
nstack Documentation
Release 0.1.x

Mandeep Gill & Leo Anthias

Apr 13, 2017

Contents

1 What is NStack? 3

2 Contents 5
2.1 NStack Uses . 5
2.2 NStack Concepts . 6
2.3 Installation & Upgrading . 7
2.4 Quick Tutorial . 7
2.5 In-Depth Tutorial - Productionising a Classifier . 12
2.6 Features . 15
2.7 Supported Languages . 18
2.8 Reference . 19

i

ii

nstack Documentation, Release 0.1.x

Welcome to the NStack Documentation! Please also look at our main GitHub page , and our online examples.

Contents 1

https://www.github.com/nstack/nstack
https://www.github.com/nstack/nstack-examples

nstack Documentation, Release 0.1.x

2 Contents

CHAPTER 1

What is NStack?

• Productionise your models and data integration code to the cloud as reusable functions that can be monitored,
versioned, shared, and updated

• Effortlessly compose workflows to integrate your functions with your data and event sources, without dealing
with any infrastructure

• NStack containerises and orchestrates your workflows on your cloud provider and makes sure they always work

3

nstack Documentation, Release 0.1.x

4 Chapter 1. What is NStack?

CHAPTER 2

Contents

NStack Uses

Productionising Models

Productionise your models in the cloud without complex engineering, where they can be used in workflows and
attached to data-sources. For instance, you can build a Random Forest classifier locally in Python, publish it to your
cloud provider, and connect it to a streaming system, database, data-lake, or HTTP endpoint in under 10 minutes.

Data Integration

Transform disparate and disconnected data-sources – such as 3rd-party APIs, legacy infrastructure, or databases into
streams of typed, structured records – which can be composed together. For instance, you could set up a workflow in
the cloud which pipes the Twitter Ads API into your data-lake (and even do some modelling in Python in-transit) in
under 5 minutes.

Software Lifecycle

NStack provides best practices from software engineering and end-to-end software life-cycle management to the data
science process, including,

• sharing and reuse - build and deploy individual model modules to your cloud that can reused, imported, and
utilised by other members, either within your team or by third-parties

• reproducibility - build models with guaranteed versions of system and language dependencies, that can then be
shared with confidence that your code is bit-for-bit identical everywhere

• versioning - modules a have a immutable, globally unique, version - so when importing to use in a workflow,
you can be sure the API, code, and artifacts are just as you intended, allowing you to upgrade to newer versions
when ready

5

nstack Documentation, Release 0.1.x

• runtime isolation - all modules in your workflow run using our container technology, meaning they are fully
isolated from each other, can scale up as needed, and won’t interfere with each others data

NStack Concepts

Example

We can express this within the NStack scripting language locally as follows (it can help to think of it akin to Bash-style
piping for microservices),

module Demo:0.1.0 {
import NStack.Transformers:0.1.4 as T
import Acme.Classifiers:0.3.0 as C

// our analytics workflow
def workflow = Sources.Postgresql<(Text, Int)>

| T.transform { strength = 5 }
| C.classify { model = "RandomForest" }
| Sinks.S3blob<Text>

}

Intro Screencast

Modules

A module is a piece of code that has been deployed to NStack, either by you or someone else. It has an input schema
and an output schema, which defines what kind of data it can receive, and the kind of data that it returns.

Sources & Sinks

• A source is something which emits a stream of data.

• A sink is something which can receive a stream of data.

Example sources and sinks are databases, files, message-queues, and HTTP endpoints. Like modules, you can define
the input and output schemas for your sources and sinks.

Workflows

Modules, sources, and sinks can be combined together to build workflows. This is accomplished using the NStack
Workflow Language, a simple, high-level language for connecting things together on the NStack Platform.

Processes

When a workflow is started, it becomes a running process. You can have multiple processes of the same workflow.

6 Chapter 2. Contents

nstack Documentation, Release 0.1.x

Installation & Upgrading

Installation

NStack is platform-agnostic and can run out-of-the-box wherever you can run a virtual machine, including:

• your cloud provider of choice

• your internal cloud

• locally using VirtualBox, VMWare, or your operating system’s native virtualisation

For Proof of Concepts, NStack offers a hosted solution. If this is required, please reach out to info@nstack.com.

The virtual appliance can be found on the NStack’s GitHub Releases page, where it is provided as a raw image. We
also provide an AWS AMI, which can be found under the id of ami-53a47245. Basic install instructions can be
found on our [GitHub page](www.github.com/nstack/nstack).

To launch this AMI to an EC2 instance on your AWS account, you can click here.

The NStack Server is configured using cloud-init, which is supported by major cloud providers, so it will work
out of the box with your credentials. Please note that the first time you boot NStack it may take a few minutes to
initialise.

Upgrading

The NStack Server can be updated atomically using rpm-ostree. To upgrade to a new release, you can simply run:

> sudo rpm-ostree upgrade

Following the upgrade, you should reboot your machine with:

> sudo reboot

NStack releases follow a monthly cadence.

Quick Tutorial

In this section, we’re going to see how to build up a simple NStack module, deploy it to the cloud, and use it in a
workflow by connecting it to a source and a sink.

Intro Screencast

The following screencast accompanies this tutorial, demonstrating building a module and connecting it within a work-
flow,

By the end of the tutorial, you will learn how to publish your code to NStack and connect it to event and data sources.
Enjoy!

Note: To learn more about modules, sources, and sinks, read Concepts

Make sure you have installed NStack and let’s get going. These instructions are for the Linux and macOS versions of
the NStack CLI, so adjust accordingly if you are on Windows.

2.3. Installation & Upgrading 7

mailto:info@nstack.com
http://github.com/nstack/nstack/releases
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-53a47245

nstack Documentation, Release 0.1.x

Building a Module

Modules contain the functions that you want to publish to the NStack platform.

After this tutorial, we will have a simple Python module deployed to our NStack instance. This module will have a
single function in it which counts the number of characters in some text.

Note: Before starting, check that NStack is installed by running nstack --version in your terminal. If you got
information about the version of NStack you have, you’re good to go. If that didn’t work, check out Installation again.

Step 1: init

We want to create a new Python module.

Create a directory called Demo where you would like to build your module and cd into that directory using your
terminal. NStack uses the name of the directory as the default name of the module

To create a new module, run nstack init python. You should see the following output confirming that this
operation was successful.

~> mkdir Demo
~> cd Demo
~/Demo> nstack init python
python module 'Demo:0.0.1-SNAPSHOT' successfully initialised at ~/Demo

Because NStack versions your modules, it has given Demo a version number (0.0.1-SNAPSHOT). Because the
version number has a SNAPSHOT appended to it, this means NStack allows you to override it every time you build.
This is helpful for development, as you do not need to constantly increase the version number. When you deem your
module is ready for release, you can remove SNAPSHOT and NStack will create an immutable version of 0.0.1.

A successful init will have created some files.

~/Demo> ls
nstack.yaml requirements.txt service.py setup.py

This is the skeleton of an NStack module. nstack.yaml is the configuration file for your module, and service.
py is where the code of your module lives (in this case, it’s a Python class). requirements.txt and setup.py
are both standard files for configuring Python.

We’re going to be concerned with nstack.yaml and service.py. For a more in-depth look at all these files,
refer to Module Structure.

In service.py, there is a Service class. This is where we write the functions we want to use on NStack. It is
pre-populated with a sample function, numChars, that counts the number of characters in some text.

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Demo Service
"""
import nstack

class Service(nstack.BaseService):
def numChars(self, x):

return len(x)

8 Chapter 2. Contents

nstack Documentation, Release 0.1.x

nstack.yaml is where the configuration for this module lives. NStack fills in the service, stack, and parent
for you, so we don’t need to worry about them for now.

Service name (a combination of lower case letters, numbers, and dashes)
name: Demo:0.0.1-SNAPSHOT

The language stack to use
stack: python

Parent Image
parent: NStack.Python:0.25.0

api: |
numChars : Text -> Integer

We’re going to focus on the api section, where you tell NStack which of the functions in service.py you want
to publish as functions on NStack, and their input and output schemas (also known as types). In this instance, we are
telling NStack to publish one function, numChars, which takes Text and returns an Integer.

Note: The schema – or type – system is a key feature of NStack that lets you define the sort of data your function can
take as input, and produce as output. This helps you ensure that your module can be reused and works as intended in
production.

Step 2: build

To build and publish our module on NStack, we use the build command.

~/Demo> nstack build
Building NStack Container module Demo:0.0.1-SNAPSHOT. Please wait. This may take some
→˓time.
Module Demo:0.0.1-SNAPSHOT built successfully. Use `nstack list functions` to see all
→˓available functions

When we run build, the code is packaged up and sent to the server.

We can check that our numChars function is live by running the suggested nstack list functions command:

~/Demo> nstack list functions
Demo:0.0.1-SNAPSHOT

numChars : Text -> Integer

That’s it! Our numChars function is live in the cloud, and is ready to be connected to input and output data streams,
which the next tutorial will cover.

Building a Workflow

In the previous tutorial, we built and published a Python module, Demo. This module had a single function on it,
numChars, which counted the number of characters in some text. Although it has been published, it needs to be
connected to a source and a sink.

Note: Sources generate data which gets sent to your function, and sinks receive the data which your function outputs.
Learn more in Concepts

2.4. Quick Tutorial 9

nstack Documentation, Release 0.1.x

Let’s refresh ourselves on what the input and output types of our function were by asking NStack:

> nstack list functions
Demo:0.0.1-SNAPSHOT.numChars : Text -> Integer

This means that our function can be connected to any source which generates Text, and can write to any sink which
can take an Integer as input.

One of the sources that NStack provides is http; if you use this source, NStack sets up an HTTP endpoint which you
can send JSON-encoded data to. As a sink, we are going to use the NStack log, which is a sink for seeing the output
from your function. We are going to use these two integrations in our tutorial.

Note: See a list of available sources and sinks in Supported Integrations

Creating a workflow module

To write workflows, we create a special NStack workflow module, which we create in the same way we create a Python
module – by using init.

Let’s create a new directory called DemoWorkflow, cd into the directory, and create a new workflow module.

~/DemoWorkflow/ nstack init workflow
Module 'DemoWorkflow:0.0.1-SNAPSHOT' successfully initialised at /home/nstack/Demo/
→˓DemoWorkflow

init has created a single file, workflow.nml, which is where we write our workflow module using NStack’s
scripting language. If we look inside the file, we see that NStack has created an example module for us.

Note: Just like Python modules, workflow modules are versioned.

module DemoWorkflow:0.0.1-SNAPSHOT {
import Python.Hello:0.0.1 as Hello;
// A sample workflow
def w = Sources.http<Text> { http_path = "/demo" } | Hello.numChars | Sinks.log

→˓<Integer>;
}

This currently has a single workflow on it, w, which uses a function imported from a module called Python.Hello
with the version number of 0.0.1. Like the workflow we will create, this example workflow creates an HTTP
endpoint which pipes data to a function, and pipes data from the function to the NStack log.

When we created our Python module, we defined the input and output types of our function in our API. On NStack,
sources and sinks also have types: this workflow specifies that the HTTP source only receives and passes on Text,
and the log only accepts Integers. Because our Python function takes Text, counts it, and returns Integers, that
means it can fit in the middle of the workflow.

Writing our workflow

First, let’s change the import statement to import our Demo module instead of Python.Hello.

import Demo:0.0.1-SNAPSHOT as Demo;

10 Chapter 2. Contents

nstack Documentation, Release 0.1.x

Now, let’s change our workflow to use the numChars function on Demo, instead of the one on Python.Hello.

def w = Sources.http<Text> { http_path = "/demo" } | Demo.numChars | Sinks.log
→˓<Integer>;

Note: The http source is configured in this example to expose an endpoint on /demo. If you are using the demo
server, we would recommend changing /demo to something more unique – as someone else may have already taken
that endpoint.

Let’s break these parts to see what we’re doing:

Part Description
Sources.http<Text> {
http_path = "/demo" }

Use http as a source, which creates an endpoint on /demo. The
<Text> statement means it can only accept and pass on Text.

Demo.numChars The name of the function which we built.
Sinks.log<Integer> Use NStack’s log as a sink. The <Integer> statement means it can only

accept Integers.

NStack uses the | operator to connect statements together, just like in a shell such as bash.

Building our workflow

Before we start our workflow, we need to build it in the cloud with NStack. We do this in the same way we build a
Python module. We save our workflow.nml file and run:

~/DemoWorkflow/ nstack build
Building NStack Workflow module DemoWorkflow:0.0.1-SNAPSHOT. Please wait. This may
→˓take some time.
Workflow module DemoWorkflow:0.0.1-SNAPSHOT built successfully. Use `nstack list all`
→˓to see all available functions.

We can now see our workflow is live by using the list command.

~/DemoWorkflow/ nstack list workflows
DemoWorkflow:0.0.1-SNAPSHOT

w : Workflow

This means our workflow is ready to be started.

Starting and using our workflow

To start our workflow in the cloud, we use the start command:

~/DemoWorkflow/ $ nstack start DemoWorkflow:0.0.1-SNAPSHOT.w

We now have a live HTTP endpoint on localhost:8080/demo. The HTTP endpoint is configured to accept
JSON-encoded values. We defined it to use an input schema of Text, so we will be able to send it any JSON
string. In our JSON, we put params as the key, and our input as the value:

We can call it using nstack send:

~/DemoWorkflow/ $ nstack send "/demo" '"Foo"'
> Message Accepted

2.4. Quick Tutorial 11

nstack Documentation, Release 0.1.x

When workflows are started, they become processes which have numerical identifiers (_ids_). We can see the id of
our process by running:

~/DemoWorkflow/ $ nstack ps
1

And if we look at the log of our process, which we configured as the sink, we will be able to see the result. Because
our process was started with an id of 1, we run the following:

> nstack log 1
Feb 17 09:59:26 nostromo nstack-server[8925]: OUTPUT: 3

Great - we can see that the output of our function (and the number of characters in “Foo”) is 3.

In-Depth Tutorial - Productionising a Classifier

In this section, we’re going to productionise a Random Forest classifier written with sklearn, deploy it to the cloud,
and use it in a more sophisticated workflow.

By the end of the tutorial, you will learn how to build modules with dependencies, write more sophisticated workflows,
and build abstractions over data-sources. Enjoy!

So far, we have built and published a Python module with a single function on it, numChars, and built a workflow
which connects our function to an HTTP endpoint. This in itself isn’t particularly useful, so, now that you’ve got the
gist of how NStack works, it’s time to build something more realistic!

In this tutorial, we’re going to create and productionise a simple classifier which uses the famous iris dataset. We’re
going to train our classifier to classify which species an iris is, given measurements of its sepals and petals. You can
find the dataset we’re using to train our model here.

First, let’s look at the the format of our data to see how we should approach the problem. We see that we have five
fields:

Field Name Description Type
species The species of iris Text
sepal_width The width of the sepal Double
sepal_length The length of the sepal Double
petal_width The width of the petal Double
petal_length The length of the petal Double

If we are trying to find the species based on the sepal and petal measurements, this means these measurements are
going to be the input to our classifier module, with text being the output. This means we need to write a function in
Python which takes four Doubles and returns Text.

Creating your classifier module

To begin, let’s make a new directory called Iris.Classify, cd into it, and initialise a new Python module:

~/ $ mkdir Iris.Classify; cd Iris.Classify
~/Iris.Classify/ $ nstack init python
python module 'Iris.Classify' successfully initialised at ~/Iris.Classify

Next, let’s download our training data into this directory so we can use it in our module. We have hosted it for you as
a CSV on GitHub.

12 Chapter 2. Contents

http://scikit-learn.org/
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://raw.githubusercontent.com/nstackcom/nstack-examples/master/iris/Iris.Classify/train.csv

nstack Documentation, Release 0.1.x

~/Iris.Classify/ $ curl -O https://raw.githubusercontent.com/nstackcom/nstack-
→˓examples/master/iris/Iris.Classify/train.csv

Defining our API

As we know what the input and output of our classifier is going to look like, let’s edit the api section of nstack.
yaml to define our API (i.e. the entry-point into our module). By default, a new module contains a sample function
numChars, which we replace with our definition. We’re going to call the function we write in Python predict,
which means we fill in the api section of nstack.yaml as follows:

api : |
predict : (Double, Double, Double, Double) -> Text

This means we want to productionise a single function, predict, which takes four Doubles (the measurements)
and returns Text (the iris species).

Writing our classifier

Now that we’ve defined our API, let’s jump into our Python module, which lives in service.py. We see that NStack
has created a class Service. This is where we add the functions for our module. Right now it also has a sample
function in it, numChars, which we can remove.

Let’s import the libaries we’re using.

import nstack
import pandas as pd

from sklearn.ensemble import RandomForestClassifier

Note: Python modules must also import nstack

Before we add our predict function, we’re going to add __init__, the Python constructor function which runs
upon the creation of our module. It’s going to load our data from train.csv, and use it to train our Random Forest
classifier:

def __init__(self):
train = pd.read_csv("train.csv")

self.cols = ['petal_length', 'petal_width', 'sepal_length', 'sepal_width']
colsRes = ['class']
trainArr = train.as_matrix(self.cols)
trainRes = train.as_matrix(colsRes)

rf = RandomForestClassifier(n_estimators=100)
rf.fit(trainArr, trainRes)
self.rf = rf

Now we can write our predict function. The second argument, inputArr, is the input – in this case, our four
Doubles. To return text, we simply return from the function in Python.

def predict(self, inputArr):
points = [inputArr]
df = pd.DataFrame(points, columns=self.cols)

2.5. In-Depth Tutorial - Productionising a Classifier 13

nstack Documentation, Release 0.1.x

results = self.rf.predict(df)
return results.item()

Configuring your module

When your module is started, it is run in a Linux container on the NStack server. Because our module uses libraries like
pandas and sklearn, we have to tell NStack to install some extra operating system libraries inside your module’s
container. NStack lets us specify these in our nstack.yaml configuration file in the packages section. Let’s add
the following packages:

packages: ['numpy', 'python3-scikit-learn', 'scipy', 'python3-scikit-image', 'python3-
→˓pandas']

Additionally, we want to tell NStack to copy our train.csv file into our module, so we can use it in __init__.
nstack.yaml also has a section for specifying files you’d like to include:

files: ['train.csv']

Publishing and starting

Now we’re ready to build and publish our classifier. Remember, even though we run this command locally, our module
gets built and published on your NStack server in the cloud.

~/Iris.Classify/ $ nstack build
Building NStack Container module Iris.Classify. Please wait. This may take some time.
Module Iris.Classify built successfully. Use `nstack list functions` to see all
→˓available functions.

We can now see Iris.Classify.predict in the list of existing functions (along with previously built functions
like demo.numChars),

~/Iris.Classify/ $ nstack list functions
Iris.Classify:0.0.1-SNAPSHOT

predict : (Double, Double, Double, Double) -> Text
Demo:0.0.1-SNAPSHOT

numChars : Text -> Integer

Our classifier is now published, but to use it we need to connect it to an event source and sink. In the previous tutorial,
we used HTTP as a source, and the NStack log as a sink. We can do the same here. This time, instead of creating a
workflow module right away, we can use nstack’s notebook command to test our workflow first. notebook opens
an interactive shell where we can write our workflow. When we are finished, we can Ctrl-D.

~/Iris.Classify/ $ nstack notebook
import Iris.Classify:0.0.1-SNAPSHOT as Classifier;
Sources.http<(Double, Double, Double, Double)> | Classifier.predict | Sinks.log<Text>
[Ctrl-D]

This creates an HTTP endpoint on http://localhost:8080/irisendpoint which can receive four
Doubles, and writes the results to the log as Text. Let’s check it is running as a process:

~/Iris.Classify/ $ nstack ps
1
2

14 Chapter 2. Contents

nstack Documentation, Release 0.1.x

In this instance, it is running as process 2. We can test our classifier by sending it some of the sample data from
train.csv.

~/Iris.Classify/ $ nstack send "/irisendpoint" '[4.7, 1.4, 6.1, 2.9]'
Message Accepted
~/Iris.Classify/ $ nstack log 2
Feb 17 10:32:30 nostromo nstack-server[8925]: OUTPUT: "Iris-versicolor"

Our classifier is now productionised.

Features

In this section, we’re going to describe some of the more advanced features you can do with NStack when building
your modules and composing them together to build workflows.

Composition

Workflows can contain as many steps as you like, as long as the output type of one matches the input type of the other.
For instance, let’s say we wanted to create the following workflow based on the Iris example in In-Depth Tutorial -
Productionising a Classifier and available on GitHub

• Expose an HTTP endpoint which takes four Doubles

• Send these Doubles to our classifier, Iris.Classify, which will tell us the species of the iris

• Count the number of characters in the species of the iris using our Demo.numChars function

• Write the result to the log

We could write the following workflow:

module Iris.Workflow:0.0.1-SNAPSHOT {
import Iris.Classify:0.0.1-SNAPSHOT as Classifier;
import Demo:0.0.1-SNAPSHOT as Demo;

def multipleSteps = Sources.http<(Double, Double, Double, Double)> { http_path = "/
→˓irisendpoint" } | Classifier.predict | Demo.numChars | sinks.log<Integer>;
}

Note: numChars and predict can be composed together because their types – or schemas – match. If predict
wasn’t configured to output Text, or numChars wasn’t configured to take Text as input, NStack would not let you
build the following workflow.

Workflow Reuse

All of the workflows that we have written so far have been fully composed, which means that they contain a source and
a sink. Many times, you want to split up sources, sinks, and functions into separate pieces you can share and reuse.
In this case, we say that a workflow is partially composed, which just means it does not contain a source and a sink.
These workflows cannot be started by themselves, but can be shared and attached to other sources and/or sinks to
become fully composed.

For instance, we could combine Iris.Classify.predict and demo.numChars from the previous example
to form a new workflow speciesLength like so:

2.6. Features 15

https://github.com/nstack/nstack-examples/tree/master/iris

nstack Documentation, Release 0.1.x

module Iris.Workflow:0.0.1-SNAPSHOT {
import Iris.Classify:0.0.1-SNAPSHOT as Classifier;
import Demo:0.0.1-SNAPSHOT as Demo;

def speciesLength = Classifier.predict | Demo.numChars;
}

Because our workflow Iris.Workflow.speciesLength has not been connected to a source or a sink, it in itself
is still a function. If we build this workflow, we can see speciesLength alongside our other functions by using the
list command:

~/Iris.Workflow/ $ nstack list functions
Iris.Classify:0.0.1-SNAPSHOT

predict : (Double, Double, Double, Double) -> Text
Demo:0.0.1

numChars : Text -> Integer
Iris.Workflow:0.0.1-SNAPSHOT

speciesLength : (Double, Double, Double, Double) -> Integer

As we would expect, the input type of the workflow is the input type of Iris.Classify.predict, and the output
type is the output type of demo.numChars. Like other functions, this must be connected to a source and a sink to
make it fully composed, which means we could use this workflow it in another workflow.

module Iris.Endpoint:0.0.1-SNAPSHOT {
import Iris.Workflow:0.0.1-SNAPSHOT as IrisWF;
def http = Sources.http<(Double, Double, Double, Double)> | IrisWF.speciesLength |

→˓Sinks.log<Integer>;
}

Often times you want to re-use a source or a sink without reconfiguring them. To do this, we can similarly separate
the sources and sinks into separate workflows, like so:

module Iris.Workflow:0.0.1-SNAPSHOT {
import Iris.Classify:0.0.1-SNAPSHOT as Classifier;

def httpEndpoint = sources.http<(Double, Double, Double, Double)> { http_path =
→˓"speciesLength" };
def logSink = sinks.log<Text>;

def speciesWf = httpEndpoint | Classifier.predict | logSink;
}

Separating sources and sinks becomes useful when you’re connecting to more complex integrations which you don’t
want to configure each time you use it – many times you want to reuse a source or sink in multiple workflows. In the
following example, we are defining a module which provides a source and a sink which both sit ontop of Postgres.

module Iris.DB:0.0.1-SNAPSHOT {
def petalsAndSepals = Sources.postgres<(Double, Double, Double, Double)> {
pg_database = "flowers",
pg_query = "SELECT * FROM iris"

};

def irisSpecies = Sinks.postgres<Text> {
pg_database = "flowers",
pg_table = "iris"

};
}

16 Chapter 2. Contents

nstack Documentation, Release 0.1.x

If we built this module, petalsAndSepals and irisSpecies could be used in other modules as sources and
sinks, themselves.

We may also want to add a functions to do some pre- or post- processing to a source or sink. For instance:

module IrisCleanDbs:0.0.1-SNAPSHOT {

import PetalTools:1.0.0 as PetalTools;
import TextTools:1.1.2 as TextTools;
import Iris.DB:0.0.1-SNAPSHOT as DB;

def roundedPetalsSource = DB.petalsAndSepals | PetalsTools.roundPetalLengths;
def irisSpeciesUppercase = TextTools.toUppercase | DB.irisSpecies;

}

Because roundedPetalsSource is a combination of a source and a function, it is still a valid source. Similarly,
irisSpeciesUppercase is a combination of a function and a sink, so it is still a valid sink.

Because NStack functions, source, and sinks can be composed and reused, this lets you build powerful abstractions
over infrastructure.

Versioning

Modules in NStack are versioned with a 3-digit suffix that is intended to follow semantic versioning, e.g.:

Demo:0.0.1

This is specified in the nstack.yaml for code-based modules, and in workflow.nml for workflow modules. A
module of a specific version is completely immutable, and it’s not possible to build another copy of the module with
the same version without deleting it first.

Snapshots

When creating a new module, i.e. with nstack init, your module will have the version number (0.0.
1-SNAPSHOT). The SNAPSHOT tag tells NStack to allow you to override it every time you build. This is helpful
for development, as you do not need to constantly increase the version number. When you deem your module is ready
for release, you can remove SNAPSHOT and NStack will create an immutable version of 0.0.1.

Configuration

In addition to receiving input at runtime, modules, sources, and sinks often need to be able to configured by a workflow
author. To do this, we use brackets and pass in a list of named records:

Sources.Postgres<Text> {
pg_host = "localhost",
pg_port = "5432",
pg_user = "user",
pg_password = "123456",
pg_database = "db",
pg_query = "SELECT * FROM tbl;"

}

For sources and sinks, some parameters are mandatory, and some provide sensible defaults. This is documented in
Supported Integrations.

2.6. Features 17

nstack Documentation, Release 0.1.x

To pass configuration parameters to a module, we use the same syntax

FirstLastName.full_name { first_name = "John" }

NStack passes in configuration parameters as a dictionary, args, which is added to the base class of your module.
For instance, in Python you can access configuration parameters in the following manner:

class Service(nstack.BaseService):

def full_name(self, second_name):
full_name = "{} {}".format(self.args.get("first_name", "Tux"), second_name)
return full_name

Framework Modules

It is often useful to create a common parent module with dependencies already installed, either to save time or for
standardisation. NStack supports this with Framework Modules. Simply create a new module similar to above,
nstack init framework [parent], and modify the resulting nstack.yaml as needed.

You can then build this module using nstack build, and refer to it from later modules within the parent field
of their nstack.yaml config file.

Supported Languages

NStack is language-agnostic and allows you to write modules in multiple languages and connect them together –
currently we support Python, with R and Java coming soon. More languages will be added over time – if there’s
something you really need, please let us know!

Python

Basic Structure

NStack services in Python inherit from a base class, called BaseService within the nstack module:

import nstack

class Service(nstack.BaseService):
def numChars(self, msg):

return len(msg)

Note: Ensure you import the nstack module in your service, e.g. import nstack

Any function that you export within the API section of your nstack yaml must exist as a method on this class (you
can add private methods on this class for internal use as expected in Python).

Data comes into this function via the method arguments - for nstack all the data is passed within a single argument
that follows the self parameter. For instance, in the example above there is a single argument msg consisting
of a single string element that may be used as-is. However if your function was defined as taking (Double,
Double), you would need to unpack the tuple in Python first as follows,

18 Chapter 2. Contents

nstack Documentation, Release 0.1.x

def test(self, msg):
x, y = msg
...

Similarly, to return data from your NStack function, simply return it as a single element within your Python method,
as in the top example above.

The NStack object lasts for the life-time of the workflow, so if there is any initialisation you need to do within your
service you can perform this within the object __init__ method, e.g. open a database connection, load a data-set.
However remember to call the parent object __init__ method to ensure NStack is initialised correctly, i.e..

import nstack

class Service(nstack.BaseService):
def __init__(self):

super().__init__()
custom initialisation here

Notes

• Anything your‘‘print‘‘ will show up in nstack log to aid debugging. (all output on stdout and stderr
is sent to the NStack logs)

• Extra libraries from pypi using pip can be installed by adding them to the requirements.txt file in the
project directory - they will be installed during nstack build

R

Coming soon

Java

Coming soon

Reference

nstack CLI

The nstack CLI is used to build modules and workflows on a linked NStack server. It can be configured via the
nstack.conf yaml file found in ~\.config on Linux/macOS, and in HOME/AppUser/Roaming on Win-
dows, or indirectly via the nstack set-server command described below.

Usage

Having installed the CLI, make sure it’s accessible from your path

$ nstack --version
> nstack 0.0.3

You can find the list of commands and options available by running

2.8. Reference 19

nstack Documentation, Release 0.1.x

$ nstack --help

Commands

This section explains the commands supported by the CLI toolkit.

register

$ nstack register username email [-s SERVER]

Option Description
username A unique username to assign on the the server.
email An email address to validate the user and send login credentials to.
SERVER The remote NStack Server to register with, by default this will use our demo server.

A simple command to register with a remote NStack server so you can login, build modules, start workflows, etc.
Upon successful registration you will receive credentials over email that you can paste into the nstack CLI and get
started.

set-server

$ nstack set-server server-addr server-port id key

This command configures your local NStack CLI to communicate with a remote NStack Server with which you have
registered (see previous command). You usually don’t have to enter this command by hand, it will be contained with
an email after successful registration that you can paste directly into your terminal.

Internally this modifies the nstack.conf CLI config file on your behalf (found in ~\.config on Linux/macOS,
and in HOME/AppUser/Roaming on Windows).

info

$ nstack info

Displays information regarding the entire current state of NStack, including:

• Modules

• Sources

• Sinks

• Running processes

• Base images

init

$ nstack init <stack>

20 Chapter 2. Contents

nstack Documentation, Release 0.1.x

Op-
tion

Description

stack The default stack to use to build your service, e.g. python or workflow (.nml NStack Workflow
Language).

Initialises a new nstack module in the current directory using the specified base language stack. This creates a working
skeleton project which you can use to write your module.

If you are creating a module in an existing programming language, such as Python, init creates a module with a
single numChars function already created. The initial project is comprised of the following files,

• nstack.yaml, your service’s configuration file (see module_structure),

• service.py, an application file (or service.js, etc.), where your business-logic lives

• an empty packages file (e.g. requirements.txt for Python, or package.json for Node, etc.).

init is the command used to create a new workflow. In this case, NStack creates a skeleton workflow.nml file.

build

$ nstack build

Builds a module on your hosted nstack instance.

Note: build is also used to build workflows. Remember, workflows are modules too!

start

$ nstack start <workflow>

Option Description
<workflow> The workflow to start, in NStack Workflow Language

Used to start a workflow as a process. Workflows can either be provided as an argument such as:

Or, if you have built a workflow as a module, you can start it with:

notebook

$ nstack notebook

Create an interactive session within the terminal that provides a mini-REPL (you can also redirect a file/stream into
the notebook command to provide for rapid service testing and development).

From this command-line, you can import modules as needed, and enter a single workflow that will be compiled and
run immediately on the server (press <Ctrl-D> on Linux/macOS or <Ctrl-Z> on Windows to submit your input).

$ nstack notebook
import Demo.Classify:0.0.3 as D;
Sources.http<Text> { http_path = "/classify" } | D.numChars | Sinks.log<Text>
<Ctrl-D>
> Service started successfully as process 5

2.8. Reference 21

nstack Documentation, Release 0.1.x

send

$ nstack send "route" 'data'

Option Description
route The endpoint to send the data where a workflow is running.
data A json snippet to send to the endpoint and pass into a workflow.

Used with the HTTP source, nstack send sends a JSON-encoded element to an endpoint on the NStack server
where a workflow has been started. Useful for testing workflows that are to be used as web-hooks.

ps

$ nstack ps

Shows a list of all processes, which are workflows that are running on your your nstack server.

stop

$ nstack stop <process-id>

Stop a running process.

list

$ nstack list <primitive>

Option Description
<primitive> The primitive you want to list.

Shows a list of available primitives. Support primitives are modules, workflows, functions, sources, and sinks.

delete

$ nstack delete <module>

Deletes a module (and thus its functions) from NStack.

log

$ nstack log <process>

Option Description
<process> The id of the process.

View the logs of a running process.

22 Chapter 2. Contents

nstack Documentation, Release 0.1.x

server-logs

$ nstack server-logs

View the full logs of the NStack server.

gc

$ nstack gc

Expert: Garbage-collect unused module images to free up space on the server.

Module Structure

Introduction

The following files are created when you create an nstack module using:

$ nstack init <stack>

nstack.yaml

The nstack.yaml file describes the configuration of your nstack module. It has several required fields that describe
the project and let you control the packaging of your module.

Sample nstack.yaml file:

Module name
name: MyModule

The language stack to use
stack: python

Parent Image
parent: NStack.Python:0.25.0

api: |
numChars : Text -> Integer

(Optional) System-level packages needed
packages: []

(Optional) Commands to run when building the module (Bash-compatible)
commands: []

(Optional) Files/Dir to copy across into the module (can use regex/glob syntax)
files: []

name

Required

2.8. Reference 23

nstack Documentation, Release 0.1.x

The name of the module. This is created by nstack init and uses the name of the current directory by default.

stack

Required

The base language stack to use when creating an image. Currently we support:

Name Description
python Python 3

parent

Required

The base-image your module builds from. This is typically generated by default when you create a module, but can
be specified to include custom base-images which include standardised packages.

api

Required

The API which defines which functions you want to expose, and their input and output schemas. Please see
idl_language for more details.

files

Optional

A list of files and directories within the project directory to include and bundle in alongside the image.

packages

Optional

A list of operating systems packages your module requires. These can be any packages installable via dnf on RHEL
or Fedora.

Supported Types

Primitive types

NStack supports the following primitive types:

• Integer

• Double

• Boolean

• Text

More complex types can be built out of primitive ones:

24 Chapter 2. Contents

http://python.org/

nstack Documentation, Release 0.1.x

• Optional types: type1 optional

• Tuples: (type1, type2, ...). A tuple must have at least two fields.

• Structs: { name1: type1, name2: type2, ... }

• Arrays: [type1]

• Sums: Name1 type1a ... | Name2 type2a ... | ...

A user can define their own type in the idl_language.

Workflow Language

Overview

A module consists of a module header, import statements, and definitions, for instance:

module ModuleB:0.1.0 {
import ModuleA:0.1.0 as A;
def x = A.y | A.z;

}

An import statement includes the module to be imported (MyModule:0.1.0) and its alias (A). The alias is used to
qualify functions imported from the module, e.g. A.y.

Definitions bind function names (x) to expressions (A.y | A.z). Any function x defined in a module ModuleB
can be used in any other module:

import ModuleB:0.1.0 as B;
def z = filter B.x;

If a name is not prefixed by a module alias, it refers to a function defined in the current module.

Expressions

Expressions combine already defined functions through the following operations:

Pipe

A.y | A.z

Every value produced by A.y is passed to A.z.

The output type of A.y must match the input type of A.z.

Concat

concat A.y or A.y*

A.y must be a function that produces lists of values, in which case concat A.y is a function that
“unpacks” the lists and yields the same values one by one.

2.8. Reference 25

https://en.wikipedia.org/wiki/Algebraic_data_type

nstack Documentation, Release 0.1.x

Filter

filter A.y or A.y?

A.y must be a function that produces “optional” (potentially missing) values, in which case filter
A.y is a function that filters out missing values.

Type application

Sources.A<T>

Some functions (notably, most sources and sinks) can be specialized to multiple input or output types. This is done
with type application: Sources.http<Text> specializes Sources.http to the type Text.

Parameter application

A.y { one = "...", two = "..." }.

Parameters are analogous to UNIX environment variables in the following ways:

1. Parameters are inherited. E.g. in

y = x;
z = y { foo = "bar" };

both functions x and y will have access to foo when z is called.

2. Parameters can be overridden. E.g. in

y = x { foo = "baz" };
z = y { foo = "bar" };

y overrides the value of foo that is passed to x. Therefore, x will see the value of foo as baz, not bar.

Parameters are used to configure sources and sinks — for instance, to specify how to connect to a PostgreSQL database.

Parameters can also be used to configure user-defined modules. Inside a Python nstack method, the value of parameter
foo can be accessed as self.args["foo"].

Comments

The workflow language supports line and block comments. Line comments start with // and extend until the end of
line. Block comments are enclosed in /* and */ and cannot be nested.

EBNF grammar

The syntax is defined in EBNF (ISO/IEC 14977) in terms of tokens.

module = 'module', module name, '{', {import}, {definition}, '}';
import = 'import', module name, 'as', module alias, ';';
definition = 'def', name, '=', expression, ';';
expression = expression1, {'|', expression1};
expression1 = application, '*'

| application, '?'
| 'concat', application

26 Chapter 2. Contents

nstack Documentation, Release 0.1.x

| 'filter', application
;

application = term [arguments];
arguments = '{', argument binding, {',', argument binding}, '}';
argument binding = name, '=', literal;
term = '(', expression, ')'

| qualified name ['<', type, '>']
;

IDL Language

An IDL block describes the interface of an external module (which could be written in Python, for instance). It is
embedded in nstack.yaml

The IDL block consists of two sections: the first section declares types, the second section declares functions.

Types are declared using the type keyword:

type PlantInfo = { petalLength : Double
, petalWidth : Double
, sepalLength : Double
, sepalWidth : Double
}

type PlantSpecies = Text

The left-hand side of a type declaration is the new type name; the right-hand side must be an existing type. Type
declarations don’t need to be delimited in any way.

Function declarations have form name : Type and must be delimited by commas, for instance

gotham : MovieRecordImage -> MovieRecordImage,
kelvin : MovieRecordImage -> MovieRecordImage,
lomo : MovieRecordImage -> MovieRecordImage

Thus, the full IDL block might look like this:

type PlantInfo = { petalLength : Double
, petalWidth : Double
, sepalLength : Double
, sepalWidth : Double
}

type PlantSpecies = Text

gotham : MovieRecordImage -> MovieRecordImage,
kelvin : MovieRecordImage -> MovieRecordImage,
lomo : MovieRecordImage -> MovieRecordImage

Supported Integrations

NStack is built to integrate with existing infrastructure, event, and data-sources. Typically, this is by using them as
sources and sinks in the NStack Workflow Language.

See also:

Learn more about sources and sinks in Concepts

2.8. Reference 27

nstack Documentation, Release 0.1.x

Sources

Postgres

Sources.postgres<Text> {
pg_host = "localhost", pg_port = "5432",
pg_user = "user", pg_password = "123456",
pg_database = "db", pg_query = "SELECT * FROM tbl;" }

pg_port defaults to 5432, pg_user defaults to postgres, and pg_password defaults to the empty string. The
other parameters are mandatory.

HTTP

Sources.http<Text> { http_path = "/foo" }

RabbitMQ (AMQP)

Sources.amqp<Text> {
amqp_host = "localhost", amqp_port = "5672",
amqp_vhost = "/", amqp_exchange = "ex",
amqp_key = "key"

}

amqp_port defaults to 5672 and amqp_vhost defaults to /. The other parameters are mandatory.

Sinks

Postgres

Sinks.postgres<Text> {
pg_host = "localhost", pg_port = "5432",
pg_user = "user", pg_password = "123456",
pg_database = "db", pg_table = "tbl" }

Like for Postgres source, pg_port defaults to 5432, pg_user defaults to postgres, and pg_password defaults
to the empty string. The other parameters are mandatory.

NStack Log

Sinks.log<Text>

The Log sink takes no parameters.

RabbitMQ (AMQP)

28 Chapter 2. Contents

nstack Documentation, Release 0.1.x

Sinks.amqp<Text> {
amqp_host = "localhost", amqp_port = "5672",
amqp_vhost = "/", amqp_exchange = "ex",
amqp_key = "key"

}

Like for AMQP source, amqp_port defaults to 5672 and amqp_vhost defaults to /. The other parameters are
mandatory.

2.8. Reference 29

	What is NStack?
	Contents
	NStack Uses
	NStack Concepts
	Installation & Upgrading
	Quick Tutorial
	In-Depth Tutorial - Productionising a Classifier
	Features
	Supported Languages
	Reference

