

Welcome to NovatelOEM4 GPS Library’s documentation!

	Date

	24 Jul 2018

	Version

	0.4

	Author

	Bruno Tibério

	Contact

	bruno.tiberio@tecnico.ulisboa.pt

Changelog

	version 0.4.1

	Corrected bugs in reset, saveconfig and sbascontrol.
Corrected messageID access using () instead [] as it is a dictionary.
Added static method decoration in CRC32Value, getDebugMessage and createHeader

	version 0.4

	Moved from optoparse to argparse module.
Changed Queue to make it compatible with python3 queue. Backwards compatibility is maintained.
Restructured default location. Moved from Lib folder to base path.
Moved examples to proper folder. This cause backwards compatibility problems. On import, replace
import Lib.NovatelOEM4 with simply import NovatelOEM4

	version 0.3

	logging configuration as moved outside module to enable user to use already
configured logging handler. Check multimodule logging docs [https://docs.python.org/2/howto/logging-cookbook.html#using-logging-in-multiple-modules`]

	version 0.2

	data from bestxyz message is now placed into a Queue.Queue() FIFO

	version 0.1

	initial release

This module contains a few functions to interact with Novatel OEM4 GPS devices.
Currently only the most important functions and definitions are configured, but
the intention is to make it as much complete as possible.

A simple example can be run by executing the main function wich creates a Gps
class object and execute the following commands on gps receiver:

	begin: on default port or given port by argv[1].

	sendUnlogall

	setCom(baud=115200): changes baudrate to 115200bps

	askLog(trigger=2,period=0.1): ask for log bestxyz with trigger ONTIME
and period 0.1

	wait for 10 seconds

	shutdown: safely disconnects from gps receiver

Example:

$python NovatelOEM4.py

Contents:

	Gps Class
	Methods
	askLog

	begin

	create_header

	getDebugMessage

	parseResponces

	reset

	saveconfig

	sbascontrol

	sendUnlogall

	setCom

	setDynamics

	shutdown

	CRC32Value

Gps Class

	
class NovatelOEM4.Gps(sensorName='GPS')

	Novatel OEM4 GPS library class

This class contents is an approach to create a library for Novatel OEM 4 GPS

	Parameters

	sensorName (optional) – A sensor name if used with multiple devices.

	
header_keys

	all field keys for the headers of messages.

	
MessageID

	A dictionary for the types of messages sent. Not all are
implemented yet!

Methods

askLog

	
Gps.askLog(logID='BESTXYZ', port=192, trigger=4, period=0, offset=0, hold=0)

	Request a log from receiver.

	Parameters

	
	logID – log type to request.

	port – port to report log.

	trigger – trigger identifier.

	period – the period of log.

	offset – offset in seconds after period.

	hold – mark log with hold flag or not.

	Returns

	True or false if command was sucessfull or not.

The log request command is defined as:

	Field

	ID

	N Bytes

	Description

	1

	Com header

	H = 28

	Header of message

	2

	port

	ENUM = 4

	identification of port

	3

	message

	Ushort = 2

	Message ID of log to output

	4

	messageType

	char = 1

	Message type (Binary)

	5

	RESERVED

	char = 1

	

	6

	trigger

	ENUM = 4

	message trigger

	7

	period

	double = 8

	Log period (for ONTIME in secs)

	8

	offset

	double = 8

	Offset for period (ONTIME in secs

	9

	hold

	ENUM = 4

	Hold log

	10

	crc32

	Ulong = 4

	crc32 value

Note

Total byte size = header + 32 = 60 bytes

Log trigger Identifiers (field 6):

	Binary

	ASCII

	Description

	0

	ONNEW

	
when the message is updated (not necessarily

changed)

	1

	ONCHANGED

	
Current message and then continue to output

when the message is changed

	2

	ONTIME

	Output on a time interval

	3

	ONNEXT

	Output only the next message

	4

	ONCE

	Output only the current message

	5

	ONMARK

	
Output when a pulse is detected on the mark 1

input

begin

	
Gps.begin(dataQueue, comPort='/dev/ttyUSB0', baudRate=9600)

	Initializes the gps receiver.

This function resets the current port to factory default and setup the
gps receiver to be able to acept new commands. If connection to gps
is made, it launchs a thread used to parse messages comming from gps.

	Parameters

	
	comPort – system port where receiver is connected.

	dataQueue – a Queue object to store incoming bestxyz messages.

	baudRate – baudrate to configure port. (should always be equal to
factory default of receiver).

	Returns

	True or False if the setup has gone as expected or not.

	Example

	Gps.begin(comPort="<port>",
 dataQueue=<your Queue obj>,
 baudRate=9600)

Default values

	ComPort

	“/dev/ttyUSB0”

	BaudRate

	9600

Warning

This class uses module logging wich must be configured in your
main program using the basicConfig method. Check documentation
of module logging [https://docs.python.org/2/library/logging.html] for more info.

HW info:

	Receptor

	Novatel Flexpak G2L-3151W.

	Antenna

	Novatel Pinwheel.

create_header

	
Gps.create_header(messageID, messageLength, portAddress=192)

	Creates a header object to be passed to receiver.

	Parameters

	
	messageID – the corresponding value of identifying the message body.

	messageLength – size of message in bytes excluding CRC-32bit code.

	portAddress – port from where message request is sent.

	Returns

	The header of message.

The header is defined as:

	Field

	Value

	N Bytes

	Description

	1

	sync[0]

	UChar = 1

	Hexadecimal 0xAA.

	2

	sync[1]

	UChar = 1

	Hexadecimal 0x44.

	3

	sync[2]

	UChar = 1

	Hexadecimal 0x12.

	4

	headerLength

	UChar = 1

	Length of the header (should
always be 28 unless some
firmware update)

	5

	messageID

	UShort = 2

	This is the Message ID code

	6

	messageType

	UChar = 1

	message type mask (binary and
original message)

	7

	portAddress

	Uchar = 1

	Corresponding value of port

	8

	messageLength

	UShort = 2

	Length of message body

	9

	sequence

	UShort = 2

	This is used for multiple
related logs.

	10

	idleTime

	UChar = 1

	The time that the processor
is idle in the last second
between successive logs with
the same Message ID

	11

	timeStatus

	Enum = 1

	Indicates the quality of the
GPS time

	12

	week

	UShort = 2

	GPS week number.

	13

	ms

	int = 4

	Milliseconds from the
beginning of the GPS week.

	14

	receiverStatus

	Ulong = 4

	32 bits representing the
status of various hardware
and software components of
the receiver.

	15

	reserved

	UShort = 2

	

	16

	swVersion

	UShort = 2

	receiver software build
number.

Note

portAddress=192 (equal to thisport)

getDebugMessage

	
static Gps.getDebugMessage(message)

	Create a string which contains all bytes represented as hex values

Auxiliary function for helping with debug. Receives a binary message as
input and convert it as a string with the hexdecimal representation.

	Parameters

	message – message to be represented.

	Returns

	A string of corresponding hex representation of message.

parseResponces

	
Gps.parseResponces()

	A thread to parse responses from device

reset

	
Gps.reset(delay=0)

	Performs a hardware reset

	Parameters

	delay – seconds to wait before resetting. Default to zero.

	Returns

	A boolean if request was sucessful or not

The reset message is defined as:

	Field

	value

	N Bytes

	Description

	1

	header

	H = 28

	Header of message

	2

	delay

	UL = 4

	Seconds to wait before reset

	CRC32

	
	UL = 4

	

Following a RESET command, the receiver initiates a coldstart boot up.
Therefore, the receiver configuration reverts either to the factory
default, if no user configuration was saved, or the last SAVECONFIG
settings.
The optional delay field is used to set the number of seconds the
receiver is to wait before resetting.

saveconfig

	
Gps.saveconfig()

	Save user current configuration

	Returns

	A boolean if request was sucessful or not

Saveconfig message is defined as:

	Field

	value

	N Bytes

	Description

	1

	header

	H = 28

	Header of message

	CRC32

	
	UL = 4

	

This command saves the user’s present configuration in non-volatile
memory. The configuration includes the current log settings, FIX
settings, port configurations, and so on. Its output is in the
RXCONFIG log.

sbascontrol

	
Gps.sbascontrol(keywordID=1, systemID=1, prn=0, testmode=0)

	Set SBAS test mode and PRN SBAS

	Parameters

	
	keywordID – True or false. Control the reception of SBAS
corrections Enable = 1, Disable = 0.

	systemID – SBAS system to be used.

	prn – PRN corrections to be used.

	testmode – Interpretation of type 0 messages.

	Returns

	A boolean if request was sucessful or not

sbascontrol message is defined as:

	Field

	value

	N Bytes

	Description

	1

	header

	H = 28

	Header of message

	2

	keyword

	Enum = 4

	Enable = 1 or Disable = 0

	3

	system

	Enum = 4

	Choose the SBAS the receiver
will use

	4

	prn

	UL = 4

	0 - Receiver will use any PRN

	120~138 - Receiver will use
SBAS only from this PRN

	5

	testmode

	Enum = 4

	Interpretation of type 0
messages

	CRC32

	
	UL = 4

	

System (Field 2) is defined as:

	Binary

	ASCII

	Description

	0

	NONE

	Don’t use any SBAS satellites.

	1

	AUTO

	Automatically determinate satellite system to
use (default).

	2

	ANY

	Use any and all SBAS satellites found

	3

	WAAS

	Use only WAAS satellites

	4

	EGNOS

	Use only EGNOS satellites

	5

	MSAS

	Use only MSAS satellites

Testmode (field 5) is defined as:

	Binary

	ASCII

	Description

	0

	NONE

	Interpret Type 0 messages as they are
intended (as do not use).(default)

	1

	ZEROTOTWO

	Interpret Type 0 messages as type 2 messages

	2

	IGNOREZERO

	Ignore the usual interpretation of Type 0
messages (as do not use) and continue

This command allows you to dictate how the receiver handles
Satellite Based Augmentation System (SBAS) corrections and replaces
the now obsolete WAASCORRECTION command. The receiver automatically
switches to Pseudorange Differential (RTCM or RTCA) or RTK if the
appropriate corrections are received, regardless of the current
setting.

sendUnlogall

	
Gps.sendUnlogall(port=8, held=1)

	Send command unlogall to gps device.

On sucess clears all logs on all ports even held logs.

	Returns

	True or False if the request has gone as expected or not.

unlogall message is defined as:

	Field

	value

	N Bytes

	Description

	1

	header

	H = 28

	Header of message

	2

	port

	ENUM = 4

	identification of port

	3

	Held

	ENUM = 4

	can only be 0 or 1. Clear logs
with hold flag or not?

	CRC32

	
	UL = 4

	

Note

See: OEMStar Firmware Reference Manual Rev 6 page 161

setCom

	
Gps.setCom(baud, port=6, parity=0, databits=8, stopbits=1, handshake=0, echo=0, breakCond=1)

	Set com configuration.

	Parameters

	
	baud – communication baudrate.

	port – Novatel serial ports identifier (default 6 = “thisport”).

	parity – byte parity check (default 0).

	databits – Number of data bits (default 8).

	stopbits – Number of stop bits (default 1).

	handshake – Handshaking (default No handshaking).

	echo – echo input back to user (default false)

	breakCond – Enable break detection (default true)

	Returns

	True or false if command was sucessfull or not.

The com request command is defined as:

	Field

	ID

	N Bytes

	Description

	1

	Com header

	H = 28

	Header of message

	2

	port

	ENUM = 4

	identification of port

	3

	baud

	Ulong = 4

	Communication baud rate (bps)

	4

	parity

	ENUM = 4

	Parity

	5

	databits

	Ulong = 4

	Number of data bits (default = 8)

	6

	stopbits

	Ulong = 4

	Number of stop bits (default = 1)

	7

	handshake

	ENUM = 4

	Handshaking

	8

	echo

	ENUM = 4

	No echo (default)(must be 0 or 1)

	9

	break

	ENUM = 4

	Enable break detection (default 0)
,(must be 0 or 1)

Note

Total byte size = header + 32 = 60 bytes

COM Serial Port Identifiers (field 2):

	Binary

	ASCII

	Description

	1

	COM1

	COM port 1

	2

	COM2

	COM port 2

	6

	THISPORT

	The current COM port

	8

	ALL

	All COM ports

	9

	XCOM1

	Virtual COM1 port

	10

	XCOM2

	Virtual COM2 port

	13

	USB1

	USB port 1

	14

	USB2

	USB port 2

	15

	USB3

	USB port 3

	17

	XCOM3

	Virtual COM3 port

Parity(field 4):

	Binary

	ASCII

	Description

	0

	N

	No parity (default)

	1

	E

	Even parity

	2

	O

	Odd parity

Handshaking (field 7):

	Binary

	ASCII

	Description

	0

	N

	No handshaking (default)

	1

	XON

	XON/XOFF software handshaking

	2

	CTS

	CTS/RTS hardware handshaking

Note

See: OEMStar Firmware Reference Manual Rev 6 page 56

setDynamics

	
Gps.setDynamics(dynamicID)

	Set Dynamics of receiver.

	Parameters

	dynamicID – identifier of the type of dynamic.

	Returns

	True or False if the request has gone as expected or not.

dynamics message is defined as:

	Field

	value

	N Bytes

	Description

	1

	header

	H = 28

	Header of message

	2

	dynamics

	ENUM = 4

	identification of dynamics

	CRC32

	
	UL = 4

	

The dynamics identifiers (field 2) are defined as:

	Binary

	ASCII

	Description

	0

	AIR

	
Receiver is in an aircraft or a land vehicle,

for example a high speed train, with velocity

greater than 110 km/h (30 m/s). This is also

the most suitable dynamic for a jittery

vehicle at any speed.

	1

	LAND

	
Receiver is in a stable land vehicle with

velocity less than 110 km/h (30 m/s).

	2

	FOOT

	
Receiver is being carried by a person with

velocity less than 11 km/h (3 m/s).

This command adjusts the receiver dynamics to that of your environment.
It is used to optimally tune receiver parameters.
The DYNAMICS command adjusts the Tracking State transition time-out
value of the receiver.
When the receiver loses the position solution, it attempts to steer the
tracking loops for fast reacquisition (5 s time-out by default).
The DYNAMICS command allows you to adjust this time-out value,
effectively increasing the steering time. The three states 0, 1, and 2
set the time-out to 5, 10, or 20 seconds respectively.

Note

	The DYNAMICS command should only be used by advanced users of GPS.
The default of AIR should not be changed except under very
specific conditions.

	The DYNAMICS command affects satellite reacquisition. The
constraint of the DYNAMICS filter with FOOT is very tight and is
appropriate for a user on foot. A sudden tilted or up and down
movement, for example while a tractor is moving slowly along a
track, may trip the RTK filter to reset and cause the position to
jump. AIR should be used in this case.

shutdown

	
Gps.shutdown()

	Prepare for exiting program

	Returns

	always returns true after all tasks are done.

Prepare for turn off the program by executing the following tasks:

	unlogall

	reset port settings

	close port

CRC32Value

	
static Gps.CRC32Value(i)

	Calculate the 32bits CRC of message.

See OEMStar Firmware Reference Manual Rev 6 page 24 for
more information.

	Parameters

	i – message to calculate the crc-32.

	Returns

	The CRC value calculated over the input message.

Index

 A
 | B
 | C
 | G
 | H
 | M
 | P
 | R
 | S

A

 	
 	askLog() (NovatelOEM4.Gps method)

B

 	
 	begin() (NovatelOEM4.Gps method)

C

 	
 	CRC32Value() (NovatelOEM4.Gps static method)

 	
 	create_header() (NovatelOEM4.Gps method)

G

 	
 	getDebugMessage() (NovatelOEM4.Gps static method)

 	
 	Gps (class in NovatelOEM4)

H

 	
 	header_keys (NovatelOEM4.Gps attribute)

M

 	
 	MessageID (NovatelOEM4.Gps attribute)

P

 	
 	parseResponces() (NovatelOEM4.Gps method)

R

 	
 	reset() (NovatelOEM4.Gps method)

S

 	
 	saveconfig() (NovatelOEM4.Gps method)

 	sbascontrol() (NovatelOEM4.Gps method)

 	sendUnlogall() (NovatelOEM4.Gps method)

 	
 	setCom() (NovatelOEM4.Gps method)

 	setDynamics() (NovatelOEM4.Gps method)

 	shutdown() (NovatelOEM4.Gps method)

Changelog

	version 0.4.1

	Corrected bugs in reset, saveconfig and sbascontrol.
Corrected messageID access using () instead [] as it is a dictionary.
Added static method decoration in CRC32Value, getDebugMessage and createHeader

	version 0.4

	Moved from optoparse to argparse module.
Changed Queue to make it compatible with python3 queue. Backwards compatibility is maintained.
Restructured default location. Moved from Lib folder to base path.
Moved examples to proper folder. This cause backwards compatibility problems. On import, replace
import Lib.NovatelOEM4 with simply import NovatelOEM4

	version 0.3

	logging configuration as moved outside module to enable user to use already
configured logging handler. Check multimodule logging docs [https://docs.python.org/2/howto/logging-cookbook.html#using-logging-in-multiple-modules`]

	version 0.2

	data from bestxyz message is now placed into a Queue.Queue() FIFO

	version 0.1

	initial release

 nav.xhtml

 Table of Contents

 		
 Welcome to NovatelOEM4 GPS Library’s documentation!

 		
 Gps Class

 		
 Methods

 		
 askLog

 		
 begin

 		
 create_header

 		
 getDebugMessage

 		
 parseResponces

 		
 reset

 		
 saveconfig

 		
 sbascontrol

 		
 sendUnlogall

 		
 setCom

 		
 setDynamics

 		
 shutdown

 		
 CRC32Value

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

