

nuMoM2b_preprocessing

A Python package for pre-processing nuMoM2b data with configuration files.

[image: Documentation Status]
 [https://doc.numom2b.org/en/latest/?badge=latest][image: Build Status]
 [https://travis-ci.com/hayesall/nuMoM2b_preprocessing][image: Code Coverage]
 [https://codecov.io/gh/hayesall/nuMoM2b_preprocessing][image: Config file image.]
This is one component within a wider research project for predicting adverse events
over the course of a woman’s pregnancy. This package serves the dual role of assisting
with pre-processing tasks and for producing reproducible partitions of the data based
on configuration files.

Maintained by Alexander L. Hayes [https://hayesall.com], a Ph.D. student with the
Indiana University ProHealth Group [https://prohealth.sice.indiana.edu]
working on the Precision Health Initiative (φ). Alexander can be reached at
hayesall@iu.edu.

Getting Started

Pointers for getting nuMoM2b_preprocessing working on your local machine.

Architecture

High-level overview of how this project is organized.

[image: nuMoM2b_preprocessing architecture.]

Writing Configuration Files

Configuration files define which variables should be used and how they should be
aggregated. This is a worked example for writing a configuration file.

{
 "csv_path": "../FullData/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": ["PublicID", "V1BA01_KG", "V1BA01_LB"]
 }
]
}

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

This section describes how to get organized and get the code running. This will try to keep concepts
as accessible as possible, but some familiarity with Python projects, UNIX systems, and Git would
certainly be helpful.

Getting Organized

The running assumption will be that the nuMoM2b data is contained in a directory (likely unzipped from a
numom2b.zip), and this nuMoM2b_preprocessing/ repository is available on your local machine.

For example, we find it helpful to organize work as follows (though these may be tweaked with config files):

Precision-Health-Initiative/
├── Data/
│ ├── pregnancy_outcomes.csv
│ ├── Screening.csv
│ └── Visit1.csv
└── nuMoM2b_preprocessing/
 ├── README.md
 └── numom2b_preprocessing/

nuMoM2b_preprocessing may be cloned from GitHub:

git clone https://github.com/hayesall/nuMoM2b_preprocessing.git

If you’re using Anaconda [https://www.anaconda.com/distribution/], this would be a good time to create an environment:

conda create -n PHI python=3.7
conda activate PHI

… and install dependencies.

pip install -r numom2b_preprocessing/requirements.txt

Documentation

Documentation is currently hosted at https://doc.nuMoM2b.org, but local copies may also be built using
Sphinx [http://www.sphinx-doc.org/en/master/].

A separate requirements file is in the documentation/ directory.

pip install -r documentation/requirements.txt

A make.bat and Makefile are included:

cd documentation
make html

If the build is successful, a copy will reside in a new build/html/ directory.

open build/html/index.html # (macOS)
xdg-open build/html/index.html # (Linux)

Architecture

The architecture of nuMoM2b_preprocessing is intended to be fairly simple, having
one component for parsing configuration options and another for performing the
aggregations and joins on the contents of the data.

The main source of complexity is therefore in writing the configuration files. However,
these can be fairly consistent, and can be shared.

Input:

	Configuration File

	nuMoM2b data base

Output:

	data.csv contains a single table

	debug.log (Optional) contains a log of all operations performed

[image: nuMoM2b_preprocessing architecture.]

Configuration Files

Perhaps you want to know whether a woman’s weight during the first visit might be
informative for determining whether or not she develops gestational diabetes later
in her pregnancy.

Weight was recorded in pounds or kilograms, and gestational diabetes is what
we want to predict. We need to:

	Convert weight to a common unit (we will use pounds here)

	Combine the two measurements into a single measurement of weight

	Compare this relation with gestational diabetes

Each of these may be defined as options in a configuration file. The configuration
files here are written in JSON (JavaScript Object Notation). JSON itself is
not fully covered here (there are many tutorials elsewhere online), but the main ideas
should be fairly straightforward after seeing a few examples.

We’ll begin with a skeleton and build toward a file with everything we need. This file
does not work yet, but shows us all the keys that we will need to work with.

{
 "comments": ["comments are ignored."],
 "log_file": "debug.log",
 "csv_path": "../FullData/numom_data/",
 "target": {},
 "files": [],
 "aggregate_columns": []
}

Let’s start with the "target". The target is the file that contains information
about what we want to predict. It is described separately from the other files to
make a few things more convenient behind-the-scenes, and to leave room in the future
for possibly defining behavior depending on what is being predicted.

The "target" key needs two values: "name" and "variables". These allow
us to specify where the file is (relative to the "csv_path") and what variables
we want to include.

oDM indicates whether the woman developed gestational diabetes, and
"PublicID" is a primary key which identifies her across records.

{
 "comments": ["comments are ignored."],
 "log_file": "debug.log",
 "csv_path": "../FullData/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [],
 "aggregate_columns": []
}

Adding this to example_config.json is enough to produce a data.csv when we
run the script as a command-line module.

$ python -m numom2b_preprocessing -c example_config.json

oDM
3.0
1.0
3.0
2.0

Let’s modify the "files" key to include the variables for weight. There are two
variables that encode this measure, “V1BA01_KG” when weight was recorded in kilograms
and “V1BA01_LB” when weight was recorded in pounds. Once again we include “PublicID”
to keep track of which record corresponds to which person.

{
 "comments": ["comments are ignored."],
 "log_file": "debug.log",
 "csv_path": "../FullData/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": ["PublicID", "V1BA01_KG", "V1BA01_LB"]
 }
],
 "aggregate_columns": []
}

$ python -m numom2b_preprocessing -c example_config.json

oDM,V1BA01_KG,V1BA01_LB
3.0,NaN,180
1.0,NaN,130
3.0,NaN,144
2.0,76,NaN

Now that we have the variables we want, we can use the "aggregate_columns" section to convert
them to common units. Operations defined in the "aggregate_columns" section are executed from
top to bottom.

First, we multiply the "V1BA01_KG" variable by 2.20462, which converts the measurements to
pounds. Then, we take the last measurement between "V1BA01_LB" and "V1BA01_KG", then
place the result ("rename") into a new "V1BA01" variable.

This can be written as follows:

{
 "comments": ["comments are ignored."],
 "log_file": "debug.log",
 "csv_path": "../FullData/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": ["PublicID", "V1BA01_KG", "V1BA01_LB"]
 }
],
 "aggregate_columns": [
 {
 "operator": "multiply_constant",
 "columns": ["V1BA01_KG"],
 "constant": 2.20462
 },
 {
 "operator": "last",
 "columns": ["V1BA01_LB", "V1BA01_KG"],
 "rename": "V1BA01"
 }
]
}

$ python -m numom2b_preprocessing -c example_config.json

oDM,V1BA01
3.0,180
1.0,130
3.0,144
2.0,167.551

Generalizing from this example, configuration files allow us to specify:

	The variables of interest

	Where those variables are located

	How to transform and aggregate the variables

What is Next?

The outcome from nuMoM2b_preprocessing is a data.csv file. The exact types of machine
learning or statistical modeling you perform next is up to you.

Categorical Screening Questions

This config files extracts results of screening questions asked during the
screening interview. Most of these are the sort of questions which would
be asked in a clinical setting, but also might be filled in by a patient.

"csv_path" and "target.name" may need to be adjusted depending on
file locations on your specific machine.

{
 "comments": [
 "Screening questions asked during visit 1.",
 "These are primarily yes/no questions.",
],
 "log_file": "nuMoM2b_screening_questions.log",
 "csv_path": "~/Desktop/PrecisionHealth/Data/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": [
 "PublicID", "V1AD03", "V1AD05", "V1AD17", "V1AD18", "V1AF01",
 "V1AF03", "V1AF03a1", "V1AF03a2", "V1AF03a3", "V1AF03a4",
 "V1AF03b", "V1AF03c", "V1AF04", "V1AF14", "V1AG01", "V1AG02",
 "V1AG03", "V1AI01"
]
 }
],
 "aggregate_columns": []
}

Continuous Visit-1 Measurements

This normalizes measurements taken as part of the screening questions or the
visit-1 measurements.

"csv_path" and "target.name" may need to be adjusted depending on
file locations on your specific machine.

{
 "comments": [
 "Numeric attributes from the screening questions and first visit."
],
 "log_file": "debug.log",
 "csv_path": "~/Desktop/PrecisionHealth/Data/numom_data/",
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": [
 "PublicID", "V1BA02a", "V1BA02b", "V1BA02c",
 "V1BA03a", "V1BA03b", "V1BA03c",
 "V1BA04a", "V1BA04b", "V1BA04c",
 "V1BA05a", "V1BA05b", "V1BA05c",
 "V1BA06a1", "V1BA06a2",
 "V1BA06b1", "V1BA06b2",
 "V1BA07a", "V1BA07b", "V1BA07c"
]
 }
],
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "aggregate_columns": [
 {
 "operator": "last",
 "columns": ["V1BA02a", "V1BA02b", "V1BA02c"],
 "rename": "V1BA02_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA04a", "V1BA04b", "V1BA04c"],
 "rename": "V1BA04_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA07a", "V1BA07b", "V1BA07c"],
 "rename": "V1BA07_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA03a", "V1BA03b", "V1BA03c"],
 "rename": "V1BA03_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA05a", "V1BA05b", "V1BA05c"],
 "rename": "V1BA05_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA06a1", "V1BA06a2"],
 "rename": "V1BA06a_last"
 },
 {
 "operator": "last",
 "columns": ["V1BA06b1", "V1BA06b2"],
 "rename": "V1BA06b_last"
 }
]
}

Overview numom2b_preprocessing

Warning

Features are fairly experimental and may change between versions.

numom2b_preprocessing.get_config.parameters()

Read a configuration file and parse the parameters.

>>> import numom2b_preprocessing
>>> PARAMETERS = numom2b_preprocessing.parameters("phi_config.json")

numom2b_preprocessing.preprocess.run()

Use the configuration parameters to manipulate the data.

This should generally be used in tandem with the get_config module.

>>> import numom2b_preprocessing
>>> PARAMETERS = numom2b_preprocessing.parameters("phi_config.json")
>>> df = numom2b_preprocessing.run(PARAMETERS)

get_config

Read parameters from a config.json file and make these available through
a get_config.parameters() function.

	
numom2b_preprocessing.get_config.parameters(config='phi_config.json')

	Read the parameters from a configuration file.

	Parameters

	config (str) – JSON configuration path/file_name.json

	Returns

	dict

Available Options

	"csv_path": Path to directory where all .csv files are located

	"files": List of entries naming individual files

	"name": .csv file name (csv_path will be appended to the beginning)

	"variables": Names of columns to include from an individual file

	"target": Target file (what you want to predict)

	"name": .csv file name (csv_path will be appended to the beginning)

	"variables": Names of columns to include from the target file

	"aggregate_columns": List of objects describing how to aggregate columns

	"operator": “mean”, “last”, or “count”

	"columns": List of column names to apply aggregation operator to. These columns are dropped after aggregating

	"rename": [optional] Name to apply to the new column of aggregated values

If none is specified, the column is named according to which columns were aggregated and what operator was used

Example Usage

>>> from numom2b_preprocessing import get_config
>>> _params = get_config.parameters(config="phi_config.json")

Example File

{
 "comments": [
 "Screening questions asked during visit 1.",
 "These are primarily yes/no questions.",
],
 "log_file": "nuMoM2b_screening_questions.log",
 "csv_path": "~/Desktop/PrecisionHealth/Data/numom_data/",
 "target": {
 "name": "Ancillary/Pregnancy_outcomes.csv",
 "variables": ["PublicID", "oDM"]
 },
 "files": [
 {
 "name": "Screening_Admin_Visits/Visit1.csv",
 "variables": [
 "PublicID", "V1AD03", "V1AD05", "V1AD17", "V1AD18", "V1AF01",
 "V1AF03", "V1AF03a1", "V1AF03a2", "V1AF03a3", "V1AF03a4",
 "V1AF03b", "V1AF03c", "V1AF04", "V1AF14", "V1AG01", "V1AG02",
 "V1AG03", "V1AI01"
]
 }
],
 "aggregate_columns": []
}

preprocess

Combine and aggregate columns across tables.

	
numom2b_preprocessing.preprocess.run(config_parameters)

	
	Returns

	pandas.core.frame.DataFrame

Preprocess the data according to the configuration parameters.

conf_parameters should be passed from numom2b_preprocessing.get_config.parameters()

VariableCleaner

Clean individual variables.

	
class numom2b_preprocessing.clean_variables.VariableCleaner(data_frame)

	Clean individual variables in-place.

	
clean(operations_list)

	
	Parameters

	operations_list – List of dictionaries with ‘operator’, ‘columns’, and ‘value’ keys.

ColumnAggregator

Aggregate columns.

	
class numom2b_preprocessing.aggregate_columns.ColumnAggregator(data_frame)

	Mutate a data frame according to configuration parameters.
Drop the modified columns.

	
aggregate(operations_list)

	Mutate a data frame according to configuration parameters.

	Parameters

	operations_list – List of dictionaries with ‘operator’ and ‘columns’ keys.

Examples:

>>> data_frame = pd.DataFrame({"ID": [0, 1, 2], "a": [3.3, 4.5, 1.2], "b": [3, 2, 4})
>>> ca = ColumnAggregator()
>>> ca.aggregate(
 [
... {
... "operator": "mean",
... "columns": ["a, "b"],
... "rename": "mean_a_b",
... },
...],
...)

RowFilter

Conditionally filter rows.

	
class numom2b_preprocessing.row_filter.RowFilter(data_frame)

	Filter rows from a DataFrame.

	
filter(operations_list)

	
	Parameters

	operations_list – List of dictionaries with ‘operator’ and ‘columns’ keys.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 numom2b_preprocessing	

 	
 	
 numom2b_preprocessing.aggregate_columns	

 	
 	
 numom2b_preprocessing.clean_variables	

 	
 	
 numom2b_preprocessing.get_config	

 	
 	
 numom2b_preprocessing.preprocess	

 	
 	
 numom2b_preprocessing.row_filter	

Index

 A
 | C
 | F
 | N
 | P
 | R
 | V

A

 	
 	aggregate() (numom2b_preprocessing.aggregate_columns.ColumnAggregator method)

C

 	
 	clean() (numom2b_preprocessing.clean_variables.VariableCleaner method)

 	
 	ColumnAggregator (class in numom2b_preprocessing.aggregate_columns)

F

 	
 	filter() (numom2b_preprocessing.row_filter.RowFilter method)

N

 	
 	numom2b_preprocessing (module)

 	numom2b_preprocessing.aggregate_columns (module)

 	numom2b_preprocessing.clean_variables (module)

 	
 	numom2b_preprocessing.get_config (module)

 	numom2b_preprocessing.preprocess (module)

 	numom2b_preprocessing.row_filter (module)

P

 	
 	parameters() (in module numom2b_preprocessing.get_config)

R

 	
 	RowFilter (class in numom2b_preprocessing.row_filter)

 	
 	run() (in module numom2b_preprocessing.preprocess)

V

 	
 	VariableCleaner (class in numom2b_preprocessing.clean_variables)

 _static/comment-bright.png

_images/nuMoM2b_preprocessing_architecture.png
>

nuMoM2b Data

nuMoM2b preprocessing

o

Configuration
File

Parse Configuration File
(phi.get config)

debug.log

N\ L

Aggregate and Join Columns
(phi.preprocess)

data.csv

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/config_file_image.png
"comments": [
"Screening questions asked du
"These are primarily yes/no q

ring visit 1.",
uestions.",

1,

"log_file":
"csv_path":
"target": {
"Ancillary/Pregnancy_outcomes.csv",
["PublicID", "oD

"name" .

"variables":

llnamell .

"nuMoM2b_screening_questions.log",
"~/Desktop/PrecisionHealth/Data/numom_data/",

"1

"Screening_Admin_Visits/Visitl.csv",

"variables": [

"PublicID",
"V1AFO1",
"V1AF03a3",
"V1AF04",
"V1AGO3",

]
}
1,

"groupings":

"V1ADO3",
“V1AF03",

“V1ADO5",
“V1AF03al",
"V1AF03a4",
“V1AF14",
“V1AIO1"

“V1AD17", "V1AD18",
“V1AF03a2",
"V1AFO3b", "V1AFQ3c",
“V1AGO1", "V1AGO2",

[l

_static/minus.png

nav.xhtml

 Table of Contents

 		
 nuMoM2b_preprocessing

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/img/config_file_image.png
"comments": [
"Screening questions asked du
"These are primarily yes/no q

ring visit 1.",
uestions.",

1,

"log_file":
"csv_path":
"target": {
"Ancillary/Pregnancy_outcomes.csv",
["PublicID", "oD

"name" .

"variables":

llnamell .

"nuMoM2b_screening_questions.log",
"~/Desktop/PrecisionHealth/Data/numom_data/",

"1

"Screening_Admin_Visits/Visitl.csv",

"variables": [

"PublicID",
"V1AFO1",
"V1AF03a3",
"V1AF04",
"V1AGO3",

]
}
1,

"groupings":

"V1ADO3",
“V1AF03",

“V1ADO5",
“V1AF03al",
"V1AF03a4",
“V1AF14",
“V1AIO1"

“V1AD17", "V1AD18",
“V1AF03a2",
"V1AFO3b", "V1AFQ3c",
“V1AGO1", "V1AGO2",

[l

_static/img/nuMoM2b_preprocessing_architecture.png
>

nuMoM2b Data

nuMoM2b preprocessing

o

Configuration
File

Parse Configuration File
(phi.get config)

debug.log

N\ L

Aggregate and Join Columns
(phi.preprocess)

data.csv

