

Welcome to the numdifftools’ documentation!

[image: pkg_img] [https://badge.fury.io/py/numdifftools] [image: tests_img] [https://github.com/pbrod/numdifftools/actions/workflows/test.yml] [image: Documentation] [http://numdifftools.readthedocs.org/en/stable/] [image: Maintainability] [https://codeclimate.com/github/pbrod/numdifftools/maintainability] [image: Test Coverage] [https://codeclimate.com/github/pbrod/numdifftools/test_coverage] [image: versions_img] [https://github.com/pbrod/numdifftools] [image: PyPI - Downloads]

This is the documentation of Numdifftools version 0.9.41 released Nov 11, 2022.

Bleeding edge available at: https://github.com/pbrod/numdifftools.

Official releases are available at: http://pypi.python.org/pypi/Numdifftools.

Contents:

	1. Introduction
	1.1. What is numdifftools?

	1.2. How the documentation is organized

	2. Tutorials
	2.1. Install guide
	2.1.1. Install Python

	2.1.2. Dependencies

	2.1.3. Install numdifftools

	2.1.4. Verifying installation

	2.1.5. That’s it!

	2.2. Getting started
	2.2.1. The derivative

	2.2.2. Gradient and Hessian estimation

	2.3. Conclusion

	2.4. What to read next
	2.4.1. Finding documentation

	2.4.2. How the documentation is organized

	2.4.3. How documentation is updated

	3. How-to guides
	3.1. How to create virtual environments for python with conda
	3.1.1. Check conda is installed and in your PATH.

	3.1.2. Check conda is up to date.

	3.1.3. Create a virtual environment for your project.

	3.1.4. Activate your virtual environment.

	3.1.5. Install additional Python packages to a virtual environment.

	3.1.6. Deactivate your virtual environment.

	3.1.7. Delete a no longer needed virtual environment.

	3.1.8. Related info.

	3.2. Contributing
	3.2.1. Contribute a patch

	4. Topics guides
	4.1. Introduction derivative estimation

	4.2. Numerical differentiation of a general function of one variable

	4.3. Unequally spaced finite difference rules

	4.4. Odd and even transformations of a function

	4.5. Complex step derivative

	4.6. High order derivative

	4.7. Richardson extrapolation methodology applied to derivative estimation

	4.8. Multiple term Richardson extrapolants

	4.9. Uncertainty estimates for Derivative

	5. Reference
	5.1. Numdifftools summary
	5.1.1. numdifftools.core module

	5.1.2. Step generators

	5.1.3. numdifftools.extrapolation module

	5.1.4. numdifftools.limits module

	5.1.5. numdifftools.multicomplex module

	5.1.6. numdifftools.nd_algopy module

	5.1.7. numdifftools.nd_scipy module

	5.1.8. numdifftools.nd_statsmodels module

	5.2. Numdifftools package details
	5.2.1. numdifftools.tests package

	5.2.2. numdifftools.core module

	5.2.3. numdifftools.extrapolation module

	5.2.4. numdifftools.finite_difference module

	5.2.5. numdifftools.fornberg module

	5.2.6. numdifftools.limits module

	5.2.7. numdifftools.multicomplex module

	5.2.8. numdifftools.nd_algopy module

	5.2.9. numdifftools.nd_scipy module

	5.2.10. numdifftools.nd_statsmodels module

	5.2.11. numdifftools.step_generators module

	Changelog
	Version 0.9.41 Nov 10, 2022

	Version 0.9.40 Jun 2, 2021

	Version 0.9.39 Jun 10, 2019

	Version 0.9.38 Jun 10, 2019

	Version 0.9.20, Jan 11, 2017

	Version 0.9.19, Jan 11, 2017

	Version 0.9.18, Jan 11, 2017

	Version 0.9.17, Sep 8, 2016

	Version 0.9.15, May 10, 2016

	Version 0.9.14, November 10, 2015

	Version 0.9.13, October 30, 2015

	Version 0.9.12, August 28, 2015

	Version 0.9.11, August 27, 2015

	Version 0.9.10, August 26, 2015

	Version 0.9.4, August 26, 2015

	Version 0.9.3, August 23, 2015

	Version 0.9.2, August 20, 2015

	Version 0.9.1, August 20,2015

	Version 0.7.7, December 18, 2014

	Version 0.7.3, December 17, 2014

	Version 0.6.0, February 8, 2014

	Version 0.5.0, January 10, 2014

	Version 0.4.0, May 5, 2012

	Version 0.3.5, May 19, 2011

	Version 0.3.4, Feb 24, 2011

	Version 0.3.1, May 20, 2009

	Contributors

	License

	Acknowledgments

	Indices and tables

	Bibliography

1. Introduction

1.1. What is numdifftools?

Numdifftools is a suite of tools written in _Python [http://www.python.org/]
to solve automatic numerical differentiation problems in one or more variables.
Finite differences are used in an adaptive manner, coupled with a Richardson
extrapolation methodology to provide a maximally accurate result.
The user can configure many options like; changing the order of the method or
the extrapolation, even allowing the user to specify whether complex-step,
central, forward or backward differences are used.

The methods provided are:

	Derivative: Compute the derivatives of order 1 through 10 on any scalar function.

	directionaldiff: Compute directional derivative of a function of n variables

	Gradient: Compute the gradient vector of a scalar function of one or more variables.

	Jacobian: Compute the Jacobian matrix of a vector valued function of one or more variables.

	Hessian: Compute the Hessian matrix of all 2nd partial derivatives of a scalar function of one or more variables.

	Hessdiag: Compute only the diagonal elements of the Hessian matrix

All of these methods also produce error estimates on the result.

Numdifftools also provide an easy to use interface to derivatives calculated
with in _AlgoPy [https://pythonhosted.org/algopy/]. Algopy stands for Algorithmic
Differentiation in Python.
The purpose of AlgoPy is the evaluation of higher-order derivatives in the
forward and reverse mode of Algorithmic Differentiation (AD) of functions
that are implemented as Python programs.

1.2. How the documentation is organized

Numdifftools has a lot of documentation. A high-level overview of how it’s organized
will help you know where to look for certain things:

	Tutorials take you by the hand through a series of
steps to load a CDF container and explore its contents or to
construct a new dataset and validate it. Start here if you’re new to numdifftools.

	Topic guides discuss key topics and concepts at a
fairly high level and provide useful background information and explanation.

	Reference guides contain technical reference for APIs and
other aspects of numdifftools’ machinery. They describe how it works and how to
use it but assume that you have a basic understanding of key concepts.

	How-to guides are recipes. They guide you through the
steps involved in addressing key problems and use-cases. They are more
advanced than tutorials and assume some knowledge of how numdifftools works.

2. Tutorials

The pages in this section of the documentation are aimed at the newcomer to
numdifftools. They’re designed to help you get started quickly, and show how
easy it is to work with numdifftools as a developer who wants to customise it and
get it working according to their own requirements.

These tutorials take you step-by-step through some key aspects of this work.
They’re not intended to explain the topics in depth, or
provide reference material, but they will leave you
with a good idea of what it’s possible to achieve in just a few steps, and how
to go about it.

Once you’re familiar with the basics presented in these tutorials, you’ll find
the more in-depth coverage of the same topics in the How-to section.

The tutorials follow a logical progression, starting from installation of numdifftools and the
creation of a brand new project, and build on each other, so it’s recommended to work through them
in the order presented here.

	2.1. Install guide

	2.2. Getting started

	2.3. Conclusion

	2.4. What to read next

See also

Numdifftools is 100% Python [https://python.org/], so if you’re new to Python [https://python.org/], you might want to start
by getting an idea of what the language is like. Below we have given some pointers
to some resources you can use to get acquainted with the language.

If you’re new to programming entirely, you might want to start with this
list of Python resources for non-programmers [https://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

If you already know a few other languages and want to get up to speed with
Python quickly, we recommend Dive Into Python [https://www.diveinto.org/python3/]. If that’s not quite your
style, there are many other books about Python [https://wiki.python.org/moin/PythonBooks].

2.1. Install guide

Before you can use numdifftools, you’ll need to get it installed. This guide will
guide you through a simple installation
that’ll work while you walk through the introduction.

2.1.1. Install Python

Being a Python library, numdifftools requires Python. Preferably you ned version 3.4 or
newer, but you get the latest version of Python at
https://www.python.org/downloads/.

You can verify that Python is installed by typing python from the command shell;
you should see something like:

Python 3.6.3 (64-bit)| (default, Oct 15 2017, 03:27:45)
[MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

pip is the Python installer. Make sure yours is up-to-date, as earlier versions can be less reliable:

$ pip install --upgrade pip

2.1.2. Dependencies

Numdifftools requires numpy 1.9 or newer,
scipy 0.8 or newer, and Python 2.7 or 3.3 or newer.
This tutorial assumes you are using Python 3.
Optionally you may also want to install Algopy 0.4 or newer and statsmodels 0.6 or newer in order
to be able to use the easy to use interfaces to their derivative functions.

2.1.3. Install numdifftools

To install numdifftools simply type in the ‘command’ shell:

$ pip install numdifftools

to get the lastest stable version. Using pip also has the advantage
that all requirements are automatically installed.

2.1.4. Verifying installation

To verify that numdifftools can be seen by Python, type python from your shell.
Then at the Python prompt, try to import numdifftools:

>>> import numdifftools as nd
>>> print(nd.__version__)
0.9.41

To test if the toolbox is working correctly paste the following in an interactive python prompt:

nd.test('--doctest-module')

If the result show no errors, you now have installed a fully functional toolbox.
Congratulations!

2.1.5. That’s it!

That’s it – you can now move onto the getting started tutorial

2.2. Getting started

2.2.1. The derivative

How does numdifftools.Derivative work in action? A simple nonlinear function with a well known derivative is \(e^x\). At \(x = 0\), the derivative should be 1.

>>> import numpy as np
>>> from numpy import exp
>>> import numdifftools as nd
>>> f = nd.Derivative(exp, full_output=True)
>>> val, info = f(0)
>>> np.allclose(val, 1)
True

>>> np.allclose(info.error_estimate, 5.28466160e-14)
True

A second simple example comes from trig functions. The first four derivatives of the sine function, evaluated at \(x = 0\), should be respectively \([cos(0), -sin(0), -cos(0), sin(0)]\), or \([1,0,-1,0]\).

>>> from numpy import sin
>>> import numdifftools as nd
>>> df = nd.Derivative(sin, n=1)
>>> np.allclose(df(0), 1.)
True

>>> ddf = nd.Derivative(sin, n=2)
>>> np.allclose(ddf(0), 0.)
True

>>> dddf = nd.Derivative(sin, n=3)
>>> np.allclose(dddf(0), -1.)
True

>>> ddddf = nd.Derivative(sin, n=4)
>>> np.allclose(ddddf(0), 0.)
True

Visualize high order derivatives of the tanh function

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(10):
... df = nd.Derivative(np.tanh, n=i)
... y = df(x)
... h = plt.plot(x, y/np.abs(y).max())

plt.show()

[image: ../_images/fun.png]
 [https://github.com/pbrod/numdifftools/blob/master/examples/fun.py]

2.2.2. Gradient and Hessian estimation

Estimation of the gradient vector (numdifftools.Gradient) of a function of multiple variables is a simple task, requiring merely repeated calls to numdifftools.Derivative. Likewise, the diagonal elements of the hessian matrix are merely pure second partial derivatives of a function. numdifftools.Hessdiag accomplishes this task, again calling numdifftools.Derivative multiple times. Efficient computation of the off-diagonal (mixed partial derivative) elements of the Hessian matrix uses a scheme much like that of numdifftools.Derivative, then Richardson extrapolation is used to improve a set of second order finite difference estimates of those mixed partials.

2.2.2.1. Multivariate calculus examples

Typical usage of the gradient and Hessian might be in optimization problems, where one might compare
an analytically derived gradient for correctness, or use the Hessian matrix to compute confidence interval estimates on parameters in a maximum likelihood estimation.

2.2.2.2. Gradients and Hessians

>>> import numpy as np
>>> def rosen(x): return (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2

	Gradient of the Rosenbrock function at [1,1], the global minimizer
	>>> grad = nd.Gradient(rosen)([1, 1])

The gradient should be zero (within floating point noise)

>>> np.allclose(grad, 0)
True

	The Hessian matrix at the minimizer should be positive definite
	>>> H = nd.Hessian(rosen)([1, 1])

The eigenvalues of H should be positive

>>> li, U = np.linalg.eig(H)
>>> [val>0 for val in li]
[True, True]

	Gradient estimation of a function of 5 variables
	>>> f = lambda x: np.sum(x**2)
>>> grad = nd.Gradient(f)(np.r_[1, 2, 3, 4, 5])
>>> np.allclose(grad, [2., 4., 6., 8., 10.])
True

	Simple Hessian matrix of a problem with 3 independent variables
	>>> f = lambda x: x[0] + x[1]**2 + x[2]**3
>>> H = nd.Hessian(f)([1, 2, 3])
>>> np.allclose(H, np.diag([0, 2, 18]))
True

	A semi-definite Hessian matrix
	>>> H = nd.Hessian(lambda xy: np.cos(xy[0] - xy[1]))([0, 0])

one of these eigenvalues will be zero (approximately)

>>> [abs(val) < 1e-12 for val in np.linalg.eig(H)[0]]
[True, False]

2.2.2.3. Directional derivatives

The directional derivative will be the dot product of the gradient with the (unit normalized) vector. This is of course possible to do with numdifftools and you could do it like this for the Rosenbrock function at the solution, x0 = [1,1]:

>>> v = np.r_[1, 2]/np.sqrt(5)
>>> x0 = [1, 1]
>>> directional_diff = np.dot(nd.Gradient(rosen)(x0), v)

This should be zero.

>>> np.allclose(directional_diff, 0)
True

Ok, its a trivial test case, but it easy to compute the directional derivative at other locations:

>>> v2 = np.r_[1, -1]/np.sqrt(2)
>>> x2 = [2, 3]
>>> directionaldiff = np.dot(nd.Gradient(rosen)(x2), v2)
>>> np.allclose(directionaldiff, 743.87633380824832)
True

There is a convenience function \(nd.directionaldiff\) that also takes care of the direction normalization:

>>> v = [1, -1]
>>> x0 = [2, 3]
>>> directional_diff = nd.directionaldiff(rosen, x0, v)
>>> np.allclose(directional_diff, 743.87633380824832)
True

2.2.2.4. Jacobian matrix

Jacobian matrix of a scalar function is just the gradient

>>> jac = nd.Jacobian(rosen)([2, 3])
>>> grad = nd.Gradient(rosen)([2, 3])
>>> np.allclose(jac, grad)
True

Jacobian matrix of a linear system will reduce to the design matrix

>>> A = np.random.rand(5,3)
>>> b = np.random.rand(5)
>>> fun = lambda x: np.dot(x, A.T) - b
>>> x = np.random.rand(3)
>>> jac = nd.Jacobian(fun)(x)

This should be essentially zero at any location x

>>> np.allclose(jac - A, 0)
True

The jacobian matrix of a nonlinear transformation of variables evaluated at some
arbitrary location [-2, -3]

>>> fun = lambda xy: np.r_[xy[0]**2, np.cos(xy[0] - xy[1])]
>>> jac = nd.Jacobian(fun)([-2, -3])
>>> np.allclose(jac, [[-4., 0.],
... [-0.84147098, 0.84147098]])
True

2.3. Conclusion

numdifftools.Derivative is an a adaptive scheme that can compute the derivative of arbitrary (well behaved) functions. It is reasonably fast as an adaptive method. Many options have been provided for the user who wishes the ultimate amount of control over the estimation.

2.4. What to read next

So you’ve read all the introductory material and have
decided you’d like to keep using numdifftools. We’ve only just scratched the surface
with this intro.

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should
know enough to start a project of your own and start fooling around. As you need
to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making numdifftools’s documentation useful, easy to
read and as complete as possible. The rest of this document explains more about
how the documentation works so that you can get the most out of it.

2.4.1. Finding documentation

Numdifftools got a lot of documentation,
so finding what you need can sometimes be tricky. A few good places to start
are the Search Page and the Index.

Or you can just browse around!

2.4.2. How the documentation is organized

Numdifftools main documentation is broken up into “chunks” designed to fill
different needs:

	The introductory material is designed for people new
to numdifftools. It doesn’t cover anything in depth, but instead gives a hands on
overview of how to use numdifftools.

	The topic guides, on the other hand, dive deep into
individual parts of numdifftools from a theoretical perspective.

	We’ve written a set of how-to guides that answer
common “How do I …?” questions.

	The guides and how-to’s don’t cover every single class, function, and
method available in numdifftools – that would be overwhelming when you’re
trying to learn. Instead, details about individual classes, functions,
methods, and modules are kept in the reference. This is
where you’ll turn to find the details of a particular function or
whatever you need.

2.4.3. How documentation is updated

Just as the numdifftools code base is developed and improved on a daily basis, our
documentation is consistently improving. We improve documentation for several
reasons:

	To make content fixes, such as grammar/typo corrections.

	To add information and/or examples to existing sections that need to be
expanded.

	To document numdifftools features that aren’t yet documented. (The list of
such features is shrinking but exists nonetheless.)

	To add documentation for new features as new features get added, or as
numdifftools APIs or behaviors change.

2.4.3.1. In plain text

For offline reading, or just for convenience, you can read the numdifftools
documentation in plain text.

If you’re using an official release of numdifftools, the zipped package (tarball) of
the code includes a docs/ directory, which contains all the documentation
for that release.

If you’re using the development version of numdifftools (aka the master branch), the
docs/ directory contains all of the documentation. You can update your
Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the
Unix grep utility to search for a phrase in all of the documentation. For
example, this will show you each mention of the phrase “max_length” in any
numdifftools document:

$ grep -r max_length /path/to/numdifftools/docs/

2.4.3.2. As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

	numdifftools’s documentation uses a system called Sphinx [http://sphinx-doc.org/] to convert from
plain text to HTML. You’ll need to install Sphinx by either downloading
and installing the package from the Sphinx website, or with pip:

$ pip install Sphinx

	Then, just use the included Makefile to turn the documentation into
HTML:

$ cd path/to/numdifftools/docs
$ make html

You’ll need GNU Make [https://www.gnu.org/software/make/] installed for this.

If you’re on Windows you can alternatively use the included batch file:

$ cd path\to\numdifftools\docs
$ make.bat html

	The HTML documentation will be placed in docs/_build/html.

2.4.3.3. Using pydoc

The pydoc module automatically generates documentation from Python modules.
The documentation can be presented as pages of text on the console, served
to a Web browser, or saved to HTML files.

For modules, classes, functions and methods, the displayed documentation is
derived from the docstring (i.e. the __doc__ attribute) of the object, and
recursively of its documentable members. If there is no docstring, pydoc
tries to obtain a description from the block of comment lines just above the
definition of the class, function or method in the source file, or at the top
of the module (see inspect.getcomments()).

The built-in function help() invokes the online help system in the interactive
interpreter, which uses pydoc to generate its documentation as text on the
console. The same text documentation can also be viewed from outside the Python
interpreter by running pydoc as a script at the operating system’s command prompt.
For example, running

$ pydoc numdifftools

at a shell prompt will display documentation on the numdifftools module, in a style similar
to the manual pages shown by the Unix man command. The argument to pydoc can be
the name of a function, module, or package, or a dotted reference to a class,
method, or function within a module or module in a package. If the argument to
pydoc looks like a path (that is, it contains the path separator for your
operating system, such as a slash in Unix), and refers to an existing Python
source file, then documentation is produced for that file.

You can also use pydoc to start an HTTP server on the local machine that will
serve documentation to visiting Web browsers. For example, running

$ pydoc -b

will start the server and additionally open a web browser to a module index page.
Each served page has a navigation bar at the top where you can Get help on an
individual item, Search all modules with a keyword in their synopsis line, and
go to the Module index, Topics and Keywords pages.
To quit the server just type

$ quit

3. How-to guides

Here you’ll find short answers to “How do I….?” types of questions. These
how-to guides don’t cover topics in depth – you’ll find that material in the
Topics guides and the Reference. However, these guides will help
you quickly accomplish common tasks using the “best practices”.

	3.1. How to create virtual environments for python with conda

	3.2. Contributing

3.1. How to create virtual environments for python with conda

In this section we will explain how to work with virtual environments
using conda. A virtual environment is a named, isolated, working copy
of Python that maintains its own files, directories, and paths so that
you can work with specific versions of libraries or Python itself
without affecting other Python projects. Virtual environments make it
easy to cleanly separate different projects and avoid problems with
different dependencies and version requirements across components.
The conda command is the preferred interface for managing installations
and virtual environments with the Anaconda Python distribution. If you
have a vanilla Python installation or other Python distribution see
virtualenv.

In the following we assume that the Anaconda Python distribution
installed and accessible.

3.1.1. Check conda is installed and in your PATH.

Open a terminal client.
Enter conda -V into the terminal command line and press enter.
If conda is installed you should see somehting like the following.

$ conda -V
conda 4.6.8

3.1.2. Check conda is up to date.

In the terminal client enter

conda update conda

Update any packages if necessary by typing y to proceed.

3.1.3. Create a virtual environment for your project.

In the terminal client enter the following where yourenvname is the
name you want to call your environment, and replace x.x with the Python
version you wish to use. (To see a list of available python versions
first, type conda search "^python$" and press enter.)

conda create -n yourenvname python=x.x anaconda

Press y to proceed. This will install the Python version and all
the associated anaconda packaged libraries at
path_to_your_anaconda_location/anaconda/envs/yourenvname

3.1.4. Activate your virtual environment.

To activate or switch into your virtual environment, simply type the
following where yourenvname is the name you gave to your environement
at creation.

conda activate yourenvname

Activating a conda environment modifies the PATH and shell variables
to point to the specific isolated Python set-up you created. The
command prompt will change to indicate which conda environemnt you
are currently in by prepending (yourenvname). To see a list of all
your environments, use the command conda info -e.

3.1.5. Install additional Python packages to a virtual environment.

To install additional packages only to your virtual environment,
enter the following command where yourenvname is the name of your
environemnt, and [package] is the name of the package you wish to
install. Failure to specify -n yourenvname will install the
package to the root Python installation.

conda install -n yourenvname [package]

3.1.6. Deactivate your virtual environment.

To end a session in the current environment, enter the following.
There is no need to specify the envname - which ever is currently
active will be deactivated, and the PATH and shell variables will
be returned to normal.

conda deactivate

3.1.7. Delete a no longer needed virtual environment.

To delete a conda environment, enter the following, where yourenvname
is the name of the environment you wish to delete.

conda remove -n yourenvname -all

3.1.8. Related info.

The offical conda documentation can be found here:
https://conda.io/projects/conda/en/latest/user-guide/overview.html
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html.

3.2. Contributing

3.2.1. Contribute a patch

4. Topics guides

This section explains and analyses some key concepts in numdifftools. It’s less
concerned with explaining how to do things than with helping you understand
how it works.

	4.1. Introduction derivative estimation

	4.2. Numerical differentiation of a general function of one variable

	4.3. Unequally spaced finite difference rules

	4.4. Odd and even transformations of a function

	4.5. Complex step derivative

	4.6. High order derivative

	4.7. Richardson extrapolation methodology applied to derivative estimation

	4.8. Multiple term Richardson extrapolants

	4.9. Uncertainty estimates for Derivative

4.1. Introduction derivative estimation

The general problem of differentiation of a function typically pops up in three ways in Python.

	The symbolic derivative of a function.

	Compute numerical derivatives of a function defined only by a sequence of data points.

	Compute numerical derivatives of a analytically supplied function.

Clearly the first member of this list is the domain of the symbolic toolbox SymPy, or some set of symbolic tools. Numerical differentiation of a function defined by data points can be achieved with the function gradient, or perhaps by differentiation of a curve fit to the data, perhaps to an interpolating spline or a least squares spline fit.

The third class of differentiation problems is where Numdifftools is valuable. This document will describe the methods used in Numdifftools and in particular the Derivative class.

4.2. Numerical differentiation of a general function of one variable

Surely you recall the traditional definition of a derivative, in terms of a limit.

(4.1)\[f'(x) = \lim_{\delta \to 0}{\frac{f(x+\delta) - f(x)}{\delta}}\]

For small \(\delta\), the limit approaches \(f'(x)\). This is a one-sided approximation for the derivative. For a fixed value of \(\delta\), this is also known as a finite difference approximation (a forward difference.) Other approximations for the derivative are also available. We will see the origin of these approximations in the Taylor series expansion of a function \(f(x)\) around some point \(x_0\).

(4.2)\[\begin{align}\begin{aligned}\begin{split}f(x_0+\delta) &= f(x_0) + \delta f'(x_0) + \frac{\delta^2}{2} f''(x_0) + \frac{\delta^3}{6} f^{(3)}(x_0) + \\\end{split}\\\begin{split}& \frac{\delta^4}{24} f^{(4)}(x_0) + \frac{\delta^5}{120} f^{(5)}(x_0) + \frac{\delta^6}{720} f^{(6)}(x_0) +...\\\end{split}\end{aligned}\end{align} \]

Truncate the series in (4.2) to the first three terms, divide by \(\delta\) and rearrange yields the forward difference approximation (4.1):

(4.3)\[f'(x_0) = \frac{f(x_0+\delta) - f(x_0)}{\delta} - \frac{\delta}{2} f''(x_0) - \frac{\delta^2}{6} f'''(x_0) + ...\]

When \(\delta\) is small, \(\delta^2\) and any higher powers are vanishingly small. So we tend to ignore those higher powers, and describe the approximation in (4.3) as a first order approximation since the error in this approximation approaches zero at the same rate as the first power of \(\delta\). 1 The values of \(f''(x_0)\) and \(f'''(x_0)\), while unknown to us, are fixed constants as \(\delta\) varies.

Higher order approximations arise in the same fashion. The central difference (4.4) is a second order approximation.

(4.4)\[f'(x_0) = \frac{f(x_0+\delta) - f(x_0-\delta)}{2\delta} - \frac{\delta^2}{3} f'''(x_0) + ...\]

4.3. Unequally spaced finite difference rules

While most finite difference rules used to differentiate a function will use equally spaced points, this fails to be appropriate when one does not know the final spacing. Adaptive quadrature rules can succeed by subdividing each sub-interval as necessary. But an adaptive differentiation scheme must work differently, since differentiation is a point estimate. Derivative generates a sequence of sample points that follow a log spacing away from the point in question, then it uses a single rule (generated on the fly) to estimate the desired derivative. Because the points are log spaced, the same rule applies at any scale, with only a scale factor applied.

4.4. Odd and even transformations of a function

Returning to the Taylor series expansion of \(f(x)\) around some point \(x_0\), an even function 2 around \(x_0\) must have all the odd order derivatives vanish at \(x_0\). An odd function has all its even derivatives vanish from its expansion. Consider the derived functions \(f_{odd}(x)\) and \(f_{even}(x)\).

(4.5)\[f_{odd}(x) = \frac{f(x_0 + x) - f(x_0 - x)}{2}\]

(4.6)\[f_{even}(x) = \frac{f(x_0 + x) - 2f(x_0) + f(x_0 - x)}{2}\]

The Taylor series expansion of \(f_{odd}(x)\) around zero has the useful property that we have killed off any even order terms, but the odd order terms are identical to \(f(x)\), as expanded around \(x_0\).

(4.7)\[f_{odd}(\delta) = \delta f'(x_0) + \frac{\delta^3}{6} f^{(3)}(x_0) + \frac{\delta^5}{120} f^{(5)}(x_0) + \frac{\delta^7}{5040} f^{(7)}(x_0) +...\]

Likewise, the Taylor series expansion of \(f_{even}(x)\) has no odd order terms or a constant term, but other even order terms that are identical to \(f(x)\).

(4.8)\[f_{even}(\delta) = \frac{\delta^2}{2} f^{(2)}(x_0) + \frac{\delta^4}{24} f^{(4)}(x_0) + \frac{\delta^6}{720} f^{(6)}(x_0) + \frac{\delta^8}{40320} f^{(8)}(x_0) + ...\]

The point of these transformations is we can rather simply generate a higher order approximation for any odd order derivatives of \(f(x)\) by working with \(f_{odd}(x)\). Even order derivatives of \(f(x)\) are similarly generated from \(f_{even}(x)\). For example, a second order approximation for \(f'(x_0)\) is trivially written in (4.9) as a function of \(\delta\).

(4.9)\[f'(x_0; \delta) = \frac{f_{odd}(\delta)}{\delta} - \frac{\delta^2}{6} f^{(3)}(x_0)\]

We can do better rather simply, so why not? (4.10) shows a fourth order approximation for \(f'(x_0)\).

(4.10)\[f'(x_0; \delta) = \frac{8 f_{odd}(\delta)-f_{odd}(2\delta)}{6\delta} + \frac{\delta^4}{30} f^{(5)}(x_0)\]

Again, the next non-zero term (4.11) in that expansion has a higher power of \(\delta\) on it, so we would normally ignore it since the lowest order neglected term should dominate the behavior for small \(\delta\).

(4.11)\[\frac{\delta^6}{252} f^{(7)}(x_0)\]

Derivative uses similar approximations for all derivatives of \(f\) up to any order. Of course, it is not always possible for evaluation of a function on both sides of a point, as central difference rules will require. In these cases, you can specify forward or backward difference rules as appropriate. You can also specify to use the complex step derivative, which we will outline in the next section.

4.5. Complex step derivative

The derivation of the complex-step derivative approximation is accomplished by replacing \(\delta\) in (4.2)
with a complex step \(i h\):

(4.12)\[\begin{align}\begin{aligned}\begin{split}f(x_0+ i h) &= f(x_0) + i h f'(x_0) - \frac{h^2}{2} f''(x_0) - \frac{i h^3}{6} f^{(3)}(x_0) + \frac{h^4}{24} f^{(4)}(x_0) + \\\end{split}\\\begin{split}& \frac{i h^5}{120} f^{(5)}(x_0) - \frac{h^6}{720} f^{(6)}(x_0) -...\\\end{split}\end{aligned}\end{align} \]

Taking only the imaginary parts of both sides gives

(4.13)\[\Im (f(x_0 + i h)) = h f'(x_0) - \frac{h^3}{6} f^{(3)}(x_0) + \frac{h^5}{120} f^{(5)}(x_0) - ...\]

Dividing with \(h\) and rearranging yields:

(4.14)\[f'(x_0) = \Im(f(x_0+ i h))/ h + \frac{h^2}{6} f^{(3)}(x_0) - \frac{h^4}{120} f^{(5)}(x_0) + ...\]

Terms with order \(h^2\) or higher can safely be ignored since the interval \(h\) can be chosen up to machine precision
without fear of rounding errors stemming from subtraction (since there are not any). Thus to within second-order the complex-step derivative approximation is given by:

(4.15)\[f'(x_0) = \Im(f(x_0 + i h))/ h\]

Next, consider replacing the step \(\delta\) in (4.8) with the complex step \(i^\frac{1}{2} h\):

(4.16)\[\begin{align}\begin{aligned}\begin{split}\quad f_{even}(i^\frac{1}{2} h) &= \frac{i h^2}{2} f^{(2)}(x_0) - \frac{h^4}{24} f^{(4)}(x_0) - \frac{i h^6}{720} f^{(6)}(x_0) + \\\end{split}\\\begin{split} & \frac{h^8}{40320} f^{(8)}(x_0) + \frac{i h^{10}}{3628800} f^{(10)}(x_0) -...\\\end{split}\end{aligned}\end{align} \]

Similarly dividing with \(h^2/2\) and taking only the imaginary components yields:

(4.17)\[\quad f^{(2)}(x_0) = \Im\,(2\,f_{even}(i^\frac{1}{2} h)) / h^2 + \frac{h^4}{360} f^{(6)}(x_0) - \frac{h^8}{1814400} f^{(10)}(x_0)...\]

This approximation is still subject to difference errors, but the error associated with this approximation is proportional to
\(h^4\). Neglecting these higher order terms yields:

(4.18)\[\quad f^{(2)}(x_0) = 2 \Im\,(f_{even}(i^\frac{1}{2} h)) / h^2 = \Im(f(x_0 + i^\frac{1}{2} h) + f(x_0-i^\frac{1}{2} h)) / h^2\]

See [LaiCrassidisCheng2005] and [Ridout2009] for more details.
The complex-step derivative in numdifftools.Derivative has truncation error
\(O(\delta^4)\) for both odd and even order derivatives for \(n>1\). For \(n=1\)
the truncation error is on the order of \(O(\delta^2)\), so
truncation error can be eliminated by choosing steps to be very small. The first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
the function to differentiate needs to be analytic. This method does not work if it does
not support complex numbers or involves non-analytic functions such as
e.g.: abs, max, min. For this reason the central method is the default method.

4.6. High order derivative

So how do we construct these higher order approximation formulas? Here we will deomonstrate the principle by computing the 6’th order central approximation for the first-order derivative. In order to do so we simply set \(f_{odd}(\delta)\) equal to its 3-term Taylor expansion:

(4.19)\[f_{odd}(\delta) = \sum_{i=0}^{2} \frac{\delta^{2i+1}}{(2i+1)!} f^{(2i+1)}(x_0)\]

By inserting three different stepsizes into (4.19), eg \(\delta, \delta/2, \delta/4\), we get a set of linear equations:

(4.20)\[\begin{split}\begin{bmatrix}
 1 & \frac{1}{3!} & \frac{1}{5!} \\
 \frac{1}{2} & \frac{1}{3! \, 2^3} & \frac{1}{5! \, 2^5} \\
 \frac{1}{4} & \frac{1}{3! \, 4^3} & \frac{1}{5! \, 4^5}
\end{bmatrix}
\begin{bmatrix}
 \delta f'(x_0) \\
 \delta^3 f^{(3)}(x_0) \\
 \delta^5 f^{(5)}(x_0)
\end{bmatrix} =
\begin{bmatrix}
 f_{odd}(\delta) \\
 f_{odd}(\delta/2) \\
 f_{odd}(\delta/4)
\end{bmatrix}\end{split}\]

The solution of these equations are simply:

(4.21)\[\begin{split}\begin{bmatrix}
 \delta f'(x_0) \\
 \delta^3 f^{(3)}(x_0) \\
 \delta^5 f^{(5)}(x_0)
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
 \frac{1}{15} & \frac{-8}{3} & \frac{256}{15} \\
 -8 & 272 & -512 \\
 512 & -5120 & 8192
\end{bmatrix}
\begin{bmatrix}
 f_{odd}(\delta) \\
 f_{odd}(\delta/2) \\
 f_{odd}(\delta/4)
\end{bmatrix}\end{split}\]

The first row of (4.21) gives the coefficients for 6’th order approximation. Looking at at row two and three, we see also that
this gives the 6’th order approximation for the 3’rd and 5’th order derivatives as bonus. Thus this is also a general method for obtaining high order differentiation rules. As previously noted these formulas have the additional benefit of beeing applicable to any scale, with only a scale factor applied.

4.7. Richardson extrapolation methodology applied to derivative estimation

Some individuals might suggest that the above set of approximations are entirely adequate for any sane person. Can we do better?

Suppose we were to generate several different estimates of the approximation in (4.3) for different values of \(\delta\) at a fixed \(x_0\). Thus, choose a single \(\delta\), estimate a corresponding resulting approximation to \(f'(x_0)\), then do the same for \(\delta/2\). If we assume that the error drops off linearly as \(\delta \to 0\), then it is a simple matter to extrapolate this process to a zero step size. Our lack of knowledge of \(f''(x_0)\) is irrelevant. All that matters is \(\delta\) is small enough that the linear term dominates so we can ignore the quadratic term, therefore the error is purely linear.

(4.22)\[f'(x_0) = \frac{f(x_0+\delta) - f(x_0)}{\delta} - \frac{\delta}{2} f''(x_0)\]

The linear extrapolant for this interval halving scheme as \(\delta \to 0\) is given by:

(4.23)\[f^{'}_{0} = 2 f^{'}_{\delta/2} - f^{'}_{\delta}\]

Since I’ve always been a big fan of convincing myself that something will work before I proceed too far, lets try this out in Python. Consider the function \(e^x\). Generate a pair of approximations to \(f'(0)\), once at \(\delta\) of 0.1, and the second approximation at \(1/2\) that value. Recall that \(\frac{d(e^x)}{dx} = e^x\), so at x = 0, the derivative should be exactly 1. How well will we do?

>>> from numpy import exp, allclose
>>> f = exp
>>> dx = 0.1
>>> df1 = (f(dx) - f(0))/dx
>>> allclose(df1, 1.05170918075648)
True

>>> df2 = (f(dx/2) - f(0))/(dx/2)
>>> allclose(df2, 1.02542192752048)
True

>>> allclose(2*df2 - df1, 0.999134674284488)
True

In fact, this worked very nicely, reducing the error to roughly 1 percent of our initial estimates. Should we be surprised at this reduction? Not if we recall that last term in (4.3). We saw there that the next term in the expansion was \(O(\delta^2)\). Since \(\delta\) was 0.1 in our experiment, that 1 percent number makes perfect sense.

The Richardson extrapolant in (4.23) assumed a linear process, with a specific reduction in \(\delta\) by a factor of 2. Assume the two term (linear + quadratic) residual term in (4.3), evaluating our approximation there with a third value of \(\delta\). Again, assume the step size is cut in half again. The three term Richardson extrapolant is given by:

(4.24)\[f'_0 = \frac{1}{3}f'_\delta - 2f'_{\delta/2} + \frac{8}{3}f'_{\delta/4}\]

A quick test in Python yields much better results yet.

>>> from numpy import exp, allclose
>>> f = exp
>>> dx = 0.1

>>> df1 = (f(dx) - f(0))/dx
>>> allclose(df1, 1.05170918075648)
True

>>> df2 = (f(dx/2) - f(0))/(dx/2)
>>> allclose(df2, 1.02542192752048)
True

>>> df3 = (f(dx/4) - f(0))/(dx/4)
>>> allclose(df3, 1.01260482097715)
True

>>> allclose(1./3*df1 - 2*df2 + 8./3*df3, 1.00000539448361)
True

Again, Derivative uses the appropriate multiple term Richardson extrapolants for all derivatives of \(f\) up to any order 3. This, combined with the use of high order approximations for the derivatives, allows the use of quite large step sizes. See [LynessMoler1966] and [LynessMoler1969]. How to compute the multiple term Richardson extrapolants will be elaborated further in the next section.

4.8. Multiple term Richardson extrapolants

We shall now indicate how we can calculate the multiple term Richardson extrapolant for \(f_{odd}(\delta)/\delta\) by rearranging (4.19):

(4.25)\[\frac{f_{odd}(\delta)}{\delta} = f'(x_0) + \sum_{i=1}^{\infty} \frac{\delta^{2i}}{(2i+1)!} f^{(2i+1)}(x_0)\]

This equation has the form

(4.26)\[\phi(\delta) = L + a_0 \delta^2 + a_1 \delta^4 + a_2 \delta^6 + ...\]

where L stands for \(f'(x_0)\) and \(\phi(\delta)\) for the numerical differentiation formula \(f_{odd}(\delta)/\delta\).

By neglecting higher order terms (\(a_3 \delta^8\)) and inserting three different stepsizes into (4.26), eg \(\delta, \delta/2, \delta/4\), we get a set of linear equations:

(4.27)\[\begin{split}\begin{bmatrix}
 1 & 1 & 1 \\
 1 & \frac{1}{2^2} & \frac{1}{2^4} \\
 1 & \frac{1}{4^2} & \frac{1}{4^4}
\end{bmatrix}
\begin{bmatrix}
 L \\
 \delta^2 a_0 \\
 \delta^4 a_1
\end{bmatrix} =
\begin{bmatrix}
 \phi(\delta) \\
 \phi(\delta/2) \\
 \phi(\delta/4)
\end{bmatrix}\end{split}\]

The solution of these equations are simply:

(4.28)\[\begin{split}\begin{bmatrix}
 L \\
 \delta^2 a_0 \\
 \delta^4 a_1
\end{bmatrix} = \frac{1}{45}
\begin{bmatrix}
 1 & -20 & 64 \\
 -20 & 340 & -320 \\
 64 & -320 & 256
\end{bmatrix}
\begin{bmatrix}
 \phi(\delta) \\
 \phi(\delta/2) \\
 \phi(\delta/4)
\end{bmatrix}\end{split}\]

The first row of (4.28) gives the coefficients for Richardson extrapolation scheme.

4.9. Uncertainty estimates for Derivative

We can view the Richardson extrapolation step as a polynomial curve fit in the step size parameter \(\delta\). Our desired extrapolated value is seen as simply the constant term coefficient in that polynomial model. Remember though, this polynomial model (see (4.10) and (4.11)) has only a few terms in it with known non-zero coefficients. That is, we will expect a constant term \(a_0\), a term of the form \(a_1 \delta^4\), and a third term \(a_2 \delta^6\).

A neat trick to compute the statistical uncertainty in the estimate of our desired derivative is to use statistical methodology for that error estimate. While I do appreciate that there is nothing truly statistical or stochastic in this estimate, the approach still works nicely, providing a very reasonable estimate in practice. A three term Richardson-like extrapolant, then evaluated at four distinct values for \(\delta\), will yield an estimate of the standard error of the constant term, with one spare degree of freedom. The uncertainty is then derived by multiplying that standard error by the appropriate percentile from the Students-t distribution.

>>> import scipy.stats as ss
>>> allclose(ss.t.cdf(12.7062047361747, 1), 0.975)
True

This critical level will yield a two-sided confidence interval of 95 percent.

These error estimates are also of value in a different sense. Since they are efficiently generated at all the different scales, the particular spacing which yields the minimum predicted error is chosen as the best derivative estimate. This has been shown to work consistently well. A spacing too large tends to have large errors of approximation due to the finite difference schemes used. But a too small spacing is bad also, in that we see a significant amplification of least significant fit errors in the approximation. A middle value generally seems to yield quite good results. For example, Derivative will estimate the derivative of \(e^x\) automatically. As we see, the final overall spacing used was 0.0078125.

>>> import numdifftools as nd
>>> from numpy import exp, allclose
>>> f = nd.Derivative(exp, full_output=True)
>>> val, info = f(1)
>>> allclose(val, 2.71828183)
True
>>> allclose(info.error_estimate, 6.927791673660977e-14)
True
>>> allclose(info.final_step, 0.0078125)
True

However, if we force the step size to be artificially large, then approximation error takes over.

>>> f = nd.Derivative(exp, step=1, full_output=True)
>>> val, info = f(1)
>>> allclose(val, 3.19452805)
True
>>> allclose(val-exp(1), 0.47624622)
True
>>> allclose(info.final_step, 1)
True

And if the step size is forced to be too small, then we see noise dominate the problem.

>>> f = nd.Derivative(exp, step=1e-10, full_output=True)
>>> val, info = f(1)
>>> allclose(val, 2.71828093)
True
>>> allclose(val - exp(1), -8.97648138e-07)
True
>>> allclose(info.final_step, 1.0000000e-10)
True

Numdifftools, like Goldilocks in the fairy tale bearing her name, stays comfortably in the middle ground.

Footnotes

	1

	We would normally write these additional terms using O() notation,
where all that matters is that the error term is \(O(\delta)\) or
perhaps \(O(\delta^2)\), but explicit understanding of these
error terms will be useful in the Richardson extrapolation step later
on.

	2

	An even function is one which expresses an even symmetry around a
given point. An even symmetry has the property that
\(f(x) = f(-x)\). Likewise, an odd function expresses an odd
symmetry, wherein \(f(x) = -f(-x)\).

	3

	For practical purposes the maximum order of the derivative is between 4 and 10
depending on the function to differentiate and also the method used
in the approximation.

5. Reference

Technical reference material that details functions,
modules, and objects included in numdifftools, describing
what they are and what they do.

.

	5.1. Numdifftools summary
	5.1.1. numdifftools.core module

	5.1.2. Step generators

	5.1.3. numdifftools.extrapolation module

	5.1.4. numdifftools.limits module

	5.1.5. numdifftools.multicomplex module

	5.1.6. numdifftools.nd_algopy module

	5.1.7. numdifftools.nd_scipy module

	5.1.8. numdifftools.nd_statsmodels module

	5.2. Numdifftools package details
	5.2.1. numdifftools.tests package

	5.2.2. numdifftools.core module

	5.2.3. numdifftools.extrapolation module

	5.2.4. numdifftools.finite_difference module

	5.2.5. numdifftools.fornberg module

	5.2.6. numdifftools.limits module

	5.2.7. numdifftools.multicomplex module

	5.2.8. numdifftools.nd_algopy module

	5.2.9. numdifftools.nd_scipy module

	5.2.10. numdifftools.nd_statsmodels module

	5.2.11. numdifftools.step_generators module

5.1. Numdifftools summary

5.1.1. numdifftools.core module

	Derivative(fun[, step, method, order, n])

	Calculate n-th derivative with finite difference approximation

	Gradient(fun[, step, method, order, n])

	Calculate Gradient with finite difference approximation

	Jacobian(fun[, step, method, order, n])

	Calculate Jacobian with finite difference approximation

	Hessdiag(f[, step, method, order])

	Calculate Hessian diagonal with finite difference approximation

	Hessian(f[, step, method, order])

	Calculate Hessian with finite difference approximation

	directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

5.1.2. Step generators

	BasicMaxStepGenerator(base_step, step_ratio, ...)

	Generates a sequence of steps of decreasing magnitude

	BasicMinStepGenerator(base_step, step_ratio, ...)

	Generates a sequence of steps of decreasing magnitude

	MinStepGenerator([base_step, step_ratio, ...])

	Generates a sequence of steps

	MaxStepGenerator([base_step, step_ratio, ...])

	Generates a sequence of steps

5.1.3. numdifftools.extrapolation module

	convolve(sequence, rule, **kwds)

	Wrapper around scipy.ndimage.convolve1d that allows complex input.

	Dea([limexp])

	Extrapolate a slowly convergent sequence using repeated Shanks transformations.

	dea3(v_0, v_1, v_2[, symmetric])

	Extrapolate a slowly convergent sequence using Shanks transformations.

	Richardson([step_ratio, step, order, num_terms])

	Extrapolates a sequence with Richardsons method

5.1.4. numdifftools.limits module

	CStepGenerator([base_step, step_ratio, ...])

	Generates a sequence of steps

	Limit(fun[, step, method, order, full_output])

	Compute limit of a function at a given point

	Residue(f[, step, method, order, ...])

	Compute residue of a function at a given point

5.1.5. numdifftools.multicomplex module

	Bicomplex(z1, z2)

	Creates an instance of a Bicomplex object.

5.1.6. numdifftools.nd_algopy module

	Derivative(fun[, n, method, full_output])

	Calculate n-th derivative with Algorithmic Differentiation method

	Gradient(fun[, n, method, full_output])

	Calculate Gradient with Algorithmic Differentiation method

	Jacobian(fun[, n, method, full_output])

	Calculate Jacobian with Algorithmic Differentiation method

	Hessdiag(f[, method, full_output])

	Calculate Hessian diagonal with Algorithmic Differentiation method

	Hessian(f[, method, full_output])

	Calculate Hessian with Algorithmic Differentiation method

	directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

5.1.7. numdifftools.nd_scipy module

	Gradient(fun[, step, method, order, bounds, ...])

	Calculate Gradient with finite difference approximation

	Jacobian(fun[, step, method, order, bounds, ...])

	Calculate Jacobian with finite difference approximation

5.1.8. numdifftools.nd_statsmodels module

	Hessian(fun[, step, method, order])

	Calculate Hessian with finite difference approximation

	Jacobian(fun[, step, method, order])

	Calculate Jacobian with finite difference approximation

5.1.1.1. numdifftools.core.Derivative

	
class Derivative(fun, step=None, method='central', order=2, n=1, **options)

	Calculate n-th derivative with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	nint, optional
	Order of the derivative.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	derndarray
	array of derivatives

See also

	Gradient
	

	Hessian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

1’st derivative of exp(x), at x == 1

>>> fd = nd.Derivative(np.exp)
>>> np.allclose(fd(1), 2.71828183)
True

>>> d2 = fd([1, 2])
>>> np.allclose(d2, [2.71828183, 7.3890561])
True

>>> def f(x):
... return x**3 + x**2

>>> df = nd.Derivative(f)
>>> np.allclose(df(1), 5)
True
>>> ddf = nd.Derivative(f, n=2)
>>> np.allclose(ddf(1), 8)
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
__init__(fun, step=None, method='central', order=2, n=1, **options)

	

Methods

	__init__(fun[, step, method, order, n])

	

	set_richardson_rule(step_ratio[, num_terms])

	Set Richardson exptrapolation options

Attributes

	method

	Defines the method used in the finite difference approximation.

	method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	n

	Order of the derivative.

	order

	Defines the order of the error term in the Taylor approximation used.

	step

	The step spacing(s) used in the approximation

5.1.1.2. numdifftools.core.Gradient

	
class Gradient(fun, step=None, method='central', order=2, n=1, **options)

	Calculate Gradient with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	gradarray
	gradient

See also

	Derivative, Hessian, Jacobian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

If x0 is an n x m array, then fun is assumed to be a function of n * m
variables.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> np.allclose(dfun([1,2,3]), [2., 4., 6.])
True

At [x,y] = [1,1], compute the numerical gradient
of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> x, y = 1, 1
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)
>>> dz_dx, dz_dy = dz([x, y])
>>> np.allclose([dz_dx, dz_dy],
... [3.7182818284590686, 1.7182818284590162])
True

At the global minimizer (1,1) of the Rosenbrock function,
compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> grad_rosen = nd.Gradient(rosen)
>>> df_dx, df_dy = grad_rosen([x, y])
>>> np.allclose([df_dx, df_dy], [0, 0])
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
__init__(fun, step=None, method='central', order=2, n=1, **options)

	

Methods

	__init__(fun[, step, method, order, n])

	

	set_richardson_rule(step_ratio[, num_terms])

	Set Richardson exptrapolation options

Attributes

	method

	Defines the method used in the finite difference approximation.

	method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	n

	Order of the derivative.

	order

	Defines the order of the error term in the Taylor approximation used.

	step

	The step spacing(s) used in the approximation

5.1.1.3. numdifftools.core.Jacobian

	
class Jacobian(fun, step=None, method='central', order=2, n=1, **options)

	Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	jacobarray
	Jacobian

See also

	Derivative, Hessian, Gradient
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

If fun returns a 1d array, it returns a Jacobian. If a 2d array is returned
by fun (e.g., with a value for each observation), it returns a 3d array
with the Jacobian of each observation with shape xk x nobs x xk. I.e.,
the Jacobian of the first observation would be [:, 0, :]

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True

>>> jfun = nd.Jacobian(fun)
>>> val = jfun([1, 2, 0.75])
>>> np.allclose(val, np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> jfun2 = nd.Jacobian(fun2)
>>> np.allclose(jfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))
>>> jfun3 = nd.Jacobian(fun3)

>>> np.allclose(jfun3([1., 2., 3.]), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True
>>> np.allclose(jfun3([4., 5., 6.]), [[[180.], [144.], [240.]], [[30.], [24.], [20.]]])
True
>>> np.allclose(jfun3(np.array([[1.,2.,3.]]).T), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
__init__(fun, step=None, method='central', order=2, n=1, **options)

	

Methods

	__init__(fun[, step, method, order, n])

	

	set_richardson_rule(step_ratio[, num_terms])

	Set Richardson exptrapolation options

Attributes

	method

	Defines the method used in the finite difference approximation.

	method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	n

	Order of the derivative.

	order

	Defines the order of the error term in the Taylor approximation used.

	step

	The step spacing(s) used in the approximation

5.1.1.4. numdifftools.core.Hessdiag

	
class Hessdiag(f, step=None, method='central', order=2, **options)

	Calculate Hessian diagonal with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximationorder : int, optional
defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	hessdiagarray
	hessian diagonal

See also

	Derivative, Hessian, Jacobian, Gradient
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> fun = lambda x : x[0] + x[1]**2 + x[2]**3
>>> Hfun = nd.Hessdiag(fun, full_output=True)
>>> hd, info = Hfun([1,2,3])
>>> np.allclose(hd, [0., 2., 18.])
True

>>> np.all(info.error_estimate < 1e-11)
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
__init__(f, step=None, method='central', order=2, **options)

	

Methods

	__init__(f[, step, method, order])

	

	set_richardson_rule(step_ratio[, num_terms])

	Set Richardson exptrapolation options

Attributes

	method

	Defines the method used in the finite difference approximation.

	method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	n

	Order of the derivative.

	order

	Defines the order of the error term in the Taylor approximation used.

	step

	The step spacing(s) used in the approximation

5.1.1.5. numdifftools.core.Hessian

	
class Hessian(f, step=None, method='central', order=None, **options)

	Calculate Hessian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	hessndarray
	array of partial second derivatives, Hessian

See also

	Derivative, Hessian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Computes the Hessian according to method as:
‘forward’ (4.7), ‘central’ (4.9) and ‘complex’ (4.10):

(5.1)\[\quad ((f(x + d_j e_j + d_k e_k) + f(x) - f(x + d_j e_j) - f(x + d_k e_k))) / (d_j d_k)\]

(5.2)\[\quad ((f(x + d_j e_j + d_k e_k) - f(x + d_j e_j - d_k e_k)) -
 (f(x - d_j e_j + d_k e_k) - f(x - d_j e_j - d_k e_k)) /
 (4 d_j d_k)\]

(5.3)\[imag(f(x + i d_j e_j + d_k e_k) - f(x + i d_j e_j - d_k e_k)) /
 (2 d_j d_k)\]

where \(e_j\) is a vector with element \(j\) is one and the rest
are zero and \(d_j\) is a scalar spacing \(steps_j\).

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)
>>> h = Hfun([1, 1])
>>> h
array([[842., -420.],
 [-420., 210.]])

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nd.Hessian(fun)
>>> h2 = Hfun2([0, 0])
>>> h2
array([[-1., 1.],
 [1., -1.]])

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
__init__(f, step=None, method='central', order=None, **options)

	

Methods

	__init__(f[, step, method, order])

	

	set_richardson_rule(step_ratio[, num_terms])

	Set Richardson exptrapolation options

Attributes

	method

	Defines the method used in the finite difference approximation.

	method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	n

	Order of the derivative.

	order

	Defines the order of the error term in the Taylor approximation used.

	step

	The step spacing(s) used in the approximation

5.1.1.6. numdifftools.core.directionaldiff

	
directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

	Parameters

	
	f: function
	analytical function to differentiate.

	x0: array
	vector location at which to differentiate ‘f’. If x0 is an nXm array,
then ‘f’ is assumed to be a function of n*m variables.

	vec: array
	vector defining the line along which to take the derivative. It should
be the same size as x0, but need not be a vector of unit length.

	**options:
	optional arguments to pass on to Derivative.

	Returns

	
	dder: scalar
	estimate of the first derivative of ‘f’ in the specified direction.

See also

	Derivative
	

	Gradient
	

Examples

At the global minimizer (1,1) of the Rosenbrock function,
compute the directional derivative in the direction [1 2]

>>> import numpy as np
>>> import numdifftools as nd
>>> vec = np.r_[1, 2]
>>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> dd, info = nd.directionaldiff(rosen, [1, 1], vec, full_output=True)
>>> np.allclose(dd, 0)
True
>>> np.abs(info.error_estimate)<1e-14
True

5.1.2.1. numdifftools.step_generators.BasicMaxStepGenerator

	
class BasicMaxStepGenerator(base_step, step_ratio, num_steps, offset=0)

	Generates a sequence of steps of decreasing magnitude

	where
	steps = base_step * step_ratio ** (-i + offset)

for i=0, 1,.., num_steps-1.

	Parameters

	
	base_stepfloat, array-like.
	Defines the start step, i.e., maximum step

	step_ratioreal scalar.
	Ratio between sequential steps generated. Note: Ratio > 1

	num_stepsscalar integer.
	defines number of steps generated.

	offsetreal scalar, optional, default 0
	offset to the base step

Examples

>>> from numdifftools.step_generators import BasicMaxStepGenerator
>>> step_gen = BasicMaxStepGenerator(base_step=2.0, step_ratio=2,
... num_steps=4)
>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

	
__init__(base_step, step_ratio, num_steps, offset=0)

	

Methods

	__init__(base_step, step_ratio, num_steps[, ...])

	

5.1.2.2. numdifftools.step_generators.BasicMinStepGenerator

	
class BasicMinStepGenerator(base_step, step_ratio, num_steps, offset=0)

	Generates a sequence of steps of decreasing magnitude

	where
	steps = base_step * step_ratio ** (i + offset), i=num_steps-1,… 1, 0.

	Parameters

	
	base_stepfloat, array-like.
	Defines the end step, i.e., minimum step

	step_ratioreal scalar.
	Ratio between sequential steps generated. Note: Ratio > 1

	num_stepsscalar integer.
	defines number of steps generated.

	offsetreal scalar, optional, default 0
	offset to the base step

Examples

>>> from numdifftools.step_generators import BasicMinStepGenerator
>>> step_gen = BasicMinStepGenerator(base_step=0.25, step_ratio=2,
... num_steps=4)
>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

	
__init__(base_step, step_ratio, num_steps, offset=0)

	

Methods

	__init__(base_step, step_ratio, num_steps[, ...])

	

5.1.2.3. numdifftools.step_generators.MinStepGenerator

	
class MinStepGenerator(base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0, num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)

	Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (i + offset)

for i = num_steps-1,… 1, 0.

	Parameters

	
	base_stepfloat, array-like, optional
	Defines the minimum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__ method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, optional
	scale used in base step. If not None it will override the default
computed with the default_scale function.

	
__init__(base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0, num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)

	

Methods

	__init__([base_step, step_ratio, num_steps, ...])

	

	step_generator_function(x[, method, n, order])

	Step generator function

Attributes

	base_step

	Base step defines the minimum or maximum step when offset==0.

	min_num_steps

	Minimum number of steps required given the differentiation method and order.

	num_steps

	Defines number of steps generated

	scale

	Scale used in base step.

	step_nom

	Nominal step

	step_ratio

	Ratio between sequential steps generated

5.1.2.4. numdifftools.step_generators.MaxStepGenerator

	
class MaxStepGenerator(base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0, num_extrap=9, use_exact_steps=False, check_num_steps=True, scale=500)

	Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (-i + offset)

for i = 0, 1, …, num_steps-1.

	Parameters

	
	base_stepfloat, array-like, default 2.0
	Defines the maximum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2 or 1.6
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__
method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, default 500
	scale used in base step.

	
__init__(base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0, num_extrap=9, use_exact_steps=False, check_num_steps=True, scale=500)

	

Methods

	__init__([base_step, step_ratio, num_steps, ...])

	

	step_generator_function(x[, method, n, order])

	Step generator function

Attributes

	base_step

	Base step defines the minimum or maximum step when offset==0.

	min_num_steps

	Minimum number of steps required given the differentiation method and order.

	num_steps

	Defines number of steps generated

	scale

	Scale used in base step.

	step_nom

	Nominal step

	step_ratio

	Ratio between sequential steps generated

5.1.3.1. numdifftools.extrapolation.convolve

	
convolve(sequence, rule, **kwds)

	Wrapper around scipy.ndimage.convolve1d that allows complex input.

5.1.3.2. numdifftools.extrapolation.Dea

	
class Dea(limexp=50)

	Extrapolate a slowly convergent sequence using repeated Shanks transformations.

Notes

DEA attempts to extrapolate nonlinearly by Shanks transformations to a better
estimate of the sequence’s limiting value, thus improving the rate of convergence.
The epsilon algorithm of P. Wynn, see [1]_, is used to perform the
non-linear Shanks transformations. The routine is a translation of the
DQELG function found in the QUADPACK fortran library, see [2]_ and [3]_.

List of major variables:

	LIMEXP: scalar integer
	The maximum number of elements the epsilon table data can contain.
The epsilon table is stored in the first (LIMEXP+2) entries of EPSTAB.

	EPSTAB: real vector or size (LIMEXP+2+3)
	
The first LIMEXP+2 elements contains the two lower diagonals of the triangular
epsilon table. The elements are numbered starting at the right-hand corner of the

triangle.

	E0,E1,E2,E3: real scalars
	The 4 elements on which the computation of a new element in the epsilon table is based.

	NRES: scalar integer
	Number of extrapolation results actually generated by the epsilon algorithm in prior
calls to the routine.

	NEWELM: scalar integer
	Number of elements to be computed in the new diagonal of the epsilon table.
The condensed epsilon table is computed. Only those elements needed for the
computation of the next diagonal are preserved.

	RES: real scalar
	New element in the new diagonal of the epsilon table.

	ERROR: real scalar
	An estimate of the absolute error of RES. The routine decides whether RESULT=RES or
RESULT=SVALUE by comparing ERROR with abserr from the previous call.

	RES3LA: real vector of size 3
	Contains at most the last 3 results.

	
__init__(limexp=50)

	

Methods

	__init__([limexp])

	

Attributes

	limexp

	Maximum number of elements the epsilon table data.

5.1.3.3. numdifftools.extrapolation.dea3

	
dea3(v_0, v_1, v_2, symmetric=False)

	Extrapolate a slowly convergent sequence using Shanks transformations.

	Parameters

	
	v_0, v_1, v_2array-like
	3 values of a convergent sequence to extrapolate

	Returns

	
	resultarray-like
	extrapolated value

	abserrarray-like
	absolute error estimate

See also

	Dea
	

Notes

DEA3 attempts to extrapolate nonlinearly by Shanks transformations to a
better estimate of the sequence’s limiting value based on only three values.
The epsilon algorithm of P. Wynn, see [Rc8bfc08f7c28-1], is used to perform the
non-linear Shanks transformations. The routine is a vectorized translation
of the DQELG function found in the QUADPACK fortran library for LIMEXP=3,
see [Rc8bfc08f7c28-2] and [Rc8bfc08f7c28-3].

References

	1

	Wynn, P. (1956)
“On a Device for Computing the em(Sn) Transformation”,
Mathematical Tables and Other Aids to Computation, 10, 91-96.

	2

	R. Piessens, E. De Doncker-Kapenga and C. W. Uberhuber (1983),
“QUADPACK: a subroutine package for automatic integration”,
Springer, ISBN: 3-540-12553-1, 1983.

	3

	http://www.netlib.org/quadpack/

	4

	https://mathworld.wolfram.com/WynnsEpsilonMethod.html

Examples

integrate sin(x) from 0 to pi/2

>>> import numpy as np
>>> import numdifftools as nd
>>> Ei= np.zeros(3)
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(3):
... x = linfun(k)
... Ei[k] = np.trapz(np.sin(x),x)
>>> [En, err] = nd.dea3(Ei[0], Ei[1], Ei[2])
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.allclose(En, 1)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True

5.1.3.4. numdifftools.extrapolation.Richardson

	
class Richardson(step_ratio=2.0, step=1, order=1, num_terms=2)

	Extrapolates a sequence with Richardsons method

	Parameters

	
	step_ratio: real scalar
	Ratio between sequential steps, h, generated.

	step: scalar integer
	Defines the step between exponents in the error polynomial,
i.e., step = k_1 - k_0 = k_2 - k_1 = … = k_{i+1} - k_i

	order: scalar integer
	Leading order of truncation error.

	num_terms: scalar integer
	Number of terms used in the polynomial fit.

Notes

Suppose f(h) is an approximation of L (exact value) that depends on a positive
step size h described with a sequence of the form

L = f(h) + a0 * h^k_0 + a1 * h^k_1+ a2 * h^k_2 + …

where the ai are unknown constants and the k_i are known constants such that h^k_i > h^(k_i+1).

If we evaluate the right hand side for different stepsizes h
we can fit a polynomial to that sequence of approximations.
This is exactly what this class does.
Here k_0 is the leading order step size behavior of truncation error as L = f(h)+O(h^k_0)
(f(h) -> L as h -> 0, but f(0) != L) and k_i = order + step * i .

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> n = 3
>>> Ei = np.zeros((n,1))
>>> h = np.zeros((n,1))
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(n):
... x = linfun(k)
... h[k] = x[1]
... Ei[k] = np.trapz(np.sin(x),x)
>>> En, err, step = nd.Richardson(step=1, order=1)(Ei, h)
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True
>>> np.allclose(En, 1)
True

	
__init__(step_ratio=2.0, step=1, order=1, num_terms=2)

	

Methods

	__init__([step_ratio, step, order, num_terms])

	

	extrapolate(sequence, steps)

	Extrapolate sequence

	rule([sequence_length])

	Returns extrapolation rule.

5.1.4.1. numdifftools.limits.CStepGenerator

	
class CStepGenerator(base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0, scale=1.2, **options)

	Generates a sequence of steps

	where
	steps = base_step * step_nom * (exp(1j*dtheta) * step_ratio) ** (i + offset)

for i = 0, 1, …, num_steps-1

	Parameters

	
	base_stepfloat, array-like, default None
	Defines the minimum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 4.0
	Ratio between sequential steps generated.

	num_stepsscalar integer, optional,
	defines number of steps generated.
If None the value is 2 * int(round(16.0/log(abs(step_ratio)))) + 1

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__ method.

	offsetreal scalar, optional, default 0
	offset to the base step

	use_exact_stepsboolean, default True.
	If true make sure exact steps are generated.

	scalereal scalar, default 1.2
	scale used in base step.

	path‘radial’ or ‘spiral’
	Specifies the type of path to take the limit along. Default ‘radial’.

	dtheta: real scalar, default pi/8
	If the path is ‘spiral’ it will follow an exponential spiral into the
limit, with angular steps at dtheta radians.

	
__init__(base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0, scale=1.2, **options)

	

Methods

	__init__([base_step, step_ratio, num_steps, ...])

	

	step_generator_function(x[, method, n, order])

	Step generator function

Attributes

	base_step

	Base step defines the minimum or maximum step when offset==0.

	dtheta

	Angular steps in radians used for the exponential spiral path.

	min_num_steps

	Minimum number of steps required given the differentiation method and order.

	num_steps

	The number of steps generated

	scale

	Scale used in base step.

	step_nom

	Nominal step

	step_ratio

	Ratio between sequential steps generated.

5.1.4.2. numdifftools.limits.Limit

	
class Limit(fun, step=None, method='above', order=4, full_output=False, **options)

	Compute limit of a function at a given point

	Parameters

	
	funcallable
	function fun(z, *args, **kwds) to compute the limit for z->z0.
The function, fun, is assumed to return a result of the same shape and
size as its input, z.

	step: float, complex, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is CStepGenerator(base_step=step, **options)

	method{‘above’, ‘below’}
	defines if the limit is taken from above or below

	order: positive scalar integer, optional.
	defines the order of approximation used to find the specified limit.
The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise.

	full_output: bool
	If true return additional info.

	options:
	options to pass on to CStepGenerator

	Returns

	
	limit_fz: array like
	estimated limit of f(z) as z –> z0

	info:
	Only given if full_output is True and contains the following:

	error estimate: ndarray
	95 % uncertainty estimate around the limit, such that
abs(limit_fz - lim z->z0 f(z)) < error_estimate

	final_step: ndarray
	final step used in approximation

Notes

Limit computes the limit of a given function at a specified
point, z0. When the function is evaluable at the point in question,
this is a simple task. But when the function cannot be evaluated
at that location due to a singularity, you may need a tool to
compute the limit. Limit does this, as well as produce an
uncertainty estimate in the final result.

The methods used by Limit are Richardson extrapolation in a combination
with Wynn’s epsilon algorithm which also yield an error estimate.
The user can specify the method order, as well as the path into
z0. z0 may be real or complex. Limit uses a proportionally cascaded
series of function evaluations, moving away from your point of evaluation
along a path along the real line (or in the complex plane for complex z0 or
step.) The step_ratio is the ratio used between sequential steps. The
sign of step allows you to specify a limit from above or below. Negative
values of step will cause the limit to be taken approaching z0 from below.

A smaller step_ratio means that Limit will take more function
evaluations to evaluate the limit, but the result will potentially be less
accurate. The step_ratio MUST be a scalar larger than 1. A value in the
range [2,100] is recommended. 4 seems a good compromise.

>>> import numpy as np
>>> from numdifftools.limits import Limit
>>> def f(x): return np.sin(x)/x
>>> lim_f0, err = Limit(f, full_output=True)(0)
>>> np.allclose(lim_f0, 1)
True
>>> np.allclose(err.error_estimate, 1.77249444610966e-15)
True

Compute the derivative of cos(x) at x == pi/2. It should
be -1. The limit will be taken as a function of the
differential parameter, dx.

>>> x0 = np.pi/2;
>>> def g(x): return (np.cos(x0+x)-np.cos(x0))/x
>>> lim_g0, err = Limit(g, full_output=True)(0)
>>> np.allclose(lim_g0, -1)
True
>>> err.error_estimate < 1e-14
True

Compute the residue at a first order pole at z = 0
The function 1./(1-exp(2*z)) has a pole at z == 0.
The residue is given by the limit of z*fun(z) as z –> 0.
Here, that residue should be -0.5.

>>> def h(z): return -z/(np.expm1(2*z))
>>> lim_h0, err = Limit(h, full_output=True)(0)
>>> np.allclose(lim_h0, -0.5)
True
>>> err.error_estimate < 1e-14
True

Compute the residue of function 1./sin(z)**2 at z = 0.
This pole is of second order thus the residue is given by the limit of
z**2*fun(z) as z –> 0.

>>> def g(z): return z**2/(np.sin(z)**2)
>>> lim_gpi, err = Limit(g, full_output=True)(0)
>>> np.allclose(lim_gpi, 1)
True
>>> err.error_estimate < 1e-14
True

A more difficult limit is one where there is significant
subtractive cancellation at the limit point. In the following
example, the cancellation is second order. The true limit
should be 0.5.

>>> def k(x): return (x*np.exp(x)-np.expm1(x))/x**2
>>> lim_k0,err = Limit(k, full_output=True)(0)
>>> np.allclose(lim_k0, 0.5)
True
>>> err.error_estimate < 1.0e-8
True

>>> def h(x): return (x-np.sin(x))/x**3
>>> lim_h0, err = Limit(h, full_output=True)(0)
>>> np.allclose(lim_h0, 1./6)
True
>>> err.error_estimate < 1e-8
True

	
__init__(fun, step=None, method='above', order=4, full_output=False, **options)

	

Methods

	__init__(fun[, step, method, order, full_output])

	

	limit(x, *args, **kwds)

	Return lim f(z) as z-> x

Attributes

	step

	The step spacing(s) used in the approximation

5.1.4.3. numdifftools.limits.Residue

	
class Residue(f, step=None, method='above', order=None, pole_order=1, full_output=False, **options)

	Compute residue of a function at a given point

	Parameters

	
	funcallable
	function fun(z, *args, **kwds) to compute the Residue at z=z0.
The function, fun, is assumed to return a result of the same shape and
size as its input, z.

	step: float, complex, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is CStepGenerator(base_step=step, **options)

	method{‘above’, ‘below’}
	defines if the limit is taken from above or below

	order: positive scalar integer, optional.
	defines the order of approximation used to find the specified limit.
The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise.

	pole_orderscalar integer
	specifies the order of the pole at z0.

	full_output: bool
	If true return additional info.

	options:
	options to pass on to CStepGenerator

	Returns

	
	res_fz: array like
	estimated residue, i.e., limit of f(z)*(z-z0)**pole_order as z –> z0
When the residue is estimated as approximately zero,

the wrong order pole may have been specified.

	info: namedtuple,
	Only given if full_output is True and contains the following:

	error estimate: ndarray
	95 % uncertainty estimate around the residue, such that
abs(res_fz - lim z->z0 f(z)*(z-z0)**pole_order) < error_estimate
Large uncertainties here suggest that the wrong order
pole was specified for f(z0).

	final_step: ndarray
	final step used in approximation

Notes

Residue computes the residue of a given function at a simple first order
pole, or at a second order pole.

The methods used by residue are polynomial extrapolants, which also yield
an error estimate. The user can specify the method order, as well as the
order of the pole.

	z0 - scalar point at which to compute the residue. z0 may be
	real or complex.

See the document DERIVEST.pdf for more explanation of the
algorithms behind the parameters of Residue. In most cases,
the user should never need to specify anything other than possibly
the PoleOrder.

Examples

A first order pole at z = 0

>>> import numpy as np
>>> from numdifftools.limits import Residue
>>> def f(z): return -1./(np.expm1(2*z))
>>> res_f, info = Residue(f, full_output=True)(0)
>>> np.allclose(res_f, -0.5)
True
>>> info.error_estimate < 1e-14
True

A second order pole around z = 0 and z = pi
>>> def h(z): return 1.0/np.sin(z)**2
>>> res_h, info = Residue(h, full_output=True, pole_order=2)([0, np.pi])
>>> np.allclose(res_h, 1)
True
>>> (info.error_estimate < 1e-10).all()
True

	
__init__(f, step=None, method='above', order=None, pole_order=1, full_output=False, **options)

	

Methods

	__init__(f[, step, method, order, ...])

	

	limit(x, *args, **kwds)

	Return lim f(z) as z-> x

Attributes

	step

	The step spacing(s) used in the approximation

5.1.5.1. numdifftools.multicomplex.Bicomplex

	
class Bicomplex(z1, z2)

	Creates an instance of a Bicomplex object.
zeta = z1 + j*z2, where z1 and z2 are complex numbers.

	
__init__(z1, z2, dtype=<class 'numpy.complex128'>)

	

Methods

	__init__(z1, z2[, dtype])

	

	arccos()

	

	arccosh()

	

	arcsin()

	

	arcsinh()

	

	arctan()

	

	arctanh()

	

	arg_c()

	

	arg_c1p()

	

	asarray(other)

	

	conjugate()

	

	cos()

	

	cosh()

	

	cot()

	

	coth()

	

	csc()

	

	csch()

	

	dot(other)

	

	exp()

	

	exp2()

	

	expm1()

	

	flat(index)

	

	log()

	

	log10()

	

	log1p()

	

	log2()

	

	logaddexp(other)

	

	logaddexp2(other)

	

	mat2bicomp(arr)

	

	mod_c()

	Complex modulus

	norm()

	

	sec()

	

	sech()

	

	sin()

	

	sinh()

	

	sqrt()

	

	tan()

	

	tanh()

	

Attributes

	z1

	

	z2

	

	imag

	

	imag1

	

	imag12

	

	imag2

	

	real

	

	shape

	

	size

	

5.1.6.1. numdifftools.nd_algopy.Derivative

	
class Derivative(fun, n=1, method='forward', full_output=False)

	Calculate n-th derivative with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	n: int, optional
	Order of the derivative.

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	der: ndarray
	array of derivatives

See also

	Gradient
	

	Hessdiag
	

	Hessian
	

	Jacobian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

1’st and 2’nd derivative of exp(x), at x == 1

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> fd = nda.Derivative(np.exp) # 1'st derivative
>>> np.allclose(fd(1), 2.718281828459045)
True
>>> fd5 = nda.Derivative(np.exp, n=5) # 5'th derivative
>>> np.allclose(fd5(1), 2.718281828459045)
True

1’st derivative of x^3+x^4, at x = [0,1]

>>> fun = lambda x: x**3 + x**4
>>> fd3 = nda.Derivative(fun)
>>> np.allclose(fd3([0,1]), [0., 7.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
__init__(fun, n=1, method='forward', full_output=False)

	

Methods

	__init__(fun[, n, method, full_output])

	

	computational_graph(x, *args, **kwds)

	

Attributes

	fun

	

5.1.6.2. numdifftools.nd_algopy.Gradient

	
class Gradient(fun, n=1, method='forward', full_output=False)

	Calculate Gradient with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	grad: array
	gradient

See also

	Derivative
	

	Jacobian
	

	Hessdiag
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> fun = lambda x: np.sum(x**2)
>>> df = nda.Gradient(fun, method='reverse')
>>> np.allclose(df([1,2,3]), [2., 4., 6.])
True

#At [x,y] = [1,1], compute the numerical gradient
#of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nda.Gradient(z)
>>> grad2 = dz([1, 1])
>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

#At the global minimizer (1,1) of the Rosenbrock function,
#compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nda.Gradient(rosen)
>>> grad3 = rd([1,1])
>>> np.allclose(grad3, [0., 0.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
__init__(fun, n=1, method='forward', full_output=False)

	

Methods

	__init__(fun[, n, method, full_output])

	

	computational_graph(x, *args, **kwds)

	

Attributes

	fun

	

5.1.6.3. numdifftools.nd_algopy.Jacobian

	
class Jacobian(fun, n=1, method='forward', full_output=False)

	Calculate Jacobian with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	jacob: array
	Jacobian

See also

	Derivative
	

	Gradient
	

	Hessdiag
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2

Jfun = nda.Jacobian(fun) # Todo: This does not work
Jfun([1,2,0.75]).T # should be numerically zero
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

>>> Jfun2 = nda.Jacobian(fun, method='reverse')
>>> res = Jfun2([1,2,0.75]).T # should be numerically zero
>>> np.allclose(res,
... [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
... [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
... [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
True

>>> f2 = lambda x : x[0]*x[1]*x[2]**2
>>> Jfun2 = nda.Jacobian(f2)
>>> np.allclose(Jfun2([1., 2., 3.]), [[18., 9., 12.]])
True

>>> Jfun21 = nda.Jacobian(f2, method='reverse')
>>> np.allclose(Jfun21([1., 2., 3.]), [[18., 9., 12.]])
True

>>> def fun3(x):
... n = int(np.prod(np.shape(x[0])))
... out = nda.algopy.zeros((2, n), dtype=x)
... out[0] = x[0]*x[1]*x[2]**2
... out[1] = x[0]*x[1]*x[2]
... return out
>>> Jfun3 = nda.Jacobian(fun3)

>>> np.allclose(Jfun3([1., 2., 3.]), [[[18., 9., 12.]], [[6., 3., 2.]]])
True
>>> np.allclose(Jfun3([4., 5., 6.]), [[[180., 144., 240.]],
... [[30., 24., 20.]]])
True
>>> np.allclose(Jfun3(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
... [[[18., 0., 9., 0., 12., 0.],
... [0., 180., 0., 144., 0., 240.]],
... [[6., 0., 3., 0., 2., 0.],
... [0., 30., 0., 24., 0., 20.]]])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
__init__(fun, n=1, method='forward', full_output=False)

	

Methods

	__init__(fun[, n, method, full_output])

	

	computational_graph(x, *args, **kwds)

	

Attributes

	fun

	

5.1.6.4. numdifftools.nd_algopy.Hessdiag

	
class Hessdiag(f, method='forward', full_output=False)

	Calculate Hessian diagonal with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	hessdiagndarray
	Hessian diagonal array of partial second order derivatives.

See also

	Derivative
	

	Gradient
	

	Jacobian
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nda.Hessdiag(rosen)
>>> h = Hfun([1, 1]) # h =[842, 210]
>>> np.allclose(h, [842., 210.])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessdiag(fun)
>>> h2 = Hfun2([0, 0]) # h2 = [-1, -1]
>>> np.allclose(h2, [-1., -1.])
True

>>> Hfun3 = nda.Hessdiag(fun, method='reverse')
>>> h3 = Hfun3([0, 0]) # h2 = [-1, -1];
>>> np.allclose(h3, [-1., -1.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
__init__(f, method='forward', full_output=False)

	

Methods

	__init__(f[, method, full_output])

	

	computational_graph(x, *args, **kwds)

	

Attributes

	fun

	

5.1.6.5. numdifftools.nd_algopy.Hessian

	
class Hessian(f, method='forward', full_output=False)

	Calculate Hessian with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	hessndarray
	array of partial second derivatives, Hessian

See also

	Derivative
	

	Gradient
	

	Jacobian
	

	Hessdiag
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hf = nda.Hessian(rosen)
>>> h = Hf([1, 1]) # h =[842 -420; -420, 210];
>>> np.allclose(h, [[842., -420.],
... [-420., 210.]])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessian(fun)
>>> h2 = Hfun2([0, 0]) # h2 = [-1 1; 1 -1]
>>> np.allclose(h2, [[-1., 1.],
... [1., -1.]])
True

>>> Hfun3 = nda.Hessian(fun, method='reverse')
>>> h3 = Hfun3([0, 0]) # h2 = [-1, 1; 1, -1];
>>> np.allclose(h3, [[-1., 1.],
... [1., -1.]])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
__init__(f, method='forward', full_output=False)

	

Methods

	__init__(f[, method, full_output])

	

	computational_graph(x, *args, **kwds)

	

Attributes

	fun

	

5.1.6.6. numdifftools.nd_algopy.directionaldiff

	
directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

	Parameters

	
	fun: callable
	analytical function to differentiate.

	x0: array
	vector location at which to differentiate fun. If x0 is an nxm array,
then fun is assumed to be a function of n*m variables.

	vec: array
	vector defining the line along which to take the derivative. It should
be the same size as x0, but need not be a vector of unit length.

	**options:
	optional arguments to pass on to Derivative.

	Returns

	
	dder: scalar
	estimate of the first derivative of fun in the specified direction.

See also

	Derivative
	

	Gradient
	

Examples

At the global minimizer (1,1) of the Rosenbrock function,
compute the directional derivative in the direction [1 2]

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> vec = np.r_[1, 2]
>>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> dd = nda.directionaldiff(rosen, [1, 1], vec)
>>> np.allclose(dd, 0)
True

5.1.7.1. numdifftools.nd_scipy.Gradient

	
class Gradient(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	Calculate Gradient with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’}
	defines the method used in the approximation.

See also

	Hessian, Jacobian
	

Examples

>>> import numpy as np
>>> import numdifftools.nd_scipy as nd
>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> np.allclose(dfun([1,2,3]), [2., 4., 6.])
True

At [x,y] = [1,1], compute the numerical gradient
of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)
>>> grad2 = dz([1, 1])
>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

At the global minimizer (1,1) of the Rosenbrock function,
compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nd.Gradient(rosen)
>>> grad3 = rd([1,1])
>>> np.allclose(grad3,[0, 0], atol=1e-7)
True

	
__init__(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	

Methods

	__init__(fun[, step, method, order, bounds, ...])

	

5.1.7.2. numdifftools.nd_scipy.Jacobian

	
class Jacobian(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’}
	defines the method used in the approximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_scipy as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True
>>> dfun = nd.Jacobian(fun)
>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> dfun2 = nd.Jacobian(fun2)
>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))

TODO: The following does not work:
der3 = nd.Jacobian(fun3)([1., 2., 3.])
np.allclose(der3,
… [[18., 9., 12.], [6., 3., 2.]])
True
np.allclose(nd.Jacobian(fun3)([4., 5., 6.]),
… [[180., 144., 240.], [30., 24., 20.]])
True

np.allclose(nd.Jacobian(fun3)(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
… [[[18., 180.],
… [9., 144.],
… [12., 240.]],
… [[6., 30.],
… [3., 24.],
… [2., 20.]]])
True

	
__init__(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	

Methods

	__init__(fun[, step, method, order, bounds, ...])

	

5.1.8.1. numdifftools.nd_statsmodels.Hessian

	
class Hessian(fun, step=None, method='central', order=None)

	Calculate Hessian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS**(1/3) for method==`forward`, complex or central2
x * _EPS**(1/4) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’, ‘backward’}
	defines the method used in the approximation.

See also

	Jacobian, Gradient
	

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)
>>> h = Hfun([1, 1])
>>> np.allclose(h, [[842., -420.], [-420., 210.]])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nd.Hessian(fun)
>>> h2 = Hfun2([0, 0])
>>> np.allclose(h2, [[-1., 1.], [1., -1.]])
True

	
__init__(fun, step=None, method='central', order=None)

	

Methods

	__init__(fun[, step, method, order])

	

Attributes

	method

	

	n

	

	order

	

5.1.8.2. numdifftools.nd_statsmodels.Jacobian

	
class Jacobian(fun, step=None, method='central', order=None)

	Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’, ‘backward’}
	defines the method used in the approximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True
>>> dfun = nd.Jacobian(fun)
>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> dfun2 = nd.Jacobian(fun2)
>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))
>>> np.allclose(nd.Jacobian(fun3)([1., 2., 3.]), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True
>>> np.allclose(nd.Jacobian(fun3)([4., 5., 6.]),
... [[[180.], [144.], [240.]], [[30.], [24.], [20.]]])
True

>>> np.allclose(nd.Jacobian(fun3)(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
... [[[18., 180.],
... [9., 144.],
... [12., 240.]],
... [[6., 30.],
... [3., 24.],
... [2., 20.]]])
True

	
__init__(fun, step=None, method='central', order=None)

	

Methods

	__init__(fun[, step, method, order])

	

Attributes

	method

	

	n

	

	order

	

5.2. Numdifftools package details

	5.2.1. numdifftools.tests package
	5.2.1.1. numdifftools.tests.hamiltonian module
	ClassicalHamiltonian
	ClassicalHamiltonian.initialposition()

	ClassicalHamiltonian.normal_modes()

	ClassicalHamiltonian.potential()

	run_hamiltonian()

	5.2.1.2. numdifftools.tests.test_extrapolation module
	TestExtrapolation
	TestExtrapolation.setup_method()

	TestExtrapolation.test_dea3_on_trapz_sin()

	TestExtrapolation.test_dea_on_trapz_sin()

	TestExtrapolation.test_epsal()

	TestExtrapolation.test_richardson()

	TestRichardson
	TestRichardson.setup_method()

	TestRichardson.test_order_step_combinations()

	5.2.1.3. numdifftools.tests.test_fornberg module
	ExampleFunctions
	ExampleFunctions.fun0()

	ExampleFunctions.fun1()

	ExampleFunctions.fun10()

	ExampleFunctions.fun11()

	ExampleFunctions.fun12()

	ExampleFunctions.fun13()

	ExampleFunctions.fun14()

	ExampleFunctions.fun2()

	ExampleFunctions.fun3()

	ExampleFunctions.fun4()

	ExampleFunctions.fun5()

	ExampleFunctions.fun6()

	ExampleFunctions.fun7()

	ExampleFunctions.fun8()

	ExampleFunctions.fun9()

	test_all_weights()

	test_fd_derivative()

	test_high_order_derivative()

	test_low_order_derivative_on_example_functions()

	test_weights()

	5.2.1.4. numdifftools.tests.test_limits module
	TestCStepGenerator
	TestCStepGenerator.test_default_base_step()

	TestCStepGenerator.test_default_generator()

	TestCStepGenerator.test_fixed_base_step()

	TestLimit
	TestLimit.test_derivative_of_cos()

	TestLimit.test_difficult_limit()

	TestLimit.test_residue_1_div_1_minus_exp_x()

	TestLimit.test_sinx_div_x()

	TestResidue
	TestResidue.test_residue_1_div_1_minus_exp_x()

	TestResidue.test_residue_1_div_sin_x2()

	5.2.1.5. numdifftools.tests.test_multicomplex module
	TestBicomplex
	TestBicomplex.test_add()

	TestBicomplex.test_arccos()

	TestBicomplex.test_arcsin()

	TestBicomplex.test_arg_c()

	TestBicomplex.test_assign()

	TestBicomplex.test_conjugate()

	TestBicomplex.test_cos()

	TestBicomplex.test_der_abs()

	TestBicomplex.test_der_arccos()

	TestBicomplex.test_der_arccosh()

	TestBicomplex.test_der_arctan()

	TestBicomplex.test_der_cos()

	TestBicomplex.test_der_log()

	TestBicomplex.test_division()

	TestBicomplex.test_dot()

	TestBicomplex.test_eq()

	TestBicomplex.test_flat()

	TestBicomplex.test_ge()

	TestBicomplex.test_gt()

	TestBicomplex.test_init()

	TestBicomplex.test_le()

	TestBicomplex.test_lt()

	TestBicomplex.test_mod_c()

	TestBicomplex.test_multiplication()

	TestBicomplex.test_neg()

	TestBicomplex.test_norm()

	TestBicomplex.test_pow()

	TestBicomplex.test_rdivision()

	TestBicomplex.test_repr()

	TestBicomplex.test_rpow()

	TestBicomplex.test_rsub()

	TestBicomplex.test_shape()

	TestBicomplex.test_sub()

	TestBicomplex.test_subsref()

	TestDerivative
	TestDerivative.test_all_first_derivatives()

	TestDerivative.test_all_second_derivatives()

	5.2.1.6. numdifftools.tests.test_nd_algopy module
	TestDerivative
	TestDerivative.test_derivative_cube()

	TestDerivative.test_derivative_exp()

	TestDerivative.test_derivative_on_log()

	TestDerivative.test_derivative_on_sinh()

	TestDerivative.test_derivative_sin()

	TestDerivative.test_directional_diff()

	TestDerivative.test_fun_with_additional_parameters()

	TestDerivative.test_high_order_derivative_cos()

	TestGradient
	TestGradient.test_on_scalar_function()

	TestHessdiag
	TestHessdiag.test_forward()

	TestHessdiag.test_reverse()

	TestHessian
	TestHessian.test_hessian_cos_x_y__at_0_0()

	TestHessian.test_run_hamiltonian()

	TestJacobian
	TestJacobian.test_issue_25()

	TestJacobian.test_on_matrix_valued_function()

	TestJacobian.test_on_scalar_function()

	TestJacobian.test_on_vector_valued_function()

	TestJacobian.test_scalar_to_vector()

	5.2.1.7. numdifftools.tests.test_nd_scipy module
	TestGradient
	TestGradient.test_on_scalar_function()

	TestJacobian
	TestJacobian.test_issue_25()

	TestJacobian.test_on_matrix_valued_function()

	TestJacobian.test_on_scalar_function()

	TestJacobian.test_on_vector_valued_function()

	TestJacobian.test_scalar_to_vector()

	5.2.1.8. numdifftools.tests.test_numdifftools module
	TestDerivative
	TestDerivative.test_backward_derivative_on_sinh()

	TestDerivative.test_central_and_forward_derivative_on_log()

	TestDerivative.test_default_scale()

	TestDerivative.test_derivative_cube()

	TestDerivative.test_derivative_exp()

	TestDerivative.test_derivative_of_cos_x()

	TestDerivative.test_derivative_sin()

	TestDerivative.test_derivative_with_step_options()

	TestDerivative.test_directional_diff()

	TestDerivative.test_fun_with_additional_parameters()

	TestDerivative.test_high_order_derivative_cos()

	TestDerivative.test_infinite_functions()

	TestGradient
	TestGradient.test_directional_diff()

	TestGradient.test_gradient()

	TestGradient.test_gradient_fulloutput()

	TestGradient.test_issue_39()

	TestHessdiag
	TestHessdiag.test_complex()

	TestHessdiag.test_default_step()

	TestHessdiag.test_fixed_step()

	TestHessian
	TestHessian.test_complex_hessian_issue_35()

	TestHessian.test_hessian_cos_x_y_at_0_0()

	TestHessian.test_run_hamiltonian()

	TestJacobian
	TestJacobian.test_issue_25()

	TestJacobian.test_issue_27a()

	TestJacobian.test_issue_27b()

	TestJacobian.test_jacobian_fulloutput()

	TestJacobian.test_on_matrix_valued_function()

	TestJacobian.test_on_scalar_function()

	TestJacobian.test_on_vector_valued_function()

	TestJacobian.test_scalar_to_vector()

	TestRichardson
	TestRichardson.test_central_forward_backward()

	TestRichardson.test_complex()

	5.2.1.9. numdifftools.tests.test_scripts module
	test__find_default_scale_run_all_benchmarks()

	test_profile_numdifftools_main()

	test_profile_numdifftools_profile_hessian()

	test_run_gradient_and_hessian_benchmarks()

	5.2.1.10. numdifftools.tests.test_step_generators module
	test__min_step_generator_with_step_nom1()

	test_default_max_step_generator()

	test_max_step_generator_default_base_step()

	test_max_step_generator_with_base_step01()

	test_min_step_generator_default_base_step()

	test_min_step_generator_with_base_step01()

	test_min_step_generator_with_step_ratio4()

5.2.2. numdifftools.core module

numerical differentiation functions:

Derivative, Gradient, Jacobian, and Hessian

Author: Per A. Brodtkorb
Created: 01.08.2008
Copyright: (c) pab 2008
Licence: New BSD

	
class Derivative(fun, step=None, method='central', order=2, n=1, **options)

	Bases: _Limit

Calculate n-th derivative with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	nint, optional
	Order of the derivative.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	derndarray
	array of derivatives

See also

	Gradient
	

	Hessian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

1’st derivative of exp(x), at x == 1

>>> fd = nd.Derivative(np.exp)
>>> np.allclose(fd(1), 2.71828183)
True

>>> d2 = fd([1, 2])
>>> np.allclose(d2, [2.71828183, 7.3890561])
True

>>> def f(x):
... return x**3 + x**2

>>> df = nd.Derivative(f)
>>> np.allclose(df(1), 5)
True
>>> ddf = nd.Derivative(f, n=2)
>>> np.allclose(ddf(1), 8)
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
class info(f_value, error_estimate, final_step, index)

	Bases: tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
count(value, /)

	Return number of occurrences of value.

	
property error_estimate

	Alias for field number 1

	
property f_value

	Alias for field number 0

	
property final_step

	Alias for field number 2

	
property index

	Alias for field number 3

	
property method

	Defines the method used in the finite difference approximation.

	
property method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	
property n

	Order of the derivative.

	
property order

	Defines the order of the error term in the Taylor approximation used.

	
set_richardson_rule(step_ratio, num_terms=2)

	Set Richardson exptrapolation options

	
property step

	The step spacing(s) used in the approximation

	
class Gradient(fun, step=None, method='central', order=2, n=1, **options)

	Bases: Jacobian

Calculate Gradient with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	gradarray
	gradient

See also

	Derivative, Hessian, Jacobian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

If x0 is an n x m array, then fun is assumed to be a function of n * m
variables.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> np.allclose(dfun([1,2,3]), [2., 4., 6.])
True

At [x,y] = [1,1], compute the numerical gradient
of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> x, y = 1, 1
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)
>>> dz_dx, dz_dy = dz([x, y])
>>> np.allclose([dz_dx, dz_dy],
... [3.7182818284590686, 1.7182818284590162])
True

At the global minimizer (1,1) of the Rosenbrock function,
compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> grad_rosen = nd.Gradient(rosen)
>>> df_dx, df_dy = grad_rosen([x, y])
>>> np.allclose([df_dx, df_dy], [0, 0])
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
class info(f_value, error_estimate, final_step, index)

	Bases: tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
count(value, /)

	Return number of occurrences of value.

	
property error_estimate

	Alias for field number 1

	
property f_value

	Alias for field number 0

	
property final_step

	Alias for field number 2

	
property index

	Alias for field number 3

	
property method

	Defines the method used in the finite difference approximation.

	
property method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	
property n

	Order of the derivative.

	
property order

	Defines the order of the error term in the Taylor approximation used.

	
set_richardson_rule(step_ratio, num_terms=2)

	Set Richardson exptrapolation options

	
property step

	The step spacing(s) used in the approximation

	
class Hessdiag(f, step=None, method='central', order=2, **options)

	Bases: Derivative

Calculate Hessian diagonal with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximationorder : int, optional
defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	hessdiagarray
	hessian diagonal

See also

	Derivative, Hessian, Jacobian, Gradient
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> fun = lambda x : x[0] + x[1]**2 + x[2]**3
>>> Hfun = nd.Hessdiag(fun, full_output=True)
>>> hd, info = Hfun([1,2,3])
>>> np.allclose(hd, [0., 2., 18.])
True

>>> np.all(info.error_estimate < 1e-11)
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
class info(f_value, error_estimate, final_step, index)

	Bases: tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
count(value, /)

	Return number of occurrences of value.

	
property error_estimate

	Alias for field number 1

	
property f_value

	Alias for field number 0

	
property final_step

	Alias for field number 2

	
property index

	Alias for field number 3

	
property method

	Defines the method used in the finite difference approximation.

	
property method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	
property n

	Order of the derivative.

	
property order

	Defines the order of the error term in the Taylor approximation used.

	
set_richardson_rule(step_ratio, num_terms=2)

	Set Richardson exptrapolation options

	
property step

	The step spacing(s) used in the approximation

	
class Hessian(f, step=None, method='central', order=None, **options)

	Bases: Hessdiag

Calculate Hessian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	hessndarray
	array of partial second derivatives, Hessian

See also

	Derivative, Hessian
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Computes the Hessian according to method as:
‘forward’ (4.7), ‘central’ (4.9) and ‘complex’ (4.10):

(5.4)\[\quad ((f(x + d_j e_j + d_k e_k) + f(x) - f(x + d_j e_j) - f(x + d_k e_k))) / (d_j d_k)\]

(5.5)\[\quad ((f(x + d_j e_j + d_k e_k) - f(x + d_j e_j - d_k e_k)) -
 (f(x - d_j e_j + d_k e_k) - f(x - d_j e_j - d_k e_k)) /
 (4 d_j d_k)\]

(5.6)\[imag(f(x + i d_j e_j + d_k e_k) - f(x + i d_j e_j - d_k e_k)) /
 (2 d_j d_k)\]

where \(e_j\) is a vector with element \(j\) is one and the rest
are zero and \(d_j\) is a scalar spacing \(steps_j\).

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)
>>> h = Hfun([1, 1])
>>> h
array([[842., -420.],
 [-420., 210.]])

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nd.Hessian(fun)
>>> h2 = Hfun2([0, 0])
>>> h2
array([[-1., 1.],
 [1., -1.]])

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
class info(f_value, error_estimate, final_step, index)

	Bases: tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
count(value, /)

	Return number of occurrences of value.

	
property error_estimate

	Alias for field number 1

	
property f_value

	Alias for field number 0

	
property final_step

	Alias for field number 2

	
property index

	Alias for field number 3

	
property method

	Defines the method used in the finite difference approximation.

	
property method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	
property n

	Order of the derivative.

	
property order

	Defines the order of the error term in the Taylor approximation used.

	
set_richardson_rule(step_ratio, num_terms=2)

	Set Richardson exptrapolation options

	
property step

	The step spacing(s) used in the approximation

	
class Jacobian(fun, step=None, method='central', order=2, n=1, **options)

	Bases: Derivative

Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is MinStepGenerator(**step_options) if method in in [‘complex’, ‘multicomplex’],
otherwise

MaxStepGenerator(**step_options)

The results are extrapolated if the StepGenerator generate more than 3
steps.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	richardson_terms: scalar integer, default 2.
	number of terms used in the Richardson extrapolation.

	full_outputbool, optional
	If full_output is False, only the derivative is returned.
If full_output is True, then (der, r) is returned der is the
derivative, and r is a Results object.

	**step_options:
	options to pass on to the XXXStepGenerator used.

	Returns

	
	jacobarray
	Jacobian

See also

	Derivative, Hessian, Gradient
	

Notes

Complex methods are usually the most accurate provided the function to
differentiate is analytic. The complex-step methods also requires fewer
steps than the other methods and can work very close to the support of
a function.
The complex-step derivative has truncation error O(steps**2) for n=1 and
O(steps**4) for n larger, so truncation error can be eliminated by
choosing steps to be very small.
Especially the first order complex-step derivative avoids the problem of
round-off error with small steps because there is no subtraction. However,
this method fails if fun(x) does not support complex numbers or involves
non-analytic functions such as e.g.: abs, max, min.
Central difference methods are almost as accurate and has no restriction on
type of function. For this reason the ‘central’ method is the default
method, but sometimes one can only allow evaluation in forward or backward
direction.

For all methods one should be careful in decreasing the step size too much
due to round-off errors.

Higher order approximation methods will generally be more accurate, but may
also suffer more from numerical problems. First order methods is usually
not recommended.

If fun returns a 1d array, it returns a Jacobian. If a 2d array is returned
by fun (e.g., with a value for each observation), it returns a 3d array
with the Jacobian of each observation with shape xk x nobs x xk. I.e.,
the Jacobian of the first observation would be [:, 0, :]

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	K.-L. Lai, J.L. Crassidis, Y. Cheng, J. Kim (2005), New complex step
	derivative approximations with application to second-order
kalman filtering, AIAA Guidance, Navigation and Control Conference,
San Francisco, California, August 2005, AIAA-2005-5944.

	Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
	Differentiation. Numerische Mathematik.

	Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
	Integrals of Derivatives. Numerische Mathematik.

Examples

>>> import numpy as np
>>> import numdifftools as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True

>>> jfun = nd.Jacobian(fun)
>>> val = jfun([1, 2, 0.75])
>>> np.allclose(val, np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> jfun2 = nd.Jacobian(fun2)
>>> np.allclose(jfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))
>>> jfun3 = nd.Jacobian(fun3)

>>> np.allclose(jfun3([1., 2., 3.]), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True
>>> np.allclose(jfun3([4., 5., 6.]), [[[180.], [144.], [240.]], [[30.], [24.], [20.]]])
True
>>> np.allclose(jfun3(np.array([[1.,2.,3.]]).T), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True

Methods

	__call__(x, *args, **kwds)

	Call self as a function.

	
class info(f_value, error_estimate, final_step, index)

	Bases: tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple]

	
count(value, /)

	Return number of occurrences of value.

	
property error_estimate

	Alias for field number 1

	
property f_value

	Alias for field number 0

	
property final_step

	Alias for field number 2

	
property index

	Alias for field number 3

	
property method

	Defines the method used in the finite difference approximation.

	
property method_order

	Defines the leading order of the error term in the Richardson extrapolation method.

	
property n

	Order of the derivative.

	
property order

	Defines the order of the error term in the Taylor approximation used.

	
set_richardson_rule(step_ratio, num_terms=2)

	Set Richardson exptrapolation options

	
property step

	The step spacing(s) used in the approximation

	
class MaxStepGenerator(base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0, num_extrap=9, use_exact_steps=False, check_num_steps=True, scale=500)

	Bases: MinStepGenerator

Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (-i + offset)

for i = 0, 1, …, num_steps-1.

	Parameters

	
	base_stepfloat, array-like, default 2.0
	Defines the maximum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2 or 1.6
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__
method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, default 500
	scale used in base step.

	
property base_step

	Base step defines the minimum or maximum step when offset==0.

	
property min_num_steps

	Minimum number of steps required given the differentiation method and order.

	
property num_steps

	Defines number of steps generated

	
property scale

	Scale used in base step.

	
step_generator_function(x, method='forward', n=1, order=2)

	Step generator function

	
property step_nom

	Nominal step

	
property step_ratio

	Ratio between sequential steps generated

	
class MinStepGenerator(base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0, num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (i + offset)

for i = num_steps-1,… 1, 0.

	Parameters

	
	base_stepfloat, array-like, optional
	Defines the minimum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__ method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, optional
	scale used in base step. If not None it will override the default
computed with the default_scale function.

	
property base_step

	Base step defines the minimum or maximum step when offset==0.

	
property min_num_steps

	Minimum number of steps required given the differentiation method and order.

	
property num_steps

	Defines number of steps generated

	
property scale

	Scale used in base step.

	
step_generator_function(x, method='forward', n=1, order=2)

	Step generator function

	
property step_nom

	Nominal step

	
property step_ratio

	Ratio between sequential steps generated

	
class Richardson(step_ratio=2.0, step=1, order=1, num_terms=2)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Extrapolates a sequence with Richardsons method

	Parameters

	
	step_ratio: real scalar
	Ratio between sequential steps, h, generated.

	step: scalar integer
	Defines the step between exponents in the error polynomial,
i.e., step = k_1 - k_0 = k_2 - k_1 = … = k_{i+1} - k_i

	order: scalar integer
	Leading order of truncation error.

	num_terms: scalar integer
	Number of terms used in the polynomial fit.

Notes

Suppose f(h) is an approximation of L (exact value) that depends on a positive
step size h described with a sequence of the form

L = f(h) + a0 * h^k_0 + a1 * h^k_1+ a2 * h^k_2 + …

where the ai are unknown constants and the k_i are known constants such that h^k_i > h^(k_i+1).

If we evaluate the right hand side for different stepsizes h
we can fit a polynomial to that sequence of approximations.
This is exactly what this class does.
Here k_0 is the leading order step size behavior of truncation error as L = f(h)+O(h^k_0)
(f(h) -> L as h -> 0, but f(0) != L) and k_i = order + step * i .

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> n = 3
>>> Ei = np.zeros((n,1))
>>> h = np.zeros((n,1))
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(n):
... x = linfun(k)
... h[k] = x[1]
... Ei[k] = np.trapz(np.sin(x),x)
>>> En, err, step = nd.Richardson(step=1, order=1)(Ei, h)
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True
>>> np.allclose(En, 1)
True

	
extrapolate(sequence, steps)

	Extrapolate sequence

	
rule(sequence_length=None)

	Returns extrapolation rule.

	
dea3(v_0, v_1, v_2, symmetric=False)

	Extrapolate a slowly convergent sequence using Shanks transformations.

	Parameters

	
	v_0, v_1, v_2array-like
	3 values of a convergent sequence to extrapolate

	Returns

	
	resultarray-like
	extrapolated value

	abserrarray-like
	absolute error estimate

See also

	Dea
	

Notes

DEA3 attempts to extrapolate nonlinearly by Shanks transformations to a
better estimate of the sequence’s limiting value based on only three values.
The epsilon algorithm of P. Wynn, see [Rf7ab399ffe8b-1], is used to perform the
non-linear Shanks transformations. The routine is a vectorized translation
of the DQELG function found in the QUADPACK fortran library for LIMEXP=3,
see [Rf7ab399ffe8b-2] and [Rf7ab399ffe8b-3].

References

	1

	Wynn, P. (1956)
“On a Device for Computing the em(Sn) Transformation”,
Mathematical Tables and Other Aids to Computation, 10, 91-96.

	2

	R. Piessens, E. De Doncker-Kapenga and C. W. Uberhuber (1983),
“QUADPACK: a subroutine package for automatic integration”,
Springer, ISBN: 3-540-12553-1, 1983.

	3

	http://www.netlib.org/quadpack/

	4

	https://mathworld.wolfram.com/WynnsEpsilonMethod.html

Examples

integrate sin(x) from 0 to pi/2

>>> import numpy as np
>>> import numdifftools as nd
>>> Ei= np.zeros(3)
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(3):
... x = linfun(k)
... Ei[k] = np.trapz(np.sin(x),x)
>>> [En, err] = nd.dea3(Ei[0], Ei[1], Ei[2])
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.allclose(En, 1)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True

	
directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

	Parameters

	
	f: function
	analytical function to differentiate.

	x0: array
	vector location at which to differentiate ‘f’. If x0 is an nXm array,
then ‘f’ is assumed to be a function of n*m variables.

	vec: array
	vector defining the line along which to take the derivative. It should
be the same size as x0, but need not be a vector of unit length.

	**options:
	optional arguments to pass on to Derivative.

	Returns

	
	dder: scalar
	estimate of the first derivative of ‘f’ in the specified direction.

See also

	Derivative
	

	Gradient
	

Examples

At the global minimizer (1,1) of the Rosenbrock function,
compute the directional derivative in the direction [1 2]

>>> import numpy as np
>>> import numdifftools as nd
>>> vec = np.r_[1, 2]
>>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> dd, info = nd.directionaldiff(rosen, [1, 1], vec, full_output=True)
>>> np.allclose(dd, 0)
True
>>> np.abs(info.error_estimate)<1e-14
True

5.2.3. numdifftools.extrapolation module

Created on 28. aug. 2015

@author: pab

	
class Dea(limexp=50)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Extrapolate a slowly convergent sequence using repeated Shanks transformations.

Notes

DEA attempts to extrapolate nonlinearly by Shanks transformations to a better
estimate of the sequence’s limiting value, thus improving the rate of convergence.
The epsilon algorithm of P. Wynn, see [1]_, is used to perform the
non-linear Shanks transformations. The routine is a translation of the
DQELG function found in the QUADPACK fortran library, see [2]_ and [3]_.

List of major variables:

	LIMEXP: scalar integer
	The maximum number of elements the epsilon table data can contain.
The epsilon table is stored in the first (LIMEXP+2) entries of EPSTAB.

	EPSTAB: real vector or size (LIMEXP+2+3)
	
The first LIMEXP+2 elements contains the two lower diagonals of the triangular
epsilon table. The elements are numbered starting at the right-hand corner of the

triangle.

	E0,E1,E2,E3: real scalars
	The 4 elements on which the computation of a new element in the epsilon table is based.

	NRES: scalar integer
	Number of extrapolation results actually generated by the epsilon algorithm in prior
calls to the routine.

	NEWELM: scalar integer
	Number of elements to be computed in the new diagonal of the epsilon table.
The condensed epsilon table is computed. Only those elements needed for the
computation of the next diagonal are preserved.

	RES: real scalar
	New element in the new diagonal of the epsilon table.

	ERROR: real scalar
	An estimate of the absolute error of RES. The routine decides whether RESULT=RES or
RESULT=SVALUE by comparing ERROR with abserr from the previous call.

	RES3LA: real vector of size 3
	Contains at most the last 3 results.

	
property limexp

	Maximum number of elements the epsilon table data.

	
class EpsAlg

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Extrapolate a slowly convergent sequence using Shanks transformation.

Notes

The iterated Shanks transformation is computed using the Wynn
epsilon algorithm (see equation 4.3-10a to 4.3-10c given on page 25 in [R9678172c97e0-1]).

References

	1

	E. J. Weniger (1989)
“Nonlinear sequence transformations for the acceleration of
convergence and the summation of divergent series”
Computer Physics Reports Vol. 10, 189 - 371
http://arxiv.org/abs/math/0306302v1

	2

	https://mathworld.wolfram.com/WynnsEpsilonMethod.html

	
class Richardson(step_ratio=2.0, step=1, order=1, num_terms=2)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Extrapolates a sequence with Richardsons method

	Parameters

	
	step_ratio: real scalar
	Ratio between sequential steps, h, generated.

	step: scalar integer
	Defines the step between exponents in the error polynomial,
i.e., step = k_1 - k_0 = k_2 - k_1 = … = k_{i+1} - k_i

	order: scalar integer
	Leading order of truncation error.

	num_terms: scalar integer
	Number of terms used in the polynomial fit.

Notes

Suppose f(h) is an approximation of L (exact value) that depends on a positive
step size h described with a sequence of the form

L = f(h) + a0 * h^k_0 + a1 * h^k_1+ a2 * h^k_2 + …

where the ai are unknown constants and the k_i are known constants such that h^k_i > h^(k_i+1).

If we evaluate the right hand side for different stepsizes h
we can fit a polynomial to that sequence of approximations.
This is exactly what this class does.
Here k_0 is the leading order step size behavior of truncation error as L = f(h)+O(h^k_0)
(f(h) -> L as h -> 0, but f(0) != L) and k_i = order + step * i .

Examples

>>> import numpy as np
>>> import numdifftools as nd
>>> n = 3
>>> Ei = np.zeros((n,1))
>>> h = np.zeros((n,1))
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(n):
... x = linfun(k)
... h[k] = x[1]
... Ei[k] = np.trapz(np.sin(x),x)
>>> En, err, step = nd.Richardson(step=1, order=1)(Ei, h)
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True
>>> np.allclose(En, 1)
True

	
extrapolate(sequence, steps)

	Extrapolate sequence

	
rule(sequence_length=None)

	Returns extrapolation rule.

	
convolve(sequence, rule, **kwds)

	Wrapper around scipy.ndimage.convolve1d that allows complex input.

	
dea3(v_0, v_1, v_2, symmetric=False)

	Extrapolate a slowly convergent sequence using Shanks transformations.

	Parameters

	
	v_0, v_1, v_2array-like
	3 values of a convergent sequence to extrapolate

	Returns

	
	resultarray-like
	extrapolated value

	abserrarray-like
	absolute error estimate

See also

	Dea
	

Notes

DEA3 attempts to extrapolate nonlinearly by Shanks transformations to a
better estimate of the sequence’s limiting value based on only three values.
The epsilon algorithm of P. Wynn, see [Rc8bfc08f7c28-1], is used to perform the
non-linear Shanks transformations. The routine is a vectorized translation
of the DQELG function found in the QUADPACK fortran library for LIMEXP=3,
see [Rc8bfc08f7c28-2] and [Rc8bfc08f7c28-3].

References

	1

	Wynn, P. (1956)
“On a Device for Computing the em(Sn) Transformation”,
Mathematical Tables and Other Aids to Computation, 10, 91-96.

	2

	R. Piessens, E. De Doncker-Kapenga and C. W. Uberhuber (1983),
“QUADPACK: a subroutine package for automatic integration”,
Springer, ISBN: 3-540-12553-1, 1983.

	3

	http://www.netlib.org/quadpack/

	4

	https://mathworld.wolfram.com/WynnsEpsilonMethod.html

Examples

integrate sin(x) from 0 to pi/2

>>> import numpy as np
>>> import numdifftools as nd
>>> Ei= np.zeros(3)
>>> linfun = lambda i : np.linspace(0, np.pi/2., 2**(i+5)+1)
>>> for k in np.arange(3):
... x = linfun(k)
... Ei[k] = np.trapz(np.sin(x),x)
>>> [En, err] = nd.dea3(Ei[0], Ei[1], Ei[2])
>>> truErr = np.abs(En-1.)
>>> np.all(truErr < err)
True
>>> np.allclose(En, 1)
True
>>> np.all(np.abs(Ei-1)<1e-3)
True

	
dea_demo()

	>>> from numdifftools.extrapolation import dea_demo
>>> dea_demo()
NO. PANELS TRAP. APPROX APPROX W/EA abserr
 1 0.78539816 0.78539816 0.78539816
 2 0.94805945 0.94805945 0.97596771
 4 0.98711580 0.99945672 0.21405856
 8 0.99678517 0.99996674 0.05190729
 16 0.99919668 0.99999988 0.00057629
 32 0.99979919 1.00000000 0.00057665
 64 0.99994980 1.00000000 0.00003338
 128 0.99998745 1.00000000 0.00000012
 256 0.99999686 1.00000000 0.00000000
 512 0.99999922 1.00000000 0.00000000
 1024 0.99999980 1.00000000 0.00000000
 2048 0.99999995 1.00000000 0.00000000

	
epsalg_demo()

	>>> from numdifftools.extrapolation import epsalg_demo
>>> epsalg_demo()
NO. PANELS TRAP. APPROX APPROX W/EA abserr
 1 0.78539816 0.78539816 0.21460184
 2 0.94805945 0.94805945 0.05194055
 4 0.98711580 0.99945672 0.00054328
 8 0.99678517 0.99996674 0.00003326
 16 0.99919668 0.99999988 0.00000012
 32 0.99979919 1.00000000 0.00000000
 64 0.99994980 1.00000000 0.00000000
 128 0.99998745 1.00000000 0.00000000
 256 0.99999686 1.00000000 0.00000000
 512 0.99999922 1.00000000 0.00000000

	
max_abs(a, b)

	Returns element-wise maximum of absulute value of array elements

	
richardson_demo()

	>>> from numdifftools.extrapolation import richardson_demo
>>> richardson_demo()
NO. PANELS TRAP. APPROX APPROX W/R abserr
 1 0.78539816 0.78539816 0.21460184
 2 0.94805945 1.11072073 0.11072073
 4 0.98711580 0.99798929 0.00201071
 8 0.99678517 0.99988201 0.00011799
 16 0.99919668 0.99999274 0.00000726
 32 0.99979919 0.99999955 0.00000045
 64 0.99994980 0.99999997 0.00000003
 128 0.99998745 1.00000000 0.00000000
 256 0.99999686 1.00000000 0.00000000
 512 0.99999922 1.00000000 0.00000000

5.2.4. numdifftools.finite_difference module

Finite difference methods module.

	
class DifferenceFunctions

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Class defining difference functions

Notes

The d

	
class HessdiagDifferenceFunctions

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Class defining Hessdiag difference functions

References

	Ridout, M.S. (2009) Statistical applications of the complex-step method
	of numerical differentiation. The American Statistician, 63, 66-74

	
class HessianDifferenceFunctions

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Class defining Hessian difference functions

References

Ridout, M.S. (2009)
“Statistical applications of the complex-step method of numerical differentiation”,
The American Statistician, 63, 66-74

	
class JacobianDifferenceFunctions

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Class defining Jacobian difference functions

	
static increments(n, h)

	Returns Jacobian steps

	
class LogHessdiagRule(n=1, method='central', order=2)

	Bases: LogRule

Log spaced finite difference Hessdiag rule class

	Parameters

	
	n2
	Order of the derivative.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

Examples

>>> import numpy as np
>>> from numdifftools.finite_difference import LogHessdiagRule as Rule

>>> np.allclose(Rule(method='central', order=2).rule(step_ratio=2.0), 2)
True
>>> np.allclose(Rule(method='central', order=4).rule(step_ratio=2.),
... [-0.66666667, 10.66666667])
True
>>> np.allclose(Rule(method='central', order=6).rule(step_ratio=2.),
... [4.44444444e-02, -3.55555556e+00, 4.55111111e+01])
True
>>> np.allclose(Rule(method='forward', order=2).rule(step_ratio=2.), [-4., 40., -64.])
True
>>> np.allclose(Rule(method='forward', order=4).rule(step_ratio=2.),
... [-1.90476190e-01, 1.10476190e+01, -1.92000000e+02,
... 1.12152381e+03, -1.56038095e+03])
True
>>> np.allclose(Rule(method='forward', order=6).rule(step_ratio=2.),
... [-4.09626216e-04, 1.02406554e-01, -8.33015873e+00, 2.76317460e+02,
... -3.84893968e+03, 2.04024004e+04, -2.74895500e+04])
True
>>> step_ratio=2.0
>>> fd_rule = Rule(method='forward', order=4)
>>> steps = 0.002*(1./step_ratio)**np.arange(6)
>>> x0 = np.array([0., 0.])
>>> f = lambda xy : np.cos(xy[0]-xy[1])
>>> f_x0 = f(x0)
>>> f_del = [f(x0+h) - f_x0 for h in steps] # forward difference
>>> f_del = [fd_rule.diff(f, f_x0, x0, h) for h in steps] # or alternatively
>>> fder, h, shape = fd_rule.apply(f_del, steps, step_ratio)

>>> np.allclose(fder, [[-1., -1.], [-1., -1.]])
True

	
property n

	

	
class LogHessianRule(n=1, method='central', order=2)

	Bases: LogRule

Log spaced finite difference Hessian rule class

	Parameters

	
	n2
	Order of the derivative.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

	
apply(sequence, steps, step_ratio=2.0)

	Apply finite difference rule along the first axis.

Return derivative estimates of fun at x0 for a sequence of stepsizes h

	Parameters

	
	sequence: finite differences
	

	steps: steps
	

	
property n

	

	
property order

	The order of the error term in the Taylor approximation used

	
class LogJacobianRule(n=1, method='central', order=2)

	Bases: LogRule

Log spaced finite difference Jacobian rule class

	Parameters

	
	n1
	Order of the derivative.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

Examples

>>> from numdifftools.finite_difference import LogJacobianRule as Rule
>>> np.allclose(Rule(n=1, method='central', order=2).rule(step_ratio=2.0), 1)
True
>>> np.allclose(Rule(n=1, method='central', order=4).rule(step_ratio=2.),
... [-0.33333333, 2.66666667])
True
>>> np.allclose(Rule(n=1, method='central', order=6).rule(step_ratio=2.),
... [0.02222222, -0.88888889, 5.68888889])
True

>>> np.allclose(Rule(n=1, method='forward', order=2).rule(step_ratio=2.), [-1., 4.])
True

>>> np.allclose(Rule(n=1, method='forward', order=4).rule(step_ratio=2.),
... [-0.04761905, 1.33333333, -10.66666667, 24.38095238])
True
>>> np.allclose(Rule(n=1, method='forward', order=6).rule(step_ratio=2.),
... [-1.02406554e-04, 1.26984127e-02, -5.07936508e-01,
... 8.12698413e+00, -5.20126984e+01, 1.07381055e+02])
True
>>> step_ratio=2.0
>>> fd_rule = Rule(n=1, method='forward', order=4)
>>> steps = 0.002*(1./step_ratio)**np.arange(6)

>>> x0 = np.atleast_1d(1.)
>>> f = np.exp
>>> f_x0 = f(x0)
>>> f_del = [f(x0+h) - f_x0 for h in steps] # forward difference
>>> f_del = [fd_rule.diff(f, f_x0, x0, h) for h in steps[:, None]] # or alternatively
>>> fder, h, shape = fd_rule.apply(f_del, steps, step_ratio)
>>> np.allclose(fder, f(x0))
True

	
class LogRule(n=1, method='central', order=2)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Log spaced finite difference rule class

	Parameters

	
	nint, optional
	Order of the derivative.

	method{‘central’, ‘complex’, ‘multicomplex’, ‘forward’, ‘backward’}
	defines the method used in the approximation

	orderint, optional
	defines the order of the error term in the Taylor approximation used.
For ‘central’ and ‘complex’ methods, it must be an even number.

Examples

>>> from numdifftools.finite_difference import LogRule
>>> np.allclose(LogRule(n=1, method='central', order=2).rule(step_ratio=2.0), 1)
True
>>> np.allclose(LogRule(n=1, method='central', order=4).rule(step_ratio=2.),
... [-0.33333333, 2.66666667])
True
>>> np.allclose(LogRule(n=1, method='central', order=6).rule(step_ratio=2.),
... [0.02222222, -0.88888889, 5.68888889])
True

>>> np.allclose(LogRule(n=1, method='forward', order=2).rule(step_ratio=2.), [-1., 4.])
True

>>> np.allclose(LogRule(n=1, method='forward', order=4).rule(step_ratio=2.),
... [-0.04761905, 1.33333333, -10.66666667, 24.38095238])
True
>>> np.allclose(LogRule(n=1, method='forward', order=6).rule(step_ratio=2.),
... [-1.02406554e-04, 1.26984127e-02, -5.07936508e-01,
... 8.12698413e+00, -5.20126984e+01, 1.07381055e+02])
True
>>> step_ratio=2.0
>>> fd_rule = LogRule(n=2, method='forward', order=4)
>>> h = 0.002*(1./step_ratio)**np.arange(6)
>>> x0 = 1.
>>> f = np.exp
>>> f_x0 = f(x0)
>>> f_del = f(x0+h) - f_x0 # forward difference
>>> f_del = fd_rule.diff(f, f_x0, x0, h) # or alternatively
>>> fder, h, shape = fd_rule.apply(f_del, h, step_ratio)
>>> np.allclose(fder, f(x0))
True

	
apply(sequence, steps, step_ratio=2.0)

	Apply finite difference rule along the first axis.

Return derivative estimates of fun at x0 for a sequence of stepsizes h

	Parameters

	
	sequence: finite differences
	

	steps: steps
	

	
property diff

	The difference function

	
property eval_first_condition

	True if f(x0) needs to be evaluated given the differentiation method.

	
property method_order

	The leading order of the truncation error of the Richardson extrapolation.

	
property richardson_step

	The step between exponents in the error polynomial of the Richardson extrapolation.

	
rule(step_ratio=2.0)

	Return finite differencing rule.

	Parameters

	
	step_ratioreal scalar, optional, default 2.0
	Ratio between sequential steps generated.

Notes

The rule is for a nominal unit step size, and must be scaled later
to reflect the local step size.

Member method used: _fd_matrix

Member variables used:
n
order
method

	
make_exact(h)

	Make sure h is an exact representable number

This is important when calculating numerical derivatives and is
accomplished by adding 1.0 and then subtracting 1.0.

5.2.5. numdifftools.fornberg module

	
class Taylor(fun, n=1, r=0.0059, num_extrap=3, step_ratio=1.6, **kwds)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Return Taylor coefficients of complex analytic function using FFT

	Parameters

	
	funcallable
	function to differentiate

	z0real or complex scalar at which to evaluate the derivatives
	

	nscalar integer, default 1
	Number of taylor coefficents to compute. Maximum number is 100.

	rreal scalar, default 0.0059
	Initial radius at which to evaluate. For well-behaved functions,
the computation should be insensitive to the initial radius to within
about four orders of magnitude.

	num_extrapscalar integer, default 3
	number of extrapolation steps used in the calculation

	step_ratioreal scalar, default 1.6
	Initial grow/shrinking factor for finding the best radius.

	max_iterscalar integer, default 30
	Maximum number of iterations

	min_iterscalar integer, default max_iter // 2
	Minimum number of iterations before the solution may be deemed
degenerate. A larger number allows the algorithm to correct a bad
initial radius.

	full_outputbool, optional
	If full_output is False, only the coefficents is returned (default).
If full_output is True, then (coefs, status) is returned

	Returns

	
	coefsndarray
	array of taylor coefficents

	status: Optional object into which output information is written:
	degenerate: True if the algorithm was unable to bound the error
iterations: Number of iterations executed
function_count: Number of function calls
final_radius: Ending radius of the algorithm
failed: True if the maximum number of iterations was reached
error_estimate: approximate bounds of the rounding error.

Notes

This module uses the method of Fornberg to compute the Taylor series
coefficients of a complex analytic function along with error bounds. The
method uses a Fast Fourier Transform to invert function evaluations around
a circle into Taylor series coefficients and uses Richardson Extrapolation
to improve and bound the estimate. Unlike real-valued finite differences,
the method searches for a desirable radius and so is reasonably
insensitive to the initial radius-to within a number of orders of
magnitude at least. For most cases, the default configuration is likely to
succeed.

Restrictions:
The method uses the coefficients themselves to control the truncation
error, so the error will not be properly bounded for functions like
low-order polynomials whose Taylor series coefficients are nearly zero.
If the error cannot be bounded, degenerate flag will be set to true, and
an answer will still be computed and returned but should be used with
caution.

References

	[1] Fornberg, B. (1981).
	Numerical Differentiation of Analytic Functions.
ACM Transactions on Mathematical Software (TOMS),
7(4), 512-526. http://doi.org/10.1145/355972.355979

Examples

Compute the first 6 taylor coefficients 1 / (1 - z) expanded round z0 = 0:

>>> import numdifftools.fornberg as ndf
>>> import numpy as np
>>> c, info = ndf.Taylor(lambda x: 1./(1-x), n=6, full_output=True)(z0=0)
>>> np.allclose(c, np.ones(8))
True
>>> np.all(info.error_estimate < 1e-9)
True
>>> (info.function_count, info.iterations, info.failed) == (136, 17, False)
True

	
derivative(fun, z0, n=1, **kwds)

	Calculate n-th derivative of complex analytic function using FFT

	Parameters

	
	funcallable
	function to differentiate

	z0real or complex scalar at which to evaluate the derivatives
	

	nscalar integer, default 1
	Number of derivatives to compute where 0 represents the value of the
function and n represents the nth derivative. Maximum number is 100.

	rreal scalar, default 0.0061
	Initial radius at which to evaluate. For well-behaved functions,
the computation should be insensitive to the initial radius to within
about four orders of magnitude.

	max_iterscalar integer, default 30
	Maximum number of iterations

	min_iterscalar integer, default max_iter // 2
	Minimum number of iterations before the solution may be deemed
degenerate. A larger number allows the algorithm to correct a bad
initial radius.

	step_ratioreal scalar, default 1.6
	Initial grow/shrinking factor for finding the best radius.

	num_extrapscalar integer, default 3
	number of extrapolation steps used in the calculation

	full_outputbool, optional
	If full_output is False, only the derivative is returned (default).
If full_output is True, then (der, status) is returned der is the
derivative, and status is a Results object.

	Returns

	
	derndarray
	array of derivatives

	status: Optional object into which output information is written. Fields:
	degenerate: True if the algorithm was unable to bound the error
iterations: Number of iterations executed
function_count: Number of function calls
final_radius: Ending radius of the algorithm
failed: True if the maximum number of iterations was reached
error_estimate: approximate bounds of the rounding error.

Notes

This module uses the method of Fornberg to compute the derivatives of a
complex analytic function along with error bounds. The method uses a
Fast Fourier Transform to invert function evaluations around a circle into
Taylor series coefficients, uses Richardson Extrapolation to improve
and bound the estimate, then multiplies by a factorial to compute the
derivatives. Unlike real-valued finite differences, the method searches for
a desirable radius and so is reasonably insensitive to the initial
radius-to within a number of orders of magnitude at least. For most cases,
the default configuration is likely to succeed.

Restrictions:
The method uses the coefficients themselves to control the truncation
error, so the error will not be properly bounded for functions like
low-order polynomials whose Taylor series coefficients are nearly zero.
If the error cannot be bounded, degenerate flag will be set to true, and
an answer will still be computed and returned but should be used with
caution.

References

	[1] Fornberg, B. (1981).
	Numerical Differentiation of Analytic Functions.
ACM Transactions on Mathematical Software (TOMS),
7(4), 512-526. http://doi.org/10.1145/355972.355979

Examples

To compute the first five derivatives of 1 / (1 - z) at z = 0:
Compute the first 6 taylor derivatives of 1 / (1 - z) at z0 = 0:

>>> import numdifftools.fornberg as ndf
>>> import numpy as np
>>> def fun(x):
... return 1./(1-x)
>>> c, info = ndf.derivative(fun, z0=0, n=6, full_output=True)
>>> np.allclose(c, [1, 1, 2, 6, 24, 120, 720, 5040])
True
>>> np.all(info.error_estimate < 1e-9*c.real)
True
>>> (info.function_count, info.iterations, info.failed) == (136, 17, False)
True

	
fd_derivative(fx, x, n=1, m=2)

	Return the n’th derivative for all points using Finite Difference method.

	Parameters

	
	fxvector
	function values which are evaluated on x i.e. fx[i] = f(x[i])

	xvector
	abscissas on which fx is evaluated. The x values can be arbitrarily
spaced but must be distinct and len(x) > n.

	nscalar integer
	order of derivative.

	mscalar integer
	defines the stencil size. The stencil size is of 2 * mm + 1
points in the interior, and 2 * mm + 2 points for each of the 2 * mm
boundary points where mm = n // 2 + m.

	fd_derivative evaluates an approximation for the n’th derivative of the
	

	vector function f(x) using the Fornberg finite difference method.
	

	Restrictions: 0 < n < len(x) and 2*mm+2 <= len(x)
	

See also

	fd_weights
	

Examples

>>> import numpy as np
>>> import numdifftools.fornberg as ndf
>>> x = np.linspace(-1, 1, 25)
>>> fx = np.exp(x)
>>> df = ndf.fd_derivative(fx, x, n=1)
>>> np.allclose(df, fx)
True

	
fd_weights(x, x0=0, n=1)

	Return finite difference weights for the n’th derivative.

	Parameters

	
	xvector
	abscissas used for the evaluation for the derivative at x0.

	x0scalar
	location where approximations are to be accurate

	nscalar integer
	order of derivative. Note for n=0 this can be used to evaluate the
interpolating polynomial itself.

See also

	fd_weights_all
	

Examples

>>> import numpy as np
>>> import numdifftools.fornberg as ndf
>>> x = np.linspace(-1, 1, 5) * 1e-3
>>> w = ndf.fd_weights(x, x0=0, n=1)
>>> df = np.dot(w, np.exp(x))
>>> np.allclose(df, 1)
True

	
fd_weights_all(x, x0=0, n=1)

	Return finite difference weights for derivatives of all orders up to n.

	Parameters

	
	xvector, length m
	x-coordinates for grid points

	x0scalar
	location where approximations are to be accurate

	nscalar integer
	highest derivative that we want to find weights for

	Returns

	
	weightsarray, shape n+1 x m
	contains coefficients for the j’th derivative in row j (0 <= j <= n)

See also

	fd_weights
	

Notes

The x values can be arbitrarily spaced but must be distinct and len(x) > n.

The Fornberg algorithm is much more stable numerically than regular
vandermonde systems for large values of n.

References

B. Fornberg (1998)
“Calculation of weights_and_points in finite difference formulas”,
SIAM Review 40, pp. 685-691.

http://www.scholarpedia.org/article/Finite_difference_method

	
richardson(vals, k, c=None)

	Richardson extrapolation with parameter estimation

	
richardson_parameter(vals, k)

	

	
taylor(fun, z0=0, n=1, r=0.0059, num_extrap=3, step_ratio=1.6, **kwds)

	Return Taylor coefficients of complex analytic function using FFT

	Parameters

	
	funcallable
	function to differentiate

	z0real or complex scalar at which to evaluate the derivatives
	

	nscalar integer, default 1
	Number of taylor coefficents to compute. Maximum number is 100.

	rreal scalar, default 0.0059
	Initial radius at which to evaluate. For well-behaved functions,
the computation should be insensitive to the initial radius to within
about four orders of magnitude.

	num_extrapscalar integer, default 3
	number of extrapolation steps used in the calculation

	step_ratioreal scalar, default 1.6
	Initial grow/shrinking factor for finding the best radius.

	max_iterscalar integer, default 30
	Maximum number of iterations

	min_iterscalar integer, default max_iter // 2
	Minimum number of iterations before the solution may be deemed
degenerate. A larger number allows the algorithm to correct a bad
initial radius.

	full_outputbool, optional
	If full_output is False, only the coefficents is returned (default).
If full_output is True, then (coefs, status) is returned

	Returns

	
	coefsndarray
	array of taylor coefficents

	status: Optional object into which output information is written:
	degenerate: True if the algorithm was unable to bound the error
iterations: Number of iterations executed
function_count: Number of function calls
final_radius: Ending radius of the algorithm
failed: True if the maximum number of iterations was reached
error_estimate: approximate bounds of the rounding error.

Notes

This module uses the method of Fornberg to compute the Taylor series
coefficents of a complex analytic function along with error bounds. The
method uses a Fast Fourier Transform to invert function evaluations around
a circle into Taylor series coefficients and uses Richardson Extrapolation
to improve and bound the estimate. Unlike real-valued finite differences,
the method searches for a desirable radius and so is reasonably
insensitive to the initial radius-to within a number of orders of
magnitude at least. For most cases, the default configuration is likely to
succeed.

Restrictions:
The method uses the coefficients themselves to control the truncation
error, so the error will not be properly bounded for functions like
low-order polynomials whose Taylor series coefficients are nearly zero.
If the error cannot be bounded, degenerate flag will be set to true, and
an answer will still be computed and returned but should be used with
caution.

References

	[1] Fornberg, B. (1981).
	Numerical Differentiation of Analytic Functions.
ACM Transactions on Mathematical Software (TOMS),
7(4), 512-526. http://doi.org/10.1145/355972.355979

Examples

Compute the first 6 taylor coefficients 1 / (1 - z) expanded round z0 = 0:

>>> import numdifftools.fornberg as ndf
>>> import numpy as np
>>> c, info = ndf.taylor(lambda x: 1./(1-x), z0=0, n=6, full_output=True)
>>> np.allclose(c, np.ones(8))
True
>>> np.all(info.error_estimate < 1e-9)
True
>>> (info.function_count, info.iterations, info.failed) == (136, 17, False)
True

5.2.6. numdifftools.limits module

Created on 27. aug. 2015

@author: pab
Author: John D’Errico
e-mail: woodchips@rochester.rr.com
Release: 1.0
Release date: 5/23/2008

	
class CStepGenerator(base_step=None, step_ratio=4.0, num_steps=None, step_nom=None, offset=0, scale=1.2, **options)

	Bases: MinStepGenerator

Generates a sequence of steps

	where
	steps = base_step * step_nom * (exp(1j*dtheta) * step_ratio) ** (i + offset)

for i = 0, 1, …, num_steps-1

	Parameters

	
	base_stepfloat, array-like, default None
	Defines the minimum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 4.0
	Ratio between sequential steps generated.

	num_stepsscalar integer, optional,
	defines number of steps generated.
If None the value is 2 * int(round(16.0/log(abs(step_ratio)))) + 1

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__ method.

	offsetreal scalar, optional, default 0
	offset to the base step

	use_exact_stepsboolean, default True.
	If true make sure exact steps are generated.

	scalereal scalar, default 1.2
	scale used in base step.

	path‘radial’ or ‘spiral’
	Specifies the type of path to take the limit along. Default ‘radial’.

	dtheta: real scalar, default pi/8
	If the path is ‘spiral’ it will follow an exponential spiral into the
limit, with angular steps at dtheta radians.

	
property dtheta

	Angular steps in radians used for the exponential spiral path.

	
property num_steps

	The number of steps generated

	
property step_ratio

	Ratio between sequential steps generated.

	
class Limit(fun, step=None, method='above', order=4, full_output=False, **options)

	Bases: _Limit

Compute limit of a function at a given point

	Parameters

	
	funcallable
	function fun(z, *args, **kwds) to compute the limit for z->z0.
The function, fun, is assumed to return a result of the same shape and
size as its input, z.

	step: float, complex, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is CStepGenerator(base_step=step, **options)

	method{‘above’, ‘below’}
	defines if the limit is taken from above or below

	order: positive scalar integer, optional.
	defines the order of approximation used to find the specified limit.
The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise.

	full_output: bool
	If true return additional info.

	options:
	options to pass on to CStepGenerator

	Returns

	
	limit_fz: array like
	estimated limit of f(z) as z –> z0

	info:
	Only given if full_output is True and contains the following:

	error estimate: ndarray
	95 % uncertainty estimate around the limit, such that
abs(limit_fz - lim z->z0 f(z)) < error_estimate

	final_step: ndarray
	final step used in approximation

Notes

Limit computes the limit of a given function at a specified
point, z0. When the function is evaluable at the point in question,
this is a simple task. But when the function cannot be evaluated
at that location due to a singularity, you may need a tool to
compute the limit. Limit does this, as well as produce an
uncertainty estimate in the final result.

The methods used by Limit are Richardson extrapolation in a combination
with Wynn’s epsilon algorithm which also yield an error estimate.
The user can specify the method order, as well as the path into
z0. z0 may be real or complex. Limit uses a proportionally cascaded
series of function evaluations, moving away from your point of evaluation
along a path along the real line (or in the complex plane for complex z0 or
step.) The step_ratio is the ratio used between sequential steps. The
sign of step allows you to specify a limit from above or below. Negative
values of step will cause the limit to be taken approaching z0 from below.

A smaller step_ratio means that Limit will take more function
evaluations to evaluate the limit, but the result will potentially be less
accurate. The step_ratio MUST be a scalar larger than 1. A value in the
range [2,100] is recommended. 4 seems a good compromise.

>>> import numpy as np
>>> from numdifftools.limits import Limit
>>> def f(x): return np.sin(x)/x
>>> lim_f0, err = Limit(f, full_output=True)(0)
>>> np.allclose(lim_f0, 1)
True
>>> np.allclose(err.error_estimate, 1.77249444610966e-15)
True

Compute the derivative of cos(x) at x == pi/2. It should
be -1. The limit will be taken as a function of the
differential parameter, dx.

>>> x0 = np.pi/2;
>>> def g(x): return (np.cos(x0+x)-np.cos(x0))/x
>>> lim_g0, err = Limit(g, full_output=True)(0)
>>> np.allclose(lim_g0, -1)
True
>>> err.error_estimate < 1e-14
True

Compute the residue at a first order pole at z = 0
The function 1./(1-exp(2*z)) has a pole at z == 0.
The residue is given by the limit of z*fun(z) as z –> 0.
Here, that residue should be -0.5.

>>> def h(z): return -z/(np.expm1(2*z))
>>> lim_h0, err = Limit(h, full_output=True)(0)
>>> np.allclose(lim_h0, -0.5)
True
>>> err.error_estimate < 1e-14
True

Compute the residue of function 1./sin(z)**2 at z = 0.
This pole is of second order thus the residue is given by the limit of
z**2*fun(z) as z –> 0.

>>> def g(z): return z**2/(np.sin(z)**2)
>>> lim_gpi, err = Limit(g, full_output=True)(0)
>>> np.allclose(lim_gpi, 1)
True
>>> err.error_estimate < 1e-14
True

A more difficult limit is one where there is significant
subtractive cancellation at the limit point. In the following
example, the cancellation is second order. The true limit
should be 0.5.

>>> def k(x): return (x*np.exp(x)-np.expm1(x))/x**2
>>> lim_k0,err = Limit(k, full_output=True)(0)
>>> np.allclose(lim_k0, 0.5)
True
>>> err.error_estimate < 1.0e-8
True

>>> def h(x): return (x-np.sin(x))/x**3
>>> lim_h0, err = Limit(h, full_output=True)(0)
>>> np.allclose(lim_h0, 1./6)
True
>>> err.error_estimate < 1e-8
True

	
limit(x, *args, **kwds)

	Return lim f(z) as z-> x

	
class Residue(f, step=None, method='above', order=None, pole_order=1, full_output=False, **options)

	Bases: Limit

Compute residue of a function at a given point

	Parameters

	
	funcallable
	function fun(z, *args, **kwds) to compute the Residue at z=z0.
The function, fun, is assumed to return a result of the same shape and
size as its input, z.

	step: float, complex, array-like or StepGenerator object, optional
	Defines the spacing used in the approximation.
Default is CStepGenerator(base_step=step, **options)

	method{‘above’, ‘below’}
	defines if the limit is taken from above or below

	order: positive scalar integer, optional.
	defines the order of approximation used to find the specified limit.
The order must be member of [1 2 3 4 5 6 7 8]. 4 is a good compromise.

	pole_orderscalar integer
	specifies the order of the pole at z0.

	full_output: bool
	If true return additional info.

	options:
	options to pass on to CStepGenerator

	Returns

	
	res_fz: array like
	estimated residue, i.e., limit of f(z)*(z-z0)**pole_order as z –> z0
When the residue is estimated as approximately zero,

the wrong order pole may have been specified.

	info: namedtuple,
	Only given if full_output is True and contains the following:

	error estimate: ndarray
	95 % uncertainty estimate around the residue, such that
abs(res_fz - lim z->z0 f(z)*(z-z0)**pole_order) < error_estimate
Large uncertainties here suggest that the wrong order
pole was specified for f(z0).

	final_step: ndarray
	final step used in approximation

Notes

Residue computes the residue of a given function at a simple first order
pole, or at a second order pole.

The methods used by residue are polynomial extrapolants, which also yield
an error estimate. The user can specify the method order, as well as the
order of the pole.

	z0 - scalar point at which to compute the residue. z0 may be
	real or complex.

See the document DERIVEST.pdf for more explanation of the
algorithms behind the parameters of Residue. In most cases,
the user should never need to specify anything other than possibly
the PoleOrder.

Examples

A first order pole at z = 0

>>> import numpy as np
>>> from numdifftools.limits import Residue
>>> def f(z): return -1./(np.expm1(2*z))
>>> res_f, info = Residue(f, full_output=True)(0)
>>> np.allclose(res_f, -0.5)
True
>>> info.error_estimate < 1e-14
True

A second order pole around z = 0 and z = pi
>>> def h(z): return 1.0/np.sin(z)**2
>>> res_h, info = Residue(h, full_output=True, pole_order=2)([0, np.pi])
>>> np.allclose(res_h, 1)
True
>>> (info.error_estimate < 1e-10).all()
True

5.2.7. numdifftools.multicomplex module

Created on 22. apr. 2015

@author: pab

5.2.7.1. References

A methodology for robust optimization of
low-thrust trajectories in multi-body
environments
Gregory Lantoine (2010)
Phd thesis, Georgia Institute of Technology

Using multicomplex variables for automatic
computation of high-order derivatives
Gregory Lantoine, Ryan P. Russell , and Thierry Dargent
ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 16,
April 2012, 21 pages,
http://doi.acm.org/10.1145/2168773.2168774

Bicomplex Numbers and Their Elementary Functions
M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa1, A. Vajiac (2012)
CUBO A Mathematical Journal
Vol. 14, No 2, (61-80). June 2012.

Computation of higher-order derivatives using the multi-complex
step method
Adriaen Verheyleweghen, (2014)
Project report, NTNU

	
class Bicomplex(z1, z2)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Creates an instance of a Bicomplex object.
zeta = z1 + j*z2, where z1 and z2 are complex numbers.

	
arccos()

	

	
arccosh()

	

	
arcsin()

	

	
arcsinh()

	

	
arctan()

	

	
arctanh()

	

	
arg_c()

	

	
arg_c1p()

	

	
static asarray(other)

	

	
conjugate()

	

	
cos()

	

	
cosh()

	

	
cot()

	

	
coth()

	

	
csc()

	

	
csch()

	

	
dot(other)

	

	
exp()

	

	
exp2()

	

	
expm1()

	

	
flat(index)

	

	
property imag

	

	
property imag1

	

	
property imag12

	

	
property imag2

	

	
log()

	

	
log10()

	

	
log1p()

	

	
log2()

	

	
logaddexp(other)

	

	
logaddexp2(other)

	

	
static mat2bicomp(arr)

	

	
mod_c()

	Complex modulus

	
norm()

	

	
property real

	

	
sec()

	

	
sech()

	

	
property shape

	

	
sin()

	

	
sinh()

	

	
property size

	

	
sqrt()

	

	
tan()

	

	
tanh()

	

	
z1

	

	
z2

	

	
c_abs(z)

	

	
c_atan2(x, y)

	

	
c_max(x, y)

	

	
c_min(x, y)

	

5.2.8. numdifftools.nd_algopy module

5.2.8.1. Numdifftools.nd_algopy

This module provide an easy to use interface to derivatives calculated with
AlgoPy. Algopy stands for Algorithmic Differentiation in Python.

The purpose of AlgoPy is the evaluation of higher-order derivatives in the
forward and reverse mode of Algorithmic Differentiation (AD) of functions that
are implemented as Python programs. Particular focus are functions that contain
numerical linear algebra functions as they often appear in statistically
motivated functions. The intended use of AlgoPy is for easy prototyping at
reasonable execution speeds. More precisely, for a typical program a
directional derivative takes order 10 times as much time as time as the
function evaluation. This is approximately also true for the gradient.

5.2.8.2. Algoritmic differentiation

Algorithmic differentiation (AD) is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program. AD
exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations (addition,
subtraction, multiplication, division, etc.) and elementary functions
(exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these
operations, derivatives of arbitrary order can be computed automatically,
accurately to working precision, and using at most a small constant factor
more arithmetic operations than the original program.

Algorithmic differentiation is not:

Symbolic differentiation, nor Numerical differentiation (the method of
finite differences). These classical methods run into problems:
symbolic differentiation leads to inefficient code (unless carefully done)
and faces the difficulty of converting a computer program into a single
expression, while numerical differentiation can introduce round-off errors
in the discretization process and cancellation. Both classical methods have
problems with calculating higher derivatives, where the complexity and
errors increase. Finally, both classical methods are slow at computing the
partial derivatives of a function with respect to many inputs, as is needed
for gradient-based optimization algorithms. Algoritmic differentiation
solves all of these problems.

5.2.8.2.1. References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

https://pythonhosted.org/algopy/index.html

	
class Derivative(fun, n=1, method='forward', full_output=False)

	Bases: _Derivative

Calculate n-th derivative with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	n: int, optional
	Order of the derivative.

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	der: ndarray
	array of derivatives

See also

	Gradient
	

	Hessdiag
	

	Hessian
	

	Jacobian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

1’st and 2’nd derivative of exp(x), at x == 1

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> fd = nda.Derivative(np.exp) # 1'st derivative
>>> np.allclose(fd(1), 2.718281828459045)
True
>>> fd5 = nda.Derivative(np.exp, n=5) # 5'th derivative
>>> np.allclose(fd5(1), 2.718281828459045)
True

1’st derivative of x^3+x^4, at x = [0,1]

>>> fun = lambda x: x**3 + x**4
>>> fd3 = nda.Derivative(fun)
>>> np.allclose(fd3([0,1]), [0., 7.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
class Gradient(fun, n=1, method='forward', full_output=False)

	Bases: _Derivative

Calculate Gradient with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	grad: array
	gradient

See also

	Derivative
	

	Jacobian
	

	Hessdiag
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> fun = lambda x: np.sum(x**2)
>>> df = nda.Gradient(fun, method='reverse')
>>> np.allclose(df([1,2,3]), [2., 4., 6.])
True

#At [x,y] = [1,1], compute the numerical gradient
#of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nda.Gradient(z)
>>> grad2 = dz([1, 1])
>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

#At the global minimizer (1,1) of the Rosenbrock function,
#compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nda.Gradient(rosen)
>>> grad3 = rd([1,1])
>>> np.allclose(grad3, [0., 0.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
class Hessdiag(f, method='forward', full_output=False)

	Bases: Hessian

Calculate Hessian diagonal with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	hessdiagndarray
	Hessian diagonal array of partial second order derivatives.

See also

	Derivative
	

	Gradient
	

	Jacobian
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nda.Hessdiag(rosen)
>>> h = Hfun([1, 1]) # h =[842, 210]
>>> np.allclose(h, [842., 210.])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessdiag(fun)
>>> h2 = Hfun2([0, 0]) # h2 = [-1, -1]
>>> np.allclose(h2, [-1., -1.])
True

>>> Hfun3 = nda.Hessdiag(fun, method='reverse')
>>> h3 = Hfun3([0, 0]) # h2 = [-1, -1];
>>> np.allclose(h3, [-1., -1.])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
class Hessian(f, method='forward', full_output=False)

	Bases: _Derivative

Calculate Hessian with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	hessndarray
	array of partial second derivatives, Hessian

See also

	Derivative
	

	Gradient
	

	Jacobian
	

	Hessdiag
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hf = nda.Hessian(rosen)
>>> h = Hf([1, 1]) # h =[842 -420; -420, 210];
>>> np.allclose(h, [[842., -420.],
... [-420., 210.]])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nda.Hessian(fun)
>>> h2 = Hfun2([0, 0]) # h2 = [-1 1; 1 -1]
>>> np.allclose(h2, [[-1., 1.],
... [1., -1.]])
True

>>> Hfun3 = nda.Hessian(fun, method='reverse')
>>> h3 = Hfun3([0, 0]) # h2 = [-1, 1; 1, -1];
>>> np.allclose(h3, [[-1., 1.],
... [1., -1.]])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
class Jacobian(fun, n=1, method='forward', full_output=False)

	Bases: Gradient

Calculate Jacobian with Algorithmic Differentiation method

	Parameters

	
	fun: function
	function of one array fun(x, *args, **kwds)

	method: string, optional {‘forward’, ‘reverse’}
	defines method used in the approximation

	Returns

	
	jacob: array
	Jacobian

See also

	Derivative
	

	Gradient
	

	Hessdiag
	

	Hessian
	

Notes

Algorithmic differentiation is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.
AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original
program.

References

Sebastian F. Walter and Lutz Lehmann 2013,
“Algorithmic differentiation in Python with AlgoPy”,
in Journal of Computational Science, vol 4, no 5, pp 334 - 344,
http://www.sciencedirect.com/science/article/pii/S1877750311001013

https://en.wikipedia.org/wiki/Automatic_differentiation

Examples

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2

Jfun = nda.Jacobian(fun) # Todo: This does not work
Jfun([1,2,0.75]).T # should be numerically zero
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

>>> Jfun2 = nda.Jacobian(fun, method='reverse')
>>> res = Jfun2([1,2,0.75]).T # should be numerically zero
>>> np.allclose(res,
... [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
... [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
... [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
True

>>> f2 = lambda x : x[0]*x[1]*x[2]**2
>>> Jfun2 = nda.Jacobian(f2)
>>> np.allclose(Jfun2([1., 2., 3.]), [[18., 9., 12.]])
True

>>> Jfun21 = nda.Jacobian(f2, method='reverse')
>>> np.allclose(Jfun21([1., 2., 3.]), [[18., 9., 12.]])
True

>>> def fun3(x):
... n = int(np.prod(np.shape(x[0])))
... out = nda.algopy.zeros((2, n), dtype=x)
... out[0] = x[0]*x[1]*x[2]**2
... out[1] = x[0]*x[1]*x[2]
... return out
>>> Jfun3 = nda.Jacobian(fun3)

>>> np.allclose(Jfun3([1., 2., 3.]), [[[18., 9., 12.]], [[6., 3., 2.]]])
True
>>> np.allclose(Jfun3([4., 5., 6.]), [[[180., 144., 240.]],
... [[30., 24., 20.]]])
True
>>> np.allclose(Jfun3(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
... [[[18., 0., 9., 0., 12., 0.],
... [0., 180., 0., 144., 0., 240.]],
... [[6., 0., 3., 0., 2., 0.],
... [0., 30., 0., 24., 0., 20.]]])
True

Methods

	__call__: callable with the following parameters:

	x: array_like value at which function derivative is evaluated args: tuple Arguments for function fun. kwds: dict Keyword arguments for function fun.

	
class Taylor(fun, n=1)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Return Taylor coefficients of function using algorithmic differentiation

	Parameters

	
	fun: callable
	function to differentiate

	z0: real or complex array
	at which to evaluate the derivatives

	n: scalar integer, default 1
	Number of taylor coefficents to compute.

	Returns

	
	coefs: ndarray
	array of taylor coefficents

Examples

Compute the first 6 taylor coefficients 1 + 2*z + 3*z**2 expanded round z0 = 0:

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> c = nda.Taylor(lambda x: 1+2*x+3*x**2, n=6)(z0=0)
>>> np.allclose(c, [1, 2, 3, 0, 0, 0])
True

	
directionaldiff(f, x0, vec, **options)

	Return directional derivative of a function of n variables

	Parameters

	
	fun: callable
	analytical function to differentiate.

	x0: array
	vector location at which to differentiate fun. If x0 is an nxm array,
then fun is assumed to be a function of n*m variables.

	vec: array
	vector defining the line along which to take the derivative. It should
be the same size as x0, but need not be a vector of unit length.

	**options:
	optional arguments to pass on to Derivative.

	Returns

	
	dder: scalar
	estimate of the first derivative of fun in the specified direction.

See also

	Derivative
	

	Gradient
	

Examples

At the global minimizer (1,1) of the Rosenbrock function,
compute the directional derivative in the direction [1 2]

>>> import numpy as np
>>> import numdifftools.nd_algopy as nda
>>> vec = np.r_[1, 2]
>>> rosen = lambda x: (1-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> dd = nda.directionaldiff(rosen, [1, 1], vec)
>>> np.allclose(dd, 0)
True

5.2.9. numdifftools.nd_scipy module

	
class Gradient(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	Bases: Jacobian

Calculate Gradient with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’}
	defines the method used in the approximation.

See also

	Hessian, Jacobian
	

Examples

>>> import numpy as np
>>> import numdifftools.nd_scipy as nd
>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> np.allclose(dfun([1,2,3]), [2., 4., 6.])
True

At [x,y] = [1,1], compute the numerical gradient
of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)
>>> grad2 = dz([1, 1])
>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

At the global minimizer (1,1) of the Rosenbrock function,
compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nd.Gradient(rosen)
>>> grad3 = rd([1,1])
>>> np.allclose(grad3,[0, 0], atol=1e-7)
True

	
class Jacobian(fun, step=None, method='central', order=2, bounds=(-inf, inf), sparsity=None)

	Bases: _Common

Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’}
	defines the method used in the approximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_scipy as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True
>>> dfun = nd.Jacobian(fun)
>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> dfun2 = nd.Jacobian(fun2)
>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))

TODO: The following does not work:
der3 = nd.Jacobian(fun3)([1., 2., 3.])
np.allclose(der3,
… [[18., 9., 12.], [6., 3., 2.]])
True
np.allclose(nd.Jacobian(fun3)([4., 5., 6.]),
… [[180., 144., 240.], [30., 24., 20.]])
True

np.allclose(nd.Jacobian(fun3)(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
… [[[18., 180.],
… [9., 144.],
… [12., 240.]],
… [[6., 30.],
… [3., 24.],
… [2., 20.]]])
True

5.2.10. numdifftools.nd_statsmodels module

5.2.10.1. Numdifftools.nd_statsmodels

This module provides an easy to use interface to derivatives calculated with
statsmodels.numdiff.

	
class Gradient(fun, step=None, method='central', order=None)

	Bases: Jacobian

Calculate Gradient with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’, ‘backward’}
	defines the method used in the approximation.

See also

	Hessian, Jacobian
	

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd
>>> fun = lambda x: np.sum(x**2)
>>> dfun = nd.Gradient(fun)
>>> np.allclose(dfun([1,2,3]), [2., 4., 6.])
True

At [x,y] = [1,1], compute the numerical gradient
of the function sin(x-y) + y*exp(x)

>>> sin = np.sin; exp = np.exp
>>> z = lambda xy: sin(xy[0]-xy[1]) + xy[1]*exp(xy[0])
>>> dz = nd.Gradient(z)
>>> grad2 = dz([1, 1])
>>> np.allclose(grad2, [3.71828183, 1.71828183])
True

At the global minimizer (1,1) of the Rosenbrock function,
compute the gradient. It should be essentially zero.

>>> rosen = lambda x : (1-x[0])**2 + 105.*(x[1]-x[0]**2)**2
>>> rd = nd.Gradient(rosen)
>>> grad3 = rd([1,1])
>>> np.allclose(grad3,[0, 0])
True

	
class Hessian(fun, step=None, method='central', order=None)

	Bases: _Common

Calculate Hessian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS**(1/3) for method==`forward`, complex or central2
x * _EPS**(1/4) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’, ‘backward’}
	defines the method used in the approximation.

See also

	Jacobian, Gradient
	

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

Rosenbrock function, minimized at [1,1]

>>> rosen = lambda x : (1.-x[0])**2 + 105*(x[1]-x[0]**2)**2
>>> Hfun = nd.Hessian(rosen)
>>> h = Hfun([1, 1])
>>> np.allclose(h, [[842., -420.], [-420., 210.]])
True

cos(x-y), at (0,0)

>>> cos = np.cos
>>> fun = lambda xy : cos(xy[0]-xy[1])
>>> Hfun2 = nd.Hessian(fun)
>>> h2 = Hfun2([0, 0])
>>> np.allclose(h2, [[-1., 1.], [1., -1.]])
True

	
property n

	

	
class Jacobian(fun, step=None, method='central', order=None)

	Bases: _Common

Calculate Jacobian with finite difference approximation

	Parameters

	
	funfunction
	function of one array fun(x, *args, **kwds)

	stepfloat, optional
	Stepsize, if None, optimal stepsize is used, i.e.,
x * _EPS for method==`complex`
x * _EPS**(1/2) for method==`forward`
x * _EPS**(1/3) for method==`central`.

	method{‘central’, ‘complex’, ‘forward’, ‘backward’}
	defines the method used in the approximation.

Examples

>>> import numpy as np
>>> import numdifftools.nd_statsmodels as nd

#(nonlinear least squares)

>>> xdata = np.arange(0,1,0.1)
>>> ydata = 1+2*np.exp(0.75*xdata)
>>> fun = lambda c: (c[0]+c[1]*np.exp(c[2]*xdata) - ydata)**2
>>> np.allclose(fun([1, 2, 0.75]).shape, (10,))
True
>>> dfun = nd.Jacobian(fun)
>>> np.allclose(dfun([1, 2, 0.75]), np.zeros((10,3)))
True

>>> fun2 = lambda x : x[0]*x[1]*x[2]**2
>>> dfun2 = nd.Jacobian(fun2)
>>> np.allclose(dfun2([1.,2.,3.]), [[18., 9., 12.]])
True

>>> fun3 = lambda x : np.vstack((x[0]*x[1]*x[2]**2, x[0]*x[1]*x[2]))
>>> np.allclose(nd.Jacobian(fun3)([1., 2., 3.]), [[[18.], [9.], [12.]], [[6.], [3.], [2.]]])
True
>>> np.allclose(nd.Jacobian(fun3)([4., 5., 6.]),
... [[[180.], [144.], [240.]], [[30.], [24.], [20.]]])
True

>>> np.allclose(nd.Jacobian(fun3)(np.array([[1.,2.,3.], [4., 5., 6.]]).T),
... [[[18., 180.],
... [9., 144.],
... [12., 240.]],
... [[6., 30.],
... [3., 24.],
... [2., 20.]]])
True

	
approx_fprime(x, f, epsilon=None, args=(), kwargs=None, centered=True)

	Gradient of function, or Jacobian if function fun returns 1d array

	Parameters

	
	xarray
	parameters at which the derivative is evaluated

	funfunction
	fun(*((x,)+args), **kwargs) returning either one value or 1d array

	epsilonfloat, optional
	Stepsize, if None, optimal stepsize is used. This is _EPS**(1/2)*x for
centered == False and _EPS**(1/3)*x for centered == True.

	argstuple
	Tuple of additional arguments for function fun.

	kwargsdict
	Dictionary of additional keyword arguments for function fun.

	centeredbool
	Whether central difference should be returned. If not, does forward
differencing.

	Returns

	
	gradarray
	gradient or Jacobian

Notes

If fun returns a 1d array, it returns a Jacobian. If a 2d array is returned
by fun (e.g., with a value for each observation), it returns a 3d array
with the Jacobian of each observation with shape xk x nobs x xk. I.e.,
the Jacobian of the first observation would be [:, 0, :]

	
approx_fprime_cs(x, f, epsilon=None, args=(), kwargs=None)

	Calculate gradient or Jacobian with complex step derivative approximation

	Parameters

	
	xarray
	parameters at which the derivative is evaluated

	ffunction
	f(*((x,)+args), **kwargs) returning either one value or 1d array

	epsilonfloat, optional
	Stepsize, if None, optimal stepsize is used. Optimal step-size is
EPS*x. See note.

	argstuple
	Tuple of additional arguments for function f.

	kwargsdict
	Dictionary of additional keyword arguments for function f.

	Returns

	
	partialsndarray
	array of partial derivatives, Gradient or Jacobian

Notes

The complex-step derivative has truncation error O(epsilon**2), so
truncation error can be eliminated by choosing epsilon to be very small.
The complex-step derivative avoids the problem of round-off error with
small epsilon because there is no subtraction.

5.2.11. numdifftools.step_generators module

Step generators module

	
class BasicMaxStepGenerator(base_step, step_ratio, num_steps, offset=0)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Generates a sequence of steps of decreasing magnitude

	where
	steps = base_step * step_ratio ** (-i + offset)

for i=0, 1,.., num_steps-1.

	Parameters

	
	base_stepfloat, array-like.
	Defines the start step, i.e., maximum step

	step_ratioreal scalar.
	Ratio between sequential steps generated. Note: Ratio > 1

	num_stepsscalar integer.
	defines number of steps generated.

	offsetreal scalar, optional, default 0
	offset to the base step

Examples

>>> from numdifftools.step_generators import BasicMaxStepGenerator
>>> step_gen = BasicMaxStepGenerator(base_step=2.0, step_ratio=2,
... num_steps=4)
>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

	
class BasicMinStepGenerator(base_step, step_ratio, num_steps, offset=0)

	Bases: BasicMaxStepGenerator

Generates a sequence of steps of decreasing magnitude

	where
	steps = base_step * step_ratio ** (i + offset), i=num_steps-1,… 1, 0.

	Parameters

	
	base_stepfloat, array-like.
	Defines the end step, i.e., minimum step

	step_ratioreal scalar.
	Ratio between sequential steps generated. Note: Ratio > 1

	num_stepsscalar integer.
	defines number of steps generated.

	offsetreal scalar, optional, default 0
	offset to the base step

Examples

>>> from numdifftools.step_generators import BasicMinStepGenerator
>>> step_gen = BasicMinStepGenerator(base_step=0.25, step_ratio=2,
... num_steps=4)
>>> [s for s in step_gen()]
[2.0, 1.0, 0.5, 0.25]

	
class MaxStepGenerator(base_step=2.0, step_ratio=None, num_steps=15, step_nom=None, offset=0, num_extrap=9, use_exact_steps=False, check_num_steps=True, scale=500)

	Bases: MinStepGenerator

Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (-i + offset)

for i = 0, 1, …, num_steps-1.

	Parameters

	
	base_stepfloat, array-like, default 2.0
	Defines the maximum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2 or 1.6
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__
method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, default 500
	scale used in base step.

	
class MinStepGenerator(base_step=None, step_ratio=None, num_steps=None, step_nom=None, offset=0, num_extrap=0, use_exact_steps=True, check_num_steps=True, scale=None)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Generates a sequence of steps

	where
	steps = step_nom * base_step * step_ratio ** (i + offset)

for i = num_steps-1,… 1, 0.

	Parameters

	
	base_stepfloat, array-like, optional
	Defines the minimum step, if None, the value is set to EPS**(1/scale)

	step_ratioreal scalar, optional, default 2
	Ratio between sequential steps generated.
Note: Ratio > 1
If None then step_ratio is 2 for n=1 otherwise step_ratio is 1.6

	num_stepsscalar integer, optional, default min_num_steps + num_extrap
	defines number of steps generated. It should be larger than
min_num_steps = (n + order - 1) / fact where fact is 1, 2 or 4
depending on differentiation method used.

	step_nomdefault maximum(log(exp(1)+|x|), 1)
	Nominal step where x is supplied at runtime through the __call__ method.

	offsetreal scalar, optional, default 0
	offset to the base step

	num_extrapscalar integer, default 0
	number of points used for extrapolation

	check_num_stepsboolean, default True
	If True make sure num_steps is larger than the minimum required steps.

	use_exact_stepsboolean, default True
	If true make sure exact steps are generated

	scalereal scalar, optional
	scale used in base step. If not None it will override the default
computed with the default_scale function.

	
property base_step

	Base step defines the minimum or maximum step when offset==0.

	
property min_num_steps

	Minimum number of steps required given the differentiation method and order.

	
property num_steps

	Defines number of steps generated

	
property scale

	Scale used in base step.

	
step_generator_function(x, method='forward', n=1, order=2)

	Step generator function

	
property step_nom

	Nominal step

	
property step_ratio

	Ratio between sequential steps generated

	
default_scale(method='forward', n=1, order=2)

	Returns good scale for MinStepGenerator

	
get_base_step(scale)

	Return base_step = EPS ** (1. / scale)

	
get_nominal_step(x=None)

	Return nominal step

	
make_exact(h)

	Make sure h is an exact representable number

This is important when calculating numerical derivatives and is
accomplished by adding 1.0 and then subtracting 1.0.

5.2.1. numdifftools.tests package

5.2.1.1. numdifftools.tests.hamiltonian module

Created on Jun 25, 2016

@author: pab

	
class ClassicalHamiltonian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Hamiltonian

	Parameters

	
	nscalar
	number of ions in the chain

	wscalar
	angular trap frequency

	Cscalar
	Coulomb constant times the electronic charge in SI units.

	mscalar
	the mass of a single trapped ion in the chain

	
initialposition()

	Defines initial position as an estimate for the minimize process.

	
normal_modes(eigenvalues)

	Return normal modes

	Computed eigenvalues of the matrix Vx are of the form
	(normal_modes)**2*m.

	
potential(positionvector)

	Return potential

	Parameters

	
	positionvector: 1-d array (vector) of length n
	positions of the n ions

	
run_hamiltonian(hessian, verbose=True)

	

5.2.1.2. numdifftools.tests.test_extrapolation module

	
class TestExtrapolation

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
setup_method()

	

	
test_dea3_on_trapz_sin()

	

	
test_dea_on_trapz_sin()

	

	
test_epsal()

	

	
test_richardson()

	

	
class TestRichardson

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
setup_method()

	

	
test_order_step_combinations()

	

5.2.1.3. numdifftools.tests.test_fornberg module

	
class ExampleFunctions

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static fun0(z)

	

	
static fun1(z)

	

	
static fun10(z)

	

	
static fun11(z)

	

	
static fun12(z)

	

	
static fun13(z)

	

	
static fun14(z)

	

	
static fun2(z)

	

	
static fun3(z)

	

	
static fun4(z)

	

	
static fun5(z)

	

	
static fun6(z)

	

	
static fun7(z)

	

	
static fun8(z)

	

	
static fun9(z)

	

	
test_all_weights()

	

	
test_fd_derivative()

	

	
test_high_order_derivative() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
test_low_order_derivative_on_example_functions()

	

	
test_weights()

	

5.2.1.4. numdifftools.tests.test_limits module

Created on 28. aug. 2015

@author: pab

	
class TestCStepGenerator

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_default_base_step()

	

	
static test_default_generator()

	

	
static test_fixed_base_step()

	

	
class TestLimit

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_derivative_of_cos()

	

	
test_difficult_limit()

	

	
test_residue_1_div_1_minus_exp_x()

	

	
test_sinx_div_x()

	

	
class TestResidue

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_residue_1_div_1_minus_exp_x()

	

	
test_residue_1_div_sin_x2()

	

5.2.1.5. numdifftools.tests.test_multicomplex module

Created on 22. apr. 2015

@author: pab

	
class TestBicomplex

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_add()

	

	
static test_arccos()

	

	
static test_arcsin()

	

	
static test_arg_c()

	

	
static test_assign()

	

	
test_conjugate()

	

	
static test_cos()

	

	
static test_der_abs()

	

	
static test_der_arccos()

	

	
static test_der_arccosh()

	

	
static test_der_arctan()

	

	
static test_der_cos()

	

	
static test_der_log()

	

	
static test_division()

	

	
static test_dot()

	

	
static test_eq()

	

	
test_flat()

	

	
static test_ge()

	

	
static test_gt()

	

	
test_init()

	

	
static test_le()

	

	
static test_lt()

	

	
static test_mod_c()

	

	
static test_multiplication()

	

	
test_neg()

	

	
test_norm()

	

	
static test_pow()

	

	
test_rdivision()

	Test issue # 39

	
test_repr()

	

	
static test_rpow()

	

	
static test_rsub()

	

	
test_shape()

	

	
static test_sub()

	

	
static test_subsref()

	

	
class TestDerivative

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_all_first_derivatives()

	

	
static test_all_second_derivatives()

	

5.2.1.6. numdifftools.tests.test_nd_algopy module

	
class TestDerivative

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_derivative_cube()

	Test for Issue 7

	
static test_derivative_exp() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
static test_derivative_on_log() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
test_derivative_on_sinh() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
static test_derivative_sin()

	

	
static test_directional_diff()

	

	
static test_fun_with_additional_parameters()

	Test for issue #9

	
static test_high_order_derivative_cos()

	

	
class TestGradient

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_on_scalar_function()

	

	
class TestHessdiag

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_forward()

	

	
static test_reverse()

	

	
class TestHessian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_hessian_cos_x_y__at_0_0()

	

	
test_run_hamiltonian()

	

	
class TestJacobian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_issue_25()

	

	
static test_on_matrix_valued_function()

	

	
static test_on_scalar_function()

	

	
test_on_vector_valued_function()

	

	
static test_scalar_to_vector() → None [https://docs.python.org/3.7/library/constants.html#None]

	

5.2.1.7. numdifftools.tests.test_nd_scipy module

	
class TestGradient

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_on_scalar_function()

	

	
class TestJacobian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_issue_25()

	

	
test_on_matrix_valued_function()

	

	
static test_on_scalar_function()

	

	
test_on_vector_valued_function()

	

	
static test_scalar_to_vector() → None [https://docs.python.org/3.7/library/constants.html#None]

	

5.2.1.8. numdifftools.tests.test_numdifftools module

Test functions for numdifftools module

	
class TestDerivative

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_backward_derivative_on_sinh()

	

	
test_central_and_forward_derivative_on_log()

	

	
static test_default_scale()

	

	
static test_derivative_cube()

	Test for Issue 7

	
static test_derivative_exp()

	

	
static test_derivative_of_cos_x() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
static test_derivative_sin()

	

	
static test_derivative_with_step_options()

	

	
static test_directional_diff()

	

	
static test_fun_with_additional_parameters()

	Test for issue #9

	
static test_high_order_derivative_cos()

	

	
test_infinite_functions()

	

	
class TestGradient

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_directional_diff()

	

	
static test_gradient()

	

	
static test_gradient_fulloutput()

	Fix issue#52:

Gradient tries to apply squeeze to the output tuple containing both the result
and the full_output object.

	
static test_issue_39()

	Test that checks float/Bicomplex works

	
class TestHessdiag

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_complex()

	

	
test_default_step()

	

	
test_fixed_step() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
class TestHessian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
test_complex_hessian_issue_35()

	

	
static test_hessian_cos_x_y_at_0_0()

	

	
test_run_hamiltonian()

	

	
class TestJacobian

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_issue_25()

	

	
static test_issue_27a()

	Test for memory-error

	
static test_issue_27b()

	Test for memory-error

	
static test_jacobian_fulloutput()

	test

	
static test_on_matrix_valued_function()

	

	
static test_on_scalar_function()

	

	
static test_on_vector_valued_function()

	

	
static test_scalar_to_vector() → None [https://docs.python.org/3.7/library/constants.html#None]

	

	
class TestRichardson

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
static test_central_forward_backward()

	

	
static test_complex()

	

5.2.1.9. numdifftools.tests.test_scripts module

	
test__find_default_scale_run_all_benchmarks()

	

	
test_profile_numdifftools_main()

	

	
test_profile_numdifftools_profile_hessian()

	

	
test_run_gradient_and_hessian_benchmarks()

	

5.2.1.10. numdifftools.tests.test_step_generators module

	
test__min_step_generator_with_step_nom1()

	

	
test_default_max_step_generator()

	

	
test_max_step_generator_default_base_step()

	

	
test_max_step_generator_with_base_step01()

	

	
test_min_step_generator_default_base_step()

	

	
test_min_step_generator_with_base_step01()

	

	
test_min_step_generator_with_step_ratio4()

	

Changelog

Version 0.9.41 Nov 10, 2022

	Fabian Joswig (5):
	
	ci: execute test action only on push to master and on pull requests.

	ci: test requirements added to ci workflow.

	ci: first version of github actions ci added.

	fix: import from from scipy.ndimage.filters replaced by from scipy.ndimage

	fix: np.info(float).machar.tiny replaced by np.info(float).tiny

	Jonas Eschle (6):
	
	Drop Python 3.6

	Remove Python 2.7, 3.6 from appveyor CI

	Update .travis.yml

	Update setup.cfg

	Update .travis.yml

	Update to Python310

	Per A Brodtkorb (19):
	
	Commented out deprecated pep8ignore and pep8maxlinelength in setup.cfg

	Fixed issue #59: numpy deprecation warning on machar.tiny

	Deleted obsolete travis_install.sh

	Replaced deprecated np.MachAr().eps (NumPy 1.22) with np.finfo(float).eps in test_multicomplex.py

	Added requirements.tests.txt

	Updated .github/workflows/test.yml to use requirements.tests.txt

	Removed obsolete .travis.yml and appveyor.yml.

	Github-actions are now used instead.

	Replaced appveyor badge and travis badge with github-actions badge in README.rst, info.py and index.rst

	Removed python 2.7 from classifiers in setup.cfg

	Updated .travis.yml

	Fixed doctest so they don’t crash on travis: Replaced “# doctest + SKIP” with “# doctest: +SKIP” in docstrings.

	Updated download badge in README.rst and info.py

	Updated test_img in README.rst

	Updated tests_img path for travis.

	Added “# doctest + SKIP” to doctest string in info.py

	Replaced “version|” with “release|” in docs/index.rst

	Added matplotlib to requirements.txt Removed failing python 3.8 from appveyor.yml

	Per A. Brodtkorb (4):
	
	Merge pull request #65 from fjosw/feat/github_actions_ci

	Merge pull request #66 from jonas-eschle/patch-1

	Merge pull request #60 from peendebak/performance/percentile

	Merge pull request #63 from fjosw/feat/numpy_deprecation

	Pieter Eendebak (2):
	
	workaround for known issue with np.nanpercentile

	improve performance by combining percentile calculations

Version 0.9.40 Jun 2, 2021

	Per A Brodtkorb (109):
	
	Replaced python 3.5 with 3.9 in .travis.yml

	Removed python 3.5 from appveyor.yml

	Added bibtex_bibfiles = … to docs/conf.py

	
	Fixed doctest failures in
	
	docs/src/numerical/derivest.rst

	docs/tutorials/getting_started.rst

	numdifftools.core.py

	numdifftools.limits.py

	numdifftools.nd_algopy.py

	numdifftools.nd_scipy.py

	numdifftools.nd_statsmodels.py

	Insulated import of click in a if __name__ ==’__main__’ clause.

	Added activate to appveyor.yml

	Added https://mathworld.wolfram.com/WynnsEpsilonMethod.html reference for the Epsilon algorithm in extrapolation.py.

	Disabled the restriction that n must be one in LogJacobianRule

	Added complex_even and central_even methods to the JacobianDifferenceFunctions

	Updated documentation of Derivative in core.py

	Updated documentation of Richardson.

	Removed obsolete tests from test_nd_scipy.py

	Fixed a bug in TestJacobian.test_scalar_to_vector in test_nd_scipy.py for method=”complex’

	Refactored code from core.py to finite_difference.py

	Added LogJacobianRule, LogHessdiagRule, LogHessianRule to finite_difference.py

	Fixed a bug in Richardson._estimate_error: Complex rule resulted wrongly in complex error values.

	Added netlib.org/quadpack reference.

	Updated Dea to conform with Quadpack

	Replaced reference to Brezinski with refs to Quadpack.

	Reduced cyclomatic complexity in Dea in extrapolation.py

	Removed commented out code in profile_numdifftools.py

	Updated pycodestyle ignore section in setup.cfg

	Removed commented out code in run_benchmark.py Made get_nominal_step continous as function of x

	Made datetime call python 2.7 compatible in run_benchmark.py

	Simplified the Derivative._step_generator function in core.py.

	Made plots generated from run_benchmark.py prettier.

	step_ratio in the step generators by default 2 for n=1 and 1.6 otherwise in step_generators.py

	Fixed failing doctests in core.py and nd_statsmodels.py

	Added doctests to setup.cfg.

	Reordered imports in test_example_functions.py

	Fixed .travis.yml so that he file paths in coverage.xml is discoverable
under the sonar.sources folder. The problem is that SonarQube is
analysing the checked-out source code (in src/numdifftools) but the
actual unit tests and coverage.py is run against the installed code (in
build/lib/numdifftools). Thus the absolute files paths to the installed

	Removed commented code from test_numdifftools.py

	Run only coverage xml when python version is 3.7

	Updated .travis.yml Removed commented out code from extrapolation.py and nd_statsmodels.py

	Finalized the moved of XXXDifferencdFunctions from core.py to finite_difference.py

	Added missing docstring for default_scale function in step_generators.py.

	Removed unused import of itertools in _find_default_scale.py.

	Changed default scale from 1.35 to 1.06 for complex/multicomplex methods when n=1

	Added richardson_demo to extrapolation.py Simplified EpsAlg class in extrapolation.py

	Corrected a small error for dea3: Now dea3 and Dea(limexp=3) gives the same result!

	Added python 3.8 to appveyor.yml Added python 3.9 to setup.cfg

	Fixed reference to how-to/index

	Added doctest configuration to docs.conf.py

	Fixes issue #50 by adding function value f(x) to the info.f_value.

	Updated README.rst

	Added @UnusedVariable here and there.

	Silence warnings in Hessian by adding __init__ that set the correct order given the method.

	Updated the Richardson._r_matrix method to generate complex matrix when step_ratio is complex.

	Fixed profile_hessian in profile_numdifftools.py so it works again.

	Added with np.errstate(all=’ignore’) to test_derivative_on_sinh and test_scalar_to_vector in test_nd_algopy.py to silence warnings.

	Changed citation style to alpha.

	Replaced bibliography.rst with refs1.bib and zreferences.rst

	Removed badges for latex

	Changed sonar addon token

	Added CC_TEST_REPORTER_ID

	Fixed a typo in docs/numdifftools.rst

	Added docs/make.bat

	Removed python 2.7 from .travis.yml

	Moved test_requires from setup.cfg to setup.py

	Added Latex to setup.py

	Changed default radius to 0.0059 which appears to cause less failures in Taylor in fornberg.py.

	Updated MANIFEST.in

	Fixes issue #49 : Dimension of Jacobian of vector valued function (length n) with scalar input should be n X 1

	Updated build_package.py

	Attempt to silence divide by zero and invalid warnings.

	Fix issue#52: Gradient tries to apply squeeze to the output tuple containing both the result and the full_output object.

	Made docstring a rawdocstring since it contains slashes.

	Added “# pylint: disable=unused-argument” in appropriate places.

	API change: replaced “python setup.py doctests” with “python setup.py doctest”

	Removed unused imports

	Fixed a bug in test_low_order_derivative_on_example_functions: Same variable (i) was used both in the outer and inner loop.

	Updated badge for pypi and documentation of fornberg.py

	Fixed failing tests.

	Updated docs + added a test

	Added “python -m pip install –upgrade pytest” to appveyor.yml due to a package conflict on python2.7 32 bit

	Added - “python -m pip install –upgrade setuptools” in appveyor.yml to avoid build error.

	Try “python setup.py bdist_wheel” and “pip install numdifftools –find-links=dist” in appveyor.yml

	Put qoutes on “python -m pip install –upgrade pip” in appveyor.yml

	
	Changed “python setup.py install” to
	
	python setup.py bdist_wheel”

	pip install numdifftools –find-links=dist

	Added “pip install –upgrade pip” to appveyor.yml

	Updated the detailed package documentation.

	Added missing pytest-pep8 to install

	Updated badge + appveyor.yml

	ongoing work to harmonize the the output from approx_fprime and approx_fprime_cs

	Added Taylor class to nd_algopy.py Fixed a bug in _get_best_taylor_coefficient in fornberg.py

	Updated references Added test_mod_c function to test_multicomplex.py

	Fixed a typo.

	Removed –strict-markers

	Fixed issue #39 TypeError: unsupported operand type(s) for /: ‘float’ and ‘Bicomplex’

	Fixed a typo in the documentation. Closing issue #51

	Added separate test for nd_scipy.

	added skip on tests if LineProfiler is not installed.

	Removed obsolete centered argument from call to approx_hess1 + pep8

	Move Jacobian._increment method to _JacobianDifferenceFunctions

	step_nom was unused in CStepGenerator.__init__ Added pytest.markers.slow in to setup.cfg

	Made two tests more forgiving in order to avoid failure on travis.

	Renamed nominal_step and base_step to get_nominal_step and get_base_step, respectively.

	Removed obsolete import of example from hypothesis

	Updated testing

	Updated coverage call: coverage run -m py.test src/numdifftools/tests

	Delete obsolete conftest.py

Version 0.9.39 Jun 10, 2019

	Robert Parini (1):
	
	Fix issue #43: numpy future warning

Version 0.9.38 Jun 10, 2019

	Andrew Nelson (1):
	
	MAINT: special.factorial instead of misc.factorial

	Dougal J. Sutherland (1):
	
	include LICENSE.txt in distributions

	Per A Brodtkorb (140):
	
	Adjusted runtime for hypothesis tests to avoid failure and fixed pep8 failures.

	Fixed a bug in setup.cfg

	Replaced valarray function with numpy.full in step_generators.py

	Added try except on import of algopy

	Updated the badges used in the README.rst

	Replaced numpy.testing.Tester with pytest.

	Removed dependence on pyscaffold.

	Simplified setup.py and setup.cfg

	Updated .travis.yml configuration.

	Reorganized the documentation.

	Ongoing work to simplify the classes.

	Replaced unittest with pytest.

	Added finite_difference.py

	replaced , with .

	Reverted to coverage=4.3.4

	New attempt

	Fixed conflicting import

	Missing import of EPS

	Added missing FD_RULES = {}

	Removed pinned coverage, removed dependence on pyscaffold

	Updated .travis.yml and .appveyor.yml

	Replaced conda channel omnia with conda-forge

	Removed commented out code. Set pyqt=5 in appveyor.yml

	Updated codeclimate checks

	Dropped support for python 3.3 and 3.4. Added support for python 3.6, 3.7

	Simplified code.

	Pinned IPython==5.0 in order to make the testserver not crash.

	Added line_profiler to appveyor.yml

	Removed line_profiler from requirements.txt

	Fix issue #37: Unable to install on Python 2.7

	Added method=’backward’ to nd_statsmodels.py

	Skip test_profile_numdifftools_profile_hessian and TestDoProfile

	Added missing import of warnings

	Added tests for the scripts from profile_numdifftools.py, _find_default_scale.py and run_benchmark.py.

	Added reason to unittest.skipIf

	Added line_profiler to requirements.

	misssing import of warnings fixed.

	Renamed test so it comes last, because I suspect this test mess up the coverage stats.

	Reordered the tests.

	Added more tests.

	Cleaned up _find_default_scale.py

	Removed link to depsy

	Reverted: install of cython and pip install setuptools

	Disabled sonar-scanner -X for python 3.5 because it crashes.

	Reverted [options.packages.find] to exclude tests again

	Added cython and reverted to pip install setuptools

	Updated sphinx to 1.6.7

	Try to install setuptools with conda instead.

	Added hypothesis and pytest to requirements.readthedocs.txt

	Set version of setuptools==37.0

	Added algopy, statsmodels and numpy to requirements.readthedocs.txt

	Restricted sphinx in the hope that the docs will be generated.

	Removed exclusion of tests/ directory from test coverage.

	Added dependencies into setup.cfg

	Readded six as dependency

	Refactored and removed commented out code.

	Fixed a bug in the docstring example: Made sure the shape passed on to zeros is an integer.

	Fixed c_abs so it works with algopy on python 3.6.

	Fixed flaky test and made it more robust.

	Fixed bug in .travis.yml

	Refactored the taylor function into the Taylor class in order to simplify the code.

	Fixed issue #35 and added tests

	Attempt to simplify complexity

	Made doctests more robust

	Updated project path

	Changed install of algopy

	Fixed small bugs

	Updated docstrings

	Changed Example and Reference to Examples and References in docstrings to comply with numpydoc-style.

	Renamed CHANGES.rst to CHANGELOG.rst

	Renamed source path

	Hack due to a bug in algopy or changed behaviour.

	Small fix.

	Try to reduce complexity

	Reduced cognitive complexity of min_num_steps

	Simplified code in Jacobian

	Merge branch ‘master’ of https://github.com/pbrod/numdifftools

	Fixed issue #34 Licence clarification.

	Locked coverage=4.3.4 due to a bug in coverage that cause code-climate test-reporter to fail.

	Added script for finding default scale

	updated from sonarcube to sonarcloud

	Made sure shape is an integer.

	Refactored make_step_generator into a step property

	Issue warning message to the user when setting the order to something different than 1 or 2 in Hessian.

	Updated example in Gradient.

	Reverted –timid option to coverage because it took too long time to run.

	Reverted –pep8 option

	pep8 + added –timid in .travis.yml coverage run in order to to increase missed coverage.

	Refactored taylor to reduce complexity

	No support for python 3.3. Added python 3.6

	Fixed a small bug and updated test.

	Removed unneccasarry perenthesis. Reduced the complexity of do_profile

	Made python3 compatible

	Removed assert False

	Made unittests more forgiving.

	updated doctest in nd_scipy.py and profiletools.py install line_profiler on travis

	Made python 3 compatible

	Updated tests

	Added test_profiletools.py and capture_stdout_and_stderr in testing.py

	Optimized numdifftools.core.py for speed: fd_rules are now only computed once.

	Only keeping html docs in the distribution.

	Added doctest and updated .pylintrc and requirements.txt

	Reduced time footprint on tests in the hope that it will pass on Travis CI.

	Prefer static methods over instance methods

	Better memory handling: This fixes issue #27

	Added statsmodels to requirements.txt

	Added nd_statsmodels.py

	Simplified input

	Merge branch ‘master’ of https://github.com/pbrod/numdifftools

	Updated link to the documentation.

	Robert Parini (4):
	
	Avoid RuntimeWarning in _get_logn

	Allow fd_derivative to take complex valued functions

	solarjoe (1):
	
	doc: added nd.directionaldiff example

Version 0.9.20, Jan 11, 2017

	Per A Brodtkorb (1):
	
	Updated the author email address in order for twine to be able to upload to pypi.

Version 0.9.19, Jan 11, 2017

	Per A Brodtkorb (1):
	
	Updated setup.py in a attempt to get upload to pypi working again.

Version 0.9.18, Jan 11, 2017

	Per A Brodtkorb (38):
	
	Updated setup

	Added import statements in help header examples.

	Added more rigorous tests using hypothesis.

	Forced to use wxagg backend

	Moved import of matplotlib.pyplot to main in order to avoid import error on travis.

	Added fd_derivative function

	Updated references.

	Attempt to automate sonarcube analysis

	Added testcoverage to sonarqube and codeclimate

	Simplified code

	Added .pylintrc + pep8

	Major change in api: class member variable self.f changed to self.fun

	Fixes issue #25 (Jacobian broken since 0.9.15)

Version 0.9.17, Sep 8, 2016

	Andrew Fowlie (1):
	
	Fix ReadTheDocs link as mentioned in #21

	Per A Brodtkorb (79):
	
	Added test for MinMaxStepgenerator

	Removed obsolete docs from core.py

	Updated appveyor.yml

	Fixed sign in inverse matrix

	Simplified code

	Added appveyor badge + synchronised info.py with README.rst.

	Removed plot in help header

	Added Programming Language :: Python :: 3.5

	Simplified code

	Renamed bicomplex to Bicomplex

	Simplified example_functions.py

	
	Moved MinStepGenerator, MaxStepGeneretor and MinMaxStepGenerator to step_generators.py
	
	Unified the step generators

	Moved step_generator tests to test_step_generators.py

	Major simplification of step_generators.py

	Removed duplicated code + pep8

	Moved fornberg_weights to fornberg.py + added taylor and derivative

	Fixed print statement

	Replace xrange with range

	Added examples + made computation more robust.

	Made ‘backward’ and alias for ‘reverse’ in nd_algopy.py

	Expanded the tests + added test_docstrings to testing.py

	Replace string interpolation with format()

	Removed obsolete parameter

	Smaller start radius for Fornberg method

	Simplified “n” and “order” properties

	Simplified default_scale

	Removed unecessary parenthesis and code.

	Fixed a bug in Dea + small refactorings.

	Added test for EpsAlg

	Avoid mutable default args and prefer static methods over instance-meth.

	Refactored to reduce cyclomatic complexity

	Changed some instance methods to static methods

	Renamed non-pythonic variable names

	Turned on xvfb (X Virtual Framebuffer) to imitate a display.

	Added extra test for Jacobian

	Replace lambda function with a def

	Removed unused import

	Added test for epsalg

	Fixed test_scalar_to_vector

	Updated test_docstrings

Version 0.9.15, May 10, 2016

	Cody (2):
	
	Migrated % string formating

	Migrated % string formating

	Per A Brodtkorb (28):
	
	Updated README.rst + setup.cfg

	Replaced instance methods with static methods +pep8

	Merge branch ‘master’ of https://github.com/pbrod/numdifftools

	Fixed a bug: replaced missing triple quote

	Added depsy badge

	added .checkignore for quantificode

	Added .codeclimate.yml

	Fixed failing tests

	Changed instance methods to static methods

	Made untyped exception handlers specific

	Replaced local function with a static method

	Simplified tests

	Removed duplicated code Simplified _Derivative._get_function_name

	exclude tests from testclimate

	Renamed test_functions.py to example_functions.py Added test_example_functions.py

	Per A. Brodtkorb (2):
	
	Merge pull request #17 from pbrod/autofix/wrapped2_to3_fix

	Merge pull request #18 from pbrod/autofix/wrapped2_to3_fix-0

	pbrod (17):
	
	updated conf.py

	added numpydoc>=0.5, sphinx_rtd_theme>=0.1.7 to setup_requires if sphinx

	updated setup.py

	added requirements.readthedocs.txt

	Updated README.rst with info about how to install it using conda in an anaconda package.

	updated conda install description

	Fixed number of arguments so it does not differs from overridden ‘_default_base_step’ method

	Added codecov to .travis.yml

	Attempt to remove coverage of test-files

	Added directionaldiff function in order to calculate directional derivatives. Fixes issue #16. Also added supporting tests and examples to the documentation.

	Fixed isssue #19 multiple observations mishandled in Jacobian

	Moved rosen function into numdifftools.testing.py

	updated import of rosen function from numdifftools.testing

	Simplified code + pep8 + added TestResidue

	Updated readme.rst and replaced string interpolation with format()

	Cleaned Dea class + pep8

	Updated references for Wynn extrapolation method.

Version 0.9.14, November 10, 2015

	pbrod (53):
	
	Updated documentation of setup.py

	Updated README.rst

	updated version

	Added more documentation

	Updated example

	Added .landscape.yml updated .coveragerc, .travis.yml

	Added coverageall to README.rst.

	updated docs/index.rst

	Removed unused code and added tests/test_extrapolation.py

	updated tests

	Added more tests

	Readded c_abs c_atan2

	Removed dependence on wheel, numpydoc>=0.5 and sphinx_rtd_theme>=0.1.7 (only needed for building documentation)

	updated conda path in .travis.yml

	added omnia channel to .travis.yml

	Added conda_recipe files Filtered out warnings in limits.py

Version 0.9.13, October 30, 2015

	pbrod (21):
	
	Updated README.rst and CHANGES.rst.

	updated Limits.

	Made it possible to differentiate complex functions and allow zero’th order derivative.

	BUG: added missing derivative order, n to Gradient, Hessian, Jacobian.

	Made test more robust.

	Updated structure in setup according to pyscaffold version 2.4.2.

	Updated setup.cfg and deleted duplicate tests folder.

	removed unused code.

	Added appveyor.yml.

	Added required appveyor install scripts

	Fixed bug in appveyor.yml.

	added wheel to requirements.txt.

	updated appveyor.yml.

	Removed import matplotlib.

	Justin Lecher (1):
	
	Fix min version for numpy.

	kikocorreoso (1):
	
	fix some prints on run_benchmark.py to make it work with py3

Version 0.9.12, August 28, 2015

pbrod (12):

	Updated documentation.

	Updated version in conf.py.

	Updated CHANGES.rst.

	Reimplemented outlier detection and made it more robust.

	Added limits.py with tests.

	Updated main tests folder.

	Moved Richardson and dea3 to extrapolation.py.

	Making a new release in order to upload to pypi.

Version 0.9.11, August 27, 2015

	pbrod (2):
	
	Fixed sphinx-build and updated docs.

	Fixed issue #9 Backward differentiation method fails with additional parameters.

Version 0.9.10, August 26, 2015

	pbrod (7):
	
	Fixed sphinx-build and updated docs.

	Added more tests to nd_algopy.

	Dropped support for Python 2.6.

Version 0.9.4, August 26, 2015

	pbrod (7):
	
	Fixed sphinx-build and updated docs.

Version 0.9.3, August 23, 2015

	Paul Kienzle (1):
	
	more useful benchmark plots.

	pbrod (7):
	
	Fixed bugs and updated docs.

	Major rewrite of the easy to use interface to Algopy.

	Added possibility to calculate n’th order derivative not just for n=1 in nd_algopy.

	Added tests to the easy to use interface to algopy.

Version 0.9.2, August 20, 2015

	pbrod (3):
	
	Updated documentation

	Added parenthesis to a call to the print function

	Made the test less strict in order to pass the tests on Travis for python 2.6 and 3.2.

Version 0.9.1, August 20,2015

	Christoph Deil (1):
	
	Fix Sphinx build

	pbrod (47):
	
	
	Total remake of numdifftools with slightly different call syntax.
	
	Can compute derivatives of order up to 10-14 depending on function and method used.

	Updated documentation and tests accordingly.

	Fixed a bug in dea3.

	Added StepsGenerator as an replacement for the adaptive option.

	Added bicomplex class for testing the complex step second derivative.

	Added fornberg_weights_all for computing optimal finite difference rules in a stable way.

	Added higher order complex step derivative methods.

Version 0.7.7, December 18, 2014

	pbrod (35):
	
	Got travis-ci working in order to run the tests automatically.

	Fixed bugs in Dea class.

	Fixed better error estimate for the Hessian.

	Fixed tests for python 2.6.

	Adding tests as subpackage.

	Restructerd folders of numdifftools.

Version 0.7.3, December 17, 2014

	pbrod (5):
	
	Small cosmetic fixes.

	pep8 + some refactorings.

	Simplified code by refactoring.

Version 0.6.0, February 8, 2014

	pbrod (20):
	
	Update and rename README.md to README.rst.

	Simplified call to Derivative: removed step_fix.

	Deleted unused code.

	Simplified and Refactored. Now possible to choose step_num=1.

	Changed default step_nom from max(abs(x0), 0.2) to max(log2(abs(x0)), 0.2).

	pep8ified code and made sure that all tests pass.

Version 0.5.0, January 10, 2014

	pbrod (9):
	
	Updated the examples in Gradient class and in info.py.

	Added test for vec2mat and docstrings + cosmetic fixes.

	Refactored code into private methods.

	Fixed issue #7: Derivative(fun)(numpy.ones((10,5)) * 2) failed.

	Made print statements compatible with python 3.

Version 0.4.0, May 5, 2012

	pbrod (1)
	
	Fixed a bug for inf and nan values.

Version 0.3.5, May 19, 2011

	pbrod (1)
	
	Fixed a bug for inf and nan values.

Version 0.3.4, Feb 24, 2011

	pbrod (11)
	
	Made automatic choice for the stepsize more robust.

	Added easy to use interface to the algopy and scientificpython modules.

Version 0.3.1, May 20, 2009

	pbrod (4)
	
	First version of numdifftools published on google.code

Contributors

	Per A. Brodtkorb <per.andreas.brodtkorb (at) gmail.com>

	John D’Errico <woodchips (at) rochester.rr.com>

License

Copyright (c) 2009-2022, Per A. Brodtkorb, John D'Errico
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name of the copyright holders nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Acknowledgments

The numdifftools package was originally a translation of an adaptive numerical differentiation toolbox written in Matlab by John D’Errico [DErrico2006].

Numdifftools has as of version 0.9 been extended with some of the functionality
found in the statsmodels.tools.numdiff module written by Josef Perktold [Perktold2014].

Indices and tables

	Index

	Module Index

	Search Page

Bibliography

	DErrico06

	J. R. D'Errico. Adaptive robust numerical differentiation. http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation, 2006.

	For81

	B. Fornberg. Numerical differentiation of analytic functions. ACM Transactions on Mathematical Software (TOMS), 7(4):512–526, 1981.

	For98

	B. Fornberg. Calculation of weights_and_points in finite difference formulas. SIAM Review, 40:685–691, 1998.

	GLD12

	R.P. Russell Gregory Lantoine and T. Dargent. Using multicomplex variables for automatic computation of high-order derivatives. ACM Transactions on Mathematical Software, 2012.

	Gro18

	Numerical Algorithms Group. Nag fortran library document: d04aaf. https://www.nag.com/numeric/fl/nagdoc_latest/html/d04/d04aaf.html, 2018.

	JML66

	C. B. Moler J. M. Lyness. Vandermonde systems and numerical differentiation. Numerische Mathematik, 8:458–464, 1966.

	JML69

	C. B. Moler J. M. Lyness. Generalized romberg methods for integrals of derivatives. Numerische Mathematik, 14:1–14, 1969.

	JPerktold14

	J.Perktold. Numdiff package. http://statsmodels.sourceforge.net/0.6.0/_modules/statsmodels/tools/numdiff.html, 2014.

	KLLK05

	Y. Cheng K.-L. Lai, J.L. Crassidis and J. Kim. New complex step derivative approximations with application to second-order kalman filtering. AIAA Guidance, Navigation and Control Conference, San Francisco, California, August 2005, AIAA-2005-5944, 2005.

	Lan10

	Gregory Lantoine. A methodology for robust optimization of low-thrust trajectories in multi-body environments. PhD thesis, Georgia Institute of Technology, 2010.

	MELEV12

	D.C. Struppa M.E. Luna-Elizarraras, M. Shapiro and A. Vajiac. Bicomplex numbers and their elementary functions. CUBO A Mathematical Journal, 14(2):61–68, 2012.

	Rid09

	M.S. Ridout. Statistical applications of the complex-step method of numerical differentiation. The American Statistician, 63:66–74, 2009.

	Ver14

	Adriaen Verheyleweghen. Computation of higher-order derivatives using the multi-complex step method. Project report, NTNU, Trondheim, Norway, 2014.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 numdifftools	

 	
 	
 numdifftools.core	

 	
 	
 numdifftools.extrapolation	

 	
 	
 numdifftools.finite_difference	

 	
 	
 numdifftools.fornberg	

 	
 	
 numdifftools.info	

 	
 	
 numdifftools.limits	

 	
 	
 numdifftools.multicomplex	

 	
 	
 numdifftools.nd_algopy	

 	
 	
 numdifftools.nd_scipy	

 	
 	
 numdifftools.nd_statsmodels	

 	
 	
 numdifftools.step_generators	

 	
 	
 numdifftools.tests.hamiltonian	

 	
 	
 numdifftools.tests.test_extrapolation	

 	
 	
 numdifftools.tests.test_fornberg	

 	
 	
 numdifftools.tests.test_limits	

 	
 	
 numdifftools.tests.test_multicomplex	

 	
 	
 numdifftools.tests.test_nd_algopy	

 	
 	
 numdifftools.tests.test_nd_scipy	

 	
 	
 numdifftools.tests.test_numdifftools	

 	
 	
 numdifftools.tests.test_scripts	

 	
 	
