type (geomdl.multi.CurveContainer attribute), 155
type (geomdl.multi.SurfaceContainer attribute), 161
type (geomdl.multi.VolumeContainer attribute), 167
type (geomdl.NURBS.Curve attribute), 119
type (geomdl.NURBS.Surface attribute), 132
type (geomdl.NURBS.Volume attribute), 144

U
u (geomdl.elements.Vertex attribute), 268
utilities (module), 250
uv (geomdl.elements.Vertex attribute), 268

V
v (geomdl.elements.Vertex attribute), 268
vconf (geomdl.visualization.VisMPL.VisCurve2D at-

tribute), 280
vconf (geomdl.visualization.VisMPL.VisCurve3D at-

tribute), 281
vconf (geomdl.visualization.VisMPL.VisSurface at-

tribute), 284
vconf (geomdl.visualization.VisMPL.VisSurfScatter at-

tribute), 282
vconf (geomdl.visualization.VisMPL.VisSurfWireframe

attribute), 283
vconf (geomdl.visualization.VisMPL.VisVolume at-

tribute), 285
vconf (geomdl.visualization.VisMPL.VisVoxel at-

tribute), 286
vconf (geomdl.visualization.VisVTK.VisCurve3D

attribute), 288
vconf (geomdl.visualization.VisVTK.VisSurface at-

tribute), 289
vconf (geomdl.visualization.VisVTK.VisVolume at-

tribute), 290
vconf (geomdl.visualization.VisVTK.VisVoxel attribute),

291
vconf (in module geomdl.vis.VisAbstract), 278
vector_angle_between() (in module ge-

omdl.linalg), 263
vector_cross() (in module geomdl.linalg), 264
vector_dot() (in module geomdl.linalg), 264
vector_generate() (in module geomdl.linalg), 264

Index 315

NURBS-Python Documentation, Release 5.3.1

vector_is_zero() (in module geomdl.linalg), 264
vector_magnitude() (in module geomdl.linalg),

264
vector_mean() (in module geomdl.linalg), 265
vector_multiply() (in module geomdl.linalg), 265
vector_normalize() (in module geomdl.linalg),

265
vector_sum() (in module geomdl.linalg), 265
Vertex (class in geomdl.elements), 267
vertex_ids (geomdl.elements.Triangle attribute), 270
vertices (geomdl.abstract.Surface attribute), 223
vertices (geomdl.BSpline.Surface attribute), 99
vertices (geomdl.elements.Quad attribute), 272
vertices (geomdl.elements.Triangle attribute), 271
vertices (geomdl.multi.SurfaceContainer attribute),

162
vertices (geomdl.NURBS.Surface attribute), 133
vertices (geomdl.tessellate.AbstractTessellate at-

tribute), 182
vertices (geomdl.tessellate.QuadTessellate attribute),

185
vertices (geomdl.tessellate.TriangularTessellate at-

tribute), 183
vertices (geomdl.tessellate.TrimTessellate attribute),

184
vertices_closed (geomdl.elements.Triangle at-

tribute), 271
vis (geomdl.abstract.Curve attribute), 212
vis (geomdl.abstract.SplineGeometry attribute), 241
vis (geomdl.abstract.Surface attribute), 223
vis (geomdl.abstract.Volume attribute), 233
vis (geomdl.BSpline.Curve attribute), 86
vis (geomdl.BSpline.Surface attribute), 99
vis (geomdl.BSpline.Volume attribute), 110
vis (geomdl.multi.AbstractContainer attribute), 152
vis (geomdl.multi.CurveContainer attribute), 156
vis (geomdl.multi.SurfaceContainer attribute), 162
vis (geomdl.multi.VolumeContainer attribute), 167
vis (geomdl.NURBS.Curve attribute), 119
vis (geomdl.NURBS.Surface attribute), 133
vis (geomdl.NURBS.Volume attribute), 144
VisConfig (class in geomdl.visualization.VisMPL),

278
VisConfig (class in geomdl.visualization.VisVTK),

287
VisCurve2D (class in geomdl.visualization.VisMPL),

280
VisCurve2D (in module geomdl.visualization.VisVTK),

287
VisCurve3D (class in geomdl.visualization.VisMPL),

281
VisCurve3D (class in geomdl.visualization.VisVTK),

287
VisMPL (module), 278

VisSurface (class in geomdl.visualization.VisMPL),
283

VisSurface (class in geomdl.visualization.VisVTK),
288

VisSurfScatter (class in ge-
omdl.visualization.VisMPL), 281

VisSurfWireframe (class in ge-
omdl.visualization.VisMPL), 282

VisVolume (class in geomdl.visualization.VisMPL),
284

VisVolume (class in geomdl.visualization.VisVTK),
289

VisVoxel (class in geomdl.visualization.VisMPL), 285
VisVoxel (class in geomdl.visualization.VisVTK), 290
VisVTK (module), 287
Volume (class in geomdl.abstract), 223
Volume (class in geomdl.BSpline), 99
Volume (class in geomdl.NURBS), 133
VolumeContainer (class in geomdl.multi), 162
VolumeEvaluator (class in geomdl.evaluators), 248
VolumeEvaluatorRational (class in ge-

omdl.evaluators), 249
VolumeManager (class in geomdl.control_points), 201
voxelize (module), 266
voxelize() (in module geomdl.voxelize), 266

W
weight (geomdl.CPGen.GridWeighted attribute), 205
weights (geomdl.abstract.Curve attribute), 213
weights (geomdl.abstract.SplineGeometry attribute),

241
weights (geomdl.abstract.Surface attribute), 223
weights (geomdl.abstract.Volume attribute), 233
weights (geomdl.BSpline.Curve attribute), 86
weights (geomdl.BSpline.Surface attribute), 99
weights (geomdl.BSpline.Volume attribute), 110
weights (geomdl.NURBS.Curve attribute), 120
weights (geomdl.NURBS.Surface attribute), 133
weights (geomdl.NURBS.Volume attribute), 145
wn_poly() (in module geomdl.linalg), 266

X
x (geomdl.elements.Vertex attribute), 269

Y
y (geomdl.elements.Vertex attribute), 269

Z
z (geomdl.elements.Vertex attribute), 269

316 Index

	Motivation
	References
	Author

	Citing NURBS-Python
	Article
	BibTex
	Licenses

	Questions and Answers
	What is NURBS?
	Why NURBS-Python?
	Why two packages on PyPI?
	Minimum Requirements
	Help and Support
	How can I add a new feature?
	Why doesn’t NURBS-Python have XYZ feature?
	Documentation references to the text books
	Why doesn’t NURBS-Python follow the algorithms?
	NURBS-Python API changes

	Contributing
	Bugs reports
	Pull requests
	Feature requests
	Questions and comments

	Installation and Testing
	Install via Pip
	Install via Conda
	Manual Install
	Development Mode
	Checking Installation
	Testing
	Compile with Cython
	Docker Containers

	Basics
	Working with the curves
	Working with the surfaces
	Working with the volumes

	Examples Repository
	Loading and Saving Data
	Supported File Formats
	Text Files
	Comma-Separated (CSV)
	OBJ Format
	STL Format
	Object File Format (OFF)
	Custom Formats (libconfig, YAML, JSON)
	Using Templates

	Compatibility
	Surface Generator
	Knot Refinement
	Curve & Surface Fitting
	Interpolation
	Approximation

	Visualization
	Examples

	Splitting and Decomposition
	Splitting
	Bézier Decomposition

	Exporting Plots as Image Files
	Core Modules
	User API
	Geometry Generators
	Advanced API

	Visualization Modules
	Visualization Base
	Matplotlib Implementation
	Plotly Implementation
	VTK Implementation

	Command-line Application
	Installation
	Documentation
	References

	Shapes Module
	Installation
	Documentation
	References

	Rhino Importer/Exporter
	Use Cases
	Installation
	Using with geomdl
	References

	ACIS Importer
	Use Cases
	Installation
	Using with geomdl
	References

	Python Module Index
	Index

