

Welcome to The Noterator’s documentation!

The Noterator

[image: Latest Release]
 [https://pypi.python.org/pypi/noterator][image: Build Status]
 [https://travis-ci.org/jimr/noterator][image: Test Coverage]
 [https://codecov.io/gh/jimr/noterator][image: Documentation Status]
 [https://noterator.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/jimr/noterator/]Adding notification to your iteration.

>>> from noterator import noterate, EMAIL, TWILIO
>>> for obj in noterate(my_objects, EMAIL|TWILIO):
... do_something_slow(obj)
...
>>>

When the loop completes, The Noterator will notify you by all the methods you passed in.
In this case it’ll email you and send an SMS to your configured number with Twilio.
Other supported notification methods are HipChat (send a notification to a room) and desktop.

You can find more usage information in the usage docs [http://noterator.readthedocs.io/en/latest/usage.html].

Configuration

Before The Noterator can do anything, you’ll need a config.ini file (see config.example.ini [https://github.com/jimr/noterator/blob/master/config.example.ini] or the example below to get started).

It’s possible to use The Noterator without a configuration file, but it’s a little less concise.
See the configuration docs [http://noterator.readthedocs.io/en/latest/configuration.html] for more detail.

By default, we check for $HOME/.config/noterator/config.ini, so it’s probably best to keep your config there, but you can pass the config_file parameter to noterate with the path to an alternative location.

You only need to define settings for the methods you wish to use.

[desktop]
sound = true

[email]
from_mail = The Noterator <noterator@example.org>
recipient = you@example.org
host = smtp.example.org
port = 25
username = postmaster@example.org
password = password123

[hipchat]
token = abc123
room_id = 123456
from_name = The Noterator
message_colour = green

[twilio]
account_sid = abc123
token = abc123
from_number = +123456
to_number = +456789

TODO

	New notification plugins: logging, ...

	Notication during iteration, a la tqdm.write [https://github.com/tqdm/tqdm#writing-messages]

License

MIT.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Keep reading

	Installation

	Usage

	Configuration

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install The Noterator, run this command in your terminal:

$ pip install noterator

This is the preferred method to install The Noterator, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for The Noterator can be downloaded from the Github repo [https://github.com/jimr/noterator].

You can either clone the public repository:

$ git clone git://github.com/jimr/noterator

Or download the tarball [https://github.com/jimr/noterator/tarball/master]:

$ curl -OL https://github.com/jimr/noterator/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

The simplest usage of The Noterator is inside a for loop.

>>> from noterator import noterate, EMAIL
>>> for obj in noterate(my_objects, EMAIL):
... do_something_slow(obj)
...
>>>

By default, it will notify you by your chosen methods when the iteration completes.
You can also provide a description of the iteration that will be included (handy if you’re doing several).

>>> from noterator import noterate, EMAIL
>>> for obj in noterate(my_objects, EMAIL, "Slow loop 1"):
... do_something_slow(obj)
...
>>>

You can combine notification methods and get notified when iteration begins:

>>> from noterator import noterate, EMAIL, TWILIO
>>> for obj in noterate(my_objects, EMAIL|TWILIO, start=True):
... do_something_slow(obj)
...
>>>

If you want to hear about progress before completion, you can use the every_n parameter:

>>> from noterator import noterate, EMAIL
>>> for obj in noterate(my_objects, EMAIL, every_n=100):
... do_something_slow(obj)
...
>>>

Advanced

If the sequence you’re iterating over is an iterator, you can also use noterate as one:

>>> from noterator import noterate, EMAIL
>>> it = noterate(iter([1,2,3]), EMAIL)
>>> while True:
... try:
... result = it.next()
... except StopIteration:
... break
...
>>>

The noterate function is just a wrapper around the noterator.Noterator class.
If you want to set up a reuesable Noterator, you can also do that as follows:

>>> from noterator import Noterator, EMAIL
>>> noterator = Noterator(method=EMAIL, every_n=100, start=True)
>>> for obj in noterator(my_objects, desc="loop 1")
... do_something_slow(obj)
...
>>> for obj in noterator(my_other_objects, desc="loop 2")
... do_something_else_slow(obj)
...
>>>

Configuration

Available notification methods

Currently, The Noterator supports email, HipChat, Twilio (SMS), and desktop notifications.

Desktop notifications are only supported on Mac & Linux. On Linux, the notify-send binary must be on your $PATH.

Here is the full set of configuration options available for all notification methods:

[desktop]
sound = false

[email]
from_mail = The Noterator <noterator@example.org>
recipient = you@example.org
host = smtp.example.org
port = 25
username = postmaster@example.org
password = password123

[hipchat]
token = abc123
room_id = 123456
from_name = The Noterator
message_colour = green

[twilio]
account_sid = abc123
token = abc123
from_number = +123456
to_number = +456789

The only settings that have a default are:

	email.port: 25

	hipchat.from_name: The Noterator

	hipchat.message_colour: green

	desktop.sound: false

Configuration in .ini files

By default, noterator will look in $HOME/.config/noterator/config.ini for configuration.
See config.example.ini [https://github.com/jimr/noterator/blob/master/config.example.ini] to get started.

If you want to keep your configuration file somewhere else, you can pass the config_file parameter to noterator:

>>> from noterator import noterate, EMAIL
>>> for obj in noterate(my_objects, method=EMAIL, config_file='/path/to/config.ini'):
... do_something_slow(obj)
...
>>>

Configuration in code

If you set up a Noterator class, you can override your file-based configuration per iteration:

>>> from noterator import Noterator, EMAIL
>>> noterator = Noterator(method=EMAIL, every_n=100, start=True)
>>> noterator.configure_plugin('email', recipient='someone@example.org')
>>> for obj in noterator(my_objects)
... do_something_slow(obj)
...
>>> noterator.configure_plugin('email', recipient='someone_else@example.org')
>>> for obj in noterator(my_other_objects)
... do_something_slow(obj)
...
>>>

You can go a step further and avoid using files at all.
The following code would work even if no configuration file could be found:

>>> from noterator import Noterator, EMAIL
>>> noterator = Noterator(my_objects, method=EMAIL, every_n=100, start=True)
>>> noterator.configure_plugin('email', recipient='you@example.org', from_mail='postmaster@example.org', host='smtp.example.org')
>>> for obj in noterator:
... do_something_slow(obj)
...
>>>

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jimr/noterator/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Notification methods in The Noterator are implemented as plugins and we’re always open to new methods of notification.
If you want to implement a plugin, check the existing ones for what you need to implement.
Make sure you update the docs and put example configuration in config.example.ini.

Write Documentation

The Noterator could always use more documentation, whether as part of the
official Noterator docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jimr/noterator/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up noterator for local development.

	Fork the noterator repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/noterator.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv noterator
$ cd noterator/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 noterator tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work.

Tips

To run a subset of tests:

$ py.test tests.test_noterator

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 noterator	

 	
 	
 noterator.config	

 	
 	
 noterator.plugins	

 	
 	
 noterator.plugins.email	

 	
 	
 noterator.plugins.hipchat	

 	
 	
 noterator.plugins.twilio	

 	
 	
 noterator.utils	

Index

 C
 | I
 | L
 | M
 | N

C

 	
 	catch_all() (in module noterator.utils)

 	
 	ConfigurationError

 	configure_plugin() (noterator.Noterator method)

I

 	
 	index (noterator.Noterator attribute)

L

 	
 	load_config() (in module noterator.config)

M

 	
 	methods (noterator.Noterator attribute)

N

 	
 	next() (noterator.Noterator method)

 	noterate() (in module noterator)

 	Noterator (class in noterator)

 	noterator (module)

 	noterator.config (module)

 	noterator.plugins (module)

 	noterator.plugins.email (module)

 	
 	noterator.plugins.hipchat (module)

 	noterator.plugins.twilio (module)

 	noterator.utils (module)

 	notify() (in module noterator.plugins.email)

 	(in module noterator.plugins.hipchat)

 	(in module noterator.plugins.twilio)

 	now() (in module noterator.utils)

Credits

Development Lead

	James Rutherford https://github.com/jimr

Contributors

None yet. Why not be the first?

noterator

	noterator package
	Subpackages
	noterator.plugins package
	Submodules

	noterator.plugins.email module

	noterator.plugins.hipchat module

	noterator.plugins.twilio module

	Module contents

	Submodules

	noterator.config module

	noterator.utils module

	Module contents

History

0.4.3 (2016-10-31)

	Fix a packaging issue relating to moved requirements

0.4.2 (2016-10-20)

	Prevent test failure due to timing errors

	Minor testing & packaging fixes

0.4.1 (2016-10-13)

	Minor cleanups & fixes

0.4.0 (2016-09-30)

	Desktop notification (Mac & Linux)

	Improvements to testing

	Test coverage reporting to codecov.io

0.3.0 (2016-09-28)

	Allow the construction of re-usable Noterators with the Noterator class

	Configuration is now possible without a config file (instance.configure_plugin)

	Plugin validation is now triggred when iteration begins, not when the Noterator is built

	Changed email plugin configuration keys to be consistent with, e.g. Django

	Added tests for configuration file validation & all plugins

	Travis CI + coverage / Coveralls integration

0.2.2 (2016-09-26)

	Fixed a packaging error

0.2.1 (2016-09-25)

	More appropriate exception usage in config loading / checking

0.2.0 (2016-09-25)

	More safety checks in configuration

	Added the every_n parameter to noterate

0.1.0 (2016-09-24)

	First release on PyPI.

noterator package

Subpackages

	noterator.plugins package
	Submodules

	noterator.plugins.email module

	noterator.plugins.hipchat module

	noterator.plugins.twilio module

	Module contents

Submodules

noterator.config module

	
exception noterator.config.ConfigurationError

	Bases: exceptions.Exception

	
noterator.config.load_config(fname=None)

	Load and return configuration from a file.

	Args:

	
	fname (str): Path to the ini file we should use. If not provided, we

	default to $HOME/.config/noterator/config.ini

	Returns:

	The parsed configuration

	Raises:

	ConfigurationError: if the file can’t be found.

noterator.utils module

	
noterator.utils.catch_all(func)

	Simple decorator that wraps a function in a silent try/except.

Useful for wrapping functions that might fail but shouldn’t propagate that
failure to the caller. For example, notifications might break, but we don’t
want that to interrupt the iteration.

	
noterator.utils.now()

	

Module contents

	
class noterator.Noterator(iterable=None, method=0, desc=None, head=None, body=None, start=False, finish=True, every_n=None, config_file=None)

	Bases: object

Base class for setting up & configuring your noteration.

You only really need to interact with this class directly (rather than just
using noterator.noterate) is if you want to build a re-usable
Noterator or you want to build one without using a configuration file.

For example, you could define a Noterator for use on two iterables, and
use a different description for each one:

>>> from noterator import Noterator, EMAIL
>>> noterator = Noterator(method=EMAIL, every_n=100, start=True)
>>> for obj in noterator(my_objects, desc="loop 1")
... do_something_slow(obj)
...
>>> for obj in noterator(my_other_objects, desc="loop 2")
... do_something_else_slow(obj)
...
>>>

And if you want to build a Noterator without using a configuration file (or
if you just want to override some configured options):

>>> from noterator import Noterator, EMAIL
>>> noterator = Noterator(my_objects, method=EMAIL, every_n=100)
>>> noterator.configure_plugin('email', recipient='you@example.org')
>>> for obj in noterator
... do_something_slow(obj)
...
>>>

If iterable isn’t set on class initialisation, it must be set before
looping, or as a parameter to the noterate method.

When iteration begins, the configuration will be validated.

	Args:

	Technically none, but iterable, method, and desc are often
passed as positional arguments, and such usage is encouraged for
brevity.

	Kwargs:

	iterable (iterable): The iterable we’re going to wrap
desc (str): Description to include in the notification.
start (bool): Send a notification when iteration starts
finish (bool): Send a notification when iteration completes
every_n (int): Send a notification every every_n iterations
method (int): Method(s) to use (e.g. EMAIL|HIPCHAT)
head (string): Header for notification message
body (string): Body for notification message. We call .format on this

string with the iteration count at the point of
notification.

config_file (string): Path to alternative configuration file.

	
configure_plugin(name, **kwargs)

	Optionally set up plugins without using a configuration file.

You can also use this to override defaults set in a configuration file.

	Args:

	name (str): the name of the plugin (e.g. ‘email’)

Kwargs: any keyword arguments accepted by the named plugin.

	
index = 0

	

	
methods = ((8, u'desktop', <module 'noterator.plugins.desktop' from '/home/docs/checkouts/readthedocs.org/user_builds/noterator/checkouts/latest/noterator/plugins/desktop.pyc'>), (1, u'email', <module 'noterator.plugins.email' from '/home/docs/checkouts/readthedocs.org/user_builds/noterator/checkouts/latest/noterator/plugins/email.pyc'>), (2, u'twilio', <module 'noterator.plugins.twilio' from '/home/docs/checkouts/readthedocs.org/user_builds/noterator/checkouts/latest/noterator/plugins/twilio.pyc'>), (4, u'hipchat', <module 'noterator.plugins.hipchat' from '/home/docs/checkouts/readthedocs.org/user_builds/noterator/checkouts/latest/noterator/plugins/hipchat.pyc'>))

	

	
next()

	

	
noterator.noterate(iterable, *args, **kwargs)

	Wrap any iterable with noterate and you’ll be notified when the iteration
completes, for example:

>>> from noterator import noterate, EMAIL
>>> for obj in noterate(my_objects, EMAIL, "My super-slow iteration"):
... do_something_slow(obj)
...
>>>

By default you only find out when the iteration completes, but sometimes
it’s useful to know when these things start too:

>>> from noterator import noterate, EMAIL, HIPCHAT
>>> for obj in noterate(my_objects, EMAIL|HIPCHAT, start=True):
... do_something_slow(obj)
...
>>>

This function is a convenience wrapper around the Noterator class. The
code above is equivalent to:

>>> from noterator import Noterator, EMAIL, HIPCHAT
>>> noterator = Noterator(my_objects, EMAIL|HIPCHAT, start=True)
>>> for obj in noterator:
... do_something_slow(obj)
...
>>>

Positional and Keyword arguments are the same as for Noterator.__init__
except that iterable is required.

noterator.plugins package

Submodules

noterator.plugins.email module

	
noterator.plugins.email.notify(head, body, **kwargs)

	

noterator.plugins.hipchat module

	
noterator.plugins.hipchat.notify(head, body, **kwargs)

	

noterator.plugins.twilio module

	
noterator.plugins.twilio.notify(head, body, **kwargs)

	

Module contents

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to The Noterator's documentation!

 		Installation

 		Stable release

 		From sources

 		Usage

 		Advanced

 		Configuration

 		Available notification methods

 		Configuration in .ini files

 		Configuration in code

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

