
norman-doc Documentation
Release 0.7.2

David Townshend

June 04, 2015

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Tutorial . 5
1.3 What’s New . 9
1.4 Data Structures . 11
1.5 Queries . 20
1.6 Serialisation . 22
1.7 Validators . 25

Python Module Index 27

i

ii

norman-doc Documentation, Release 0.7.2

Norman is a framework for advanced data structures in python using an database-like approach. The range of
potential applications is wide, for example in-memory databases, multi-keyed dictionaries or node graphs.

Contents 1

norman-doc Documentation, Release 0.7.2

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Norman is designed to make it easy and efficient to implement any data structure more complex than a dict.
The structures are stored entirely in memory, and most operations on them are significantly faster than O(n), often
O(log n).

1.1.1 Features

Database-like API

Norman uses a database approach and terminology, allowing it to be used to prototype a formal
database. The basic data object is a Table which can be instantiated to create records. This is the
same approach used by sqlalchemy.

Validation

Data validation is easy to apply on either fields or tables, and can be implemented using the
full power of Python.

Complex structures

Tables can be linked together using a Join. This is similar in concept to a typical database join, but
is far more flexible as it allows any Query to be used as the join definition.

Mutable structure definitions

Data structures are completely mutable, and every aspect of them can be changed at any time. This
feature is especially useful for AutoTable, which dynamically creates fields as data is added.

Powerful queries

Norman provides a powerful and efficient query mechanism which can be customised to allow rapid,
indexed lookups on arbitrary queries (e.g. records where record.text.endswith(’z’)).

Serialisation framework

The serialise module provides a framework for easily developing readers and writers for any file
format. This allows norman to be used as a file type converter.

1.1.2 Installation

Norman supports Python 2.6 or higher (up to 3.3). The test suite requires nose and mock to run.

Norman in on pypi, so it can be installed using pip install norman or can be installed from source. Please
user the issue tracker to report bugs and feature requests.

3

http://docs.python.org/3.2/library/stdtypes.html#dict
https://pypi.python.org/pypi/nose/1.2.1
https://pypi.python.org/pypi/mock
https://bitbucket.org/aquavitae/norman/src
https://bitbucket.org/aquavitae/norman/issues

norman-doc Documentation, Release 0.7.2

1.1.3 Examples

Norman is designed for working with relatively small amounts of data (i.e. which can fit into memory), but which
have complex structures and relationships. A few examples of how Norman can be used are:

1. Extending python data structures, e.g. a multi-keyed dictionary:

>>> class MultiDict(Table):
... key1 = Field(unique=True)
... key2 = Field(unique=True)
... key3 = Field(unique=True)
... value = Field()
...
>>> MultiDict(key1=4, key2='abc', key3=0, value='a')
MultiDict(key1=4, key2='abc', key3=0, value='a')
>>> MultiDict(key1=5, key2='abc', key3=5, value='b')
MultiDict(key1=5, key2='abc', key3=5, value='b')
>>> MultiDict(key1=6, key2='def', key3=0, value='c')
MultiDict(key1=6, key2='def', key3=0, value='c')
>>> MultiDict(key1=4, key2='abc', key3=5, value='d')
MultiDict(key1=4, key2='abc', key3=5, value='d')
>>> query = (MultiDict.key1 == 4) & (MultiDict.key2 == 'abc')
>>> for item in sorted(query, key=lambda r: r.value):
... print(item)
MultiDict(key1=4, key2='abc', key3=0, value='a')
MultiDict(key1=4, key2='abc', key3=5, value='d')

2. A tree, where each node has a parent:

>>> class Node(Table):
... parent = Field()
... children = Join(parent)
... node_data = Field()
...
>>> root = Node(node_data='root node')
>>> child1 = Node(node_data='child1', parent=root)
>>> child2 = Node(node_data='child2', parent=root)
>>> subchild1 = Node(node_data='2nd level child', parent=child1)
>>> sorted(n.node_data for n in root.children())
['child1', 'child2']

3. A node graph, where nodes are directionally connected by edges:

>>> class Edge(Table):
... from_node = Field(unique=True)
... to_node = Field(unique=True)
...
>>> class Node(Table):
... edges_out = Join(Edge.from_node)
... edges_in = Join(Edge.to_node)
... all_edges = Join(query=lambda me: \
... (Edge.from_node == me) | (Edge.to_node == me))
...
... def validate_delete(self):
... # Delete all connecting links if a node is deleted
... self.edges.delete()

3. Even a lightweight database for a personal library:

>>> db = Database()
>>>
>>> @db.add
... class Book(Table):
... name = Field(unique=True, validators=[validate.istype(str)])

4 Chapter 1. Contents

norman-doc Documentation, Release 0.7.2

... author = Field()

...

... def validate(self):

... assert isinstance(self.author, Author)

...
>>> @db.add
... class Author(Table):
... surname = Field(unique=True)
... initials = Field(unique=True, default='')
... nationality = Field()
... books = Join(Book.author)

4. Norman provides a sophisticated serialisation system for writing data to and loading it from virtually any
source. This example shows how it can be used as a converter data from CSV files to a sqlite database:

>>> db = AutoDatabase()
>>> serialise.CSV().read('source files', db)
>>> serialise.Sqlite().write('output.sqlite', db)

1.2 Tutorial

This tutorial shows how to create a simple library database which manages books and authors using Norman.

Contents

• Tutorial
– Creating Tables
– Constraints
– Joined Tables
– Databases
– Many-to-many Joins
– Adding records
– Queries
– Serialisation

1.2.1 Creating Tables

The first step is to create a Table containing all the books in the library. New tables are created by subclassing
Table, and defining fields as class attributes using Field:

class Book(Table):
name = Field()
author = Field()

New books can be added to this table by creating instances of it:

Book(name='The Hobbit' author='Tolkien')

However, at this stage there are no restrictions on the data that is entered, so it is possible to create something like
this:

Book(name=42, author=['This', 'is', 'not', 'an', 'author'])

1.2.2 Constraints

We want to add some restrictions, such as ensuring that the name is always a unique string. The way to add these
constraints is to set the name field as unique and to add a validate method to the table:

1.2. Tutorial 5

norman-doc Documentation, Release 0.7.2

class Book(Table):
name = Field(unique=True)
author = Field()

def validate(self):
assert isinstance(self.refno, int)
assert isinstance(self.name, str)

Now, trying to create an invalid book as in the previous example will raise a ValueError.

Validation can also be implemented using Table.hooks.

1.2.3 Joined Tables

The next exercise is to add some background information about each author. The best way to do this is to create a
new table of authors which can be linked to the books:

class Author(Table):
surname = Field(unique=True)
initials = Field(unique=True, default='')
dob = Field()
nationality = Field()

Two new concepts are used here. Default values can be assigned to a Field as illustrated by surname, and
more than one field can be unique. This means that authors cannot have the same surname and initials, so ’A.
Adams’ and ’D. Adams’ is ok, but two ’D. Adams’ is not.

We can also add a list of books by the author, by using a Join. This is similar to a Field, but is created with a
reference to foreign field containing the link, and contains an iterable rather than a single value:

class Author(Table):
surname = Field(unique=True)
initials = Field(unique=True, default='')
nationality = Field()
books = Join(Book.author)

This tells the Author table that its books attribute should contain all Book instances with a matching author
field:

class Book(Table):
refno = Field(unique=True)
name = Field()
author = Field()

def validate(self):
assert isinstance(self.refno, int)
assert isinstance(self.name, str)
assert isinstance(self.author, str)

A Join can also point to another Join, creating what is termed a many-to-many relationship. These are discussed
later, since they rely on a Database being used.

1.2.4 Databases

These tables are perfectly usable as they are, but for convenience they can be grouped into a Database. This
becomes more important when serialising them:

db = Database()
db.add(Book)
db.add(Author)

Database.add can also be used as a class decorator, so the complete code becomes:

6 Chapter 1. Contents

http://docs.python.org/3.2/library/exceptions.html#ValueError

norman-doc Documentation, Release 0.7.2

db = Database()

@db.add
class Book(Table):

refno = Field(unique=True)
name = Field()
author = Field()

def validate(self):
assert isinstance(self.refno, int)
assert isinstance(self.name, str)
assert isinstance(self.author, str)

@db.add
class Author(Table):

surname = Field(unique=True)
initials = Field(unique=True, default='')
nationality = Field()
books = Join(Book.author)

1.2.5 Many-to-many Joins

The next step in the library is to allow people to withdraw books from it, tracking both the books a person has, and
who has copies of a specific book. This is known as a many-to-many relationship, as Book.people contains
many people and Person.books contains many books, and is implemented in Norman by creating a pair of
joins which target each other.

First we need to create another table for people, adding a join to a new field, which we will add to Book. However,
this causes a slight problem, since we need to reference Book.people in order to create Person.books,
and we need to reference Person.books in order to create Book.people. Fortunately, Norman allows an
alternative method of defining joins when the target Table belongs to a database:

@db.add
class Person(Table):

name = Field(unique=True)
books = Join(db, 'Book.people')

@db.add
class Book(Table):

...
people = Join(db, 'Person.books')
...

In the background, a new table called ’_BookPerson’ is created and added to the database. This is just a sorted
concatenation of the names of the two participating tables, prefixed with an underscore. It is possible to manually
set the name used by using the jointable keyword argument on one of the joins:

@db.add
class Person(Table):

name = Field(unique=True)
books = Join(db, 'Book.people', jointable='JoinTable')

The newly created join table has two unique fields, Book and Person, i.e. the participating table names. While
records can be added to it directly, it is advisable to add them to the join instead, so for example:

mybook.people.add(a_person)

1.2.6 Adding records

Now that the database is set up, we can add some records to it:

1.2. Tutorial 7

norman-doc Documentation, Release 0.7.2

dickens = Author(surname='Dickens', initials='C', nationality='British')
tolkien = Author(surname='Tolkien', initials='JRR', nationality='South African')
pratchett = Author(surname='Pratchett', initials='T', nationality='British')
Book(name='Wyrd Sisters', author=pratchett)
Book(name='The Hobbit', author=tolkien)
Book(name='Lord of the Rings', author=tolkien)
Book(name='Great Expectations', author=dickens)
Book(name='David Copperfield', author=dickens)
Book(name='Guards, guards', author=pratchett)

1.2.7 Queries

Queries are constructed by comparing and combining fields. The following examples show how to extract various
bit of information from the database.

See also:

Queries

1. Listing all records in a table is as simple as iterating over it, so generator expressions can be used to extract
a list of fields. For example, to get a sorted list of author’s surnames:

>>> sorted(a.surname for a in Author)
['Dickens', 'Pratchett', 'Tolkien']

2. Records can be queried based on their field values. For example, to list all South African authors:

>>> for a in (Author.nationality == 'South African'):
... print(a.surname)
Tolkien

3. Queries can be combined and nested, so to get all books by authors who’s initials are in the first half of the
alphabet:

books = Books.authors & (Author.initials <= 'L')

4. A single result can be obntained using Query.one:

mybook = (Book.name == 'Wyrd Sisters').one()

4. Records can be added based on certain queries:

(Author.nationality == 'British').add(surname='Adams', intials='D')

Since 0.7, all fields are automatically indexed, so queries are fast. Depending on the application, it is possible to
change how the data is indexed, allowing for more control over how data can be queried. For example, if we were
more concerned about querying books by title length, we could use len as the index key function:

class Book(Table):
...
name = Field(key=len)
...

Then we could query all books with a title longer than 10 characters:

Book.name > ' '*10

Note that the target of the query is also affected by the key, so we need to give it a value such that len(value)
returns 10.

8 Chapter 1. Contents

http://docs.python.org/3.2/library/functions.html#len

norman-doc Documentation, Release 0.7.2

1.2.8 Serialisation

serialise provides an extensible framework for serialising databases and a sample implementation for serial-
ising to sqlite. Serialising and de-serialising is as simple as:

MySerialiser.dump(mydb, filename)

and:

MySerialiser.load(mydb, filename)

For more detail, see the serialise module.

1.3 What’s New

This file lists new features and major changes to Norman. For a detailed changelog, see the mercurial log.

1.3.1 Norman-0.7.2

Release Date: 2012-02-25

• Support for Python 2.6 added.

• Fixed Issue #1: Using uidname=None in serialise.Sqlite does not behave as documented.

• Documentation updated, and installation instructions added.

1.3.2 Norman-0.7.1

Release Date: 2012-02-12

• Query.table exposed, resulting in a major implementation change in Query.add. This function now
exists for all queries, but raises an error if called when it cannot be used.

• Query.add can now be used for queries of whole tables.

• Add AutoDatabase and AutoTable classes.

• Make Field.readonly and Field.unique mutable.

• Allow Field definitions to be copied to another Table.

• Add Database.delete method.

• Allow a None return value from serialise.Reader.create_record.

• Fix issue in python2 where uuids cannot be converted to strings.

• Documentation updated.

1.3.3 Norman-0.7.0

Release Date: 2012-12-14

• Many internal changes in the way data is stored and indexed, centred around the introduction of two new
classes, Store and Index.

• All fields are now automatically indexed. As a results the index parameter to Field objects falls away, and
a new key argument is introduced.

• Table objects have a new attribute, ~‘Table._store‘, which refers to the Store used for the table. This
may be changed when the

1.3. What’s New 9

http://docs.python.org/3.2/library/constants.html#None

norman-doc Documentation, Release 0.7.2

• The serialise framework has been completely overhauled and the API simplified. Extensive changes
in this module.

• Add a new CSV serialiser.

• Add validate.map validator to convert values.

• Improved the string representation of Query and Field instances.

• Deprecated functionality removed

1.3.4 Norman-0.6.2

Release Date: 2012-09-03

• Add built-in support for many-to-many joins.

• Hooks added to Table to allow more control over validation.

• Add Query.field, allowing queries to traverse tables.

• Add Query.add, allowing records to be created based on query criteria.

• Add a return value when calling Query objects.

• Field level validation added, including some validator factories.

• Add validate.todatetime, validate.todate and validate.totime.

• Deprecated the tools module.

1.3.5 Norman-0.6.1

Release Date: 2012-07-12

• New serialiser framework added, based on serialise.Serialiser. A sample serialiser,
serialise.Sqlite is included.

• serialise.Sqlite3 has been deprecated.

• Documentation overhauled introducing major changes to the documentation layout.

• Add boolean comparisons, Query.delete and Query.one methods to Query .

• Table now supports inheritance by copying its fields.

• Several changes to implementations, generally to improve performance and consistency.

1.3.6 Norman-0.6.0

Release Date: 2012-06-12

• Python 2.6 support by Ilya Kutukov

• Move serialisation functions to a new serialise module. This module will be expanded and updated in the
near future.

• Add sensible repr to Table and NotSet objects

• Query object added, introducing a new method of querying tables, involving Field and Query compar-
ison operators.

• Join class created, which will replace Group in 0.7.0.

• Field.name and Field.owner, which previously existed, have now been formalised and documented.

• Field.default is respected when initialising tables

10 Chapter 1. Contents

http://docs.python.org/3.2/library/functions.html#repr

norman-doc Documentation, Release 0.7.2

• Table._uid property added for Table objects.

• Allow Table.validate_delete to make changes.

• Two new tools functions added: tools.dtfromiso and tools.reduce2.

• Database.add method added.

• Documentation updated to align with docstrings.

• Fix a bunch of style and PEP8 related issues

• Minor bugfixes

1.3.7 Norman-0.5.2

Release Date: 2012-04-20

• Fixed failing tests

• Group.add implemented and documented

• Missing documentation fixed

1.3.8 Norman-0.5.1

Release Date: 2012-04-20

• Exceptions raised by validation errors are now all ValueError

• Group object added to represent sub-collections

• Deletion validation added to tables through Table.validate_delete

• Minor documentation updates

• Minor bugfixes

1.3.9 Norman-0.5.0

Release Date: 2012-04-13

• First public release, repository imported from private project.

1.4 Data Structures

Contents

• Data Structures
– Database
– Tables

* Records
* Notes on Validation and Deletion

– Fields
– Joins
– Exceptions and Warnings

* Exceptions
* Warnings

– Advanced API

1.4. Data Structures 11

norman-doc Documentation, Release 0.7.2

Norman data structures are build on four objects: Database, Table, Field and Join. In overview, a
Database is a collections of Table subclasses. Table subclasses represent a tabular data structure where
each column is defined by a Field and each row is an instance of the subclass. A Join is similar to a Field,
but behaves as a collection of related records:

class Branch(Table):

Each branch knows its parent branch
parent = Field(index=True)

Children are determined on the fly by searching for matching parents.
children = Join(parent)

AutoTable is a special type of Table which automatically creates fields dynamically. This is used in conjunc-
tion with AutoDatabase, is is particularly useful when de-serialising from a source without knowing details of
data in the source.

1.4.1 Database

class norman.Database
Database instances act as containers of Table objects, which are identified by name. Database sup-
ports the following operations.

Operation Description
db[name] Return a Table by name
name in db Return True if a Table named name is in the database.
table in db Return True if a Table object is in the database.
iter(db) Return an iterator over Table objects in the database.

Databases are mainly provided for convenience, as a way to group related tables. Tables may beloong to
multiple databases, or no database at all.

add(table)
Add a Table class to the database.

This is the same as including the database argument in the class definition. The table is returned so
this can be used as a class decorator.

>>> db = Database()
>>> @db.add
... class MyTable(Table):
... name = Field()

tablenames()
Return an list of the names of all tables managed by the database.

reset()
Delete all records from all tables in the database.

delete(record)
Delete a record from the database. This is a convenience function which simply calls
record.__class__.delete(record), but also checks that the record does actually belong to the database.
If not, a NormanWarning is raised, and the record is still deleted.

class norman.AutoDatabase
A subclass of Database which automatically creates AutoTable subclasses when a table is looked up
by name. For example:

>>> adb = AutoDatabase()
>>> newtable = adb['NewTable']
>>> issubclass(newtable, AutoTable)
True

Apart from this, it behaves exactly the same as Database.

12 Chapter 1. Contents

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True

norman-doc Documentation, Release 0.7.2

1.4.2 Tables

Tables are implemented as a class, with records as instances of the class. Accordingly, there are many class-level
operations which are only applicable to a Table, and others which only apply to records. The class methods
shown in Table are not visible to instances.

class norman.Table(**kwargs)
Records are created by instantiating a Table subclass. Tables are defined by subclassing Table and
adding fields to it. For example:

>>> class MyTable(Table):
... field1 = Field()
... field2 = Field()

Field names should not start with _, as these names are generally reserved for internal use. Fields and
Joins may also be added to a Table after the Table is created, but cannot be shared between tables. If
a Field which already belongs to a table is assigned to another table, a copy of it is created. The same
cannot be done with a Join, since the behaviour of this would be unclear.

Records are created by simply instantiating the table, optionally with field values as keyword arguments:

>>> record = MyTable(field1='value', field2='other value')

The following class methods are supported by Table objects, but not by instances. Tables also act as a
collection of records, and support the following sequence operations:

Opera-
tion

Description

len(t) Return the number of records in t.
iter(table)Return an iterator over all records in t.
r in
t

Return True if the record r is an instance of (i.e. contained by) table t. This should
always return True unless the record has been deleted from the table, which usually means
that it is a dangling reference which should be deleted.

Boolean operations on tables evaluate to True if the table contains any records.

_store
A Store instance used as a storage backend. This may be overridden when the class is created to use
a custom Store object. Usually there is no need to use this.

hooks
A dict containing lists of callables to be run when an event occurs.

Two events are supported: validation on setting a field value and deletion, identified by keys
’validate’ and ’delete’ respectively. When a triggering event occurs, each hook in the list
is called in order with the affected table instance as a single argument until an exception occurs. If
the exception is an AssertionError it is converted to a ValueError. If no exception occurs,
the event is considered to have passed, otherwise it fails and the table record rolls back to its previous
state.

These hooks are called before Table.validate and Table.validate_delete, and behave
in the same way. They may be set at any time, but do not affect records already created until the record
is next validated.

delete([records=None])
Delete delete all instances in records. If records is omitted then all records in the table are deleted.

fields()
Return an iterator over field names in the table

class norman.AutoTable(**kwargs)
This is a special type of Table which automatically creates a new field whenever a value is assigned to an
attribute which does not yet exist. This only occurs for attributes which do not start with ’_’. This should
be subclassed in exactly the same was as Table. Attempting to instantiate AutoTable directly will result
in a TypeError being raised.

1.4. Data Structures 13

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/stdtypes.html#dict
http://docs.python.org/3.2/library/exceptions.html#AssertionError
http://docs.python.org/3.2/library/exceptions.html#ValueError
http://docs.python.org/3.2/library/exceptions.html#TypeError

norman-doc Documentation, Release 0.7.2

>>> class MyTable(AutoTable): pass
>>> record = MyTable(a=1)
>>> record.a
1
>>> isinstance(MyTable.a, Field)
True
>>> record.b = 2
>>> isinstance(MyTable.b, Field)
True

However:

>>> record._c = 3
>>> MyTable._c
Traceback (most recent call last):

...
AttributeError: '_c'

As with other Table classes, it is also possible to manually add fields or joins:

>>> MyTable.d = Field()

Records

Table instances, or records, are created by specifying field values as keyword arguments. Missing fields will
use the default value (see Field). In addition to the defined fields, records have the following properties and
methods.

Table._uid
This contains an id which is unique in the session.

It’s primary use is as an identity key during serialisation. Valid values are any integer except 0, or a valid
uuid. The default value is calculated using uuid.uuid4 upon its first call. It is not necessary that the
value be unique outside the session, unless required by the serialiser.

Table.validate()
Raise an exception if the record contains invalid data.

This is usually re-implemented in subclasses, and checks that all data in the record is valid. If not, an
exception should be raised. Internal validate (e.g. uniqueness checks) occurs before this method is called,
and a failure will result in a ValidationError being raised. For convenience, any AssertionError
which is raised here is considered to indicate invalid data, and is re-raised as a ValidationError. This
allows all validation errors (both from this function and from internal checks) to be captured in a single
except statement.

Values may also be changed in the method. The default implementation does nothing.

Table.validate_delete()
Raise an exception if the record cannot be deleted.

This is called just before a record is deleted and is usually re-implemented to check for other referring
instances. This method can also be used to propogate deletions and can safely modify this or other tables.

Exceptions are handled in the same was as for validate.

Notes on Validation and Deletion

Data is validated whenever a record is added or removed, and there is the opportunity to influence this pro-
cess through validation hooks. When a new record is created, there are three sets of validation criteria which
must pass in order for the record to actually be created. The first step is to run the validators specified in
Field.validators. These can change or verify the value in each field independently of context. The second
validation check is applied whenever there are unique fields, and confirms that the combination of values in unique

14 Chapter 1. Contents

http://docs.python.org/3.2/library/uuid.html#module-uuid
http://docs.python.org/3.2/library/uuid.html#uuid.uuid4
http://docs.python.org/3.2/library/exceptions.html#AssertionError

norman-doc Documentation, Release 0.7.2

fields in actually unique. The final stage is to run all the validation hooks in Table.hooks. These affect the
entire record, and may be used to perform changes across multiple fields. If at any stage an Exception is raised,
the record will not be created.

The following example illustrates how the validation occurs. When a new record is created, the value is first
converted to a string by the field validator, then checked for uniqueness, and finally the validate method
creates the extra parts value.

>>> class TextTable(Table):
... 'A Table of text values.'
...
... # A text value stored in the table
... value = Field(unique=True, validators=[str])
... # A pre-populated, calculated value.
... parts = Field()
...
... def validate(self):
... self.parts = self.value.split()
...
>>> r = TextTable(value='a string')
>>> r.value
'a string'
>>> r.parts
['a', 'string']
>>> r = TextTable(value=3)
>>> r.value
'3'
>>> r = TextTable(value='3')
Traceback (most recent call last):

...
norman._except.ValidationError: Not unique: TextTable(parts=['3'], value='3')

When deleting a record, Table.validate_delete is first called. This should be used to ensure that any
dependent records are dealt with. For example, the following code ensures that all children are deleted when a
parent is deleted.

>>> class Child(Table):
... parent = Field()
...
>>> class Parent(Table):
... children = Join(Child.parent)
...
... def validate_delete(self):
... for child in self.children:
... Child.delete(child)
...
>>> parent = Parent()
>>> child = Child(parent=parent)
>>> Parent.delete(parent)
>>> len(Child)
0

1.4.3 Fields

Fields are defined inside a Table definition as class attributes, and are used as record properties for instances of
a Table. If the value of a field has not been set, then the special object NotSet is used to indicate this.

norman.NotSet
A sentinel object indicating that the field value has not yet been set. This evaluates to False in conditional
statements.

class norman.Field(unique=False, default=NotSet, readonly=False, validators=None, key=None)
A Field is used in tables to define attributes.

1.4. Data Structures 15

http://docs.python.org/3.2/library/constants.html#False

norman-doc Documentation, Release 0.7.2

>>> class MyTable(Table):
... name = Field()

Fields may be created with a combination of properties as keyword arguments, including default, key ,
readonly , unique and validators.

Fields can be used with comparison operators to return a Query object containing matching records. For
example:

>>> class MyTable(Table):
... oid = Field(unique=True)
... value = Field()
>>> t0 = MyTable(oid=0, value=1)
>>> t1 = MyTable(oid=1, value=2)
>>> t2 = MyTable(oid=2, value=1)
>>> Table.value == 1
Query(MyTable(oid=0, value=1), MyTable(oid=2, value=1))

The following comparisons are supported for a Field object, provided the data stored supports them: ==,
<, >, <=, >==, !=. The & operator is used to test for containment, e.g. ‘‘ Table.field & mylist‘‘ returns all
records where the value of field is in mylist.

See also:

validate For some pre-build validators.

Queries For more information of queries in Norman.

default
The value to use when nothing has been set (default: NotSet).

key
A key function used for indexing, similar to that used by sorted. All values returned by this function
should be sortable in the same list. For example, if the field is known to contain a mixture of strings
and integers, str would be a valid function, but lambda x: x would not, since a list of strings
and integers cannot be sorted. key should raise TypeError for any value it cannot handle. These
will be indexed separately, so that equality lookups are still optimised, but comparisons will not be
supported. As an illustrative example, consider the following case which orders values by length:

>>> class T(Table):
... value = Field(key=len)
...
>>> t1 = T(value='abc')
>>> t2 = T(value='defg')
>>> t3 = T(value=42)
>>> (T.value > 'xxx').one() # Find values longer than 3 characters
T(value='abc')
>>> (T.value == 42).one() # Find the numerical value 42
T(value=42)
>>> (T.value() > 42).one() # len(42) raises TypeError
Traceback (most recent call last)

...
TypeError

The default implementation orders data by type first, then value, for the following types:
numbers.Real, str, bytes. This might lead to unexpected results, since 42 < ’text’ will
evaluate True.

NotSet values are handled slightly differently, and are never passed through this function. Compari-
son queries on NotSet will always fail.

name
This is the assigned name of the field and is set when it is added to the Table. This attribute is
read-only.

16 Chapter 1. Contents

http://docs.python.org/3.2/library/functions.html#sorted
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/exceptions.html#TypeError
http://docs.python.org/3.2/library/numbers.html#numbers.Real
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/functions.html#bytes

norman-doc Documentation, Release 0.7.2

owner
This is the owning Table of the field and is set when it is added to the Table. This attribute is
read-only.

readonly
If True, prohibits setting the variable, unless its value is NotSet (default: False). This can be used
with default to simulate a constant. This can be toggled to effectively lock and unlock the field.

unique
True if records should be unique on this field (default: False). If more than one field in the table
have this set then they are evaluated together as a tuple. If this is set after the field is created, all
existing records in the table are evaluated and a ValidationError raised if there are duplicates.

validators
A list of functions which are used as validators for the field. Each function should accept
and return a single value (i.e. the value to be set), and should raise an exception if the value
is invalid. The validators are called sequentially in the order specified, i.e. newvalue =
validator3(validator2(validator1(oldvalue))).

1.4.4 Joins

A Join dynamically creates Queries for a specific record. This is best explained through an example:

>>> class Child(Table):
... parent = Field()
...
>>> class Parent(Table):
... children = Join(Child.parent)
...
>>> p = Parent()
>>> c1 = Child(parent=p)
>>> c2 = Child(parent=p)
>>> set(p.children) == {c1, c2}
True

In this example, Parent.children returns a Query for all Child records where child.parent ==
parent_instance for a specific parent_instance. Joins have a query attribute which is a Query
factory function, returning a Query for a given instance of the owning table.

class norman.Join(*args, **kwargs)
Joins can be created in several ways:

Join(query=queryfactory) Explicitly set the query factory. queryfactory is a callable which
accepts a single argument (i.e. the owning record) and returns a Query .

Join(table.field) This is the most common form, since most joins simply involve looking up a field
value in another table. This is equivalent to specifying the following query factory:

def queryfactory(value):
return table.field == value

Join(db, ’table.field‘) This has the same affect as the previous example, but is used when the
foreign field has not yet been created. In this case, the query factory first locates ’table.field’
in the Database db.

Join(other.join[, jointable]) It is possible set the target of a join to another join, creating
a many-to-many relationship. When used in this way, a join table is automatically created, and can
be accessed from Join.jointable. If the optional keyword parameter jointable is used, it is the
name of the new join table.

Joins have the following attributes, all of which are read-only.

jointable
The join table in a many-to-many join.

1.4. Data Structures 17

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False
http://en.wikipedia.org/wiki/Many-to-many_(data_model)

norman-doc Documentation, Release 0.7.2

This is None if the join is not a many-to-many join, and is read only. If a jointable does not yet exist
then it is created, but not added to any database. If the two joins which define it have conflicting
information, a ConsistencyError is raise.

name
This is the assigned name of the join and is set when it is added to the Table.

owner
This is the owning Table of the join and is set when it is added to the Table.

query
A function which accepts an instance of owner and returns a Query .

target
The target of the join, or None if the target cannot be found. This attribute is read only.

1.4.5 Exceptions and Warnings

Exceptions

class norman.NormanError
Base class for all Norman exceptions.

class norman.ConsistencyError
Raised on a fatal inconsistency in the data structure.

class norman.ValidationError
Raised when an operation resulting in table validation failing.

For now this inherits from NormanError, ValueError and TypeError to keep it backwardly com-
patible. This will change in version 0.7.0

Warnings

class norman.NormanWarning
Base class for all Norman warnings.

Currently all warnings use this class. In the future, this behaviour will change, and subclasses will be used.

1.4.6 Advanced API

Two structures, Store and Index manage the data internally. These are documented for completeness, but
should seldom need to be used directly.

class norman.Store
Stores are designed to hide the implementation details and expose a consistent API, so that they can be
switched out without any other changes to the table.

Tables are exposed as an array of cells, where each cell is identified by Table and Field instances. Cells
are unordered, although implementations may order them internally.

The Store is tolerant of missing values. get will return defaults if the record requested does not exist. set
will add a new record if the record does not exist.

add_field(field)
Called whenever a new field is added to the table.

add_record(record)
Called whenever a new record is created.

clear()
Delete all records in the store.

18 Chapter 1. Contents

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/exceptions.html#ValueError
http://docs.python.org/3.2/library/exceptions.html#TypeError

norman-doc Documentation, Release 0.7.2

get(record, field)
Return the value in a cell specified by record and field. This should respect any field defaults. If this
is called with a record that has not been added, it will be added.

has_record(record)
Return True if the record has an entry in the data store.

iter_field(field)
Iterate over pairs of (record, value) for the specified field. This should respect any field de-
faults. If this is called with a field that has not been added, the behaviour is unspecified.

iter_records()
Return an iterator over all records in the data store.

iter_unset(field)
Iterate over records which do not have a value set on field, that is, those for which
store.get(record, field) will return field.default. This is used for managing in-
dexes.

record_count()
Return the number of records in the table.

remove_field(field)
Remove a field.

remove_record(record)
Remove a record.

set(record, field, value)
Set the data in a record.

setdefault(field, value)
Called when the default value of a field in changed.

class norman.Index(field)
An index stores records as sorted lists of (keyvalue, record) pairs, where keyvalue is a key based on
the data cell value, determined by the return value of Field.key , which should always return the same,
sortable type. If a return value cannot be sorted, then it is stored separately by its hash, and comparisons
(except for equality checks) cannot be used with it. It is is not hashable, then it is stored by id, so equality
checks will actually return identity matches. Note that NotSet is handled separately, and is never evaluated
with Field.key . The default Field.key returns a tuple of (type, keyvalue) for recognised
types. The implementation is:

def key(value):
if isinstance(value, numbers.Real):

return '0Real', value
elif isinstance(value, str):

return '1str', value
elif isinstance(value, bytes):

return '2bytes', value
else:

raise TypeError

The following examples show a few example of how this can be used:

>>> import re
>>> from norman import Table, Field
>>> class MyTable(Table):
... numbers = Field(key=lambda x: re.findall('\d+', x))
...
>>> r1 = MyTable(numbers='number 1, numbers 2 and 3')
>>> r2 = MyTable(numbers='45 and 46')
>>> r3 = MyTable(numbers='a, b, c = 5, 6, 7')
>>> r4 = MyTable(numbers='no numbers here')
>>> set(MyTable.numbers > 'number 3') == set((r2, r3))

1.4. Data Structures 19

http://docs.python.org/3.2/library/functions.html#id

norman-doc Documentation, Release 0.7.2

True
>>> set(MyTable.numbers < '1 or 2') == set((r4,))
True

clear()
Delete all items from the index.

insert(value, record)
Insert a new item. If equal keys are found, add to the right.

remove(value, record)
Remove first occurrence of (value, record).

1.5 Queries

Norman features a flexible and extensible query API, the basis of which is the Query class. Queries are con-
structed by manipulating Field and other Query objects; the result of each operation is another Query .

Contents

• Queries
– Examples
– API

1.5.1 Examples

The following examples explain the basic concepts behind Norman queries.

Queries are constructed as a series of field comparisons, for example:

q1 = MyTable.age > 4
q2 = MyTable.parent.name == 'Bill'

These can be joined together with set combination operators:

q3 = (MyTable.age > 4) | (MyTable.parent.name == 'Bill')

Containment in an iterable can be checked using the & operator. This is the same usage as in set:

q4 = MyTable.parent.name & ['Bill', 'Bob', 'Bruce']

Since queries are themselves iterable, another query can be used as the container:

q5 = MyTable.age & OtherTable.age

A custom function can be used for filtering records from a Table or another Query:

def isvalid(record):
return record.parrot.endswith('notlob')

q6 = query(isvalid, q5)

If the filter function is omitted, then all records are assumed to pass. This is useful for creating a query of a whole
table:

q7 = query(MyTable)

The result of each of these is a Query object, which can be iterated over to yield records. The query is not
evaluated until a result is requested from it (including len). An existing query can be refreshed after the base data

20 Chapter 1. Contents

http://docs.python.org/3.2/library/stdtypes.html#set

norman-doc Documentation, Release 0.7.2

has changed by calling it as a function. The return value is the query iteself, so to ensure that the result is up to
date, you could call:

latest_size = len(q7())

1.5.2 API

norman.query([func], table)
Return a new Query for records in table for which func is True.

table is a Table or Query object. If func is missing, all records are assumed to pass. If it is specified, is
should accept a record as its argument and return True for passing records.

class norman.Query(op, *args, **kwargs)
This object should never be instantiated directly, instead it should be created as the result of a Field
comparison or by using the query function. The interface allows most operations permitted on sets, such
as unions and intersections, but returns a new Query object instead of any results. The following operations
are supported:

Operation Description
r in q Return True if record r is in the results of query q.
len(q) Return the number of results in q.
iter(q) Return an iterator over records in q.
q1 == q2 Return True if q1 and q2 contain the same records.
q1 != q2 Return True if not a == b
q1 & q2 Return a new Query object containing records in both q1 and q2.
q1 | q2 Return a new Query object containing records in either q1 or q2.
q1 ^ q2 Return a new Query object containing records in either q1 or q2, but not both.
q1 - q2 Return a new Query object containing records in q1 which are not in q2.

Queries evaluate to True if they contain any results, and False if they do not.

Calling a query forces it to be re-evaluated, and the query object is returned.

table
Return the table queried. If no single table is queried, None is returned.

add([arg, **kwargs])
Add a record based on the query criteria, and return the new record. There are two modes of operation
for this method, depending on the query. For either mode, the query must be defined by a clear set
of field values for a single Table. This includes queries such as (MyTable.field1‘ == 1) &
(MyTable.field2‘ == 2) but not MyTable.field1‘ > 1.

The first mode accepts keyword arguments, which are combined with the parameters used to construct
the query and passed to the table constructor. For example:

``((MyTable.a` == 1) & (MyTable.b` == 2)).add(c=3)``

evaluates to:

MyTable(a=1, b=2, c=3)

The second mode is used when the query has been created by field. In this case, a single argument
is expected which is the record to apply to the field. For example:

(Table1.id == 4).field('table2').add(table2_instance)

is the same as:

(Table1.id == 4).add(table2=table2_instance)

delete()
Delete all records matching the query from their table. If no records match, nothing is deleted.

1.5. Queries 21

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#None

norman-doc Documentation, Release 0.7.2

field(fieldname)
Return a new Query containing records in a single field.

The set of records returned by this is similar to:

set(getattr(r, fieldname) for r in query)

However, the returned object is another Query instead of a set. Only instances of a Table subclass
are contained in the results, other values are dropped. This is functionally similar to a SQL query on a
foreign key. If the target field is a Join, then all the results of each join are concatenated.

one([default])
Return a single value from the query results. If the query is empty and default is specified, then it is
returned instead, otherwise an IndexError is raised.

1.6 Serialisation

In addition to supporting the pickle protocol, Norman provides a framework for serialising and de-serializing
databases to other formats through the norman.serialise module. Serialisation classes inherit Reader,
Writer or Serialiser, which is a subclass of the first two provided for convenience.

Contents

• Serialisation
– Serialisation Framework

* Readers
* Writers
* Serialiser

– CSV
– Sqlite

1.6.1 Serialisation Framework

In addition to the Reader, Writer and Serialiser classes, a convenience function is provided to generate
uids.

norman.serialise.uid()
Create a new uid value. This is useful for files which do not natively provide a uid.

Readers

class norman.serialise.Reader
An abstract base class providing a framework for readers.

Subclasses are required to implement iter_source and may re-implement any other methods to cus-
tomise behaviour.

The entry point in the read method, which iterates of over records yielded by iter_source, identifies
possible foreign keys by isuid and dereferences them by identifying loops and processing them with
create_group. This method calls create_record to actually create the record.

read(source, db)
Read data from a source into db.

This converts each value returned by iter_source into a record using create_record. It also
attempts to re-map nested records by searching for matching uids.

Cycles in the data are detected, and all records involved in in a cycle are created in create_group.

22 Chapter 1. Contents

http://docs.python.org/3.2/library/exceptions.html#IndexError
http://docs.python.org/3.2/library/pickle.html#module-pickle

norman-doc Documentation, Release 0.7.2

iter_source(source, db)
Iterate over record in the source file, yielding tuples of (table, data) or (table, uid,
data). table is the Table containing the record, uid is a globally unique value identifying the
record and data is a dict of field values for the record, possibly containing other uids. If uid is omitted,
then one is automatically generated using uuid.

Parameters

• db – The Database being read into.

• source – The data source, as specified in read.

isuid(field, value)
Return True if value, for the specified field, could be a uid.

field is a Field object.

This only needs to check whether the value could possibly represent another field. It is only actually
considered a uid if there is another record which matches it.

By default, this returns True for all strings which match a UUID regular expression, e.g.
’a8098c1a-f86e-11da-bd1a-00112444be1e’.

create_group(records)
Create a group of records. records is an iterable containing co-dependant records, i.e. records which
cyclically reference each other. In many cases, records will contain only a single record.

Each record returned by records is a tuples of (table, uid, data, cycles) . The first three
values are the same as those returned by iter_source, except that foreign uids in data have been
dereferenced. cycles is a set of field names which contain the cyclic references.

The default behaviour is to remove the cyclic fields from data for each record, create the records using
create_record and assign the created records to the cyclic fields.

The return value is an iterator over (uid, record) pairs.

create_record(table, uid, data)
Create a single record in table, using uid and data, as given by iter_source. This is called by
create_group, so any foreign uid in data should have been dereferenced. The record created
should be returned, or, if it cannot be created, None should be returned.

The default implementation simply calls table(**data) and sets the uid.

Writers

class norman.serialise.Writer
An abstract base class providing a framework for writers.

Subclasses are required to implement context and write_record and may re-implement any other
methods to customise behaviour.

The entry point in the writemethod, which opens the target file with context and iterates of over records
in the database with iterdb. Each record is converted to a simple python structure with simplify and
written using write_record.

write(targetname, db)
Write the database to filename.

fieldname is used only to open the file using open, so, depending on the implementation could be
anything (e.g. a URL) which open recognises. It could even be omitted entirely if, for example, the
serialiser dumps the database as formatted text to stdout.

context(targetname, db)
Return a context manager which opens and closes the file, including and preparation and finalisation
needed. A common implementation might be:

1.6. Serialisation 23

http://docs.python.org/3.2/library/uuid.html#module-uuid
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#open
http://docs.python.org/3.2/library/functions.html#open

norman-doc Documentation, Release 0.7.2

def context(self, file):
return open(file, 'w')

This can also be implemented using contextlib.contextmanager, which is useful for more
complicated examples:

@contextlib.contextmanager
def context(self, targetname, db):

fh = open(targetname, 'w')
fh.write('### Header line ###')
yield fh
fh.write('### Footer line ###')
fh.close()

iterdb(db)
Return an iterator over records in the database.

Records should be returned in the order they are to be written. The default implementation is a gener-
ator which iterates over records in each table.

simplify(record)
Convert a record to a simple python structure.

The default implementation converts record to a dict of field values, omitting NotSet val-
ues and replacing other records with their _uid properties. The return value is passed directly to
write_record, so it can be anything recognised by it. This implementation returns a tuple of
(tablename, record._uid, record_dict).

write_record(record, target)
Write record to target.

This is called by write for every record yielded by iterdb. record is the values returned by
simplify and target is the value returned by context.

Serialiser

class norman.serialise.Serialiser
This simply inherits from Reader and Writer to combine the functionality into one class for interfaces
which support both reading and writing.

1.6.2 CSV

class norman.serialise.CSV(uidname=’_uid_’, **kwargs)
This is a Serialiser which reads and writes to a collection of csv files.

Each table in the database is written to a separate file, which is managed by csv.DictReader and
csv.DictWriter. Any extra initialisation parameters are passed to these. If this includes fieldnames, it
should be a mapping of table to fieldnames. This defaults to a sorted list of table fields. This is only used
for writing.

An additional field specified by uidname is prepended which contains the record’s _uid. uidname may be
empty or None, in which case uids are ignored and the field is omitted.

Since csv files can only contain text, all values are converted to strings when writing, and it is up to the
database to convert them back into other objects when reading. The exception to this is uid keys, which are
handled by the Reader. NotSet values are omitted when writing, and empty field values are converted
to NotSet when reading.

The target and source specified in read and write should be a mapping of table name to file name, for
example:

24 Chapter 1. Contents

http://docs.python.org/3.2/library/contextlib.html#contextlib.contextmanager
http://docs.python.org/3.2/library/stdtypes.html#dict
http://docs.python.org/3.2/library/csv.html#csv.DictReader
http://docs.python.org/3.2/library/csv.html#csv.DictWriter
http://docs.python.org/3.2/library/constants.html#None

norman-doc Documentation, Release 0.7.2

mapping = {Table1: '/path/table1.csv', Table2: '/path/table2.csv'}
CSV().read(mapping, db)

Any missing tables are omitted.

1.6.3 Sqlite

class norman.serialise.Sqlite(uidname=’_uid_’)
This is a Serialiser which reads and writes to a sqlite database.

Each table is dumped to a sqlite table with the same field names. An additional field specified by uidname
is included which contains the record’s _uid. uidname may be empty or None, in which case uids are
ignored and the field is omitted.

The sqlite database is created without any constraints. As described in the sqlite3 docs, under Python2,
text is always returned as unicode.

1.7 Validators

This module provides some validators and validator factories, intended mainly for use in the validate parameter
of Fields.

norman.validate.ifset(func)
Return a Field validator returning func(value) if value is not NotSet. If value is NotSet, then it
is returned and func is never called. This is normally used as a wrapper around another validator to permit
NotSet values to pass. For example:

>>> validator = ifset(istype(float))
>>> validator(4.3)
4.3
>>> validator(NotSet)
NotSet
>>> validator(None)
Traceback (most recent call last):

...
ValidationError: None

norman.validate.isfalse(func[, default])
Return a Field validator which passes if func returns False.

Parameters

• func – A callable which returns False if the value passes.

• default – The value to return if func returns True. If this is omitted, a
ValidationError is raised.

norman.validate.istrue(func[, default])
Return a Field validator which passes if func returns True.

Parameters

• func – A callable which returns True if the value passes.

• default – The value to return if func returns False. If this is omitted, a
ValidationError is raised.

norman.validate.istype(t[, t2[, t3[, ...]]])
Return a validator which raises a ValidationError on an invalid type.

Parameters t – The expected type, or types.

1.7. Validators 25

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/sqlite3.html#module-sqlite3
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False

norman-doc Documentation, Release 0.7.2

norman.validate.map(mapping)
Return a validator which maps values to new values.

Parameters mapping – A dict mapping old values to new values.

If a value is passed which has no mapping then it is accepted unchanged. For example:

>>> validator = map({1: 'one', 0: NotSet})
>>> validator(1)
'one'
>>> validator(0)
NotSet
>>> validator(2)
2

norman.validate.settype(t, default)
Return a Field validator which converts the value to type t.

Parameters

• t – The required type.

• default – If the value cannot be converted, then use this value instead.

The following three functions return validators which convert a value to a datetime object using a format string.
See strftime() and strptime() Behavior for more information of format strings.

norman.validate.todate([fmt])
Return a validator which converts a string to a datetime.date. If fmt is omitted, the ISO rep-
resentation used by datetime.date.__str__ is used, otherwise it should be a format string for
datetime.datetime.strptime.

If the value passed to the validator is a datetime.datetime, the date component is returned. If it is a
datetime.date it is returned unchanged.

The return value is always a datetime.date object. If the value cannot be converted a
ValidationError is raised.

norman.validate.todatetime([fmt])
Return a validator which converts a string to a datetime.datetime. If fmt is omitted, the ISO repre-
sentation used by datetime.datetime.__str__ is used, otherwise it should be a format string for
datetime.datetime.strptime.

If the value passed to the validator is a datetime.datetime it is returned unchanged. If it is a
datetime.date or datetime.time, it is converted to a datetime.datetime, replacing miss-
ing the missing information with 1900-1-1 or 00:00:00.

The return value is always a datetime.datetime object. If the value cannot be converted a
ValidationError is raised.

norman.validate.totime([fmt])
Return a validator which converts a string to a datetime.time. If fmt is omitted, the ISO rep-
resentation used by datetime.time.__str__ is used, otherwise it should be a format string for
datetime.datetime.strptime.

If the value passed to the validator is a datetime.datetime, the time component is returned. If it is a
datetime.time it is returned unchanged.

The return value is always a datetime.time object. If the value cannot be converted a
ValidationError is raised.

26 Chapter 1. Contents

http://docs.python.org/3.2/library/datetime.html#module-datetime
http://docs.python.org/3.2/library/datetime.html#strftime-strptime-behavior
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/datetime.html#datetime.date.__str__
http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.datetime.__str__
http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/datetime.html#datetime.time
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.time
http://docs.python.org/3.2/library/datetime.html#datetime.time.__str__
http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.time
http://docs.python.org/3.2/library/datetime.html#datetime.time

Python Module Index

n
norman, 5
norman.serialise, 22
norman.validate, 25

27

norman-doc Documentation, Release 0.7.2

28 Python Module Index

Index

Symbols
_store (norman.Table attribute), 13
_uid (norman.Table attribute), 14

A
add() (norman.Database method), 12
add() (norman.Query method), 21
add_field() (norman.Store method), 18
add_record() (norman.Store method), 18
AutoDatabase (class in norman), 12
AutoTable (class in norman), 13

C
clear() (norman.Index method), 20
clear() (norman.Store method), 18
ConsistencyError (class in norman), 18
context() (norman.serialise.Writer method), 23
create_group() (norman.serialise.Reader method), 23
create_record() (norman.serialise.Reader method), 23
CSV (class in norman.serialise), 24

D
Database (class in norman), 12
default (norman.Field attribute), 16
delete() (norman.Database method), 12
delete() (norman.Query method), 21
delete() (norman.Table method), 13

F
Field (class in norman), 15
field() (norman.Query method), 21
fields() (norman.Table method), 13

G
get() (norman.Store method), 18

H
has_record() (norman.Store method), 19
hooks (norman.Table attribute), 13

I
ifset() (in module norman.validate), 25
Index (class in norman), 19
insert() (norman.Index method), 20

isfalse() (in module norman.validate), 25
istrue() (in module norman.validate), 25
istype() (in module norman.validate), 25
isuid() (norman.serialise.Reader method), 23
iter_field() (norman.Store method), 19
iter_records() (norman.Store method), 19
iter_source() (norman.serialise.Reader method), 22
iter_unset() (norman.Store method), 19
iterdb() (norman.serialise.Writer method), 24

J
Join (class in norman), 17
jointable (norman.Join attribute), 17

K
key (norman.Field attribute), 16

M
map() (in module norman.validate), 25

N
name (norman.Field attribute), 16
name (norman.Join attribute), 18
norman (module), 1, 3, 5, 11, 20
norman.serialise (module), 22
norman.validate (module), 25
NormanError (class in norman), 18
NormanWarning (class in norman), 18
NotSet (in module norman), 15

O
one() (norman.Query method), 22
owner (norman.Field attribute), 16
owner (norman.Join attribute), 18

Q
Query (class in norman), 21
query (norman.Join attribute), 18
query() (in module norman), 21

R
read() (norman.serialise.Reader method), 22
Reader (class in norman.serialise), 22
readonly (norman.Field attribute), 17

29

norman-doc Documentation, Release 0.7.2

record_count() (norman.Store method), 19
remove() (norman.Index method), 20
remove_field() (norman.Store method), 19
remove_record() (norman.Store method), 19
reset() (norman.Database method), 12

S
Serialiser (class in norman.serialise), 24
set() (norman.Store method), 19
setdefault() (norman.Store method), 19
settype() (in module norman.validate), 26
simplify() (norman.serialise.Writer method), 24
Sqlite (class in norman.serialise), 25
Store (class in norman), 18

T
Table (class in norman), 13
table (norman.Query attribute), 21
tablenames() (norman.Database method), 12
target (norman.Join attribute), 18
todate() (in module norman.validate), 26
todatetime() (in module norman.validate), 26
totime() (in module norman.validate), 26

U
uid() (in module norman.serialise), 22
unique (norman.Field attribute), 17

V
validate() (norman.Table method), 14
validate_delete() (norman.Table method), 14
ValidationError (class in norman), 18
validators (norman.Field attribute), 17

W
write() (norman.serialise.Writer method), 23
write_record() (norman.serialise.Writer method), 24
Writer (class in norman.serialise), 23

30 Index

	Contents
	Introduction
	Tutorial
	What's New
	Data Structures
	Queries
	Serialisation
	Validators

	Python Module Index

