
notmuch Documentation
Release 0.20.2

notmuch contributors

October 19, 2015

Contents

1 Quickstart and examples 3

2 Interfacing with notmuch 5

3 Status and Errors 7
3.1 STATUS – Notmuch operation return value . 7
3.2 NotmuchError – A Notmuch execution error . 8

4 Database – The underlying notmuch database 9

5 Query – A search query 15

6 Messages – A bunch of messages 17

7 Message – A single message 19

8 Tags – Notmuch tags 25

9 Threads – Threads iterator 27

10 Thread – A single thread 29

11 Files and directories 31
11.1 Filenames – An iterator over filenames . 31
11.2 Directoy – A directory entry in the database . 32

12 Indices and tables 35

Python Module Index 37

i

ii

notmuch Documentation, Release 0.20.2

The notmuch module provides an interface to the notmuch functionality, directly interfacing to a shared notmuch li-
brary. Within notmuch, the classes Database, Query provide most of the core functionality, returning Threads,
Messages and Tags.

License This module is covered under the GNU GPL v3 (or later).

Contents 1

http://notmuchmail.org

notmuch Documentation, Release 0.20.2

2 Contents

CHAPTER 1

Quickstart and examples

Notmuch can be imported as:

import notmuch

or:

from notmuch import Query, Database

db = Database('path', create=True)
msgs = Query(db, 'from:myself').search_messages()

for msg in msgs:
print(msg)

3

notmuch Documentation, Release 0.20.2

4 Chapter 1. Quickstart and examples

CHAPTER 2

Interfacing with notmuch

The notmuch module provides most of the functionality that a user is likely to need.

Note: The underlying notmuch library is build on a hierarchical memory allocator called talloc. All objects derive
from a top-level Database object.

This means that as soon as an object is deleted, all underlying derived objects such as Queries, Messages, Message,
and Tags will be freed by the underlying library as well. Accessing these objects will then lead to segfaults and other
unexpected behavior.

We implement reference counting, so that parent objects can be automatically freed when they are not needed anymore.
For example:

db = Database('path',create=True)
msgs = Query(db,'from:myself').search_messages()

This returns Messages which internally contains a reference to its parent Query object. Otherwise the Query()
would be immediately freed, taking our msgs down with it.

In this case, the above Query() object will be automatically freed whenever we delete all derived objects, ie in our
case: del(msgs) would also delete the parent Query. It would not delete the parent Database() though, as that is still
referenced from the variable db in which it is stored.

Pretty much the same is valid for all other objects in the hierarchy, such as Query , Messages, Message, and
Tags.

5

notmuch Documentation, Release 0.20.2

6 Chapter 2. Interfacing with notmuch

CHAPTER 3

Status and Errors

Some methods return a status, indicating if an operation was successful and what the error was. Most of these status
codes are expressed as a specific value, the notmuch.STATUS.

Note: Prior to version 0.12 the exception classes and the enumeration notmuch.STATUS were defined in not-
much.globals. They have since then been moved into notmuch.errors.

3.1 STATUS – Notmuch operation return value

class STATUS
STATUS is a class, whose attributes provide constants that serve as return indicators for notmuch functions.
Currently the following ones are defined. For possible return values and specific meaning for each method, see
the method description.

•SUCCESS

•OUT_OF_MEMORY

•READ_ONLY_DATABASE

•XAPIAN_EXCEPTION

•FILE_ERROR

•FILE_NOT_EMAIL

•DUPLICATE_MESSAGE_ID

•NULL_POINTER

•TAG_TOO_LONG

•UNBALANCED_FREEZE_THAW

•UNBALANCED_ATOMIC

•NOT_INITIALIZED

Invoke the class method notmuch.STATUS.status2str with a status value as argument to receive a human readable
string

status2str(status)
Get a (unicode) string representation of a notmuch_status_t value.

STATUS.status2str(status)
Get a (unicode) string representation of a notmuch_status_t value.

7

notmuch Documentation, Release 0.20.2

3.2 NotmuchError – A Notmuch execution error

Whenever an error occurs, we throw a special Exception NotmuchError, or a more fine grained Exception which
is derived from it. This means it is always safe to check for NotmuchErrors if you want to catch all errors. If you are
interested in more fine grained exceptions, you can use those below.

exception NotmuchError(status=None, message=None)
Is initiated with a (notmuch.STATUS[, message=None]). It will not return an instance of the class NotmuchEr-
ror, but a derived instance of a more specific Error Message, e.g. OutOfMemoryError. Each status but SUCCESS
has a corresponding subclassed Exception.

The following exceptions are all directly derived from NotmuchError. Each of them corresponds to a specific
notmuch.STATUS value. You can either check the status attribute of a NotmuchError to see if a specific er-
ror has occurred, or you can directly check for the following Exception types:

exception OutOfMemoryError(message=None)

exception ReadOnlyDatabaseError(message=None)

exception XapianError(message=None)

exception FileError(message=None)

exception FileNotEmailError(message=None)

exception DuplicateMessageIdError(message=None)

exception NullPointerError(message=None)

exception TagTooLongError(message=None)

exception UnbalancedFreezeThawError(message=None)

exception UnbalancedAtomicError(message=None)

exception NotInitializedError(message=None)
Derived from NotmuchError, this occurs if the underlying data structure (e.g. database is not initialized (yet) or
an iterator has been exhausted. You can test for NotmuchError with .status = STATUS.NOT_INITIALIZED

8 Chapter 3. Status and Errors

CHAPTER 4

Database – The underlying notmuch database

class Database([path=None[, create=False[, mode=MODE.READ_ONLY]]])
The Database is the highest-level object that notmuch provides. It references a notmuch database, and can
be opened in read-only or read-write mode. A Query can be derived from or be applied to a specific database
to find messages. Also adding and removing messages to the database happens via this object. Modifications
to the database are not atmic by default (see begin_atomic()) and once a database has been modified, all
other database objects pointing to the same data-base will throw an XapianError as the underlying database
has been modified. Close and reopen the database to continue working with it.

Database objects implement the context manager protocol so you can use the with statement to ensure that
the database is properly closed. See close() for more information.

Note: Any function in this class can and will throw an NotInitializedError if the database was not
intitialized properly.

If path is None, we will try to read a users notmuch configuration and use his configured database. The location
of the configuration file can be specified through the environment variable NOTMUCH_CONFIG, falling back
to the default ~/.notmuch-config.

If create is True, the database will always be created in MODE.READ_WRITE mode. Default mode for opening
is READ_ONLY.

Parameters

• path (str or None) – Directory to open/create the database in (see above for behavior if
None)

• create (bool) – Pass False to open an existing, True to create a new database.

• mode (MODE) – Mode to open a database in. Is always MODE.READ_WRITE when creat-
ing a new one.

Raises NotmuchError or derived exception in case of failure.

create(path)
Creates a new notmuch database

This function is used by __init__() and usually does not need to be called directly. It wraps the underlying
notmuch_database_create function and creates a new notmuch database at path. It will always return a
database in MODE .READ_WRITE mode as creating an empty database for reading only does not make a
great deal of sense.

Parameters path (str) – A directory in which we should create the database.

Raises NotmuchError in case of any failure (possibly after printing an error message on
stderr).

9

http://docs.python.org/reference/compound_stmts.html#with
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

notmuch Documentation, Release 0.20.2

open(path, status=MODE.READ_ONLY)
Opens an existing database

This function is used by __init__() and usually does not need to be called directly. It wraps the underlying
notmuch_database_open function.

Parameters status (MODE) – Open the database in read-only or read-write mode

Raises Raises NotmuchError in case of any failure (possibly after printing an error message
on stderr).

close()
Closes the notmuch database.

Warning: This function closes the notmuch database. From that point on every method invoked on
any object ever derived from the closed database may cease to function and raise a NotmuchError.

get_path()
Returns the file path of an open database

get_version()
Returns the database format version

Returns The database version as positive integer

needs_upgrade()
Does this database need to be upgraded before writing to it?

If this function returns True then no functions that modify the database (add_message(),
Message.add_tag(), Directory.set_mtime(), etc.) will work unless upgrade() is called
successfully first.

Returns True or False

upgrade()
Upgrades the current database

After opening a database in read-write mode, the client should check if an upgrade is needed (not-
much_database_needs_upgrade) and if so, upgrade with this function before making any modifications.

NOT IMPLEMENTED: The optional progress_notify callback can be used by the caller to provide
progress indication to the user. If non-NULL it will be called periodically with ‘progress’ as a floating-
point value in the range of [0.0..1.0] indicating the progress made so far in the upgrade process.

TODO catch exceptions, document return values and etc...

begin_atomic()
Begin an atomic database operation

Any modifications performed between a successful begin_atomic() and a end_atomic() will be
applied to the database atomically. Note that, unlike a typical database transaction, this only ensures
atomicity, not durability; neither begin nor end necessarily flush modifications to disk.

Returns STATUS.SUCCESS or raises

Raises NotmuchError: STATUS.XAPIAN_EXCEPTION Xapian exception occurred;
atomic section not entered.

Added in notmuch 0.9

end_atomic()
Indicate the end of an atomic database operation

See begin_atomic() for details.

10 Chapter 4. Database – The underlying notmuch database

notmuch Documentation, Release 0.20.2

Returns STATUS.SUCCESS or raises

Raises

NotmuchError:

STATUS.XAPIAN_EXCEPTION A Xapian exception occurred; atomic section not
ended.

STATUS.UNBALANCED_ATOMIC: end_atomic has been called more times than be-
gin_atomic.

Added in notmuch 0.9

get_directory(path)
Returns a Directory of path,

Parameters path – An unicode string containing the path relative to the path of database (see
get_path()), or else should be an absolute path with initial components that match the
path of ‘database’.

Returns Directory or raises an exception.

Raises FileError if path is not relative database or absolute with initial components same as
database.

add_message(filename, sync_maildir_flags=False)
Adds a new message to the database

Parameters

• filename – should be a path relative to the path of the open database (see
get_path()), or else should be an absolute filename with initial components that match
the path of the database.

The file should be a single mail message (not a multi-message mbox) that is expected to
remain at its current location, since the notmuch database will reference the filename, and
will not copy the entire contents of the file.

• sync_maildir_flags – If the message contains Maildir flags, we will -depending on
the notmuch configuration- sync those tags to initial notmuch tags, if set to True. It is
False by default to remain consistent with the libnotmuch API. You might want to look
into the underlying method Message.maildir_flags_to_tags().

Returns

On success, we return

1. a Message object that can be used for things such as adding tags to the just-added mes-
sage.

2. one of the following STATUS values:

STATUS.SUCCESS Message successfully added to database.

STATUS.DUPLICATE_MESSAGE_ID Message has the same message ID as another
message already in the database. The new filename was successfully added to the list of
the filenames for the existing message.

Return type 2-tuple(Message, STATUS)

Raises Raises a NotmuchError with the following meaning. If such an exception occurs,
nothing was added to the database.

11

notmuch Documentation, Release 0.20.2

STATUS.FILE_ERROR An error occurred trying to open the file, (such as permission de-
nied, or file not found, etc.).

STATUS.FILE_NOT_EMAIL The contents of filename don’t look like an email message.

STATUS.READ_ONLY_DATABASE Database was opened in read-only mode so no mes-
sage can be added.

remove_message(filename)
Removes a message (filename) from the given notmuch database

Note that only this particular filename association is removed from the database. If the same message (as
determined by the message ID) is still available via other filenames, then the message will persist in the
database for those filenames. When the last filename is removed for a particular message, the database
content for that message will be entirely removed.

Returns

A STATUS value with the following meaning:

STATUS.SUCCESS The last filename was removed and the message was removed from
the database.

STATUS.DUPLICATE_MESSAGE_ID This filename was removed but the message per-
sists in the database with at least one other filename.

Raises Raises a NotmuchError with the following meaning. If such an exception occurs,
nothing was removed from the database.

STATUS.READ_ONLY_DATABASE Database was opened in read-only mode so no mes-
sage can be removed.

find_message(msgid)
Returns a Message as identified by its message ID

Wraps the underlying notmuch_database_find_message function.

Parameters msgid (unicode or str) – The message ID

Returns Message or None if no message is found.

Raises

OutOfMemoryError If an Out-of-memory occured while constructing the message.

XapianError In case of a Xapian Exception. These exceptions include “Database mod-
ified” situations, e.g. when the notmuch database has been modified by another program
in the meantime. In this case, you should close and reopen the database and retry.

NotInitializedError if the database was not intitialized.

find_message_by_filename(filename)
Find a message with the given filename

Returns If the database contains a message with the given filename, then a class:Message: is
returned. This function returns None if no message is found with the given filename.

Raises OutOfMemoryError if an Out-of-memory occured while constructing the message.

Raises XapianError in case of a Xapian Exception. These exceptions include “Database
modified” situations, e.g. when the notmuch database has been modified by another program
in the meantime. In this case, you should close and reopen the database and retry.

Raises NotInitializedError if the database was not intitialized.

Added in notmuch 0.9

12 Chapter 4. Database – The underlying notmuch database

notmuch Documentation, Release 0.20.2

get_all_tags()
Returns Tags with a list of all tags found in the database

Returns Tags

Execption NotmuchError with STATUS.NULL_POINTER on error

create_query(querystring)
Returns a Query derived from this database

This is a shorthand method for doing:

short version
Automatically frees the Database() when 'q' is deleted

q = Database(dbpath).create_query('from:"Biene Maja"')

long version, which is functionally equivalent but will keep the
Database in the 'db' variable around after we delete 'q':

db = Database(dbpath)
q = Query(db,'from:"Biene Maja"')

This function is a python extension and not in the underlying C API.

MODE
Defines constants that are used as the mode in which to open a database.

MODE.READ_ONLY Open the database in read-only mode

MODE.READ_WRITE Open the database in read-write mode

13

notmuch Documentation, Release 0.20.2

14 Chapter 4. Database – The underlying notmuch database

CHAPTER 5

Query – A search query

class Query(db, querystr)
Represents a search query on an opened Database.

A query selects and filters a subset of messages from the notmuch database we derive from.

Query provides an instance attribute sort, which contains the sort order (if specified via set_sort()) or
None.

Any function in this class may throw an NotInitializedError in case the underlying query object was
not set up correctly.

Note: Do remember that as soon as we tear down this object, all underlying derived objects such as threads,
messages, tags etc will be freed by the underlying library as well. Accessing these objects will lead to segfaults
and other unexpected behavior. See above for more details.

Parameters

• db (Database) – An open database which we derive the Query from.

• querystr (utf-8 encoded str or unicode) – The query string for the message.

create(db, querystr)
Creates a new query derived from a Database

This function is utilized by __init__() and usually does not need to be called directly.

Parameters

• db (Database) – Database to create the query from.

• querystr (utf-8 encoded str or unicode) – The query string

Raises

NullPointerError if the query creation failed (e.g. too little memory).

NotInitializedError if the underlying db was not intitialized.

SORT
Defines constants that are used as the mode in which to open a database.

SORT.OLDEST_FIRST Sort by message date, oldest first.

SORT.NEWEST_FIRST Sort by message date, newest first.

SORT.MESSAGE_ID Sort by email message ID.

15

notmuch Documentation, Release 0.20.2

SORT.UNSORTED Do not apply a special sort order (returns results in document id order).

set_sort(sort)
Set the sort order future results will be delivered in

Parameters sort – Sort order (see Query.SORT)

sort
Instance attribute sort contains the sort order (see Query.SORT) if explicitely specified via
set_sort(). By default it is set to None.

exclude_tag(tagname)
Add a tag that will be excluded from the query results by default.

This exclusion will be overridden if this tag appears explicitly in the query.

Parameters tagname – Name of the tag to be excluded

search_threads()
Execute a query for threads

Execute a query for threads, returning a Threads iterator. The returned threads are owned by the query
and as such, will only be valid until the Query is deleted.

The method sets Message.FLAG.MATCH for those messages that match the query. The method
Message.get_flag() allows us to get the value of this flag.

Returns Threads

Raises NullPointerError if search_threads failed

search_messages()
Filter messages according to the query and return Messages in the defined sort order

Returns Messages

Raises NullPointerError if search_messages failed

count_messages()
This function performs a search and returns Xapian’s best guess as to the number of matching messages.

Returns the estimated number of messages matching this query

Return type int

count_threads()
This function performs a search and returns the number of unique thread IDs in the matching messages.
This is the same as number of threads matching a search.

Note that this is a significantly heavier operation than meth:Query.count_messages.

Returns the number of threads returned by this query

Return type int

16 Chapter 5. Query – A search query

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

CHAPTER 6

Messages – A bunch of messages

class Messages(msgs_p, parent=None)
Represents a list of notmuch messages

This object provides an iterator over a list of notmuch messages (Technically, it provides a wrapper for the
underlying notmuch_messages_t structure). Do note that the underlying library only provides a one-time iterator
(it cannot reset the iterator to the start). Thus iterating over the function will “exhaust” the list of messages, and
a subsequent iteration attempt will raise a NotInitializedError. If you need to re-iterate over a list of
messages you will need to retrieve a new Messages object or cache your Messages in a list via:

msglist = list(msgs)

You can store and reuse the single Message objects as often as you want as long as you keep the parent
Messages object around. (Due to hierarchical memory allocation, all derived Message objects will be invalid
when we delete the parent Messages object, even if it was already exhausted.) So this works:

db = Database()
msgs = Query(db,'').search_messages() #get a Messages() object
msglist = list(msgs)

msgs is "exhausted" now and msgs.next() will raise an exception.
However it will be kept alive until all retrieved Message()
objects are also deleted. If you do e.g. an explicit del(msgs)
here, the following lines would fail.

You can reiterate over *msglist* however as often as you want.
It is simply a list with :class:`Message`s.

print (msglist[0].get_filename())
print (msglist[1].get_filename())
print (msglist[0].get_message_id())

As Message implements both __hash__() and __cmp__(), it is possible to make sets out of Messages and
use set arithmetic (this happens in python and will of course be much slower than redoing a proper query with
the appropriate filters:

s1, s2 = set(msgs1), set(msgs2)
s.union(s2)
s1 -= s2
...

Be careful when using set arithmetic between message sets derived from different Databases (ie the same
database reopened after messages have changed). If messages have added or removed associated files in the

17

notmuch Documentation, Release 0.20.2

meantime, it is possible that the same message would be considered as a different object (as it points to a
different file).

Parameters

• msgs_p (ctypes.c_void_p) – A pointer to an underlying notmuch_messages_t
structure. These are not publically exposed, so a user will almost never instan-
tiate a Messages object herself. They are usually handed back as a result,
e.g. in Query.search_messages(). msgs_p must be valid, we will raise an
NullPointerError if it is None.

• parent – The parent object (ie Query) these tags are derived from. It saves a reference
to it, so we can automatically delete the db object once all derived objects are dead.

TODO Make the iterator work more than once and cache the tags in the Python object.(?)

collect_tags()
Return the unique Tags in the contained messages

Returns Tags

Exceptions NotInitializedError if not init’ed

Note: collect_tags() will iterate over the messages and therefore will not allow further iterations.

__len__()

Warning: __len__() was removed in version 0.6 as it exhausted the iterator and broke list(Messages()).
Use the Query.count_messages() function or use len(list(msgs)).

18 Chapter 6. Messages – A bunch of messages

http://docs.python.org/library/ctypes.html#ctypes.c_void_p

CHAPTER 7

Message – A single message

class Message(msg_p, parent=None)
Represents a single Email message

Technically, this wraps the underlying notmuch_message_t structure. A user will usually not create these objects
themselves but get them as search results.

As it implements __cmp__(), it is possible to compare two Messages using if msg1 == msg2:

Parameters

• msg_p – A pointer to an internal notmuch_message_t Structure. If it is None, we will raise
an NullPointerError.

• parent – A ‘parent’ object is passed which this message is derived from. We save a
reference to it, so we can automatically delete the parent object once all derived objects are
dead.

get_message_id()
Returns the message ID

Returns String with a message ID

Raises NotInitializedError if the message is not initialized.

get_thread_id()
Returns the thread ID

The returned string belongs to ‘message’ will only be valid for as long as the message is valid.

This function will not return None since Notmuch ensures that every message belongs to a single thread.

Returns String with a thread ID

Raises NotInitializedError if the message is not initialized.

get_replies()
Gets all direct replies to this message as Messages iterator

Note: This call only makes sense if ‘message’ was ultimately obtained from a Thread object, (such as by
coming directly from the result of calling Thread.get_toplevel_messages() or by any number
of subsequent calls to get_replies()). If this message was obtained through some non-thread means,
(such as by a call to Query.search_messages()), then this function will return an empty Messages
iterator.

Returns Messages.

19

notmuch Documentation, Release 0.20.2

Raises NotInitializedError if the message is not initialized.

get_filename()
Returns the file path of the message file

Returns Absolute file path & name of the message file

Raises NotInitializedError if the message is not initialized.

get_filenames()
Get all filenames for the email corresponding to ‘message’

Returns a Filenames() generator with all absolute filepaths for messages recorded to have the same
Message-ID. These files must not necessarily have identical content.

FLAG

FLAG.MATCH This flag is automatically set by a Query.search_threads on those messages that match
the query. This allows us to distinguish matches from the rest of the messages in that thread.

get_flag(flag)
Checks whether a specific flag is set for this message

The method Query.search_threads() sets Message.FLAG.MATCH for those messages that match
the query. This method allows us to get the value of this flag.

Parameters flag – One of the Message.FLAG values (currently only Mes-
sage.FLAG.MATCH

Returns An unsigned int (0/1), indicating whether the flag is set.

Raises NotInitializedError if the message is not initialized.

set_flag(flag, value)
Sets/Unsets a specific flag for this message

Parameters

• flag – One of the Message.FLAG values (currently only Message.FLAG.MATCH

• value – A bool indicating whether to set or unset the flag.

Raises NotInitializedError if the message is not initialized.

get_date()
Returns time_t of the message date

For the original textual representation of the Date header from the message call not-
much_message_get_header() with a header value of “date”.

Returns A time_t timestamp.

Return type c_unit64

Raises NotInitializedError if the message is not initialized.

get_header(header)
Get the value of the specified header.

The value will be read from the actual message file, not from the notmuch database. The header name is
case insensitive.

Returns an empty string (“”) if the message does not contain a header line matching ‘header’.

Parameters header (str) – The name of the header to be retrieved. It is not case-sensitive.

Returns The header value as string

20 Chapter 7. Message – A single message

http://docs.python.org/library/functions.html#str

notmuch Documentation, Release 0.20.2

Raises NotInitializedError if the message is not initialized

Raises NullPointerError if any error occured

get_tags()
Returns the message tags

Returns A Tags iterator.

Raises NotInitializedError if the message is not initialized

Raises NullPointerError if any error occured

maildir_flags_to_tags()
Synchronize file Maildir flags to notmuch tags

Flag Action if present —- —————– ‘D’ Adds the “draft” tag to the message ‘F’ Adds the
“flagged” tag to the message ‘P’ Adds the “passed” tag to the message ‘R’ Adds the “replied” tag
to the message ‘S’ Removes the “unread” tag from the message

For each flag that is not present, the opposite action (add/remove) is performed for the corresponding tags.
If there are multiple filenames associated with this message, the flag is considered present if it appears in
one or more filenames. (That is, the flags from the multiple filenames are combined with the logical OR
operator.)

As a convenience, you can set the sync_maildir_flags parameter in Database.add_message() to
implicitly call this.

Returns a STATUS. In short, you want to see notmuch.STATUS.SUCCESS here. See there for
details.

tags_to_maildir_flags()
Synchronize notmuch tags to file Maildir flags

‘D’ if the message has the “draft” tag ‘F’ if the message has the “flagged” tag ‘P’ if the message
has the “passed” tag ‘R’ if the message has the “replied” tag ‘S’ if the message does not have the
“unread” tag

Any existing flags unmentioned in the list above will be preserved in the renaming.

Also, if this filename is in a directory named “new”, rename it to be within the neighboring directory
named “cur”.

Do note that calling this method while a message is frozen might not work yet, as the modified tags have
not been committed yet to the database.

Returns a STATUS value. In short, you want to see notmuch.STATUS.SUCCESS here. See
there for details.

remove_tag(tag, sync_maildir_flags=False)
Removes a tag from the given message

If the message has no such tag, this is a non-operation and will report success anyway.

Parameters

• tag – String with a ‘tag’ to be removed.

• sync_maildir_flags – If notmuch configuration is set to do this,
add maildir flags corresponding to notmuch tags. See underlying method
tags_to_maildir_flags(). Use False if you want to add/remove many tags
on a message without having to physically rename the file every time. Do note, that this
will do nothing when a message is frozen, as tag changes will not be committed to the
database yet.

21

notmuch Documentation, Release 0.20.2

Returns STATUS.SUCCESS if the tag was successfully removed or if the message had no such
tag. Raises an exception otherwise.

Raises NullPointerError if the tag argument is NULL

Raises TagTooLongError if the length of tag exceeds Message.NOTMUCH_TAG_MAX)

Raises ReadOnlyDatabaseError if the database was opened in read-only mode so mes-
sage cannot be modified

Raises NotInitializedError if message has not been initialized

add_tag(tag, sync_maildir_flags=False)
Adds a tag to the given message

Adds a tag to the current message. The maximal tag length is defined in the notmuch library and is
currently 200 bytes.

Parameters

• tag – String with a ‘tag’ to be added.

• sync_maildir_flags – If notmuch configuration is set to do this,
add maildir flags corresponding to notmuch tags. See underlying method
tags_to_maildir_flags(). Use False if you want to add/remove many tags
on a message without having to physically rename the file every time. Do note, that this
will do nothing when a message is frozen, as tag changes will not be committed to the
database yet.

Returns STATUS.SUCCESS if the tag was successfully added. Raises an exception otherwise.

Raises NullPointerError if the tag argument is NULL

Raises TagTooLongError if the length of tag exceeds Message.NOTMUCH_TAG_MAX)

Raises ReadOnlyDatabaseError if the database was opened in read-only mode so mes-
sage cannot be modified

Raises NotInitializedError if message has not been initialized

remove_all_tags(sync_maildir_flags=False)
Removes all tags from the given message.

See freeze() for an example showing how to safely replace tag values.

Parameters sync_maildir_flags – If notmuch configuration is set to do this, add maildir
flags corresponding to notmuch tags. See tags_to_maildir_flags(). Use False if
you want to add/remove many tags on a message without having to physically rename the
file every time. Do note, that this will do nothing when a message is frozen, as tag changes
will not be committed to the database yet.

Returns STATUS.SUCCESS if the tags were successfully removed. Raises an exception other-
wise.

Raises ReadOnlyDatabaseError if the database was opened in read-only mode so mes-
sage cannot be modified

Raises NotInitializedError if message has not been initialized

freeze()
Freezes the current state of ‘message’ within the database

This means that changes to the message state, (via add_tag(), remove_tag(), and
remove_all_tags()), will not be committed to the database until the message is thaw() ed.

22 Chapter 7. Message – A single message

notmuch Documentation, Release 0.20.2

Multiple calls to freeze/thaw are valid and these calls will “stack”. That is there must be as many calls to
thaw as to freeze before a message is actually thawed.

The ability to do freeze/thaw allows for safe transactions to change tag values. For example, explicitly
setting a message to have a given set of tags might look like this:

msg.freeze()
msg.remove_all_tags(False)
for tag in new_tags:

msg.add_tag(tag, False)
msg.thaw()
msg.tags_to_maildir_flags()

With freeze/thaw used like this, the message in the database is guaranteed to have either the full set of
original tag values, or the full set of new tag values, but nothing in between.

Imagine the example above without freeze/thaw and the operation somehow getting interrupted. This could
result in the message being left with no tags if the interruption happened after remove_all_tags()
but before add_tag().

Returns STATUS.SUCCESS if the message was successfully frozen. Raises an exception oth-
erwise.

Raises ReadOnlyDatabaseError if the database was opened in read-only mode so mes-
sage cannot be modified

Raises NotInitializedError if message has not been initialized

thaw()
Thaws the current ‘message’

Thaw the current ‘message’, synchronizing any changes that may have occurred while ‘message’ was
frozen into the notmuch database.

See freeze() for an example of how to use this function to safely provide tag changes.

Multiple calls to freeze/thaw are valid and these calls with “stack”. That is there must be as many calls to
thaw as to freeze before a message is actually thawed.

Returns STATUS.SUCCESS if the message was successfully frozen. Raises an exception oth-
erwise.

Raises UnbalancedFreezeThawError if an attempt was made to thaw an unfrozen mes-
sage. That is, there have been an unbalanced number of calls to freeze() and thaw().

Raises NotInitializedError if message has not been initialized

__str__()

23

notmuch Documentation, Release 0.20.2

24 Chapter 7. Message – A single message

CHAPTER 8

Tags – Notmuch tags

class Tags(tags_p, parent=None)
Represents a list of notmuch tags

This object provides an iterator over a list of notmuch tags (which are unicode instances).

Do note that the underlying library only provides a one-time iterator (it cannot reset the iterator to the start).
Thus iterating over the function will “exhaust” the list of tags, and a subsequent iteration attempt will raise a
NotInitializedError. Also note, that any function that uses iteration (nearly all) will also exhaust the
tags. So both:

for tag in tags: print tag

as well as:

number_of_tags = len(tags)

and even a simple:

#str() iterates over all tags to construct a space separated list
print(str(tags))

will “exhaust” the Tags. If you need to re-iterate over a list of tags you will need to retrieve a new Tags object.

Parameters

• tags_p (ctypes.c_void_p) – A pointer to an underlying notmuch_tags_t structure.
These are not publically exposed, so a user will almost never instantiate a Tags object
herself. They are usually handed back as a result, e.g. in Database.get_all_tags().
tags_p must be valid, we will raise an NullPointerError if it is None.

• parent – The parent object (ie Database or Message these tags are derived from, and
saves a reference to it, so we can automatically delete the db object once all derived objects
are dead.

TODO Make the iterator optionally work more than once by cache the tags in the Python object(?)

__len__()

Warning: __len__() was removed in version 0.6 as it exhausted the iterator and broke list(Tags()).
Use len(list(msgs))() instead if you need to know the number of tags.

__str__()

25

http://docs.python.org/library/ctypes.html#ctypes.c_void_p

notmuch Documentation, Release 0.20.2

26 Chapter 8. Tags – Notmuch tags

CHAPTER 9

Threads – Threads iterator

class Threads(threads_p, parent=None)
Represents a list of notmuch threads

This object provides an iterator over a list of notmuch threads (Technically, it provides a wrapper for the un-
derlying notmuch_threads_t structure). Do note that the underlying library only provides a one-time iterator
(it cannot reset the iterator to the start). Thus iterating over the function will “exhaust” the list of threads, and
a subsequent iteration attempt will raise a NotInitializedError. Also note, that any function that uses
iteration will also exhaust the messages. So both:

for thread in threads: print thread

as well as:

number_of_msgs = len(threads)

will “exhaust” the threads. If you need to re-iterate over a list of messages you will need to retrieve a new
Threads object.

Things are not as bad as it seems though, you can store and reuse the single Thread objects as often as you
want as long as you keep the parent Threads object around. (Recall that due to hierarchical memory allocation,
all derived Threads objects will be invalid when we delete the parent Threads() object, even if it was already
“exhausted”.) So this works:

db = Database()
threads = Query(db,'').search_threads() #get a Threads() object
threadlist = []
for thread in threads:

threadlist.append(thread)

threads is "exhausted" now and even len(threads) will raise an
exception.
However it will be kept around until all retrieved Thread() objects are
also deleted. If you did e.g. an explicit del(threads) here, the
following lines would fail.

You can reiterate over *threadlist* however as often as you want.
It is simply a list with Thread objects.

print (threadlist[0].get_thread_id())
print (threadlist[1].get_thread_id())
print (threadlist[0].get_total_messages())

Parameters

27

notmuch Documentation, Release 0.20.2

• threads_p (ctypes.c_void_p) – A pointer to an underlying notmuch_threads_t
structure. These are not publically exposed, so a user will almost never in-
stantiate a Threads object herself. They are usually handed back as a result,
e.g. in Query.search_threads(). threads_p must be valid, we will raise an
NullPointerError if it is None.

• parent – The parent object (ie Query) these tags are derived from. It saves a reference
to it, so we can automatically delete the db object once all derived objects are dead.

TODO Make the iterator work more than once and cache the tags in the Python object.(?)

__len__()
len(Threads) returns the number of contained Threads

Note: As this iterates over the threads, we will not be able to iterate over them again! So this will fail:

#THIS FAILS
threads = Database().create_query('').search_threads()
if len(threads) > 0: #this 'exhausts' threads

next line raises :exc:`NotInitializedError`!!!
for thread in threads: print thread

__str__()

28 Chapter 9. Threads – Threads iterator

http://docs.python.org/library/ctypes.html#ctypes.c_void_p

CHAPTER 10

Thread – A single thread

class Thread(thread_p, parent=None)
Represents a single message thread.

Parameters

• thread_p – A pointer to an internal notmuch_thread_t Structure. These are not publically
exposed, so a user will almost never instantiate a Thread object herself. They are usually
handed back as a result, e.g. when iterating through Threads. thread_p must be valid, we
will raise an NullPointerError if it is None.

• parent – A ‘parent’ object is passed which this message is derived from. We save a
reference to it, so we can automatically delete the parent object once all derived objects are
dead.

get_thread_id()
Get the thread ID of ‘thread’

The returned string belongs to ‘thread’ and will only be valid for as long as the thread is valid.

Returns String with a message ID

Raises NotInitializedError if the thread is not initialized.

get_total_messages()
Get the total number of messages in ‘thread’

Returns The number of all messages in the database belonging to this thread. Contrast with
get_matched_messages().

Raises NotInitializedError if the thread is not initialized.

get_toplevel_messages()

Returns a Messages iterator for the top-level messages in ‘thread’

This iterator will not necessarily iterate over all of the messages in the thread. It will only iterate over
the messages in the thread which are not replies to other messages in the thread.

Returns Messages

Raises NotInitializedError if query is not initialized

Raises NullPointerError if search_messages failed

get_matched_messages()
Returns the number of messages in ‘thread’ that matched the query

29

notmuch Documentation, Release 0.20.2

Returns The number of all messages belonging to this thread that matched the
Query‘from which this thread was created. Contrast with
:meth:‘get_total_messages.

Raises NotInitializedError if the thread is not initialized.

get_authors()
Returns the authors of ‘thread’

The returned string is a comma-separated list of the names of the authors of mail messages in the query
results that belong to this thread.

The returned string belongs to ‘thread’ and will only be valid for as long as this Thread() is not deleted.

get_subject()
Returns the Subject of ‘thread’

The returned string belongs to ‘thread’ and will only be valid for as long as this Thread() is not deleted.

get_oldest_date()
Returns time_t of the oldest message date

Returns A time_t timestamp.

Return type c_unit64

Raises NotInitializedError if the message is not initialized.

get_newest_date()
Returns time_t of the newest message date

Returns A time_t timestamp.

Return type c_unit64

Raises NotInitializedError if the message is not initialized.

get_tags()
Returns the message tags

In the Notmuch database, tags are stored on individual messages, not on threads. So the tags returned here
will be all tags of the messages which matched the search and which belong to this thread.

The Tags object is owned by the thread and as such, will only be valid for as long as this Thread is valid
(e.g. until the query from which it derived is explicitely deleted).

Returns A Tags iterator.

Raises NotInitializedError if query is not initialized

Raises NullPointerError if search_messages failed

__str__() <==> str(x)

30 Chapter 10. Thread – A single thread

CHAPTER 11

Files and directories

11.1 Filenames – An iterator over filenames

class Filenames(files_p, parent)
Represents a list of filenames as returned by notmuch

Objects of this class implement the iterator protocol.

Note: The underlying library only provides a one-time iterator (it cannot reset the iterator to the start).
Thus iterating over the function will “exhaust” the list of tags, and a subsequent iteration attempt will raise
a NotInitializedError. Also note, that any function that uses iteration (nearly all) will also exhaust the
tags. So both:

for name in filenames: print name

as well as:

number_of_names = len(names)

and even a simple:

#str() iterates over all tags to construct a space separated list
print(str(filenames))

will “exhaust” the Filenames. However, you can use Message.get_filenames() repeatedly to get fresh
Filenames objects to perform various actions on filenames.

Parameters

• files_p (ctypes.c_void_p) – A pointer to an underlying notmuch_tags_t structure.
These are not publically exposed, so a user will almost never instantiate a Tags object
herself. They are usually handed back as a result, e.g. in Database.get_all_tags().
tags_p must be valid, we will raise an NullPointerError if it is None.

• parent – The parent object (ie Message these filenames are derived from, and saves a
reference to it, so we can automatically delete the db object once all derived objects are
dead.

__len__()
len(Filenames) returns the number of contained files

Note: This method exhausts the iterator object, so you will not be able to iterate over them again.

31

http://docs.python.org/library/ctypes.html#ctypes.c_void_p

notmuch Documentation, Release 0.20.2

11.2 Directoy – A directory entry in the database

class Directory(path, dir_p, parent)
Represents a directory entry in the notmuch directory

Modifying attributes of this object will modify the database, not the real directory attributes.

The Directory object is usually derived from another object e.g. via Database.get_directory(), and
will automatically be become invalid whenever that parent is deleted. You should therefore initialized this object
handing it a reference to the parent, preventing the parent from automatically being garbage collected.

Parameters

• path – The absolute path of the directory object.

• dir_p – The pointer to an internal notmuch_directory_t object.

• parent – The object this Directory is derived from (usually a Database). We do not
directly use this, but store a reference to it as long as this Directory object lives. This keeps
the parent object alive.

get_child_files()
Gets a Filenames iterator listing all the filenames of messages in the database within the given directory.

The returned filenames will be the basename-entries only (not complete paths.

get_child_directories()
Gets a Filenames iterator listing all the filenames of sub-directories in the database within the given
directory

The returned filenames will be the basename-entries only (not complete paths.

get_mtime()
Gets the mtime value of this directory in the database

Retrieves a previously stored mtime for this directory.

Parameters mtime – A (time_t) timestamp

Raises NotmuchError:

STATUS.NOT_INITIALIZED The directory has not been initialized

set_mtime(mtime)
Sets the mtime value of this directory in the database

The intention is for the caller to use the mtime to allow efficient identification of new messages to be added
to the database. The recommended usage is as follows:

•Read the mtime of a directory from the filesystem

•Call Database.add_message() for all mail files in the directory

•Call notmuch_directory_set_mtime with the mtime read from the filesystem. Then, when wanting to
check for updates to the directory in the future, the client can call get_mtime() and know that it
only needs to add files if the mtime of the directory and files are newer than the stored timestamp.

Note: get_mtime() function does not allow the caller to distinguish a timestamp of 0 from a
non-existent timestamp. So don’t store a timestamp of 0 unless you are comfortable with that.

Parameters mtime – A (time_t) timestamp

Raises XapianError a Xapian exception occurred, mtime not stored

32 Chapter 11. Files and directories

notmuch Documentation, Release 0.20.2

Raises ReadOnlyDatabaseError the database was opened in read-only mode so directory
mtime cannot be modified

Raises NotInitializedError the directory object has not been initialized

mtime
Property that allows getting and setting of the Directory mtime (read-write)

See get_mtime() and set_mtime() for usage and possible exceptions.

path
Returns the absolute path of this Directory (read-only)

11.2. Directoy – A directory entry in the database 33

notmuch Documentation, Release 0.20.2

34 Chapter 11. Files and directories

CHAPTER 12

Indices and tables

• genindex

• search

35

notmuch Documentation, Release 0.20.2

36 Chapter 12. Indices and tables

Python Module Index

n
notmuch, 5

37

notmuch Documentation, Release 0.20.2

38 Python Module Index

Index

Symbols
__len__() (Filenames method), 31
__len__() (Messages method), 18
__len__() (Tags method), 25
__len__() (Threads method), 28
__str__() (Message method), 23
__str__() (Tags method), 25
__str__() (Thread method), 30
__str__() (Threads method), 28

A
add_message() (Database method), 11
add_tag() (Message method), 22

B
begin_atomic() (Database method), 10

C
close() (Database method), 10
collect_tags() (Messages method), 18
count_messages() (Query method), 16
count_threads() (Query method), 16
create() (Database method), 9
create() (Query method), 15
create_query() (Database method), 13

D
Database (class in notmuch), 9
Directory (class in notmuch), 32
DuplicateMessageIdError, 8

E
end_atomic() (Database method), 10
exclude_tag() (Query method), 16

F
FileError, 8
Filenames (class in notmuch), 31
FileNotEmailError, 8
find_message() (Database method), 12

find_message_by_filename() (Database method), 12
FLAG (Message attribute), 20
freeze() (Message method), 22

G
get_all_tags() (Database method), 12
get_authors() (Thread method), 30
get_child_directories() (Directory method), 32
get_child_files() (Directory method), 32
get_date() (Message method), 20
get_directory() (Database method), 11
get_filename() (Message method), 20
get_filenames() (Message method), 20
get_flag() (Message method), 20
get_header() (Message method), 20
get_matched_messages() (Thread method), 29
get_message_id() (Message method), 19
get_mtime() (Directory method), 32
get_newest_date() (Thread method), 30
get_oldest_date() (Thread method), 30
get_path() (Database method), 10
get_replies() (Message method), 19
get_subject() (Thread method), 30
get_tags() (Message method), 21
get_tags() (Thread method), 30
get_thread_id() (Message method), 19
get_thread_id() (Thread method), 29
get_toplevel_messages() (Thread method), 29
get_total_messages() (Thread method), 29
get_version() (Database method), 10

M
maildir_flags_to_tags() (Message method), 21
Message (class in notmuch), 19
Messages (class in notmuch), 17
MODE (Database attribute), 13
mtime (Directory attribute), 33

N
needs_upgrade() (Database method), 10

39

notmuch Documentation, Release 0.20.2

NotInitializedError, 8
notmuch (module), 5
NotmuchError, 8
NullPointerError, 8

O
open() (Database method), 10
OutOfMemoryError, 8

P
path (Directory attribute), 33

Q
Query (class in notmuch), 15

R
ReadOnlyDatabaseError, 8
remove_all_tags() (Message method), 22
remove_message() (Database method), 12
remove_tag() (Message method), 21

S
search_messages() (Query method), 16
search_threads() (Query method), 16
set_flag() (Message method), 20
set_mtime() (Directory method), 32
set_sort() (Query method), 16
SORT (Query attribute), 15
sort (Query attribute), 16
STATUS (class in notmuch), 7
status2str() (STATUS method), 7

T
Tags (class in notmuch), 25
tags_to_maildir_flags() (Message method), 21
TagTooLongError, 8
thaw() (Message method), 23
Thread (class in notmuch), 29
Threads (class in notmuch), 27

U
UnbalancedAtomicError, 8
UnbalancedFreezeThawError, 8
upgrade() (Database method), 10

X
XapianError, 8

40 Index

	Quickstart and examples
	Interfacing with notmuch
	Status and Errors
	STATUS – Notmuch operation return value
	NotmuchError – A Notmuch execution error

	Database – The underlying notmuch database
	Query – A search query
	Messages – A bunch of messages
	Message – A single message
	Tags – Notmuch tags
	Threads – Threads iterator
	Thread – A single thread
	Files and directories
	Filenames – An iterator over filenames
	Directoy – A directory entry in the database

	Indices and tables
	Python Module Index

