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CHAPTER

ONE

HOW IT WORKS

The string passed to evaluate is compiled into an object representing the expression and types of the arrays used by
the function numexpr.

The expression is first compiled using Python’s compile function (this means that the expressions have to be valid
Python expressions). From this, the variable names can be taken. The expression is then evaluated using instances of
a special object that keep track of what is being done to them, and which builds up the parse tree of the expression.

This parse tree is then compiled to a bytecode program, which describes how to perform the operation element-wise.
The virtual machine uses “vector registers”: each register is many elements wide (by default 4096 elements). The key
to NumExpr’s speed is handling chunks of elements at a time.

There are two extremes to evaluating an expression elementwise. You can do each operation as arrays, returning
temporary arrays. This is what you do when you use NumPy: 2*a+3*b uses three temporary arrays as large as a or
b. This strategy wastes memory (a problem if your arrays are large), and also is not a good use of cache memory: for
large arrays, the results of 2*a and 3*b won’t be in cache when you do the add.

The other extreme is to loop over each element, as in:

for i in xrange(len(a)):
c[i] = 2*a[i] + 3*b[i]

This doesn’t consume extra memory, and is good for the cache, but, if the expression is not compiled to machine code,
you will have a big case statement (or a bunch of if’s) inside the loop, which adds a large overhead for each element,
and will hurt the branch-prediction used on the CPU.

numexpr uses a in-between approach. Arrays are handled as chunks (of 4096 elements) at a time, using a register
machine. As Python code, it looks something like this:

for i in xrange(0, len(a), 256):
r0 = a[i:i+128]
r1 = b[i:i+128]
multiply(r0, 2, r2)
multiply(r1, 3, r3)
add(r2, r3, r2)
c[i:i+128] = r2

(remember that the 3-arg form stores the result in the third argument, instead of allocating a new array). This achieves
a good balance between cache and branch-prediction. And the virtual machine is written entirely in C, which makes
it faster than the Python above. Furthermore the virtual machine is also multi-threaded, which allows for efficient
parallelization of NumPy operations.

There is some more information and history at:

http://www.bitsofbits.com/2014/09/21/numpy-micro-optimization-and-numexpr/
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CHAPTER

TWO

EXPECTED PERFORMANCE

The range of speed-ups for NumExpr respect to NumPy can vary from 0.95x and 20x, being 2x, 3x or 4x typical values,
depending on the complexity of the expression and the internal optimization of the operators used. The strided and
unaligned case has been optimized too, so if the expression contains such arrays, the speed-up can increase significantly.
Of course, you will need to operate with large arrays (typically larger than the cache size of your CPU) to see these
improvements in performance.

Here there are some real timings. For the contiguous case:

In [1]: import numpy as np
In [2]: import numexpr as ne
In [3]: a = np.random.rand(1e6)
In [4]: b = np.random.rand(1e6)
In [5]: timeit 2*a + 3*b
10 loops, best of 3: 18.9 ms per loop
In [6]: timeit ne.evaluate("2*a + 3*b")
100 loops, best of 3: 5.83 ms per loop # 3.2x: medium speed-up (simple expr)
In [7]: timeit 2*a + b**10
10 loops, best of 3: 158 ms per loop
In [8]: timeit ne.evaluate("2*a + b**10")
100 loops, best of 3: 7.59 ms per loop # 20x: large speed-up due to optimised pow()

For unaligned arrays, the speed-ups can be even larger:

In [9]: a = np.empty(1e6, dtype="b1,f8")['f1']
In [10]: b = np.empty(1e6, dtype="b1,f8")['f1']
In [11]: a.flags.aligned, b.flags.aligned
Out[11]: (False, False)
In [12]: a[:] = np.random.rand(len(a))
In [13]: b[:] = np.random.rand(len(b))
In [14]: timeit 2*a + 3*b
10 loops, best of 3: 29.5 ms per loop
In [15]: timeit ne.evaluate("2*a + 3*b")
100 loops, best of 3: 7.46 ms per loop # ~ 4x speed-up
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CHAPTER

THREE

NUMEXPR 2.0 USER GUIDE

The numexpr package supplies routines for the fast evaluation of array expressions elementwise by using a vector-based
virtual machine.

Using it is simple:

>>> import numpy as np
>>> import numexpr as ne
>>> a = np.arange(10)
>>> b = np.arange(0, 20, 2)
>>> c = ne.evaluate("2*a+3*b")
>>> c
array([ 0, 8, 16, 24, 32, 40, 48, 56, 64, 72])

3.1 Building

NumExpr requires Python 2.6 or greater, and NumPy 1.7 or greater. It is built in the standard Python way:

$ python setup.py build
$ python setup.py install

You must have a C-compiler (i.e. MSVC on Windows and GCC on Linux) installed.

Then change to a directory that is not the repository directory (e.g. /tmp) and test numexpr with:

$ python -c "import numexpr; numexpr.test()"

3.2 Enabling Intel VML support

Starting from release 1.2 on, numexpr includes support for Intel’s VML library. This allows for better performance on
Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, . . . ). It also enables
numexpr using several CPU cores.

If you have Intel’s MKL (the library that embeds VML), just copy the site.cfg.example that comes in the distribution
to site.cfg and edit the latter giving proper directions on how to find your MKL libraries in your system. After
doing this, you can proceed with the usual building instructions listed above. Pay attention to the messages during
the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-
ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the
set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect
performance).

7
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3.3 Threadpool Configuration

Threads are spawned at import-time, with the number being set by the environment variable NUMEXPR_MAX_THREADS.
The default maximum thread count is 64. There is no advantage to spawning more threads than the number of virtual
cores available on the computing node. Practically NumExpr scales at large thread count (> 8) only on very large
matrices (> 2**22). Spawning large numbers of threads is not free, and can increase import times for NumExpr or
packages that import it such as Pandas or PyTables.

If desired, the number of threads in the pool used can be adjusted via an environment variable, NUMEXPR_NUM_THREADS
(preferred) or OMP_NUM_THREADS. Typically only setting NUMEXPR_MAX_THREADS is sufficient; the number of threads
used can be adjusted dynamically via numexpr.set_num_threads(int). The number of threads can never exceed
that set by NUMEXPR_MAX_THREADS.

If the user has not configured the environment prior to importing NumExpr, info logs will be generated, and the initial
number of threads _that are used_ will be set to the number of cores detected in the system or 8, whichever is less.

Usage:

import os
os.environ['NUMEXPR_MAX_THREADS'] = '16'
os.environ['NUMEXPR_NUM_THREADS'] = '8'
import numexpr as ne

3.4 Usage Notes

NumExpr’s principal routine is:

evaluate(ex, local_dict=None, global_dict=None, optimization='aggressive', truediv='auto
→˓')

where ex is a string forming an expression, like "2*a+3*b". The values for a and b will by default be taken from
the calling function’s frame (through the use of sys._getframe()). Alternatively, they can be specified using the
local_dict or global_dict arguments, or passed as keyword arguments.

The optimization parameter can take the values 'moderate' or 'aggressive'. 'moderate' means that no op-
timization is made that can affect precision at all. 'aggressive' (the default) means that the expression can be
rewritten in a way that precision could be affected, but normally very little. For example, in 'aggressive'mode, the
transformation x~**3 -> x*x*x is made, but not in 'moderate' mode.

The truediv parameter specifies whether the division is a ‘floor division’ (False) or a ‘true division’ (True). The default
is the value of __future__.division in the interpreter. See PEP 238 for details.

Expressions are cached, so reuse is fast. Arrays or scalars are allowed for the variables, which must be of type 8-bit
boolean (bool), 32-bit signed integer (int), 64-bit signed integer (long), double-precision floating point number (float),
2x64-bit, double-precision complex number (complex) or raw string of bytes (str). If they are not in the previous set
of types, they will be properly upcasted for internal use (the result will be affected as well). The arrays must all be the
same size.

8 Chapter 3. NumExpr 2.0 User Guide
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3.5 Datatypes supported internally

NumExpr operates internally only with the following types:

• 8-bit boolean (bool)

• 32-bit signed integer (int or int32)

• 64-bit signed integer (long or int64)

• 32-bit single-precision floating point number (float or float32)

• 64-bit, double-precision floating point number (double or float64)

• 2x64-bit, double-precision complex number (complex or complex128)

• Raw string of bytes (str in Python 2.7, bytes in Python 3+, numpy.str in both cases)

If the arrays in the expression does not match any of these types, they will be upcasted to one of the above types
(following the usual type inference rules, see below). Have this in mind when doing estimations about the memory
consumption during the computation of your expressions.

Also, the types in NumExpr conditions are somewhat stricter than those of Python. For instance, the only valid constants
for booleans are True and False, and they are never automatically cast to integers.

3.6 Casting rules

Casting rules in NumExpr follow closely those of NumPy. However, for implementation reasons, there are some known
exceptions to this rule, namely:

• When an array with type int8, uint8, int16 or uint16 is used inside NumExpr, it is internally upcasted to an
int (or int32 in NumPy notation).

• When an array with type uint32 is used inside NumExpr, it is internally upcasted to a long (or int64 in NumPy
notation).

• A floating point function (e.g. sin) acting on int8 or int16 types returns a float64 type, instead of the
float32 that is returned by NumPy functions. This is mainly due to the absence of native int8 or int16 types
in NumExpr.

• In operations implying a scalar and an array, the normal rules of casting are used in NumExpr, in contrast with
NumPy, where array types takes priority. For example, if a is an array of type float32 and b is an scalar of type
float64 (or Python float type, which is equivalent), then a*b returns a float64 in NumExpr, but a float32
in NumPy (i.e. array operands take priority in determining the result type). If you need to keep the result a
float32, be sure you use a float32 scalar too.

3.7 Supported operators

NumExpr supports the set of operators listed below:

• Bitwise operators (and, or, not, xor): &, |, ~, ^

• Comparison operators: <, <=, ==, !=, >=, >

• Unary arithmetic operators: -

• Binary arithmetic operators: +, -, *, /, **, %, <<, >>

3.5. Datatypes supported internally 9
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3.8 Supported functions

The next are the current supported set:

• where(bool, number1, number2): number – number1 if the bool condition is true, number2 otherwise.

• {sin,cos,tan}(float|complex): float|complex – trigonometric sine, cosine or tangent.

• {arcsin,arccos,arctan}(float|complex): float|complex – trigonometric inverse sine, cosine or
tangent.

• arctan2(float1, float2): float – trigonometric inverse tangent of float1/float2.

• {sinh,cosh,tanh}(float|complex): float|complex – hyperbolic sine, cosine or tangent.

• {arcsinh,arccosh,arctanh}(float|complex): float|complex – hyperbolic inverse sine, cosine or
tangent.

• {log,log10,log1p}(float|complex): float|complex – natural, base-10 and log(1+x) logarithms.

• {exp,expm1}(float|complex): float|complex – exponential and exponential minus one.

• sqrt(float|complex): float|complex – square root.

• abs(float|complex): float|complex – absolute value.

• conj(complex): complex – conjugate value.

• {real,imag}(complex): float – real or imaginary part of complex.

• complex(float, float): complex – complex from real and imaginary parts.

• contains(np.str, np.str): bool – returns True for every string in op1 that contains op2.

3.9 Notes

• abs() for complex inputs returns a complex output too. This is a departure from NumPy where a float is
returned instead. However, NumExpr is not flexible enough yet so as to allow this to happen. Meanwhile,
if you want to mimic NumPy behaviour, you may want to select the real part via the real function (e.g.
real(abs(cplx))) or via the real selector (e.g. abs(cplx).real).

More functions can be added if you need them. Note however that NumExpr 2.6 is in maintenance mode and a new
major revision is under development.

3.10 Supported reduction operations

The next are the current supported set:

• sum(number, axis=None): Sum of array elements over a given axis. Negative axis are not supported.

• prod(number, axis=None): Product of array elements over a given axis. Negative axis are not supported.

Note: because of internal limitations, reduction operations must appear the last in the stack. If not, it will be issued an
error like:

>>> ne.evaluate('sum(1)*(-1)')
RuntimeError: invalid program: reduction operations must occur last

10 Chapter 3. NumExpr 2.0 User Guide
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3.11 General routines

• evaluate(expression, local_dict=None, global_dict=None, optimization='aggressive',
truediv='auto'): Evaluate a simple array expression element-wise. See examples above.

• re_evaluate(local_dict=None): Re-evaluate the last array expression without any check. This is meant for
accelerating loops that are re-evaluating the same expression repeatedly without changing anything else than the
operands. If unsure, use evaluate() which is safer.

• test(): Run all the tests in the test suite.

• print_versions(): Print the versions of software that numexpr relies on.

• set_num_threads(nthreads): Sets a number of threads to be used in operations. Returns the previous setting
for the number of threads. See note below to see how the number of threads is set via environment variables.

If you are using VML, you may want to use set_vml_num_threads(nthreads) to perform the parallel job with
VML instead. However, you should get very similar performance with VML-optimized functions, and VML’s
parallelizer cannot deal with common expressions like (x+1)*(x-2), while NumExpr’s one can.

• detect_number_of_cores(): Detects the number of cores on a system.

3.12 Intel’s VML specific support routines

When compiled with Intel’s VML (Vector Math Library), you will be able to use some additional functions for con-
trolling its use. These are:

• set_vml_accuracy_mode(mode): Set the accuracy for VML operations.

The mode parameter can take the values:

– 'low': Equivalent to VML_LA - low accuracy VML functions are called

– 'high': Equivalent to VML_HA - high accuracy VML functions are called

– 'fast': Equivalent to VML_EP - enhanced performance VML functions are called

It returns the previous mode.

This call is equivalent to the vmlSetMode() in the VML library. See:

http://www.intel.com/software/products/mkl/docs/webhelp/vml/vml_DataTypesAccuracyModes.html

for more info on the accuracy modes.

• set_vml_num_threads(nthreads): Suggests a maximum number of threads to be used in VML operations.

This function is equivalent to the call mkl_domain_set_num_threads(nthreads, MKL_VML) in the MKL
library. See:

http://www.intel.com/software/products/mkl/docs/webhelp/support/functn_mkl_domain_set_num_threads.
html

for more info about it.

• get_vml_version(): Get the VML/MKL library version.

3.11. General routines 11
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Numexpr was initially written by David Cooke, and extended to more types by Tim Hochberg.
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aligned array operations and multi-threading code.

Ivan Vilata contributed support for strings.

Gregor Thalhammer implemented the support for Intel VML (Vector Math Library).

Mark Wiebe added support for the new iterator in NumPy, which allows for better performance in more scenarios (like
broadcasting, fortran-ordered or non-native byte orderings).

Gaëtan de Menten contributed important bug fixes and speed enhancements.

Antonio Valentino contributed the port to Python 3.

Google Inc. contributed bug fixes.

David Cox improved readability of the Readme.

Robert A. McLeod contributed bug fixes and ported the documentation to numexpr.readthedocs.io. He is the maintainer
of the package since 2016.

3.14 License

NumExpr is distributed under the MIT license.
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CHAPTER

FOUR

PERFORMANCE OF THE VIRTUAL MACHINE IN NUMEXPR2.0

Numexpr 2.0 leverages a new virtual machine completely based on the new ndarray iterator introduced in NumPy 1.6.
This represents a nice combination of the advantages of using the new iterator, while retaining the ability to avoid
copies in memory as well as the multi-threading capabilities of the previous virtual machine (1.x series).

The increased performance of the new virtual machine can be seen in several scenarios, like:

• Broadcasting. Expressions containing arrays that needs to be broadcasted, will not need additional memory (i.e.
they will be broadcasted on-the-fly).

• Non-native dtypes. These will be translated to native dtypes on-the-fly, so there is not need to convert the whole
arrays first.

• Fortran-ordered arrays. The new iterator will find the best path to optimize operations on such arrays, without
the need to transpose them first.

There is a drawback though: performance with small arrays suffers a bit because of higher set-up times for the new
virtual machine. See below for detailed benchmarks.

4.1 Some benchmarks for best-case scenarios

Here you have some benchmarks of some scenarios where the new virtual machine actually represents an advantage in
terms of speed (also memory, but this is not shown here). As you will see, the improvement is notable in many areas,
ranging from 3x to 6x faster operations.

4.1.1 Broadcasting

>>> a = np.arange(1e3)
>>> b = np.arange(1e6).reshape(1e3, 1e3)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 16.4 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.2 ms per loop

13
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4.1.2 Non-native types

>>> a = np.arange(1e6, dtype=">f8")
>>> b = np.arange(1e6, dtype=">f8")

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 17.2 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 6.32 ms per loop

4.1.3 Fortran-ordered arrays

>>> a = np.arange(1e6).reshape(1e3, 1e3).copy('F')
>>> b = np.arange(1e6).reshape(1e3, 1e3).copy('F')

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10 loops, best of 3: 32.8 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.62 ms per loop

4.1.4 Mix of ‘non-native’ arrays, Fortran-ordered, and using broadcasting

>>> a = np.arange(1e3, dtype='>f8').copy('F')
>>> b = np.arange(1e6, dtype='>f8').reshape(1e3, 1e3).copy('F')

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10 loops, best of 3: 21.2 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.22 ms per loop

4.1.5 Longer setup-time

The only drawback of the new virtual machine is during the computation of small arrays:

>>> a = np.arange(10)
>>> b = np.arange(10)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10000 loops, best of 3: 22.1 µs per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
10000 loops, best of 3: 30.6 µs per loop

i.e. the new virtual machine takes a bit more time to set-up (around 8 µs in this machine). However, this should be not
too important because for such a small arrays NumPy is always a better option:

14 Chapter 4. Performance of the Virtual Machine in NumExpr2.0
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>>> timeit c = a*(b+1)
100000 loops, best of 3: 4.16 µs per loop

And for arrays large enough the difference is negligible:

>>> a = np.arange(1e6)
>>> b = np.arange(1e6)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 5.77 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.77 ms per loop

4.2 Conclusion

The new virtual machine introduced in numexpr 2.0 brings more performance in many different scenarios (broadcast,
non-native dtypes, Fortran-orderd arrays), while it shows slightly worse performance for small arrays. However, as
numexpr is more geared to compute large arrays, the new virtual machine should be good news for numexpr users in
general.

4.2. Conclusion 15



numexpr, Release 2.6.3.dev0

16 Chapter 4. Performance of the Virtual Machine in NumExpr2.0



CHAPTER

FIVE

NUMEXPR WITH INTEL MKL

Numexpr has support for Intel’s VML (included in Intel’s MKL) in order to accelerate the evaluation of transcendental
functions on Intel CPUs. Here it is a small example on the kind of improvement you may get by using it.

5.1 A first benchmark

Firstly, we are going to exercise how MKL performs when computing a couple of simple expressions. One is a pure
algebraic one: 2*y + 4*x and the other contains transcendental functions: sin(x)**2 + cos(y)**2.

For this, we are going to use this worksheet. I (Francesc Alted) ran this benchmark on a Intel Xeon E3-1245 v5 @
3.50GHz. Here are the results when not using MKL:

NumPy version: 1.11.1
Time for an algebraic expression: 0.168 s / 6.641 GB/s
Time for a transcendental expression: 1.945 s / 0.575 GB/s
Numexpr version: 2.6.1. Using MKL: False
Time for an algebraic expression: 0.058 s / 19.116 GB/s
Time for a transcendental expression: 0.283 s / 3.950 GB/s

And now, using MKL:

NumPy version: 1.11.1
Time for an algebraic expression: 0.169 s / 6.606 GB/s
Time for a transcendental expression: 1.943 s / 0.575 GB/s
Numexpr version: 2.6.1. Using MKL: True
Time for an algebraic expression: 0.058 s / 19.153 GB/s
Time for a transcendental expression: 0.075 s / 14.975 GB/s

As you can see, numexpr using MKL can be up to 3.8x faster for the case of the transcendental expression. Also,
you can notice that the pure algebraic expression is not accelerated at all. This is completely expected, as the MKL is
offering accelerations for CPU bounded functions (sin, cos, tan, exp, log, sinh. . . ) and not pure multiplications or adds.

Finally, note how numexpr+MKL can be up to 26x faster than using a pure NumPy solution. And this was using a
processor with just four physical cores; you should expect more speedup as you throw more cores at that.
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5.2 More benchmarks (older)

Numexpr & VML can both use several threads for doing computations. Let’s see how performance improves by using
1 or 2 threads on a 2-core Intel CPU (Core2 E8400 @ 3.00GHz).

5.2.1 Using 1 thread

Here we have some benchmarks on the improvement of speed that Intel’s VML can achieve. First, look at times by
some easy expression containing sine and cosine operations without using VML:

In [17]: ne.use_vml
Out[17]: False

In [18]: x = np.linspace(-1, 1, 1e6)

In [19]: timeit np.sin(x)**2+np.cos(x)**2
10 loops, best of 3: 43.1 ms per loop

In [20]: ne.set_num_threads(1)
Out[20]: 2

In [21]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
10 loops, best of 3: 29.5 ms per loop

and now using VML:

In [37]: ne.use_vml
Out[37]: True

In [38]: x = np.linspace(-1, 1, 1e6)

In [39]: timeit np.sin(x)**2+np.cos(x)**2
10 loops, best of 3: 42.8 ms per loop

In [40]: ne.set_num_threads(1)
Out[40]: 2

In [41]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 19.8 ms per loop

Hey, VML can accelerate computations by a 50% using a single CPU. That’s great!

5.2.2 Using 2 threads

First, look at the time of the non-VML numexpr when using 2 threads:

In [22]: ne.set_num_threads(2)
Out[22]: 1

In [23]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 15.3 ms per loop
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OK. We’ve got an almost perfect 2x improvement in speed with regard to the 1 thread case. Let’s see about the VML-
powered numexpr version:

In [43]: ne.set_num_threads(2)
Out[43]: 1

In [44]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 12.2 ms per loop

Ok, that’s about 1.6x improvement over the 1 thread VML computation, and still a 25% of improvement over the
non-VML version. Good, native numexpr multithreading code really looks very efficient!

5.2.3 Numexpr native threading code vs VML’s one

You may already know that both numexpr and Intel’s VML do have support for multithreaded computations, but you
might be curious about which one is more efficient, so here it goes a hint. First, using the VML multithreaded imple-
mentation:

In [49]: ne.set_vml_num_threads(2)

In [50]: ne.set_num_threads(1)
Out[50]: 1

In [51]: ne.set_vml_num_threads(2)

In [52]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 16.8 ms per loop

and now, using the native numexpr threading code:

In [53]: ne.set_num_threads(2)
Out[53]: 1

In [54]: ne.set_vml_num_threads(1)

In [55]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 12 ms per loop

This means that numexpr’s native multithreaded code is about 40% faster than VML’s for this case. So, in general, you
should use the former with numexpr (and this is the default actually).

5.2.4 Mixing numexpr’s and VML multithreading capabilities

Finally, you might be tempted to use both multithreading codes at the same time, but you will be deceived about the
improvement in performance:

In [57]: ne.set_vml_num_threads(2)

In [58]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 17.7 ms per loop
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Your code actually performs much worse. That’s normal too because you are trying to run 4 threads on a 2-core
CPU. For CPUs with many cores, you may want to try with different threading configurations, but as a rule of thumb,
numexpr’s one will generally win.
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CHAPTER

SIX

NUMEXPR API

Numexpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like
“3*a+4*b”) are accelerated and use less memory than doing the same calculation in Python.

See:

https://github.com/pydata/numexpr

for more info about it.

numexpr.NumExpr(ex, signature=(), **kwargs)
Compile an expression built using E.<variable> variables to a function.

ex can also be specified as a string “2*a+3*b”.

The order of the input variables and their types can be specified using the signature parameter, which is a list of
(name, type) pairs.

Returns a NumExpr object containing the compiled function.

numexpr.detect_number_of_cores()

Detects the number of cores on a system. Cribbed from pp.

numexpr.detect_number_of_threads()

DEPRECATED: use _init_num_threads instead. If this is modified, please update the note in: https://github.
com/pydata/numexpr/wiki/Numexpr-Users-Guide

numexpr.disassemble(nex)
Given a NumExpr object, return a list which is the program disassembled.

numexpr.evaluate(ex, local_dict=None, global_dict=None, out=None, order='K', casting='safe', **kwargs)
Evaluate a simple array expression element-wise, using the new iterator.

ex is a string forming an expression, like “2*a+3*b”. The values for “a” and “b” will by default be taken from
the calling function’s frame (through use of sys._getframe()). Alternatively, they can be specifed using the ‘lo-
cal_dict’ or ‘global_dict’ arguments.

Parameters
local_dict

[dictionary, optional] A dictionary that replaces the local operands in current frame.

global_dict
[dictionary, optional] A dictionary that replaces the global operands in current frame.

out
[NumPy array, optional] An existing array where the outcome is going to be stored. Care
is required so that this array has the same shape and type than the actual outcome of the
computation. Useful for avoiding unnecessary new array allocations.
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order
[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Controls the iteration order for operands. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. For efficient computations, typically ‘K’eep order (the default) is desired.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting
may occur when making a copy or buffering. Setting this to ‘unsafe’ is not recommended,
as it can adversely affect accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are al-
lowed.

• ‘unsafe’ means any data conversions may be done.

numexpr.get_vml_version()

Get the VML/MKL library version.

numexpr.re_evaluate(local_dict=None)
Re-evaluate the previous executed array expression without any check.

This is meant for accelerating loops that are re-evaluating the same expression repeatedly without changing
anything else than the operands. If unsure, use evaluate() which is safer.

Parameters
local_dict

[dictionary, optional] A dictionary that replaces the local operands in current frame.

numexpr.set_num_threads(nthreads)
Sets a number of threads to be used in operations.

DEPRECATED: returns the previous setting for the number of threads.

During initialization time NumExpr sets this number to the number of detected cores in the system (see de-
tect_number_of_cores()).

numexpr.set_vml_accuracy_mode(mode)
Set the accuracy mode for VML operations.

The mode parameter can take the values: - ‘high’: high accuracy mode (HA), <1 least significant bit - ‘low’: low
accuracy mode (LA), typically 1-2 least significant bits - ‘fast’: enhanced performance mode (EP) - None: mode
settings are ignored

This call is equivalent to the vmlSetMode() in the VML library. See:

http://www.intel.com/software/products/mkl/docs/webhelp/vml/vml_DataTypesAccuracyModes.html

for more info on the accuracy modes.

Returns old accuracy settings.

numexpr.set_vml_num_threads(nthreads)
Suggests a maximum number of threads to be used in VML operations.

This function is equivalent to the call mkl_domain_set_num_threads(nthreads, MKL_DOMAIN_VML) in the
MKL library. See:
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http://www.intel.com/software/products/mkl/docs/webhelp/support/functn_mkl_domain_set_num_threads.
html

for more info about it.

numexpr.ncores

The number of (virtual) cores detected.

numexpr.nthreads

The number of threads currently in-use.

numexpr.MAX_THREADS

The maximum number of threads, as set by the environment variable NUMEXPR_MAX_THREADS

numexpr.version

The version of NumExpr.

6.1 Tests submodule

numexpr.tests.print_versions()

Print the versions of software that numexpr relies on.

numexpr.tests.test(verbosity=1)
Run all the tests in the test suite.
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CHAPTER

SEVEN

RELEASE NOTES

7.1 Release notes for NumExpr 2.8 series

7.1.1 Changes from 2.8.3 to 2.8.4

• Support for Python 3.11 has been added.

• Thanks to Tobias Hangleiter for an improved accuracy complex expm1 function. While it is 25 % slower, it is
significantly more accurate for the real component over a range of values and matches NumPy outputs much
more closely.

• Thanks to Kirill Kouzoubov for a range of fixes to constants parsing that was resulting in duplicated constants of
the same value.

• Thanks to Mark Harfouche for noticing that we no longer need numpy version checks. packaging is no longer a
requirement as a result.

7.1.2 Changes from 2.8.1 to 2.8.3

• 2.8.2 was skipped due to an error in uploading to PyPi.

• Support for Python 3.6 has been dropped due to the need to substitute the flag
NPY_ARRAY_WRITEBACKIFCOPY for NPY_ARRAY_UPDATEIFCOPY. This flag change was initiated
in NumPy 1.14 and finalized in 1.23. The only changes were made to cases where an unaligned constant was
passed in with a pre-allocated output variable:

```
x = np.empty(5, dtype=np.uint8)[1:].view(np.int32) ne.evaluate(‘3’, out=x)

```
We think the risk of issues is very low, but if you are using NumExpr as a expression evaluation tool you
may want to write a test for this edge case.

• Thanks to Matt Einhorn (@matham) for improvements to the GitHub Actions build process to add support for
Apple Silicon and aarch64.

• Thanks to Biswapriyo Nath (@biswa96) for a fix to allow mingw builds on Windows.

• There have been some changes made to not import platform.machine() on sparc but it is highly advised to upgrade
to Python 3.9+ to avoid this issue with the Python core package platform.
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7.1.3 Changes from 2.8.0 to 2.8.1

• Fixed dependency list.

• Added pyproject.toml and modernize the setup.py script. Thanks to

Antonio Valentino for the PR.

7.1.4 Changes from 2.7.3 to 2.8.0

• Wheels for Python 3.10 are now provided.

• Support for Python 2.7 and 3.5 has been discontinued.

• All residual support for Python 2.X syntax has been removed, and therefore the setup build no longer makes calls
to the 2to3 script. The setup.py has been refactored to be more modern.

• The examples on how to link into Intel VML/MKL/oneAPI now use the dynamic library.

7.1.5 Changes from 2.7.2 to 2.7.3

• Pinned Numpy versions to minimum supported version in an effort to alleviate issues seen in Windows machines
not having the same MSVC runtime installed as was used to build the wheels.

• ARMv8 wheels are now available, thanks to odidev for the pull request.

7.1.6 Changes from 2.7.1 to 2.7.2

• Support for Python 2.7 and 3.5 is deprecated and will be discontinued when cibuildwheels and/or GitHub Actions
no longer support these versions.

• Wheels are now provided for Python 3.7, 3.5, 3.6, 3.7, 3.8, and 3.9 via GitHub Actions.

• The block size is now exported into the namespace as numexpr.__BLOCK_SIZE1__ as a read-only value.

• If using MKL, the number of threads for VML is no longer forced to 1 on loading the module. Testing has shown
that VML never runs in multi-threaded mode for the default BLOCKSIZE1 of 1024 elements, and forcing to 1
can have deleterious effects on NumPy functions when built with MKL. See issue #355 for details.

• Use of ndarray.tostring() in tests has been switch to ndarray.tobytes() for future-proofing deprecation of
.tostring(), if the version of NumPy is greater than 1.9.

• Added a utility method get_num_threads that returns the (maximum) number of threads currently in use by the
virtual machine. The functionality of set_num_threads whereby it returns the previous value has been deprecated
and will be removed in 2.8.X.

7.1.7 Changes from 2.7.0 to 2.7.1

• Python 3.8 support has been added.

• Python 3.4 support is discontinued.

• The tests are now compatible with NumPy 1.18.

• site.cfg.example was updated to use the libraries tag instead of mkl_libs, which is recommended for newer version
of NumPy.
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7.1.8 Changes from 2.6.9 to 2.7.0

• The default number of ‘safe’ threads has been restored to the historical limit of 8, if the environment variable
“NUMEXPR_MAX_THREADS” has not been set.

• Thanks to @eltoder who fixed a small memory leak.

• Support for Python 2.6 has been dropped, as it is no longer available via TravisCI.

• A typo in the test suite that had a less than rather than greater than symbol in the NumPy version check has been
corrected thanks to dhomeier.

• The file site.cfg was being accidently included in the sdists on PyPi. It has now been excluded.

7.1.9 Changes from 2.6.8 to 2.6.9

• Thanks to Mike Toews for more robust handling of the thread-setting environment variables.

• With Appveyor updating to Python 3.7.1, wheels for Python 3.7 are now available in addition to those for other
OSes.

7.1.10 Changes from 2.6.7 to 2.6.8

• Add check to make sure that f_locals is not actually f_globals when we do the f_locals clear to avoid the #310
memory leak issue.

• Compare NumPy versions using distutils.version.LooseVersion to avoid issue #312 when working with NumPy
development versions.

• As part of multibuild, wheels for Python 3.7 for Linux and MacOSX are now available on PyPI.

7.1.11 Changes from 2.6.6 to 2.6.7

• Thanks to Lehman Garrison for finding and fixing a bug that exhibited memory leak-like behavior. The use in
numexpr.evaluate of sys._getframe combined with .f_locals from that frame object results an extra refcount on
objects in the frame that calls numexpr.evaluate, and not evaluate’s frame. So if the calling frame remains in
scope for a long time (such as a procedural script where numexpr is called from the base frame) garbage collection
would never occur.

• Imports for the numexpr.test submodule were made lazy in the numexpr module.

7.1.12 Changes from 2.6.5 to 2.6.6

• Thanks to Mark Dickinson for a fix to the thread barrier that occassionally suffered from spurious wakeups on
MacOSX.
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7.1.13 Changes from 2.6.4 to 2.6.5

• The maximum thread count can now be set at import-time by setting the environment variable ‘NUM-
EXPR_MAX_THREADS’. The default number of max threads was lowered from 4096 (which was deemed
excessive) to 64.

• A number of imports were removed (pkg_resources) or made lazy (cpuinfo) in order to speed load-times for
downstream packages (such as pandas, sympy, and tables). Import time has dropped from about 330 ms to 90
ms. Thanks to Jason Sachs for pointing out the source of the slow-down.

• Thanks to Alvaro Lopez Ortega for updates to benchmarks to be compatible with Python 3.

• Travis and AppVeyor now fail if the test module fails or errors.

• Thanks to Mahdi Ben Jelloul for a patch that removed a bug where constants in where calls would raise a Val-
ueError.

• Fixed a bug whereby all-constant power operations would lead to infinite recursion.

7.1.14 Changes from 2.6.3 to 2.6.4

• Christoph Gohlke noticed a lack of coverage for the 2.6.3 floor and ceil functions for MKL that caused seg-faults
in test, so thanks to him for that.

7.1.15 Changes from 2.6.2 to 2.6.3

• Documentation now available at readthedocs.io.

• Support for floor() and ceil() functions added by Caleb P. Burns.

• NumPy requirement increased from 1.6 to 1.7 due to changes in iterator flags (#245).

• Sphinx autodocs support added for documentation on readthedocs.org.

• Fixed a bug where complex constants would return an error, fixing problems with sympy when using NumExpr
as a backend.

• Fix for #277 whereby arrays of shape (1,. . . ) would be reduced as if they were full reduction. Behavoir now
matches that of NumPy.

• String literals are automatically encoded into ‘ascii’ bytes for convience (see #281).

7.1.16 Changes from 2.6.1 to 2.6.2

• Updates to keep with API changes in newer NumPy versions (#228). Thanks to Oleksandr Pavlyk.

• Removed several warnings (#226 and #227). Thanks to Oleksander Pavlyk.

• Fix bugs in function stringcontains() (#230). Thanks to Alexander Shadchin.

• Detection of the POWER processor (#232). Thanks to Breno Leitao.

• Fix pow result casting (#235). Thanks to Fernando Seiti Furusato.

• Fix integers to negative integer powers (#240). Thanks to Antonio Valentino.

• Detect numpy exceptions in expression evaluation (#240). Thanks to Antonio Valentino.

• Better handling of RC versions (#243). Thanks to Antonio Valentino.

28 Chapter 7. Release Notes

http://numexpr.readthedocs.io


numexpr, Release 2.6.3.dev0

7.1.17 Changes from 2.6.0 to 2.6.1

• Fixed a performance regression in some situations as consequence of increasing too much the BLOCK_SIZE1
constant. After more careful benchmarks (both in VML and non-VML modes), the value has been set again to
1024 (down from 8192). The benchmarks have been made with a relatively new processor (Intel Xeon E3-1245
v5 @ 3.50GHz), so they should work well for a good range of processors again.

• Added NetBSD support to CPU detection. Thanks to Thomas Klausner.

7.1.18 Changes from 2.5.2 to 2.6.0

• Introduced a new re_evaluate() function for re-evaluating the previous executed array expression without any
check. This is meant for accelerating loops that are re-evaluating the same expression repeatedly without chang-
ing anything else than the operands. If unsure, use evaluate() which is safer.

• The BLOCK_SIZE1 and BLOCK_SIZE2 constants have been re-checked in order to find a value maximizing
most of the benchmarks in bench/ directory. The new values (8192 and 16 respectively) give somewhat better
results (~5%) overall. The CPU used for fine tuning is a relatively new Haswell processor (E3-1240 v3).

• The ‘–name’ flag for setup.py returning the name of the package is honored now (issue #215).

7.1.19 Changes from 2.5.1 to 2.5.2

• conj() and abs() actually added as VML-powered functions, preventing the same problems than log10() before
(PR #212). Thanks to Tom Kooij for the fix!

7.1.20 Changes from 2.5 to 2.5.1

• Fix for log10() and conj() functions. These produced wrong results when numexpr was compiled with Intel’s
MKL (which is a popular build since Anaconda ships it by default) and non-contiguous data (issue #210). Thanks
to Arne de Laat and Tom Kooij for reporting and providing a nice test unit.

• Fix that allows numexpr-powered apps to be profiled with pympler. Thanks to @nbecker.

7.1.21 Changes from 2.4.6 to 2.5

• Added locking for allowing the use of numexpr in multi-threaded callers (this does not prevent numexpr to use
multiple cores simultaneously). (PR #199, Antoine Pitrou, PR #200, Jenn Olsen).

• Added new min() and max() functions (PR #195, CJ Carey).

7.1.22 Changes from 2.4.5 to 2.4.6

• Fixed some UserWarnings in Solaris (PR #189, Graham Jones).

• Better handling of MSVC defines. (#168, Francesc Alted).
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7.1.23 Changes from 2.4.4 to 2.4.5

• Undone a ‘fix’ for a harmless data race. (#185 Benedikt Reinartz, Francesc Alted).

• Ignore NumPy warnings (overflow/underflow, divide by zero and others) that only show up in Python3. Masking
these warnings in tests is fine because all the results are checked to be valid. (#183, Francesc Alted).

7.1.24 Changes from 2.4.3 to 2.4.4

• Fix bad #ifdef for including stdint on Windows (PR #186, Mike Sarahan).

7.1.25 Changes from 2.4.3 to 2.4.4

• Honor OMP_NUM_THREADS as a fallback in case NUMEXPR_NUM_THREADS is not set. Fixes #161. (PR
#175, Stefan Erb).

• Added support for AppVeyor (PR #178 Andrea Bedini)

• Fix to allow numexpr to be imported after eventlet.monkey_patch(), as suggested in #118 (PR #180 Ben Moran).

• Fix harmless data race that triggers false positives in ThreadSanitizer. (PR #179, Clement Courbet).

• Fixed some string tests on Python 3 (PR #182, Antonio Valentino).

7.1.26 Changes from 2.4.2 to 2.4.3

• Comparisons with empty strings work correctly now. Fixes #121 and PyTables #184.

7.1.27 Changes from 2.4.1 to 2.4.2

• Improved setup.py so that pip can query the name and version without actually doing the installation. Thanks to
Joris Borgdorff.

7.1.28 Changes from 2.4 to 2.4.1

• Added more configuration examples for compiling with MKL/VML support. Thanks to Davide Del Vento.

• Symbol MKL_VML changed into MKL_DOMAIN_VML because the former is deprecated in newer MKL.
Thanks to Nick Papior Andersen.

• Better determination of methods in cpuinfo module. Thanks to Marc Jofre.

• Improved NumPy version determination (handy for 1.10.0). Thanks to Åsmund Hjulstad.

• Benchmarks run now with both Python 2 and Python 3. Thanks to Zoran Plesivčak.
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7.1.29 Changes from 2.3.1 to 2.4

• A new contains() function has been added for detecting substrings in strings. Only plain strings (bytes) are
supported for now. See PR #135 and ticket #142. Thanks to Marcin Krol.

• New version of setup.py that allows better management of NumPy dependency. See PR #133. Thanks to Aleks
Bunin.

7.1.30 Changes from 2.3 to 2.3.1

• Added support for shift-left (<<) and shift-right (>>) binary operators. See PR #131. Thanks to fish2000!

• Removed the rpath flag for the GCC linker, because it is probably not necessary and it chokes to clang.

7.1.31 Changes from 2.2.2 to 2.3

• Site has been migrated to https://github.com/pydata/numexpr. All new tickets and PR should be directed there.

• [ENH] A conj() function for computing the conjugate of complex arrays has been added. Thanks to David
Menéndez. See PR #125.

• [FIX] Fixed a DeprecationWarning derived of using oa_ndim – 0 and op_axes – NULL when using
NpyIter_AdvancedNew() and NumPy 1.8. Thanks to Mark Wiebe for advise on how to fix this properly.

7.1.32 Changes from 2.2.1 to 2.2.2

• The copy_args argument of NumExpr function has been brought lack. This has been mainly necessary for com-
patibility with PyTables < 3.0, which I decided to continue to support. Fixed #115.

• The __nonzero__ method in ExpressionNode class has been commented out. This is also for compatibility with
PyTables < 3.0. See #24 for details.

• Fixed the type of some parameters in the C extension so that s390 architecture compiles. Fixes #116. Thank to
Antonio Valentino for reporting and the patch.

7.1.33 Changes from 2.2 to 2.2.1

• Fixes a secondary effect of “from numpy.testing import *”, where division is imported now too, so only then
necessary functions from there are imported now. Thanks to Christoph Gohlke for the patch.

7.1.34 Changes from 2.1 to 2.2

• [LICENSE] Fixed a problem with the license of the numexpr/win32/pthread.{c,h} files emulating pthreads on
Windows platforms. After persmission from the original authors is granted, these files adopt the MIT license and
can be redistributed without problems. See issue #109 for details (https://code.google.com/p/numexpr/issues/
detail?id-110).

• [ENH] Improved the algorithm to decide the initial number of threads to be used. This was necessary because
by default, numexpr was using a number of threads equal to the detected number of cores, and this can be
just too much for moder systems where this number can be too high (and counterporductive for performance in
many cases). Now, the ‘NUMEXPR_NUM_THREADS’ environment variable is honored, and in case this is not
present, a maximum number of 8 threads are setup initially. The new algorithm is fully described in the Users
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Guide now in the note of ‘General routines’ section: https://code.google.com/p/numexpr/wiki/UsersGuide#
General_routines. Closes #110.

• [ENH] numexpr.test() returns TestResult instead of None now. Closes #111.

• [FIX] Modulus with zero with integers no longer crashes the interpreter. It nows puts a zero in the result. Fixes
#107.

• [API CLEAN] Removed copy_args argument of evaluate. This should only be used by old versions of PyTables
(< 3.0).

• [DOC] Documented the optimization and truediv flags of evaluate in Users Guide (https://code.google.com/p/
numexpr/wiki/UsersGuide).

7.1.35 Changes from 2.0.1 to 2.1

• Dropped compatibility with Python < 2.6.

• Improve compatibiity with Python 3:

– switch from PyString to PyBytes API (requires Python >- 2.6).

– fixed incompatibilities regarding the int/long API

– use the Py_TYPE macro

– use the PyVarObject_HEAD_INIT macro instead of PyObject_HEAD_INIT

• Fixed several issues with different platforms not supporting multithreading or subprocess properly (see tickets
#75 and #77).

• Now, when trying to use pure Python boolean operators, ‘and’, ‘or’ and ‘not’, an error is issued suggesting that
‘&’, ‘|’ and ‘~’ should be used instead (fixes #24).

7.1.36 Changes from 2.0 to 2.0.1

• Added compatibility with Python 2.5 (2.4 is definitely not supported anymore).

• numexpr.evaluate is fully documented now, in particular the new out, order and casting parameters.

• Reduction operations are fully documented now.

• Negative axis in reductions are not supported (they have never been actually), and a ValueError will be raised if
they are used.

7.1.37 Changes from 1.x series to 2.0

• Added support for the new iterator object in NumPy 1.6 and later.

This allows for better performance with operations that implies broadcast operations, fortran-ordered or non-
native byte orderings. Performance for other scenarios is preserved (except for very small arrays).

• Division in numexpr is consistent now with Python/NumPy. Fixes #22 and #58.

• Constants like “2.” or “2.0” must be evaluated as float, not integer. Fixes #59.

• evaluate() function has received a new parameter out for storing the result in already allocated arrays. This is
very useful when dealing with large arrays, and a allocating new space for keeping the result is not acceptable.
Closes #56.
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• Maximum number of threads raised from 256 to 4096. Machines with a higher number of cores will still be able
to import numexpr, but limited to 4096 (which is an absurdly high number already).

7.1.38 Changes from 1.4.1 to 1.4.2

• Multithreaded operation is disabled for small arrays (< 32 KB). This allows to remove the overhead of multi-
threading for such a small arrays. Closes #36.

• Dividing int arrays by zero gives a 0 as result now (and not a floating point exception anymore. This behaviour
mimics NumPy. Thanks to Gaëtan de Menten for the fix. Closes #37.

• When compiled with VML support, the number of threads is set to 1 for VML core, and to the number of cores
for the native pthreads implementation. This leads to much better performance. Closes #39.

• Fixed different issues with reduction operations (sum, prod). The problem is that the threaded code does not
work well for broadcasting or reduction operations. Now, the serial code is used in those cases. Closes #41.

• Optimization of “compilation phase” through a better hash. This can lead up to a 25% of improvement when
operating with variable expressions over small arrays. Thanks to Gaëtan de Menten for the patch. Closes #43.

• The set_num_threads now returns the number of previous thread setting, as stated in the docstrings.

7.1.39 Changes from 1.4 to 1.4.1

• Mingw32 can also work with pthreads compatibility code for win32. Fixes #31.

• Fixed a problem that used to happen when running Numexpr with threads in subprocesses. It seems that threads
needs to be initialized whenever a subprocess is created. Fixes #33.

• The GIL (Global Interpreter Lock) is released during computations. This should allow for better resource usage
for multithreaded apps. Fixes #35.

7.1.40 Changes from 1.3.1 to 1.4

• Added support for multi-threading in pure C. This is to avoid the GIL and allows to squeeze the best performance
in both multi-core machines.

• David Cooke contributed a thorough refactorization of the opcode machinery for the virtual machine. With this,
it is really easy to add more opcodes. See:

http://code.google.com/p/numexpr/issues/detail?id-28

as an example.

• Added a couple of opcodes to VM: where_bbbb and cast_ib. The first allow to get boolean arrays out of the
where function. The second allows to cast a boolean array into an integer one. Thanks to gdementen for his
contribution.

• Fix negation of int64 numbers. Closes #25.

• Using a npy_intp datatype (instead of plain int) so as to be able to manage arrays larger than 2 GB.
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7.1.41 Changes from 1.3 to 1.3.1

• Due to an oversight, uint32 types were not properly supported. That has been solved. Fixes #19.

• Function abs for computing the absolute value added. However, it does not strictly follow NumPy conventions.
See README.txt or website docs for more info on this. Thanks to Pauli Virtanen for the patch. Fixes #20.

7.1.42 Changes from 1.2 to 1.3

• A new type called internally float has been implemented so as to be able to work natively with single-precision
floating points. This prevents the silent upcast to double types that was taking place in previous versions, so
allowing both an improved performance and an optimal usage of memory for the single-precision computations.
However, the casting rules for floating point types slightly differs from those of NumPy. See:

http://code.google.com/p/numexpr/wiki/Overview

or the README.txt file for more info on this issue.

• Support for Python 2.6 added.

• When linking with the MKL, added a ‘-rpath’ option to the link step so that the paths to MKL libraries are
automatically included into the runtime library search path of the final package (i.e. the user won’t need to
update its LD_LIBRARY_PATH or LD_RUN_PATH environment variables anymore). Fixes #16.

7.1.43 Changes from 1.1.1 to 1.2

• Support for Intel’s VML (Vector Math Library) added, normally included in Intel’s MKL (Math Kernel Li-
brary). In addition, when the VML support is on, several processors can be used in parallel (see the new
set_vml_num_threads() function). With that, the computations of transcendental functions can be accelerated
quite a few. For example, typical speed-ups when using one single core for contiguous arrays are 3x with peaks
of 7.5x (for the pow() function). When using 2 cores the speed-ups are around 4x and 14x respectively. Closes
#9.

• Some new VML-related functions have been added:

– set_vml_accuracy_mode(mode): Set the accuracy for VML operations.

– set_vml_num_threads(nthreads): Suggests a maximum number of threads to be used in VML operations.

– get_vml_version(): Get the VML/MKL library version.

See the README.txt for more info about them.

• In order to easily allow the detection of the MKL, the setup.py has been updated to use the numpy.distutils. So,
if you are already used to link NumPy/SciPy with MKL, then you will find that giving VML support to numexpr
works almost the same.

• A new print_versions() function has been made available. This allows to quickly print the versions on which
numexpr is based on. Very handy for issue reporting purposes.

• The numexpr.numexpr compiler function has been renamed to numexpr.NumExpr in order to avoid name colli-
sions with the name of the package (!). This function is mainly for internal use, so you should not need to upgrade
your existing numexpr scripts.
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7.1.44 Changes from 1.1 to 1.1.1

• The case for multidimensional array operands is properly accelerated now. Added a new benchmark (based on a
script provided by Andrew Collette, thanks!) for easily testing this case in the future. Closes #12.

• Added a fix to avoid the caches in numexpr to grow too much. The dictionary caches are kept now always with
less than 256 entries. Closes #11.

• The VERSION file is correctly copied now (it was not present for the 1.1 tar file, I don’t know exactly why).
Closes #8.

7.1.45 Changes from 1.0 to 1.1

• Numexpr can work now in threaded environments. Fixes #2.

• The test suite can be run programmatically by using numexpr.test().

• Support a more complete set of functions for expressions (including those that are not supported by MSVC 7.1
compiler, like the inverse hyperbolic or log1p and expm1 functions. The complete list now is:

– where(bool, number1, number2): number
Number1 if the bool condition is true, number2 otherwise.

– {sin,cos,tan}(float|complex): float|complex
Trigonometric sinus, cosinus or tangent.

– {arcsin,arccos,arctan}(float|complex): float|complex
Trigonometric inverse sinus, cosinus or tangent.

– arctan2(float1, float2): float
Trigonometric inverse tangent of float1/float2.

– {sinh,cosh,tanh}(float|complex): float|complex
Hyperbolic sinus, cosinus or tangent.

– {arcsinh,arccosh,arctanh}(float|complex): float|complex
Hyperbolic inverse sinus, cosinus or tangent.

– {log,log10,log1p}(float|complex): float|complex
Natural, base-10 and log(1+x) logarithms.

– {exp,expm1}(float|complex): float|complex
Exponential and exponential minus one.

– sqrt(float|complex): float|complex
Square root.

– {real,imag}(complex): float
Real or imaginary part of complex.

– complex(float, float): complex
Complex from real and imaginary parts.
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