
nta-meta-analysis Documentation
Release

Daniel C. Ferreira

Feb 15, 2018

V2 version:

1 Repository Organization 3

2 Main Blocks 5
2.1 JSON example . 5

3 Features 13
3.1 Concepts . 13
3.2 Base Features . 13
3.3 Operations . 14
3.4 Selections . 15
3.5 Example Features . 16

4 Reference 19
4.1 Properties . 19

4.1.1 title . 19
4.1.2 authors . 19
4.1.3 publication_name . 19
4.1.4 publication_type . 20
4.1.5 year . 20
4.1.6 organization_publishers (optional) . 20
4.1.7 pages_number_of (optional) . 20
4.1.8 bibtex . 21
4.1.9 access_open (optional) . 21
4.1.10 curated_by . 22
4.1.11 curated_last_revision . 22
4.1.12 curated_revision_number . 22

4.2 JSON example (reference, complete) . 22

5 Data 23
5.1 Properties . 23

5.1.1 datasets . 23
5.2 JSON example (data, complete) . 26

6 Preprocessing 27
6.1 Properties . 27

6.1.1 performed_feature_selection . 27
6.1.2 packet_analysis_oriented . 27

i

6.1.3 flow_analysis_oriented . 27
6.1.4 flow_aggregation_analysis_oriented . 27
6.1.5 tools . 28
6.1.6 normalization_type . 29
6.1.7 transformations . 29
6.1.8 final_data_format . 30
6.1.9 feature_selections (optional) . 30
6.1.10 packets (optional) . 31
6.1.11 flows (optional) . 32
6.1.12 flow_aggregations (optional) . 33

6.2 JSON example (preprocessing, complete) . 34

7 Analysis Method 37
7.1 Properties . 37

7.1.1 supervised_learning . 37
7.1.2 unsupervised_learning . 37
7.1.3 semisupervised_learning . 37
7.1.4 anomaly_detection . 37
7.1.5 tools . 38
7.1.6 algorithms (optional) . 39

7.2 JSON example (analysis_method, complete) . 41

8 Evaluation 43
8.1 Properties . 43

8.1.1 algorithm_comparison . 43
8.1.2 internal_validation . 43
8.1.3 external_validation . 43
8.1.4 dpi-based_validation . 43
8.1.5 port-based_validation . 44
8.1.6 pre-knowledge-based_validation . 44
8.1.7 manual_verification . 44
8.1.8 implementation_in_real_scenario . 44
8.1.9 train_test_separation . 44
8.1.10 methods (optional) . 44

8.2 JSON example (evaluation, complete) . 46

9 Result 49
9.1 Properties . 49

9.1.1 main_goal . 49
9.1.2 subgoals (optional) . 49
9.1.3 focus_main . 50
9.1.4 claimed_improvements . 51
9.1.5 reproducibility (optional) . 51

9.2 JSON example (result, complete) . 52

10 Paper Editor 53

11 Overview 55

12 Reference 57

13 Aggregations, Flows & Packets 59
13.1 Key . 59

13.1.1 Traffic Type . 60
13.2 Definitions . 60

ii

14 Features 61
14.1 Base Features . 61
14.2 Operations . 61

14.2.1 Value & Values . 62
14.2.2 Selection & Logic . 62

14.3 Feature Specification . 63
14.4 Example Features . 63

15 Methods 65

16 Evaluation 67

17 Datasets 69
17.1 Specification . 69

18 Tools 71
18.1 Specification . 71

19 Naming Conventions 73
19.1 Paper Names . 73
19.2 Feature Names . 73
19.3 Specification . 74

19.3.1 Non-terminal Symbols . 74
19.3.2 Strings . 74

20 Full Format Specification 75

21 Indices and tables 79

iii

iv

nta-meta-analysis Documentation, Release

In order to keep data curation homogeneity, some global rules must be defined. They are:

• The JSON files must use utf-8 encoding.

• null is a default value for fields that have not been checked in the curation process.

• "missing" replaces null when the required information for a specific fields has been checked but not found
in the paper.

• To avoid confusion, every field with a finite set of values should use only lower case characters. A relevant
exception is the set of IANA IPFIX features.

• Any value that is not common or included among the predefined options must be preceded by ‘_’, e.g.,
"_new_approach".

• Curated files must be named according to the following nomenclature:
[first_author_surname]_[first_paper_title_word].json; e.g., iglesias_time-activity.json. More title words
can be added to avoid matching.

• Whenever a field allows an array of values, the name finishes with s. Otherwise, it only allows one value. For
example:

"1st_author": "Chekhov, A.",
"authors": ["Chekhov, Anton", "de Maupassant, Guy", "Stifter, Adalbert"]

• Fields are established according to two granularity levels for the curation process: basic and complete. Second
level fields are distinguished by an “(optional)” next to their name. First level fields (basic, priority) are all the
remaining fields, which are mandatory.

• Additional fields for human readability can be added (e.g., for leaving comments), and the name of this field
should be preceded by ‘_’, e.g., "_comment".

• The information in each main block is always to be taken in its context. For example, when looking at whether
the data is "raw" or "preprocessed" in the Data block, consider the state of the data before the prepro-
cessing phase.

• In addition to the documentation, please check the supporting examples and templates for clarification:

– example_basic.json

– example_complete.json

– template_basic.json

– template_complete.json

V2 version: 1

nta-meta-analysis Documentation, Release

2 V2 version:

CHAPTER 1

Repository Organization

At the moment there are 2 versions of the format, v1 and v2. We are in the process of converting all the v1 files into
v2 of our format. This documentation includes the content for both versions, and the repository itself also supports
both formats at the moment. However, when we have converted all the files to v2, the v1 files will be removed from
the repository and documentation.

This is the current structure of the repository:

.
data # stores input of data curators

datasets.json # v1 datasets
feature_aliases.json # aliases of common features (start with '_')
iana_ies.csv # complete list of IANA Information Elements
own_ies.csv # list of custom Information Elements
papers # v1 papers

...
tools.json # v1 tools
v2_papers # v2 papers

...
datasets_specification.txt # specification of the format for data/datasets.json
docs # documentation of the project

...
example_basic.json # example for v2 (basic)
example_complete.json # example for v2 (complete)
processing # processing tools for v1

...
schema_v2.json # JSON schema for v2
specification.txt # specification for features (and for v1)
tools_specification.txt # specification of the format for data/tools.json
v2_processing # processing tools for v2

...
verify.sh # verification script for v2

3

nta-meta-analysis Documentation, Release

4 Chapter 1. Repository Organization

CHAPTER 2

Main Blocks

The main blocks are ordered according to the typical processing pipeline::

Data > Preprocessing > Analysis Method > Evaluation > Result

The Reference block contains information about the publication itself (title, authors, etc) and the curator of the paper.

The Data block contains information about the datasets used in the publication.

The Preprocessing block contains information about the processing done to the data before passing it on to an analysis
method. This process usually consists of extracting vectors of features from the original data.

The Analysis Method block contains information about what analytical methods were used in the publication.

The Evaluation block contains in information about how the performance of the methods in the previous section was
evaluated.

The Result block contains information about the conclusions of the paper. The information for this block is usually
completely contained in the conclusion section of the paper.

Additionally to the main blocks, in order to avoid confusion with past/future versions of the format, there is a manda-
tory field for version (which is always “v2”).

2.1 JSON example

Summary with only the main blocks:

{
"version": "v2.1",
"reference": {
...

},
"data": {
...

},

5

nta-meta-analysis Documentation, Release

"preprocessing": {
...

},
"analysis_method": {
...

},
"evaluation": {
...

},
"result": {
...

}
}

Example of a complete file:

{
"version": "v2.1",
"reference": {
"title": "time-activity footprints in ip traffic",
"authors": ["Iglesias, Félix", "Zseby, Tanja"],
"publication_name": "computer networks",
"publication_type": "peer_reviewed_journal",
"year": 2016,
"organization_publishers": [

"elsevier"
],
"pages_number_of": 12,
"bibtex": {

"type": "article",
"volume": "107, Part 1",
"issue": "missing",
"pages": "64--75"

},
"access_open": false,
"curated_by": "felix",
"curated_last_revision": "10-04-2017",
"curated_revision_number": 1

},
"data": {
"datasets": [

{
"name": "mawi-2015",
"availability": "public",
"format": "packet",
"types": [
"ip"

],
"generation": "captured",
"generation_year": 2015,
"covered_period": "minutes",
"details": [
"raw",
"no_payload"

],
"subsets": [
"01-01-2015",
"15-04-2015",

6 Chapter 2. Main Blocks

nta-meta-analysis Documentation, Release

"31-07-2015"
],
"anonymized": true

}
]

},
"preprocessing": {
"performed_feature_selection": true,
"packet_analysis_oriented": false,
"flow_analysis_oriented": true,
"flow_aggregation_analysis_oriented": false,
"tools": [

{
"name": "tshark",
"detail": "v2.0.0",
"availability": "public"

},
{

"name": "own_perl_scripts",
"detail": "none",
"availability": "private"

}
],
"normalization_type": "range",
"transformations": [

"flow_extraction",
"log",
"time_series",
"feature_operation",
"class_separation"

],
"final_data_format": "numerical_vectors",
"feature_selections": [

{
"name": "max-relevance min-redundancy filter (correlation and MI based)",
"type": "filter",
"classifier": "none",
"role": "main"

}
],
"flows": [

{
"selection": "expert_knowledge",
"role": "main",
"main_goal": "traffic_classification",
"active_timeout": 60,
"idle_timeout": 60,
"bidirectional": false,
"features": [
{

"log": [
"octetTotalCount"

]
},
{

"log": [
"packetTotalCount"

]

2.1. JSON example 7

nta-meta-analysis Documentation, Release

},
"_activeForSeconds",
{

"log": [
{
"divide": [
"octetTotalCount",
"_activeForSeconds"

]
}

]
},
{

"log": [
{
"divide": [
"packetTotalCount",
"_activeForSeconds"

]
}

]
},
"__maximumConsecutiveSeconds",
"__minimumConsecutiveSeconds",
{

"maximum": [
"_interPacketTimeMicroseconds"

]
},
{

"minimum": [
"_interPacketTimeMicroseconds"

]
},
"__numberof_activity_intervals"

],
"key_features": [
"sourceIPv4Address",
"destinationIPv4Address",
"protocolIdentifier"

]
},
{

"selection": "feature_selection",
"role": "main",
"main_goal": "traffic_classification",
"active_timeout": 60,
"idle_timeout": 60,
"bidirectional": false,
"features": [
{

"log": [
"octetTotalCount"

]
},
{

"log": [
{

8 Chapter 2. Main Blocks

nta-meta-analysis Documentation, Release

"divide": [
"octetTotalCount",
"_activeForSeconds"

]
}

]
},
{

"maximum": [
"_interPacketTimeMicroseconds"

]
},
{

"minimum": [
"_interPacketTimeMicroseconds"

]
}

],
"key_features": [
"sourceIPv4Address",
"destinationIPv4Address",
"protocolIdentifier"

]
}

]
},
"analysis_method": {
"supervised_learning": false,
"unsupervised_learning": true,
"semisupervised_learning": true,
"anomaly_detection": true,
"tools": [

{
"name": "matlab_fuzzyclusteringtoolbox",
"availability": "public",
"detail": "none"

},
{

"name": "own_matlab_scripts",
"availability": "private",
"detail": "none"

}
],
"algorithms": [

{
"name": "fuzzy clustering",
"subname": "gustafson-kessel",
"learning": "unsupervised",
"role": "main",
"type": "clustering",
"metric/decision_criteria": "mahalanobis",
"tools": [
{

"name": "matlab_fuzzyclusteringtoolbox",
"detail": "none",
"availability": "public"

}
],

2.1. JSON example 9

nta-meta-analysis Documentation, Release

"source": "referenced",
"parameters_provided": false

},
{

"name": "mad-based outlier removal",
"subname": "double mad",
"learning": "statistics/model_fit",
"role": "main",
"type": "anomaly_detection",
"metric/decision_criteria": "mahalanobis",
"tools": [
{
"name": "own_matlab_scripts",
"detail": "none",
"availability": "private"

}
],
"source": "referenced",
"parameters_provided": false

}
]

},
"evaluation": {
"algorithm_comparison": false,
"internal_validation": true,
"external_validation": true,
"dpi-based_validation": false,
"port-based_validation": false,
"pre-knowledge-based_validation": false,
"manual_verification": true,
"implementation_in_real_scenario": false,
"train_test_separation": false,
"methods": [

{
"name": "manual verification",
"type": "external",
"metrics": [
"heuristic"

],
"source": "popular"

},
{

"name": "weighted vote",
"type": "nest",
"metrics": [
"vote"

],
"source": "popular"

},
{

"name": "classification entropy",
"type": "internal",
"metrics": [
"clustering_metrics"

],
"source": "referenced"

},
{

10 Chapter 2. Main Blocks

nta-meta-analysis Documentation, Release

"name": "partition index",
"type": "internal",
"metrics": [
"clustering_metrics"

],
"source": "referenced"

},
{

"name": "xie and benix index",
"type": "internal",
"metrics": [
"clustering_metrics"

],
"source": "referenced"

},
{

"name": "clustering gain",
"type": "internal",
"metrics": [
"clustering_metrics"

],
"source": "referenced"

},
{

"name": "own cluster validity",
"type": "internal",
"metrics": [
"clustering_metrics"

],
"source": "missing"

}
]

},
"result": {
"main_goal": "traffic_classification",
"focus_main": "methodology/framework",
"claimed_improvements": [

"improved_data_description",
"improved_traffic_classification",
"fast_processing",
"_flaw_detection"

],
"reproducibility": "replicable",
"subgoals": [

"traffic_classification"
]

}
}

2.1. JSON example 11

nta-meta-analysis Documentation, Release

12 Chapter 2. Main Blocks

CHAPTER 3

Features

The features are the hardest part of this format, as they are the most complex. However, having a complete description
of the feature-set used in a paper in this format allows the use of an extractor tool to automatically reproduce the
feature vectors used in the paper.

3.1 Concepts

• Features A feature represents a value which can be extracted from a packet/flow/flow aggregation. These can
be base features (often can be computed by looking only at packet headers), or some more complicated
things (like the entropy of a value that can be found in the packet headers). In our format, each feature
is a combination of operations applied to base features. Each feature must be only one scalar value (as
opposed to a vector).

• Base features Base features are the basic elements of our features format. These are always represented by
strings.

Examples: "packetTotalCount", "octetTotalCount", "sourceIPv4Address"

• Operations We have multiple operations defined, which receive features as arguments. These are defined as a
JSON dictionary with one key, in which the key is the name of the operation, and the corresponding value
is a list of arguments.

Examples: "mean", "add", "log"

• Selections We also have an option to filter out specific packets in a flow/flow aggregation. This allows us
for example to count the number of packets with a specific property (e.g., packet size larger than some
threshold).

3.2 Base Features

We call base features those which are not obtained by combining other features. These are represented in this format
by JSON strings.

13

nta-meta-analysis Documentation, Release

We try to use the names of the IPFIX information elements defined by IANA. For features that we can not get out of
combining IANA features with our limited set of operations, we have two naming options:

• if the feature is expected to be used many times (e.g.: there are some KDD ‘99 features which we cannot
represent using IANA features and operations, but they are used in many papers), use a _ as prefix to a descriptive
feature name. This features are listed in own_ies.csv. If you want to specify a new _ feature, you need to
add it there.

• if the feature is very specific to this paper, use __ (double _) as prefix to a descriptive feature name

In both of this cases, try to give descriptive feature names, similar to the the ones used by IANA. Names
should use camel case and start with a lower-case character. They should follow the following regex: ^[_]{1,
2}[a-z0-9]+([A-Z][a-z0-9]*)*$.

This means that all base features that do not start with _ have to be IPFIX information elements defined by
IANA.

There is still another case, which is features that are repeated often, and are a combination of IANA features. In
this case, use a descriptive feature name which starts with _ as an alias for it. A complete list of aliases is in
feature_aliases.json; please add additional aliases there.

3.3 Operations

Besides the base features, we also have some operations, by which we can get new features.

We can have two kinds of operations:

• value The output is a single scalar value.

• values The output is a vector of values (possibly of variable size).

Note: The highest level operation in a feature cannot be one that is defined in the <values> directive, as that
outputs multiple values.

Below is a grammar defining the list of possible operations, and their respective arguments:

Value:

<value> always outputs a single number (a <value>)
<value> -> {"mean": [<values>]}
<value> -> {"stdev": [<values>]}
<value> -> {"variance": [<values>]}
<value> -> {"median": [<values>]}
<value> -> {"quantile": [<values>, <value>]} # second argument is a number from 0 to
→˓1, where 0 is the minimum and 1 the maximum
<value> -> {"minimum": [<values>]} | {"minimum": [<value>, <value>+]}
<value> -> {"maximum": [<values>]} | {"maximum": [<value>, <value>+]}
<value> -> {"argmin": [<values>]} | {"argmin": [<value>, <value>+]}
<value> -> {"argmax": [<values>]} | {"argmax": [<value>, <value>+]}
<value> -> {"floor": [<value>]}
<value> -> {"ceil": [<value>]}
<value> -> {"mode": [<values>]} # returns the most frequent element in <values>
<value> -> {"mad": [<values>]} # returns the mean absolute deviation of <values>
<value> -> {"moment": [<values>, <value>]} # returns the <value>-th standardized
→˓moment of <values>
<value> -> {"count": [<selection>]} # returns number of selected objects

14 Chapter 3. Features

http://www.iana.org/assignments/ipfix/ipfix.xhtml#ipfix-information-elements

nta-meta-analysis Documentation, Release

<value> -> {"distinct": [<values>]} # returns number of distinct values in <values>
→˓in the selected objects
<value> -> {"apply": [<value>, <selection>]} # returns a single feature value for
→˓the selection of objects
<value> -> {"add": [<value>, <value>+]} | {"add": [<values>]}
<value> -> {"subtract": [<value>, <value>]}
<value> -> {"multiply": [<value>, <value>+]} | {"multiply": [<values>]}
<value> -> {"divide": [<value>, <value>]}
<value> -> {"log": [<value>]}
<value> -> {"exp": [<value>]}
<value> -> {"entropy": [<values>]}
<value> -> {"get": [<value>, <values>]} | {"get": [<value>, <value>]} # gets the
→˓<value>-th element of the second argument (if the second argument is also <value>,
→˓the elements are bits)
<value> -> {"ifelse": [<logic>, <value>, <value>]} # if the condition is true,
→˓return the first argument else the second
<value> -> {"left_shift": [<value>, <value>]} # shift the bits in the first value
→˓left by the second value
<value> -> {"right_shift": [<value>, <value>]} # shift the bits in the first value
→˓right by the second value

Values:

<values> outputs a list of <value>
<values> -> {"map": [<down>, <selection>]} # returns a feature value for each object
→˓in selection
<values> -> {"slice": [<value>, <value>, <values>]} | {"slice": [<value>, <value>,
→˓<value>]} # gets third_argument[first_argument, second_argument] (if the third
→˓argument is also <value>, the elements are bits); indexing is like in Python
<values> -> {"quantile_range": [<values>, <value>, <value>]} # e.g. {"quantile_range
→˓": [<values>, 0, 0.25]} returns all values in the first quartile
<values> -> {"flat_map": [<down2>, <selection>]} | {"flat_map": [<down2>, <selection>,
→˓ <selection>]} # only applicable for flow-aggregations; just one selection applies
→˓same selection for both flows and packets; two selections applies the 1st selection
→˓for flows and the second for packets
<values> -> <down> # features from one level-down (in flows, packet features; in
→˓flow-aggregations, flow features)

3.4 Selections

The selection directive is useful for filtering out packets or any other information which might not be interesting
for a particular feature. Intuitively, using selection on a flow will select packets (that is, the result will be the packets
that fulfill the conditions in the selection), and in a flow_aggregation will output either flows or packets, depending on
the selection used. Because of this distinction, for each selection that outputs packets, there is another selection that
outputs flows, and contains "_flows" in its name.

This distinction between outputting flows or packets is necessary, since you can select objects with
"octetTotalCount" > 1000, and in this case it’s ambiguous whether you want to select all packets with more
than 1000 bytes, or all the flows with more than 1000 bytes. Note that some features only make sense for flows (e.g.,
"packetTotalCount").

Its syntax is the following:

3.4. Selections 15

nta-meta-analysis Documentation, Release

<selection> outputs a list of objects (packets, flows or aggregations, depending on
→˓what kind of feature is used)
<selection> -> {"select": [<logic-down>]}
<selection> -> {"select_slice": [<value>, <value>]} | {"select_slice": [<value>,
→˓<value>, <selection>]} # selects a slice from the first value to the second value,
→˓with Python-like indexing (if a <selection is not provided, default to selecting
→˓everything)
<selection> -> "forward" | "backward" # special cases for selection; select objects
→˓in the forward (or backward) direction

The logic directive contains the test to decide what gets or not filtered. Definition of logic:

<logic> is used for selection, should be evaluated for each object
<logic> -> {"and": [<logic>+]}
<logic> -> {"or": [<logic>+]}
<logic> -> {"geq": [<value>, <value>]}
<logic> -> {"leq": [<value>, <value>]}
<logic> -> {"less": [<value>, <value>]}
<logic> -> {"greater": [<value>, <value>]}
<logic> -> {"equal": [<value>, <value>]}
<logic> -> true | false
<logic-down> -> {"and": [<logic-down>+]}
<logic-down> -> {"or": [<logic-down>+]}
<logic-down> -> {"geq": [<down>, <value>]}
<logic-down> -> {"leq": [<down>, <value>]}
<logic-down> -> {"less": [<down>, <value>]}
<logic-down> -> {"greater": [<down>, <value>]}
<logic-down> -> {"equal": [<down>, <value>]}
<logic-down> -> true | false

3.5 Example Features

The following are examples of the features directive.

"features": [
"protocolIdentifier",
"sourceTransportPort",
"destinationTransportPort",
"octetTotalCount",
"packetTotalCount",
"_activeForSeconds",
{"divide": ["octetTotalCount", "_activeForSeconds"]},
{"divide": ["packetTotalCount", "_activeForSeconds"]},
"__maximumConsecutiveSeconds",
"__minimumConsecutiveSeconds",
{"maximum": ["_interPacketTimeMicroseconds"]},
{"minimum": ["_interPacketTimeMicroseconds"]},
{"count": [{"select": [{"geq": ["_interPacketTimeMicroseconds", 1000000]}]}]}

]

"features": [
{"entropy": ["sourceIPv4Address"]},
{"entropy": ["destinationIPv4Address"]},

16 Chapter 3. Features

nta-meta-analysis Documentation, Release

{"entropy": ["destinationTransportPort"]},
{"entropy": ["_flowDurationSeconds"]},
{"multiply": [{"argmax": [{"count": [{"select": [{"less": ["ipTotalLength", 128]}]}

→˓]}, {"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 128]}]}, {"select": [{
→˓"less": ["ipTotalLength", 256]}]}]}]}, {"count": [{"and": [{"select": [{"geq": [
→˓"ipTotalLength", 256]}]}, {"select": [{"less": ["ipTotalLength", 512]}]}]}]}, {
→˓"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 512]}]}, {"select": [{"less
→˓": ["ipTotalLength", 1024]}]}]}]}, {"count": [{"and": [{"select": [{"geq": [
→˓"ipTotalLength", 1024]}]}, {"select": [{"less": ["ipTotalLength", 1500]}]}]}]}]}, {
→˓"add": [{"entropy": [{"count": [{"select": [{"less": ["ipTotalLength", 128]}]}]}]},
→˓{"entropy": [{"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 128]}]}, {
→˓"select": [{"less": ["ipTotalLength", 256]}]}]}]}]}, {"entropy": [{"count": [{"and
→˓": [{"select": [{"geq": ["ipTotalLength", 256]}]}, {"select": [{"less": [
→˓"ipTotalLength", 512]}]}]}]}]}, {"entropy": [{"count": [{"and": [{"select": [{"geq
→˓": ["ipTotalLength", 512]}]}, {"select": [{"less": ["ipTotalLength", 1024]}]}]}]}]},
→˓ {"entropy": [{"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 1024]}]}, {
→˓"select": [{"less": ["ipTotalLength", 1500]}]}]}]}]}]}]},
{"get": [14, "tcpControlBits"]}

]

"features": ["_KDD5", "_KDD23", "_KDD3", "_KDD6", "_KDD35", "_KDD1"]

3.5. Example Features 17

nta-meta-analysis Documentation, Release

18 Chapter 3. Features

CHAPTER 4

Reference

4.1 Properties

4.1.1 title

(string) The title of the paper.

"title": "time-activity footprints in ip traffic"

4.1.2 authors

(array of strings) Array with the authors’ list. Format as in BibTeX. Check this StackExchange thread for details.

Warning: Make sure to keep the order of the names the same as the paper!

Example:

"authors": ["Chekhov, Anton", "de Maupassant, Guy", "Stifter, Adalbert"]

Example with only one author:

"authors": ["Chekhov, Anton"]

4.1.3 publication_name

(string) Name of the publication (journal or conference). Please, use the most common name used in scientific citations
(without abbreviations and in lower case). Example:

19

https://tex.stackexchange.com/questions/557/how-should-i-type-author-names-in-a-bib-file

nta-meta-analysis Documentation, Release

"publication_name": "ieee transactions on networking"

4.1.4 publication_type

(string) It marks the type of publication. Please, consider carefully if the publication fits any of the following default
labels (values):

• "peer_reviewed_journal" journal with a peer review process.

• "peer_reviewed_conference" conference with a peer review process.

• "arxiv" paper is published only in arxiv.

• "technical_report" technical report, usually without peer review, and published in the au-
thor’s/university’s page.

Example:

"publication_type": "peer_reviewed_journal"

4.1.5 year

(numerical) The year of the publication release. Example:

"year": 2016

4.1.6 organization_publishers (optional)

(array of strings) Please, consider carefully if the publication fits one or more of the following default organizations
(values):

• "ieee"

• "elsevier"

• "acm"

• "springer"

• "wiley"

• "taylor_&_francis"

• "mdpi"

Example:

"organization_publishers": ["acm"]

4.1.7 pages_number_of (optional)

(numerical) The total number of pages of the paper. Example:

"pages_number_of": 8

20 Chapter 4. Reference

nta-meta-analysis Documentation, Release

4.1.8 bibtex

(object) Various BibTeX-related fields. All fields in this object are strings.

Note: This object supports extra fields, so you are free to add other BibTeX properties.

type

(string, for bibtex citation compatibility) Please, consider carefully if the publication fits one or more of the following
default bibtex types (values):

• "article"

• "inproceedings"

• "techreport"

• "inbook"

• "misc"

Example:

"type": "article"

volume (optional)

(string, for bibtex citation compatibility) The volume of the related multi-volume publication or book. If there is no
volume, write "missing". Example:

"volume": "8"

issue (optional)

(string, for bibtex citation compatibility) The issue or number of the related publication or book. If there is no issue or
number, write "missing". Example:

"issue": "5"

pages (optional)

(string, for bibtex citation compatibility) The page range of the paper. If there is no page range, write "missing".
Write “–” between page numbers. Example:

"pages": "102--114"

4.1.9 access_open (optional)

(boolean) Is the paper open access for any normal Internet user? Example:

4.1. Properties 21

nta-meta-analysis Documentation, Release

"access_open": true

4.1.10 curated_by

(string) Last person who reviewed/curated/modified this JSON file. Example:

"curated_by": "ferreira, d."

4.1.11 curated_last_revision

(string, format: dd-mm-yyyy) Date of the last revision/modification of this JSON file. Example:

"curated_last_revision": "10-01-2017"

4.1.12 curated_revision_number

(numerical) Number of the total revisions/modification/updates carried out on this specific JSON file. Minimum
number is 1. Example:

"curated_revision_number": 3

4.2 JSON example (reference, complete)

"reference": {
"title": "time-activity footprints in ip traffic",
"authors": ["Iglesias, Félix", "Zseby, Tanja"],
"publication_name": "computer networks",
"publication_type": "peer_reviewed_journal",
"year": 2016,
"organization_publishers": ["elsevier"],
"pages_number_of": "12",
"bibtex": {
"type": "article",
"volume": "107, Part 1",
"issue": "missing",
"pages": "64--75"

},
"access_open": false,
"curated_by": "iglesias, f.",
"curated_last_revision": "10-04-2017",
"curated_revision_number": 2

}

22 Chapter 4. Reference

CHAPTER 5

Data

5.1 Properties

5.1.1 datasets

(array of objects) datasets can contain several dataset-objects. A dataset-object is composed of several fields.

name

(string) The name that identifies the dataset. By default we use a source_year nomenclature. Example:

"name": "mawi-2015"

availability

(string) It establishes how a normal Internet user can access the specific dataset. Please, consider carefully if the
dataset-accesibility fits any of the following default labels (values):

• "public"

• "public_on_demand"

• "private"

• "lost_source" when the paper provides the source/link of the dataset but this is not valid any more.

Example:

"availability": "public"

23

nta-meta-analysis Documentation, Release

format (optional)

(string) It specifically addresses if the dataset contains packet or flow descriptions. Therefore, the options by default
are: "packet" and "flow". Example:

"format": "flow"

types (optional)

(array of strings) It specifically addresses if the dataset has been pre-filtered and only contains some types of data
based on protocols, versions, etc. Consider labels (values) as filter keys (e.g., if "ipv4" is used, there is no need to
add "tcp" or "udp" too). Please, check if the dataset-type fits any of the following default labels (values):

• "ip"

• "ipv4"

• "ipv6"

• "tcp"

• "http"

• "udp"

• "icmp"

• "dns"

• "tls"

• "ipsec"

Note: The most general should be used when all of its subsets are used. For example, ["ipv4", "ipv6"] is the
same as ["ip"].

Example:

"types": ["ipv4"]

generation (optional)

(string) It contains information about how the dataset was generated. Please, consider carefully if the dataset-
generation fits any of the following default labels (values):

• "captured" when the dataset has been directly captured from network sensors.

• "synthetic"when the dataset has been generated by algorithms for artificial traffic generation. This includes
capturing data in the network, if the packets were algorithmically generated.

• "altered_captured" when the dataset is modeled/based on real captures, but manipulated to fulfill some
specific criteria (e.g., increase the presence of certain attacks). Also includes datasets generated by running the
actual application and capturing its traffic.

• "mixed" whenever real captures or capture-based traffic is mixed with synthetic traffic.

24 Chapter 5. Data

nta-meta-analysis Documentation, Release

Note: There is a slight interception between "synthetic" and "altered_captured". Hopefully common
sense is enough to disambiguate between them for each paper. If this is not the case for a particular paper, a consensus
among experts is necessary.

Example:

"generation": "captured"

generation_year

(numerical or array of numberical) The year the dataset was captured or generated. Example:

"generation_year": 2015

covered_period (optional)

(string) It tries to give an approximate impression about the time covered by the used dataset during analysis. As a
criterion, if the covered_period is below two times the unity, the selected label should be the immediately below, e.g.,
if the dataset covers 90 minutes, covered_period should be "minutes"; however, if the dataset covers 120 minutes,
covered_period should be "hours". Please, consider carefully if the covered period fits any of the following default
labels (values):

• "minutes"

• "hours"

• "days"

• "weeks"

• "months"

• "years"

Example:

"covered_period": "hours"

details (optional)

(array of string) Suitable to make a record of special characteristics of the dataset that are worth considering in meta-
analysis. Please, consider carefully if any of the following default labels (values) are applicable:

• "raw" data is shown as came directly from sensors or generators with no shape/format transformation. Includes
both packet captures (e.g., tcpdump) and flow records (e.g., NetFlow).

• "preprocessed" data has been transformed/mapped during a preprocessing step. Such preprocessing must
have changed somehow the data format, for example, transforming it in structured vectors (i.e., filtered data is
still "raw").

• "no_payload" when payload has been removed from data. Payload removal does not make data prepro-
cessed.

Example:

5.1. Properties 25

nta-meta-analysis Documentation, Release

"details": ["raw", "no_payload"]

subsets

(array of strings) The dataset might consist of diverse subsets. Here we specify which subsets have been used during
the analysis. If it is not clearly specified in the paper with a proper name, the default nomenclature of the subsets refer
to the date if possible (format: hh-dd-mm-yyyy). Example:

Note: You can also use this field when a dataset has been divided into constant time pieces (for example, when a
one-hour long dataset was divided into 60 1-second long datasets)

"subsets": ["03-11-2014", "30-06-2015", "27-12-2016"]

anonymized (optional)

(boolean) Whether the dataset is anonymized or not.

Example:

"anonymized": true

5.2 JSON example (data, complete)

"data": {
"datasets": [
{

"name": "mawi-2015",
"availability": "public",
"format": "packet",
"types": "ip",
"generation": "captured",
"generation_year": 2015,
"covered_period": "minutes",
"details": ["raw","no_payload"],
"subsets": ["01-01-2015","15-04-2015","31-07-2015"]

},
{

"name": "kddcup-1999",
"availability": "public",
"format": "packet",
"types": "ipv4",
"generation": "altered_captured",
"generation_year": 1999,
"covered_period": "missing",
"details": ["preprocessed"],
"subsets": ["original","original_10_percent","corrected"],
"anonymized": true

}
]

}

26 Chapter 5. Data

CHAPTER 6

Preprocessing

6.1 Properties

6.1.1 performed_feature_selection

(boolean) It states if a feature selection process is carried out in the paper to select the suitable set of features for the
analysis. Example:

"performed_feature_selection": true

6.1.2 packet_analysis_oriented

(boolean) It states if, after the preprocessing phase, the data to analyze is intended to be explored packet by packet
(e.g., by methods that perform deep packet inspection). Example:

"packet_analysis_oriented": false

6.1.3 flow_analysis_oriented

(boolean) It states if, after the preprocessing phase, the data to analyze is intended to be explored flow by flow.
Example:

"flow_analysis_oriented": true

6.1.4 flow_aggregation_analysis_oriented

(boolean) It states if, after the preprocessing phase, the data to analyze has been aggregated according to either features
or flows. Therefore, the final analysis will not explore flows or packets, but usually networks as a whole by studying
the aggregated values (e.g., time series showing the use of network resources). Example:

27

nta-meta-analysis Documentation, Release

"flow_aggregation_analysis_oriented": false

6.1.5 tools

(array of objects) Here we describe the tools used for the preprocessing (data extraction, feature generation and
transformations).

Example:

"tools": [
{

"name": "tshark",
"detail": "v2.0.0",
"availability": "public"

},
{

"name": "own_python_scripts",
"detail": "none",
"availability": "private"

},
{

"name": "own_perl_scripts",
"detail": "none",
"availability": "private"

}
]

name

(string) We use the following keys for the nomenclature:

1. if they are released tools, software or suites, they must be appear with the corresponding name; e.g., tshark, silk,
tcpdump.

2. if they consist on scripts or plugins for well-known programming languages, suites, packages or environments,
the name must reflect such dependency; e.g., matlab_scripts, java_scripts, python_scripts.

3. only the top-dependency must be shown (e.g., matlab). Additional relevant packages running under the same
environment should be also added as tools.

4. names start with own_ if they are presented in the paper or referred to previous publications by the same authors
(and they do not fit case ‘a.’); e.g., own_matlab_scripts.

Example:

"name": "tshark"

detail (optional)

(string) This field expresses important details about the referred tools (e.g., version, release). If no details are required,
"none" should be written in the corresponding place. Example:

"detail": "v2.0.0"

28 Chapter 6. Preprocessing

nta-meta-analysis Documentation, Release

availability

(strings) This field expresses the availability of the referred tool. Please, consider carefully the following default labels
(values):

• "public"

• "private"

• "public_on_demand"

• "commercial"

Example:

"availability": "public"

6.1.6 normalization_type

(string) This field saves information about possible normalization of numerical data. "no" stands for cases where no
normalization is applied but numerical attributes are used. "not_applicable" is for cases where normalization
makes no sense (e.g., all analyzed fields are nominal or categories). Please, consider carefully the following default
labels (values):

"no", "not_applicable", "range", "zscore", "decimal_scaling", "quartile"

Note: do not confuse "quartile" with "quantile". "quartile" normalization uses Q1 (25th percentile)
and Q3 (75th percentile) for normalization.

Example:

"normalization_type": "range"

6.1.7 transformations

(array of strings) This field collects all transformations that are performed after the dataset retrieval and previous to
the analysis phase (i.e., they are part of the data preparation). Please, consider carefully the following listed operations
(values):

"no", "sampling", "filtering", "log", "map", "graph", "feature_aggregation",
"flow_extraction", "entropy", "time_series", "feature_operation",
"class_separation"

Note: This field is redundant with the features in the packets/flows/flow aggregations. However, this field is manda-
tory while the feature fields are optionals.

Example:

"transformations": ["sampling", "flow_extraction", "class_separation"]

6.1. Properties 29

nta-meta-analysis Documentation, Release

6.1.8 final_data_format

(string) It collects the format of data after the preprocessing and previous to the analysis phase. Please, consider
carefully the following default labels (values):

• "numerical_vectors"

• "nominal_vectors"

• "mixed_vectors"

• "strings"

• "time_series"

Example:

"final_data_format": "numerical_vectors"

6.1.9 feature_selections (optional)

(array of objects) feature_selections can contain several feature_selection-objects. A feature_selection-object is com-
posed of several fields:

name

(string) The name that identifies the feature selection technique. Example:

"name": "forward_selection"

type (optional)

(string) It identifies the type of feature selection method. Please, consider carefully the following default labels (val-
ues):

• "wrapper"

• "filter"

• "hybrid"

• "nest" when it embeds or operates in a higher level than other nested methods.

• "feature_reduction" when it refers to methods that change the space and transform the initial set of
features into a new set of features with less dimensions (e.g., PCA, LDA).

Example:

"type": "wrapper"

classifier (optional)

(string) It identifies the wrapped classifier that is used to evaluate the subset performance. If classifier is not applicable
(e.g., for filters), write "none". Example:

30 Chapter 6. Preprocessing

nta-meta-analysis Documentation, Release

"classifier": "naive_bayes"

role (optional)

(string) This field is meaningful when diverse feature selection methods are compared. Default values are: "main",
when the method led to the best solutions; and "competitor" for other cases. If only one feature selection method
is used, it is always "main". Example:

"role": "main"

6.1.10 packets (optional)

(array of objects) packets can contain several packet-objects. A packet-object is defined when analysis in the paper
are conducted on packets, i.e., analysis tools check packets independently or/and packet contents. Use this if you have
a feature-vector for each packet. A packet-object is composed of several fields:

selection (optional)

(string) It identifies how the features extracted to analyze packets were selected. Please, consider carefully the follow-
ing default labels (values):

• "in_dataset" if the analyzed feature set is exactly the same feature set of the dataset before preprocessing.

• "feature_selection" if a feature selection process was conducted and led to the current feature subset.

• "study_based" if the selected features are taken from a previous study referred in the paper.

• "tool_based" if the selected features are obtained from an extraction or preprocessing tool.

• "expert_knowledge" if the selection of features is endorsed by reasoning and proper explanations in the
paper.

Example:

"selection": "in_dataset"

role (optional)

(string) This field is meaningful when diverse preprocessing methods are compared.

Default values are:

• "main" when the method led to the best solutions.

• "validation" for the specific case of packets, when packet inspection is used as baseline or ground truth for
validating flow-based analysis.

• "competitor" otherwise.

Example:

"role": "validation"

6.1. Properties 31

nta-meta-analysis Documentation, Release

main_goal (optional)

(string) This field saves the main goal of preparing the data according to this packet-based format. Please, consider
the following possible labels (values):

• "anomaly_detection"

• "application_classification"

• "attack_classification"

• "botnet_detection"

• "classification_for_qos"

• "classification_of_encrypted_traffic"

• "ddos_detection"

• "dos_detection"

• "http_intrusion_detection"

• "network_properties_monitoring"

• "p2p_botnet_detection"

• "p2p_traffic_classification"

• "probe_detection"

• "remote_to_local_detection"

• "specific_malware_detection"

• "traffic_classification"

• "traffic_rate_prediction"

• "traffic_visualization"

• "user_to_root_detection"

Example:

"main_goal": "traffic_classification"

features (optional)

(array of objects)

Describes the features used in the paper. See Features for complete information.

6.1.11 flows (optional)

(array of objects) flows can contain several flow-objects. A flow-object is defined when analysis in the paper are
conducted on flows, i.e., analysis tools check the behaviour of connection and connection attempts. Use this if you
have a feature-vector for each flow. A flow-object is composed of several fields:

selection (optional)

Like in packet-object.selection.

32 Chapter 6. Preprocessing

nta-meta-analysis Documentation, Release

role (optional)

Like in packet-object.role.

main_goal (optional)

Like in packet-object.main_goal.

active_timeout (optional)

(numerical, in seconds) This field defines the maximum duration of a flow. Example:

"active_timeout": 60

idle_timeout (optional)

(numerical, in seconds) This field defines the time in which, if no activity has been detected, the flow is considered as
finished. Example:

"idle_timeout": 5

bidirectional (optional)

(boolean) This field marks if transmissions between two devices A and B are considered monodirectional (false),
i.e., A>B and A<B are two different flows; or bidirectional (true), i.e., A>B and A<B belong to the same flow .
Example:

"bidirectional": true

features (optional)

(see features)

key_features (optional)

(array of objects)

Describes the features used to aggregate the packets. That is, packets which share these features will be put in the
same flow. In case all packets should be in the same flow, use an empty list ([]).

For the features, see features.

6.1.12 flow_aggregations (optional)

(array of objects) flow_aggregation can contain several flow_aggregation-objects. A flow_aggregation-object is de-
fined when analysis in the paper are conducted on aggregation of features or flows, i.e., analysis tools usually describe
networks as a whole. Use this if you have a feature-vector for each set of flows. A flow_aggregation-object is com-
posed of several fields:

6.1. Properties 33

nta-meta-analysis Documentation, Release

selection (optional)

Like in packet-object.selection.

role (optional)

Like in packet-object.role.

main_goal (optional)

Like in packet-object.main_goal.

active_timeout (optional)

Like in flow-object.active_timeout.

bidirectional (optional)

Like in flow-object.bidirectional.

features (optional)

(see features)

key_features (optional)

(array of objects)

Describes the features used to aggregate the flows. That is, flows which share these features will be put in the same
flow aggregation. In case all flows should be in the same flow, use an empty list ([]).

For the features, see features.

6.2 JSON example (preprocessing, complete)

"preprocessing": {
"performed_feature_selection": true,
"packet_analysis_oriented": false,
"flow_analysis_oriented": true,
"flow_aggregation_analysis_oriented": false,
"tools": [

{
"tool": "tshark",
"detail": "v2.0.0",
"availability": "public"

},
{

"tool": "own_perl_scripts",
"detail": "none",
"availability": "private"

34 Chapter 6. Preprocessing

nta-meta-analysis Documentation, Release

}
],
"normalization_type": "range",
"transformations": ["flow_extraction","log","time_series", "feature_operation",

→˓"class_separation"],
"final_data_format": "numerical_vectors",
"feature_selections": [

{
"name": "max-relevance min-redundancy filter (correlation and MI based)",
"type": "filter",
"classifier": "none",
"role": "main"

}
],
"flows": [

{
"selection": "expert_knowledge",
"role": "main",
"main_goal": "traffic_classification",
"active_timeout": 60,
"idle_timeout": 60,
"bidirectional": false,
"features": [

{"log": ["octetTotalCount"]},
{"log": ["packetTotalCount"]},
"_activeForSeconds",
{"log": [{"divide": ["octetTotalCount", "_activeForSeconds"]}]},
{"log": [{"divide": ["packetTotalCount", "_activeForSeconds"]}]},
"__maximumConsecutiveSeconds",
"__minimumConsecutiveSeconds",
{"maximum": ["_interPacketTimeMicroseconds"]},
{"minimum": ["_interPacketTimeMicroseconds"]},
"__numberof_activity_intervals",

],
"key_features": [

"sourceIPv4Address",
"destinationIPv4Address",
"protocolIdentifier"

]
},
{

"selection": "feature_selection",
"role": "main",
"main_goal": "traffic_classification",
"active_timeout": 60,
"idle_timeout": 60,
"bidirectional": false,
"features": [

{"log": ["octetTotalCount"]},
{"log": [{"divide": ["octetTotalCount", "_activeForSeconds"]}]},
{"maximum": ["_interPacketTimeMicroseconds"]},
{"minimum": ["_interPacketTimeMicroseconds"]},

],
"key_features": [

"sourceIPv4Address",
"destinationIPv4Address",
"protocolIdentifier"

]

6.2. JSON example (preprocessing, complete) 35

nta-meta-analysis Documentation, Release

}
]

},

36 Chapter 6. Preprocessing

CHAPTER 7

Analysis Method

7.1 Properties

7.1.1 supervised_learning

(boolean) It marks if a classification or regression algorithm (or any technique known as supervised learning) was
used during the analysis part (e.g., a decision tree). This field specifically refers to algorithms, not methodologies or
frameworks. Example:

"supervised_learning": true

7.1.2 unsupervised_learning

(boolean) It marks if a clustering algorithm (or any technique known as unsupervised learning) was used during the
analysis part (e.g., DBSCAN). This field specifically refers to algorithms, not methodologies or frameworks. Example:

"unsupervised_learning": false

7.1.3 semisupervised_learning

(boolean) It marks if a algorithm known as semisupervised learning was used during the analysis part (e.g., Transduc-
tive SVM). This field specifically refers to algorithms, not methodologies or frameworks. Example:

"semisupervised_learning": true

7.1.4 anomaly_detection

(boolean) It marks if a algorithm known as an anomaly detection technique was used during the analysis part (e.g.,
LOF). This field specifically refers to algorithms, not methodologies or frameworks. Example:

37

nta-meta-analysis Documentation, Release

"anomaly_detection": true

7.1.5 tools

(array of objects) Here we describe the tools used for the preprocessing (data extraction, feature generation and
transformations).

Example:

"tools": [
{

"name": "tshark",
"detail": "v2.0.0",
"availability": "public"

},
{

"name": "own_python_scripts",
"detail": "none",
"availability": "private"

},
{

"name": "own_perl_scripts",
"detail": "none",
"availability": "private"

}
]

name

(string) We use the following keys for the nomenclature:

1. if they are released tools, software or suites, they must be appear with the corresponding name; e.g., tshark, silk,
tcpdump.

2. if they consist on scripts or plugins for well-known programming languages, suites, packages or environments,
the name must reflect such dependency; e.g., matlab_scripts, java_scripts, python_scripts.

3. only the top-dependency must be shown (e.g., matlab). Additional relevant packages running under the same
environment should be also added as tools.

4. names start with own_ if they are presented in the paper or referred to previous publications by the same authors
(and they do not fit case ‘a.’); e.g., own_matlab_scripts.

Example:

"name": "tshark"

detail (optional)

(string) This field expresses important details about the referred tools (e.g., version, release). If no details are required,
"none" should be written in the corresponding place. Example:

"detail": "v2.0.0"

38 Chapter 7. Analysis Method

nta-meta-analysis Documentation, Release

availability

(strings) This field expresses the availability of the referred tool. Please, consider carefully the following default labels
(values):

• "public"

• "private"

• "public_on_demand"

• "commercial"

Example:

"availability": "public"

7.1.6 algorithms (optional)

(array of objects) algorithms can contain several algorithm-objects. An algorithm-object is composed of several fields:

name

(string) The name that identifies the algorithm main family. Example:

"name": "fuzzy clustering"

subname (optional)

(string) A subname that can be more specific and refer to algorithm specification or subclass. Example:

"subname": "gustafson-kessel"

learning (optional)

(string) It identifies the learning approach of the algorithm. Please, consider carefully the following default labels
(values):

• "supervised"

• "unsupervised"

• "semisupervised"

• "statistics/model_fit" the method uses predefined models, distributions and statistics and tries to
check how real data fit such assumed models, i.e., it finds model parameters, gives summary values or discovers
outliers based on distances to models.

• "nest" when it embeds or operates in a higher level than other nested methods.

• "no" it is somehow not possible to apply the word learning to the used algorithm

Example:

"learning": "supervised"

7.1. Properties 39

nta-meta-analysis Documentation, Release

role (optional)

(string) This field is meaningful when diverse algorithms are compared. Default values are:

• "main" the method led to the best solution.

• "validation" the algorithm is used to establish a ground truth.

• "competitor" for all other cases.

If only one algorithm is used, it is always "main".

Example:

"role": "main"

type (optional)

(string) It identifies the type of algorithm with regard to analysis main approaches. Please, consider carefully the
following default labels (values):

• "classification"

• "regression"

• "clustering"

• "anomaly_detection"

• "heuristics" the algorithm is quite ad-hoc and based on rules and equations defined by the authors’ expert
knowledge.

• "statistics" the algorithm belongs to the statistics domain and uses parametric or non-parametric models
to explain the data.

• "text_matching" the algorithm bases its classification and decisions on searching for specific text strings
or comparing text strings.

Example:

"type": "heuristics"

metric/decision_criteria (optional)

(string) It assesses the used metric, similarity or dissimilarity distance, also the core of the decision making criteria.
Please, consider carefully the following default labels (values):

• "error/fitting_function"

• "euclidean"

• "mutual_information"

• "correlation"

• "jaccard"

• "mahalanobis"

• "hamming"

• "exact_matching"

40 Chapter 7. Analysis Method

nta-meta-analysis Documentation, Release

• "manhattan"

• "probabilistic"

• "vote"

Example:

"metric/decision_criteria": "euclidean"

tools (optional)

(see tools)

source (optional)

(string) It identifies the origin of the algorithm. Please, consider carefully the following default labels (values):

• "own_proposed" if authors developed and present the algorithm in the paper.

• "own_referenced" if authors developed the algorithm but presented it in a previous publication.

• "referenced" if authors took the method from the literature or known sources.

Example:

"source": "referenced"

parameters_provided (optional)

(boolean or string) This field expresses if the required parameters for reproducing the analysis are provided. In addition
to true and false, "partially" is also possible when authors provide some parameters but some of them is
missing or, for any reason, the experiment seems to be not reproducible.

Note: If the method has no parameters, use true, since you have enough information to replicate it.

Example:

"parameters_provided": "partially"

7.2 JSON example (analysis_method, complete)

"analysis_method": {
"supervised_learning": false,
"unsupervised_learning": true,
"semisupervised_learning": true,
"anomaly_detection": true,
"tools": [

{
"tool": "matlab_fuzzyclusteringtoolbox",
"detail": "none",
"availability": "public"

7.2. JSON example (analysis_method, complete) 41

nta-meta-analysis Documentation, Release

},
{

"tool": "own_matlab_scripts",
"detail": "none",
"availability": "private"

}
],
"algorithms": [

{
"name": "fuzzy clustering",
"subname": "gustafson-kessel",
"learning": "unsupervised",
"role": "main",
"type": "clustering",
"metric/decision_criteria": "mahalanobis",
"tools": [

{
"tool": "matlab_fuzzyclusteringtoolbox",
"detail": "none",
"availability": "public"

}
],
"source": "referenced",
"parameters_provided": false

},
{

"name": "mad-based outlier removal",
"subname": "double mad",
"learning": "statistics/model_fit",
"role": "main",
"type": "anomaly_detection",
"metric_distance": "mahalanobis",
"tools": [

{
"tool": "own_matlab_scripts",
"detail": "none",
"availability": "private"

}
],
"source": "referenced",
"parameters_provided": false

}
]

},

42 Chapter 7. Analysis Method

CHAPTER 8

Evaluation

8.1 Properties

8.1.1 algorithm_comparison

(boolean) It marks if different algorithms are compared in the paper in an attempt to establish the best one to fulfill a
specific goal. Example:

"algorithm_comparison": false

8.1.2 internal_validation

(boolean) It marks if algorithms were evaluated by means of internal validation methods, i.e., scores are provided
based on the intrinsic properties of data under analysis (e.g., Silhouette). Example:

"internal_validation": false

8.1.3 external_validation

(boolean) It marks if algorithms were evaluated by means of external validation methods, e.g., baseline partitions,
ground truth, pre-labeled data, dpi-classes. Example:

"internal_validation": false

8.1.4 dpi-based_validation

(boolean) It marks if algorithms were evaluated by using the results from deep packet inspection (dpi) as benchmark.
Example:

43

nta-meta-analysis Documentation, Release

"dpi-based_validation": true

8.1.5 port-based_validation

(boolean) It marks if algorithms were evaluated by using the results from port-based identification (typically TCP and
UDP destination ports) as benchmark. Example:

"port-based_validation": false

8.1.6 pre-knowledge-based_validation

(boolean) It marks if algorithms were evaluated by using some kind of pre-knowledge as benchmark. Such pre-
knowledge usually means that authors prepared the data previous to the analysis according to predefined classes (e.g.,
"synthetic" or "altered_captured") Example:

"pre-knowledge-based_validation": true

8.1.7 manual_verification

(boolean) It marks if results (e.g., outliers, classes, patterns) obtained by algorithms were manually/visually checked
after the analysis to see/discover if results represent specific phenomena/events. Example:

"manual_verification": true

8.1.8 implementation_in_real_scenario

(boolean) It marks if authors mentioned/explained/tried an actual implementation of the proposed methodol-
ogy/framework/algorithms in a real scenario. If the proposed system is running in a real environment and derived
experiences are documented in the paper. Example:

"implementation_in_real_scenario": false

8.1.9 train_test_separation

(boolean) It marks if datasets were clearly separated in independent train and test sets for the analysis. In other words,
true if none of the testing data was used in training, false otherwise. Example:

"train_test_separation": true

8.1.10 methods (optional)

(array of objects) methods can contain several method-objects. A method-object represents a technique used for the
analysis evaluation or algorithm validation. A method-object is composed of several fields:

44 Chapter 8. Evaluation

nta-meta-analysis Documentation, Release

name

(string) The name that identifies the evaluation method. Example:

"name": "normal classification metrics"

type (optional)

(string) It identifies the type of evaluation method. Please, consider carefully the following default labels (values):

• "external" the evaluation depends on labels or some other form of external ground truth.

• "internal" the evaluation does not depend on any ground truth (e.g. silhouette coefficient).

• "external_and_internal" both external and internal.

• "nest" the evaluation is a method that embeds other methods, or carries out some kind of bootstrapping (e.g.
cross-validation analysis, ensemble learning

Note: In a particular paper, the usage of cross-validation could depend on the labels of the data. However, since
cross-validation method itself is independent from the score used (you can do both supervised and unsupervised cross-
validation, or even a mix of both), cross-validation is considered "nest".

Example:

"type": "external"

metrics (optional)

(array of string) It assesses the used metrics for the evaluation. Please, consider carefully the following default labels
(values):

• "error_distance" metric depends on the distance from the model to the data points. e.g. sum of squared
error, absolute error, r^2, etc

• "precision" precision metric

• "accuracy" accuracy metric

• "recall" recall metric

• "f-1" f-1 metric

• "roc/auc" roc-based metrics

• "complete_confusion_matrix" all information regarding the confusion matrix is provided.

• "incomplete_confusion_matrix" some information regarding the confusion matrix is missing and it
is relevant for evaluating the quality of the classifier.

• "classification_loss" e.g. logistic regression loss function

• "clustering_metrics" e.g. silhouette coefficient

• "time-based" evaluation on the required time for running the method

• "other_computing_resources-based" evaluation of required computing resources (excluding time)
for running the method (e.g. memory, cpu)

8.1. Properties 45

nta-meta-analysis Documentation, Release

• "granularity-based" e.g. an algorithm provides more detailed information (classes, traffic types) than
other algorithm.

• "heuristic" the metric is an heuristic developed specifically for the problem

• "vote" for nest methods (usually). The nest method integrates diverse validation techniques and the best
result/algorithm is decided by means of consensus.

Example:

"metrics": ["error_distance"]

source (optional)

(string) It identifies the origin of the method. Please, consider carefully the following default labels (values):

• "own_proposed" if authors developed and present the algorithm in the paper.

• "own_referenced" if authors developed the algorithm but presented it in a previous publication.

• "referenced" if authors took the method from the literature or known sources.

• "popular" the method is popular enough to not require a reference (e.g., FP, FN).

Example:

"source": "referenced"

8.2 JSON example (evaluation, complete)

"evaluation": {
"algorithm_comparison": false,
"internal_validation": true,
"external_validation": true,
"dpi-based_validation": false,
"port-based_validation": false,
"pre-knowledge-based_validation": false,
"manual_verification": true,
"implementation_in_real_scenario": false,
"train-test_separation": false,
"methods": [

{
"name": "manual verification",
"type": "external",
"metrics": ["heuristics"],
"source": "popular"

},
{

"name": "weighted vote",
"type": "nest",
"metrics": ["vote"],
"source": "popular"

},
{

"name": "classification entropy",
"type": "internal",
"metrics": ["clustering_metrics"[,

46 Chapter 8. Evaluation

nta-meta-analysis Documentation, Release

"source": "referenced"
},
{

"name": "partition index",
"type": "internal",
"metrics": ["clustering_metrics"],
"source": "referenced"

},
{

"name": "xie and benix index",
"type": "internal",
"metrics": ["clustering_metrics"],
"source": "referenced"

},
{

"name": "clustering gain",
"type": "internal",
"metrics": ["clustering_metrics"],
"source": "referenced"

},
{

"name": "own cluster validity",
"type": "internal",
"metrics": ["clustering_metrics"],
"source": "missing"

}
]

}

8.2. JSON example (evaluation, complete) 47

nta-meta-analysis Documentation, Release

48 Chapter 8. Evaluation

CHAPTER 9

Result

9.1 Properties

9.1.1 main_goal

(string) This field should contain the main paper goal. In case of doubt, abstract and conclusion sections should help
to establish this value. Please, consider carefully the following default labels (values):

• "anomaly_detection"

• "botnet_detection"

• "network_properties_monitoring"

• "specific_malware_detection"

• "traffic_classification"

Example:

"main_goal": "traffic_classification"

9.1.2 subgoals (optional)

(array of strings) Here additional paper goals are collected. Goals are usually aimed in the abstract and must be
understood as the motivations that inspire and justify the research. Please, repeat the main goal in this array and
consider the following possible labels (values):

• "anomaly_detection"

• "application_classification"

• "attack_classification"

• "botnet_detection"

49

nta-meta-analysis Documentation, Release

• "classification_for_qos"

• "classification_of_encrypted_traffic"

• "ddos_detection"

• "dos_detection"

• "http_intrusion_detection"

• "network_properties_monitoring"

• "p2p_botnet_detection"

• "p2p_traffic_classification"

• "probe_detection"

• "remote_to_local_detection"

• "specific_malware_detection"

• "traffic_classification"

• "traffic_rate_prediction"

• "traffic_visualization"

• "user_to_root_detection"

Example:

"subgoals": ["traffic_classification", "dos_detection"]

9.1.3 focus_main

(string) This field tries to capture the main aspect where the paper focuses the efforts. In other words, where the main
novelty/proposal of the paper is located. Please, consider carefully the following default foci (values):

• "algorithm" authors present a new algorithm that outperforms old approaches.

• "methodology/framework" the novelty is on the methodology or framework devised to properly deal
with network traffic. i.e., a combination of steps, that can include: preprocessing, filtering, analysis methods,
verification, etc.

• "features" the main contribution of the paper is on the selected features, the preprocessing or the methods
presented to select features.

• "pattern_analysis" authors describe normal behavior in the data (either by textual descriptions or nu-
merical estimates)

• "outlier_analysis" authors describe abnormal behavior in the data (either by textual descriptions or
numerical estimates)

• "data_description" the nature of the paper is mostly descriptive, in a formal way. Authors try to explain
the Internet, network traffic or a significant part of it by exploring and depicting one or some datasets, and
presenting numbers/scores from mathematical analysis/statistics.

Note: "algorithm" and "methodology/framework" are very similar concepts. In general, a methodol-
ogy/framework is a composition of algorithms (and of how they interact with one another), in which each algorithm
can easily be replaced by some other with the same input/output. However, this distinction is not always clear.

50 Chapter 9. Result

nta-meta-analysis Documentation, Release

A good way to distinguish between algorithm and methodology/framework is that usually an algorithm is limited to
one of the Main Blocks (data/preprocessing/methods/evaluation), while a methodology/framework usually crosses the
boundaries between the Main Blocks. Common sense should be enough to make the distinction. If not, consensus
among experts is required.

Example:

"focus_main": "pattern_analysis"

9.1.4 claimed_improvements

(array of strings) We specifically refer to improvements claimed in the conclusions section. Please, consider carefully
if the claimed improvements appear in the following default list:

• "improved_detection_rates" the proposed method is better at detecting its objective (e.g. attacks)
than previous methods.

• "improved_traffic_classification" the proposed method is better at identifying its objective (e.g.
attacks, applications) than previous methods.

• "new_phenomena_disclosed" new traffic phenomena was disclosed.

• "fast_processing" also referred as: lightweight approach, low time-complexity, etc.

• "reduced_computational_resources" in terms of memory, storage or dependencies.

• "good_transportability" as the capability of being integrated in diverse environments and structures,
also compatibility, portability or usability.

• "enhanced_functionality" being a more complete option than competitors because additional or fur-
ther functions are implemented or it gathers/integrate diverse solutions together.

• "improved_data_description" datasets (i.e. network traffic) are more accurately described or with a
higher granularity, more phenomena or characteristics, better level of detail.

• "parallelization_oriented" the presented methods are designed for or ensured to be suitable for
parallel computing structures.

• "big_data_oriented" the presented methods are claimed to be suitable for big data (aka large datasets).

• "data_stream_oriented" the presented methods are claimed to be suitable for data stream mining or
analysis.

Example:

"claimed_improvements": ["improved_detection_rates","reduced_computational_resources"]

9.1.5 reproducibility (optional)

(string) This field states if, based on the opinion of the paper data curator, the experiments and analysis can be repro-
duced or repeated. Please, consider carefully the following default terms (values):

• "reproducible" experiments are fully reproducible by a different team after reading the paper. The setup,
all parameters, tools and datasets are described and/or provided (references to valid links) in a clear and open
way. Results are expected to be the same or very similar.

9.1. Properties 51

nta-meta-analysis Documentation, Release

• "replicable" the experiment can be replicated by a different team but with a different setup. The method-
ology is clearly explain, at least in a theoretical level. Not all parameters or tools are provided, but readers have
enough know-how in the paper and references to develop their own setups based on the provided descriptions.
Therefore, they can replicate the experiments.

• "repeteable" methodologies and setups are clearly described with scientific rigor; however, experiments
can only be repeated by the authors given that some resources are not publicly available (e.g., using own
datasets).

• "no" important information about part of the methodology is missing in a way that the experiment cannot be
repeated in comparable conditions. The paper show findings or results, but it is not clear how they were obtained
(this information is hidden, omitted or just missing).

Example:

"repoducibility": "replicable"

9.2 JSON example (result, complete)

"result": {
"main_goal": "traffic_classification",
"goals": ["traffic_classification"],
"focus_main": "methodology/framework",
"claimed_improvements": ["improved_data_description", "improved_traffic_

→˓classification", "fast_processing", "_flaw_detection"]
"reproducibility": "replicable"

}

52 Chapter 9. Result

CHAPTER 10

Paper Editor

The paper editor can be found in github: https://github.com/CN-TU/nta-meta-analysis-editor.

You can use the precompiled versions in the releases. Alternatively, you can clone the repository and run

npm start

to open up the editor.

53

https://github.com/CN-TU/nta-meta-analysis-editor
https://github.com/CN-TU/nta-meta-analysis-editor/releases

nta-meta-analysis Documentation, Release

54 Chapter 10. Paper Editor

CHAPTER 11

Overview

The specification of this format is written as a grammar, in which everything are terminal symbols, except those
surronded by <...>. As this is a JSON file, the spaces/newlines specified in this grammar are irrelevant. The only
thing relevant is that the final JSON file contains all the information you can gather, and that it is JSON parseable,
with the structure defined in this document. For details on the JSON format in general, check JSON.

This is the high-level structure of a paper JSON file:

As is usual in JSON, all fields are optional, but it is good to write as complete specification of a paper as possible. On
the other end, adding extra fields for specific papers is OK, for example for comments you want to make.

The next sections go into detail about the multiple directives introduced in the snippet above.

55

http://www.json.org

nta-meta-analysis Documentation, Release

56 Chapter 11. Overview

CHAPTER 12

Reference

The reference part needs just enough information to uniquely identify the paper. This is the main author name, title of
the paper, and year it was published.

Definition:

Example:

"reference": {
"author": "Iglesias et al.",
"title": "Time-activity footprints in IP traffic",
"year": 2016

}

57

nta-meta-analysis Documentation, Release

58 Chapter 12. Reference

CHAPTER 13

Aggregations, Flows & Packets

• The packets directive serves the purpose of representing feature-vectors which represent packets.

• The flows directive allows representing aggregations of packets, according to a specific key.

• The flow-aggregations directive is used for representing aggregations of flows, according to a specific
key.

In short, packets are to flows as flows are to aggregations.

All of these directive refer to lists of packet/flow/flow-aggregation (respectively). This is because papers
frequently try different feature vectors for different goals, and/or for comparison among them. This way, we can keep
the information of the multiple feature-vectors, without having multiple different specifications for the same paper.

Each packet/flow/flow-aggregation contains a list of features (directive features), a list of free-text goals
(directive goals), in which you can write the problem the authors were addressing, and a free-text tool (directive
tool), in which you should put the tool that was used to extract the features (e.g.: tshark, yaf, etc). The flow
and flow-aggregation directives contain additionally a specification of the key used (directive key), and a time
window (directive window), in seconds.

13.1 Key

The key directive contains itself some more fields:

The key_features directive indicates the features used for a flow/flow-aggregation. If you do not know the features
being used as key, use null or leave empty. If there is no key (as in, everything is aggregated together), use an empty
list ([]).

The bidirectional directive indicates whether a flow is unidirectional (only has packets with the exact same
key as in key_features), bidirectional (has packets with the same key as in key_features, and packets in the
opposite direction) or “separate_directions” (has packets as if it was bidirectional, but the features in the features
directive are evaluated twice, once for each direction; i.e. if you have octetTotalCount in the features list, and key
has “separate_directions”, you will get two features, one with the octetTotalCount in the packets in one direction, and
another in the opposite direction).

59

nta-meta-analysis Documentation, Release

Definition of bidirectional:

The following is an example of the very common unidirectional 5-tuple key:

"key": {
"bidirectional": false,
"key_features": [
"protocolIdentifier",
"sourceIPv4Address",
"sourceTransportPort",
"destinationIPv4Address",
"destinationTransportPort"

]
}

13.1.1 Traffic Type

The traffic_type directive is to be used when only traffic of a certain type is used. Its definition follows:

13.2 Definitions

Definition of packet:

Definition of flow:

Definition of flow-aggregation:

60 Chapter 13. Aggregations, Flows & Packets

CHAPTER 14

Features

The features are the main focus of this format, and also the most complex part of it.

14.1 Base Features

We call base features those which are not obtained by combining other features. These are represented in this format
by JSON strings.

We try to use the names of the IPFIX information elements defined by IANA. Additionally to the names defined by
IANA, we also have some operations, by which we can get new features. For features that we can not get out of
combining IANA features with our limited set of operations, we have two naming options:

• if the feature is expected to be used many times (e.g.: there are some KDD ‘99 features which we cannot
represent using IANA features and operations, but they are used in many papers), use a _ as prefix to a descriptive
feature name

• if the feature is very specific to this paper, use __ (double _) as prefix to a descriptive feature name

In both of this cases, try to give descriptive feature names, similar to the the ones used by IANA.

This means that all base features that do not start with _ have to be IPFIX information elements defined by
IANA.

There is still another case, which is features that are repeated often, and are a combination of IANA features. In this
case, use a descriptive feature name which starts with _ as an alias for it. A complete list of aliases is in ../dict.
json; please add additional aliases there.

14.2 Operations

Below is a complete list of possible operations:

61

http://www.iana.org/assignments/ipfix/ipfix.xhtml#ipfix-information-elements

nta-meta-analysis Documentation, Release

<value> always outputs a single number (a <value>)
<value> -> {"mean": [<values>]}
<value> -> {"stdev": [<values>]}
<value> -> {"variance": [<values>]}
<value> -> {"median": [<values>]}
<value> -> {"quantile": [<values>, <value>]} # second argument is a number from 0 to
→˓1, where 0 is the minimum and 1 the maximum
<value> -> {"minimum": [<values>]} | {"minimum": [<value>, <value>+]}
<value> -> {"maximum": [<values>]} | {"maximum": [<value>, <value>+]}
<value> -> {"argmin": [<values>]} | {"argmin": [<value>, <value>+]}
<value> -> {"argmax": [<values>]} | {"argmax": [<value>, <value>+]}
<value> -> {"floor": [<value>]}
<value> -> {"ceil": [<value>]}
<value> -> {"mode": [<values>]} # returns the most frequent element in <values>
<value> -> {"mad": [<values>]} # returns the mean absolute deviation of <values>
<value> -> {"moment": [<values>, <value>]} # returns the <value>-th standardized
→˓moment of <values>
<value> -> {"count": [<selection>]} # returns number of selected objects
<value> -> {"distinct": [<values>]} # returns number of distinct values in <values>
→˓in the selected objects
<value> -> {"apply": [<value>, <selection>]} # returns a single feature value for
→˓the selection of objects
<value> -> {"add": [<value>, <value>+]} | {"add": [<values>]}
<value> -> {"subtract": [<value>, <value>]}
<value> -> {"multiply": [<value>, <value>+]} | {"multiply": [<values>]}
<value> -> {"divide": [<value>, <value>]}
<value> -> {"log": [<value>]}
<value> -> {"exp": [<value>]}
<value> -> {"entropy": [<values>]}
<value> -> {"get": [<value>, <values>]} | {"get": [<value>, <value>]} # gets the
→˓<value>-th element of the second argument (if the second argument is also <value>,
→˓the elements are bits)
<value> -> {"ifelse": [<logic>, <value>, <value>]} # if the condition is true,
→˓return the first argument else the second
<value> -> {"left_shift": [<value>, <value>]} # shift the bits in the first value
→˓left by the second value
<value> -> {"right_shift": [<value>, <value>]} # shift the bits in the first value
→˓right by the second value

14.2.1 Value & Values

The value directive represents a single value, while the values directive represents a list of values. This is neces-
sary to distinguish the arguments to the operations.

14.2.2 Selection & Logic

The selection directive is useful for filtering out packets or any other information which might not be interesting
for a particular feature. Intuitively, using selection on a flow will select packets (that is, the result will be the packets
that fulfill the conditions in the selection), and in a flow_aggregation will select flows.

Its syntax is the following:

<selection> outputs a list of objects (packets, flows or aggregations, depending on
→˓what kind of feature is used)

62 Chapter 14. Features

nta-meta-analysis Documentation, Release

<selection> -> {"select": [<logic-down>]}
<selection> -> {"select_slice": [<value>, <value>]} | {"select_slice": [<value>,
→˓<value>, <selection>]} # selects a slice from the first value to the second value,
→˓with Python-like indexing (if a <selection is not provided, default to selecting
→˓everything)
<selection> -> "forward" | "backward" # special cases for selection; select objects
→˓in the forward (or backward) direction

The logic directive contains the test to decide what gets or not filtered. Definition of logic:

<logic> is used for selection, should be evaluated for each object
<logic> -> {"and": [<logic>+]}
<logic> -> {"or": [<logic>+]}
<logic> -> {"geq": [<value>, <value>]}
<logic> -> {"leq": [<value>, <value>]}
<logic> -> {"less": [<value>, <value>]}
<logic> -> {"greater": [<value>, <value>]}
<logic> -> {"equal": [<value>, <value>]}
<logic> -> true | false
<logic-down> -> {"and": [<logic-down>+]}
<logic-down> -> {"or": [<logic-down>+]}
<logic-down> -> {"geq": [<down>, <value>]}
<logic-down> -> {"leq": [<down>, <value>]}
<logic-down> -> {"less": [<down>, <value>]}
<logic-down> -> {"greater": [<down>, <value>]}
<logic-down> -> {"equal": [<down>, <value>]}
<logic-down> -> true | false

14.3 Feature Specification

The following is the specification for the features and feature directives:

from one level-down (in flows, packet features; in flow-aggregations, flow features)

The packet-feature, flow-feature and aggregation-feature are packet, flow and aggregation -level
features (respectively), which are not compositions of other features/operations. That is, they should be strings from
the IANA IPFIX information elements list, or strings that start with _ or __.

14.4 Example Features

The following are examples of the features directive.

"features": [
"protocolIdentifier",
"sourceTransportPort",
"destinationTransportPort",
"octetTotalCount",
"packetTotalCount",
"_activeForSeconds",
{"divide": ["octetTotalCount", "_activeForSeconds"]},
{"divide": ["packetTotalCount", "_activeForSeconds"]},
"__maximumConsecutiveSeconds",

14.3. Feature Specification 63

nta-meta-analysis Documentation, Release

"__minimumConsecutiveSeconds",
{"maximum": ["_interPacketTimeMicroseconds"]},
{"minimum": ["_interPacketTimeMicroseconds"]},
{"count": [{"select": [{"geq": ["_interPacketTimeMicroseconds", 1000000]}]}]}

]

"features": [
{"entropy": ["sourceIPv4Address"]},
{"entropy": ["destinationIPv4Address"]},
{"entropy": ["destinationTransportPort"]},
{"entropy": ["_flowDurationSeconds"]},
{"multiply": [{"argmax": [{"count": [{"select": [{"less": ["ipTotalLength", 128]}]}

→˓]}, {"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 128]}]}, {"select": [{
→˓"less": ["ipTotalLength", 256]}]}]}]}, {"count": [{"and": [{"select": [{"geq": [
→˓"ipTotalLength", 256]}]}, {"select": [{"less": ["ipTotalLength", 512]}]}]}]}, {
→˓"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 512]}]}, {"select": [{"less
→˓": ["ipTotalLength", 1024]}]}]}]}, {"count": [{"and": [{"select": [{"geq": [
→˓"ipTotalLength", 1024]}]}, {"select": [{"less": ["ipTotalLength", 1500]}]}]}]}]}, {
→˓"add": [{"entropy": [{"count": [{"select": [{"less": ["ipTotalLength", 128]}]}]}]},
→˓{"entropy": [{"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 128]}]}, {
→˓"select": [{"less": ["ipTotalLength", 256]}]}]}]}]}, {"entropy": [{"count": [{"and
→˓": [{"select": [{"geq": ["ipTotalLength", 256]}]}, {"select": [{"less": [
→˓"ipTotalLength", 512]}]}]}]}]}, {"entropy": [{"count": [{"and": [{"select": [{"geq
→˓": ["ipTotalLength", 512]}]}, {"select": [{"less": ["ipTotalLength", 1024]}]}]}]}]},
→˓ {"entropy": [{"count": [{"and": [{"select": [{"geq": ["ipTotalLength", 1024]}]}, {
→˓"select": [{"less": ["ipTotalLength", 1500]}]}]}]}]}]}]},
{"get": [14, "tcpControlBits"]}

]

"features": ["_KDD5", "_KDD23", "_KDD3", "_KDD6", "_KDD35", "_KDD1"]

64 Chapter 14. Features

CHAPTER 15

Methods

In this field you can put any methods the authors used, along with some properties.

65

nta-meta-analysis Documentation, Release

66 Chapter 15. Methods

CHAPTER 16

Evaluation

In this field you can put any evaluation metrics the authors used, along with some properties.

67

nta-meta-analysis Documentation, Release

68 Chapter 16. Evaluation

CHAPTER 17

Datasets

The information about the datasets is in a separate file data/datasets.json. When a new dataset is used, please
add it to the list of datasets, using the specification described below.

17.1 Specification

{ <dataset>+ }
<dataset> -> <dataset-key>: {

"name": <free-text>,
"year": <free-integer>,
"data-type": <data-type>,
"type": <type>,
"availability": <availability>

}

<dataset-key> -> <free-text>
<data-type> -> "packet_pcap" | "packet_other" | "flow_sflow" | "flow_netflow" | "flow_
→˓ipfix" | "flow_other" | "other"
<type> -> "real" | "synthetic"
<availability> -> "public" | "private" | "on_demand"

69

nta-meta-analysis Documentation, Release

70 Chapter 17. Datasets

CHAPTER 18

Tools

The information about the tools is in a separate file data/tools.json. When a new tool is used, please add it to
the list of datasets, using the specification described below.

18.1 Specification

{ <tool>+ }
<tool> -> <tool-key>: {

"url": <free-text>,
"name": <free-text>,
"availability": <availability>

}

<availability> -> "opensource" | "freeware" | "commercial" | "proprietary"

71

nta-meta-analysis Documentation, Release

72 Chapter 18. Tools

CHAPTER 19

Naming Conventions

19.1 Paper Names

Each JSON file should be called data/papers/YEAR/LNAME_1STWORDS.json, with YEAR the year of the
paper, LNAME the main author’s last name and 1STWORDS for the first word (or first two/three words) of the title, and
this filename should be completely lowercase.

Example filename: data/papers/2016/iglesias_timeactivity.json

19.2 Feature Names

Feature names should in principle use the names defined in IANA’s website. However, IANA Information Elements
do not cover all the features that can be extracted from packets. If this is the case for a specific feature, there are two
options:

• If the feature is likely used by many other people: prefix the feature name with _ (underscore), and add it to
data/own_ies.csv, if it is not already there.

• If the feature is not likely to be used by other people: prefix the feature name __ (double underscore). In this
case, there is not need to add it to any list.

The naming convention in both cases should try to follow IANA’s naming convention: feature names are to be descrip-
tive and in camelcase.

Additionally, the the first case (with _) can also be used for aliases; that is, features that are used a lot but that are some
kind of combination of other features. A list of aliases is defined in data/feature_aliases.json.

73

http://www.iana.org/assignments/ipfix/ipfix.xhtml#ipfix-information-elements

nta-meta-analysis Documentation, Release

19.3 Specification

19.3.1 Non-terminal Symbols

Non-terminal symbols in the specification are lowercase words separated by - (hyphen).

19.3.2 Strings

Strings that are part of the specification are lowercase words separated by _ (underscore).

Free text strings have no convention.

74 Chapter 19. Naming Conventions

CHAPTER 20

Full Format Specification

<down> -> <value> # (packet, flow, flow-agg) can use this rule (0, 1, 2) times
<down2> -> <down> # only applicable for flow-aggregations; goes down twice (same as
→˓executing down->value rule twice)

<value> -> <free-integer> | <base-feature> | <free-float> | <logic>

operation
<value> always outputs a single number (a <value>)
<value> -> {"mean": [<values>]}
<value> -> {"stdev": [<values>]}
<value> -> {"variance": [<values>]}
<value> -> {"median": [<values>]}
<value> -> {"quantile": [<values>, <value>]} # second argument is a number from 0 to
→˓1, where 0 is the minimum and 1 the maximum
<value> -> {"minimum": [<values>]} | {"minimum": [<value>, <value>+]}
<value> -> {"maximum": [<values>]} | {"maximum": [<value>, <value>+]}
<value> -> {"argmin": [<values>]} | {"argmin": [<value>, <value>+]}
<value> -> {"argmax": [<values>]} | {"argmax": [<value>, <value>+]}
<value> -> {"floor": [<value>]}
<value> -> {"ceil": [<value>]}
<value> -> {"mode": [<values>]} # returns the most frequent element in <values>
<value> -> {"mad": [<values>]} # returns the mean absolute deviation of <values>
<value> -> {"moment": [<values>, <value>]} # returns the <value>-th standardized
→˓moment of <values>
<value> -> {"count": [<selection>]} # returns number of selected objects
<value> -> {"distinct": [<values>]} # returns number of distinct values in <values>
→˓in the selected objects
<value> -> {"apply": [<value>, <selection>]} # returns a single feature value for
→˓the selection of objects
<value> -> {"add": [<value>, <value>+]} | {"add": [<values>]}
<value> -> {"subtract": [<value>, <value>]}
<value> -> {"multiply": [<value>, <value>+]} | {"multiply": [<values>]}
<value> -> {"divide": [<value>, <value>]}
<value> -> {"log": [<value>]}
<value> -> {"exp": [<value>]}

75

nta-meta-analysis Documentation, Release

<value> -> {"entropy": [<values>]}
<value> -> {"get": [<value>, <values>]} | {"get": [<value>, <value>]} # gets the
→˓<value>-th element of the second argument (if the second argument is also <value>,
→˓the elements are bits)
<value> -> {"ifelse": [<logic>, <value>, <value>]} # if the condition is true,
→˓return the first argument else the second
<value> -> {"left_shift": [<value>, <value>]} # shift the bits in the first value
→˓left by the second value
<value> -> {"right_shift": [<value>, <value>]} # shift the bits in the first value
→˓right by the second value
end

values
<values> outputs a list of <value>
<values> -> {"map": [<down>, <selection>]} # returns a feature value for each object
→˓in selection
<values> -> {"slice": [<value>, <value>, <values>]} | {"slice": [<value>, <value>,
→˓<value>]} # gets third_argument[first_argument, second_argument] (if the third
→˓argument is also <value>, the elements are bits); indexing is like in Python
<values> -> {"quantile_range": [<values>, <value>, <value>]} # e.g. {"quantile_range
→˓": [<values>, 0, 0.25]} returns all values in the first quartile
<values> -> {"flat_map": [<down2>, <selection>]} | {"flat_map": [<down2>, <selection>,
→˓ <selection>]} # only applicable for flow-aggregations; just one selection applies
→˓same selection for both flows and packets; two selections applies the 1st selection
→˓for flows and the second for packets
<values> -> <down> # features from one level-down (in flows, packet features; in
→˓flow-aggregations, flow features)
end

selection
<selection> outputs a list of objects (packets, flows or aggregations, depending on
→˓what kind of feature is used)
<selection> -> {"select": [<logic-down>]}
<selection> -> {"select_slice": [<value>, <value>]} | {"select_slice": [<value>,
→˓<value>, <selection>]} # selects a slice from the first value to the second value,
→˓with Python-like indexing (if a <selection is not provided, default to selecting
→˓everything)
<selection> -> "forward" | "backward" # special cases for selection; select objects
→˓in the forward (or backward) direction
end

logic
<logic> is used for selection, should be evaluated for each object
<logic> -> {"and": [<logic>+]}
<logic> -> {"or": [<logic>+]}
<logic> -> {"geq": [<value>, <value>]}
<logic> -> {"leq": [<value>, <value>]}
<logic> -> {"less": [<value>, <value>]}
<logic> -> {"greater": [<value>, <value>]}
<logic> -> {"equal": [<value>, <value>]}
<logic> -> true | false
<logic-down> -> {"and": [<logic-down>+]}
<logic-down> -> {"or": [<logic-down>+]}
<logic-down> -> {"geq": [<down>, <value>]}
<logic-down> -> {"leq": [<down>, <value>]}
<logic-down> -> {"less": [<down>, <value>]}
<logic-down> -> {"greater": [<down>, <value>]}
<logic-down> -> {"equal": [<down>, <value>]}

76 Chapter 20. Full Format Specification

nta-meta-analysis Documentation, Release

<logic-down> -> true | false
end

77

nta-meta-analysis Documentation, Release

78 Chapter 20. Full Format Specification

CHAPTER 21

Indices and tables

• genindex

• modindex

• search

79

	Repository Organization
	Main Blocks
	JSON example

	Features
	Concepts
	Base Features
	Operations
	Selections
	Example Features

	Reference
	Properties
	title
	authors
	publication_name
	publication_type
	year
	organization_publishers (optional)
	pages_number_of (optional)
	bibtex
	access_open (optional)
	curated_by
	curated_last_revision
	curated_revision_number

	JSON example (reference, complete)

	Data
	Properties
	datasets

	JSON example (data, complete)

	Preprocessing
	Properties
	performed_feature_selection
	packet_analysis_oriented
	flow_analysis_oriented
	flow_aggregation_analysis_oriented
	tools
	normalization_type
	transformations
	final_data_format
	feature_selections (optional)
	packets (optional)
	flows (optional)
	flow_aggregations (optional)

	JSON example (preprocessing, complete)

	Analysis Method
	Properties
	supervised_learning
	unsupervised_learning
	semisupervised_learning
	anomaly_detection
	tools
	algorithms (optional)

	JSON example (analysis_method, complete)

	Evaluation
	Properties
	algorithm_comparison
	internal_validation
	external_validation
	dpi-based_validation
	port-based_validation
	pre-knowledge-based_validation
	manual_verification
	implementation_in_real_scenario
	train_test_separation
	methods (optional)

	JSON example (evaluation, complete)

	Result
	Properties
	main_goal
	subgoals (optional)
	focus_main
	claimed_improvements
	reproducibility (optional)

	JSON example (result, complete)

	Paper Editor
	Overview
	Reference
	Aggregations, Flows & Packets
	Key
	Traffic Type

	Definitions

	Features
	Base Features
	Operations
	Value & Values
	Selection & Logic

	Feature Specification
	Example Features

	Methods
	Evaluation
	Datasets
	Specification

	Tools
	Specification

	Naming Conventions
	Paper Names
	Feature Names
	Specification
	Non-terminal Symbols
	Strings

	Full Format Specification
	Indices and tables

