

Noisy Duck

[image: _images/noisyduck.svg]
 [https://pypi.python.org/pypi/noisyduck][image: _images/noisyduck1.svg]
 [https://travis-ci.org/nwukie/noisyduck][image: Documentation Status]
 [https://noisyduck.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/nwukie/noisyduck/]A python tool for computing eigenmode decompositions of duct flows.

	Free software: BSD license

	Documentation: https://noisyduck.readthedocs.io.

Features

	Annular duct mode decomposition

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Noisy Duck

[image: _images/noisyduck.svg]
 [https://pypi.python.org/pypi/noisyduck][image: _images/noisyduck1.svg]
 [https://travis-ci.org/nwukie/noisyduck][image: Documentation Status]
 [https://noisyduck.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/nwukie/noisyduck/]A python tool for computing eigenmode decompositions of duct flows.

	Free software: BSD license

	Documentation: https://noisyduck.readthedocs.io.

Features

	Annular duct mode decomposition

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Noisy Duck, run this command in your terminal:

$ pip install noisyduck

This is the preferred method to install Noisy Duck, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Noisy Duck can be downloaded from the Github repo [https://github.com/nwukie/noisyduck].

You can either clone the public repository:

$ git clone git://github.com/nwukie/noisyduck

Or download the tarball [https://github.com/nwukie/noisyduck/tarball/master]:

$ curl -OL https://github.com/nwukie/noisyduck/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Noisy Duck in a project:

import noisyduck

Example: Annular Cylindrical Duct

Numerical eigenvalue/eigenvector decomposition:

import noisyduck as nd
eigenvalues, eigenvectors = nd.annulus.numerical.decomposition(omega,m,r,rho,u,v,w,p,gam,filter='acoustic')

Analytical eigenvalue/eigenvector decomposition:

import noisyduck as nd
eigenvalues, eigenvectors = nd.annulus.analytical.decomposition(omega,m,mach,ri,ro,n)

See cylindrical_annulus_uniform_flow.py.

Cylindrical Annuluar Duct

Analytical

This module provides a functionality for computing the eigenvalue/eigenvector
decomposition of a uniform axial flow in an annular cylindrical duct. The
decomposition is based on an analytical solution of the convected wave equation
for pressure, yielding the acoustic part of the eigen decomposition. The
eigenvectors from this decomposition correspond specifically to the acoustic
pressure disturbance.

Theory:

The analysis here follows that of Moinier and Giles, “Eigenmode Analysis
for Turbomachinery Applications”, Journal of Propulsion and Power, Vol. 21,
No. 6, 2005.

For a uniform axial mean, linear pressure perturbations satisfy the convected
wave equation

\[\left(\frac{\partial}{\partial t} + M \frac{\partial}{\partial z}
\right)^2 p = \nabla^2 p \quad\quad\quad \lambda < r < 1\]

where \(M\) is the Mach number of the axial mean flow and \(r\) has
been normalized by the outer duct radius. Boundary conditions for a
hard-walled duct imply zero radial velocity, which is imposed using the
condition

\[\frac{\partial p}{\partial r} = 0 \quad\quad \text{at}
\quad\quad r=\lambda,1\]

Conducting a normal mode analysis of the governing equation involves assuming a
solution with a form

\[p(r,\theta,z,t) = e^{j(\omega t + m \theta + k z)}P(r)\]

This leads to a Bessel equation

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{dP}{dr} \right) +
\left(\mu^2 - \frac{m^2}{r^2} \right)P = 0
\quad\quad \lambda < r < 1\]

where \(\mu^2 = (\omega + M k)^2 - k^2\). The solution to the Bessel
equation is

\[P(r) = a J_m(\mu r) + b Y_m(\mu r)\]

where \(J_m\) and \(Y_m\) are Bessel functions. Applying boundary
conditions to the general solution gives a set of two equations

\[\begin{split}\begin{bmatrix}
 J'_m(\mu \lambda) & Y'_m(\mu \lambda) \\
 J'_m(\mu) & Y'_m(\mu)
\end{bmatrix}
\begin{bmatrix}
 a \\ b
\end{bmatrix}
= 0\end{split}\]

which has nontrivial solutions as long as the determinant is zero. Solving
for the zeros of the determinant give \(\mu\), at which point the
quadratic equation above can be solved for the axial wavenumbers \(k\).

Example:

eigenvalues, eigenvectors =
noisyduck.annulus.analytical.decomposition(omega,m,mach,r,n)

	
noisyduck.annulus.analytical.compute_eigenvalues(omega, mach, zeros)

	This procedure compute the analytical eigenvalues for the
convected wave equation. A uniform set of nodes is created to
search for sign changes in the value for the eigensystem. When
a sign change is detected, it is known that a zero is close.
The eigensystem is then passed to a bisection routine to find
the location of the zero. The location corresponds to the
eigenvalue for the system.

	Parameters

	
	omega (float) – temporal wavenumber.

	m (int) – circumferential wavenumber.

	mach (float) – Mach number.

	ri (float) – inner radius of a circular annulus.

	ro (float) – outer radius of a circular annulus.

	n (int) – number of eigenvalues to compute.

	Returns

	An array of the first ‘n’ eigenvalues for the system.

	
noisyduck.annulus.analytical.compute_eigenvector(r, sigma, m, zero)

	Return the eigenvector for the system.

	Parameters

	
	r (np.array(float)) – array of radial locations.

	sigma (float) – ratio of inner to outer radius, ri/ro.

	m (int) – circumferential wavenumber.

	zero (float) – a zero of the determinant of the convected wave equation

	Returns

	the eigenvector associated with the input ‘m’ and ‘zero’, evaluated at
radial locations defined by the input array ‘r’. Length of the return
array is len(r).

	
noisyduck.annulus.analytical.compute_zeros(m, mach, ri, ro, n)

	This procedure compute the zeros of the determinant for the convected
wave equation.

A uniform set of nodes is created to search for sign changes
in the value of the function. When a sign change is detected, it is known
that a zero is close. The function is then passed to a bisection routine
to find the location of the zero.

	Parameters

	
	m (int) – circumferential wavenumber.

	mach (float) – Mach number

	ri (float) – inner radius of a circular annulus.

	ro (float) – outer radius of a circular annulus.

	n (int) – number of eigenvalues to compute.

	Returns

	An array of the first ‘n’ eigenvalues for the system.

	
noisyduck.annulus.analytical.decomposition(omega, m, mach, r, n)

	This procedure computes the analytical eigen-decomposition of
the convected wave equation. The eigenvectors returned correspond
specifically with acoustic pressure perturbations.

Inner and outer radii are computed using min(r) and max(r), so it
is important that these end-points are included in the incoming array
of radial locations.

	Parameters

	
	omega (float) – temporal wave number.

	m (int) – circumferential wave number.

	mach (float) – Mach number.

	r (float) – array of radius stations, including rmin and rmax.

	n (int) – number of eigenvalues/eigenvectors to compute.

	Returns

	a tuple containing an array of
eigenvalues, and an array of eigenvectors evaluated at radial
locations.

	Return type

	(eigenvalues, eigenvectors)

	
noisyduck.annulus.analytical.eigensystem(b, m, ri, ro)

	Computes the function associated with the eigensystem of the
convected wave equation. The location of the zeros for this function
correspond to the eigenvalues for the convected wave equation.

The solution to the Bessel equation with boundary conditions applied
yields a system of two linear equations.
.. math:

A x =
\begin{bmatrix}
 J'_m(\mu \lambda) & Y'_m(\mu \lambda) \\
 J'_m(\mu) & Y'_m(\mu)
\end{bmatrix}
\begin{bmatrix}
 x_1 \\ x_2
\end{bmatrix}
= 0

This procedure evaluates the function
.. math:

det(A) = f(b) = J_m(b*ri)*Y_m(b*ro) - J_m(b*ro)*Y_m(b*ri)

So, this procedure can be passed to another routine such as numpy
to find zeros.

	Parameters

	
	b (float) – coordinate.

	m (int) – circumferential wave number.

	ri (float) – inner radius of a circular annulus.

	ro (float) – outer radius of a circular annulus.

Numerical

This module provides a functionality for computing the numerical
eigenvalue/eigenvector decomposition of a uniform axial flow in
an annular cylindrical duct. The decomposition is based on a normal
mode analysis of the three-dimensional linearized Euler equations,
which yields an eigensystem that is discretized and solved numerically.

Theory:

Filtering:

Example:

eigenvalues, eigenvectors_l, eigenvectors_r =
 noisyduck.annulus.numerical.decomposition(omega,
 m,
 r,
 rho,
 vr,
 vt,
 vz,
 p,
 gam,
 filter='acoustic')

	
noisyduck.annulus.numerical.construct_numerical_eigensystem_general(omega, m, r, rho, vr, vt, vz, p, gam, perturb_omega=True)

	Constructs the numerical representation of the eigenvalue problem
associated with the three-dimensional linearized euler equations subjected
to a normal mode analysis.

NOTE: If perturb_omega=True, a small imaginary part is added to the
temporal frequency to facilitate determining the propagation direction
of eigenmodes based on the sign of the imaginary part of their eigenvalue.
That is: \(\omega = \omega - 10^{-5}\omega j\).
See Moinier and Giles[2].

	[1] Kousen, K. A., “Eigenmodes of Ducted Flows With Radially-Dependent

	Axial and Swirl Velocity Components”, NASA/CR 1999-208881, March 1999.

	[2] Moinier, P., and Giles, M. B., “Eigenmode Analysis for Turbomachinery

	Applications”, Journal of Propulsion and Power, Vol. 21, No. 6,
November-December 2005.

	Parameters

	
	omega (float) – temporal frequency.

	m (int) – circumferential wavenumber.

	r (float) – array of equally-spaced radius locations for the
discretization, including end points.

	rho (float) – mean density.

	vr (float) – mean radial velocity.

	vt (float) – mean tangential velocity.

	vz (float) – mean axial velocity.

	p (float) – mean pressure.

	gam (float) – ratio of specific heats.

	perturb_omega (bool) – If true, small imaginary part is added to the
temporal frequency. Can help in determining
direction of propagation.

	Returns

	
	left-hand side of generalized eigenvalue problem, right-hand

	side of generalized eigenvalue problem.

	Return type

	(M, N)

	
noisyduck.annulus.numerical.construct_numerical_eigensystem_radial_equilibrium(omega, m, r, rho, vr, vt, vz, p, gam, perturb_omega=True)

	Constructs the numerical representation of the eigenvalue problem
associated with the three-dimensional linearized euler equations under
the assumption of radial equilibrium subjected to a normal mode analysis.

NOTE: If perturb_omega=True, a small imaginary part is added to the
temporal frequency to facilitate determining the propagation direction
of eigenmodes based on the sign of the imaginary part of their eigenvalue.
That is: \(\omega = \omega - 10^{-5}\omega j\).
See Moinier and Giles[2].

The equation set used for this decomposition is consistent with that
presented by Sharma et. al[1]. Even for radial equilibrium flows, this
equation set is missing a dvt_dr term in the tangential velocity equation
and also a drho_dr term in the radial velocity equation.

References:
[1] Sharma, A., Richards, S. K., Wood, T. H., Shieh, C., “Numerical

Prediction of Exhaust Fan-Tone Noise from High-Bypass Aircraft
Engines”, AIAA Journal, Vol. 47, No. 12, December 2009.

	[2] Moinier, P., and Giles, M. B., “Eigenmode Analysis for Turbomachinery

	Applications”, Journal of Propulsion and Power, Vol. 21, No. 6,
November-December 2005.

	[3] Kousen, K. A., “Eigenmodes of Ducted Flows With Radially-Dependent

	Axial and Swirl Velocity Components”, NASA/CR 1999-208881, March 1999.

	Parameters

	
	omega (float) – temporal frequency.

	m (int) – circumferential wavenumber.

	r (float) – array of equally-spaced radius locations for the
discretization, including end points.

	rho (float) – mean density.

	vr (float) – mean radial velocity.

	vt (float) – mean tangential velocity.

	vz (float) – mean axial velocity.

	p (float) – mean pressure.

	gam (float) – ratio of specific heats.

	Returns

	
	left-hand side of generalized eigenvalue problem, right-hand

	side of generalized eigenvalue problem.

	Return type

	(M, N)

	
noisyduck.annulus.numerical.decomposition(omega, m, r, rho, vr, vt, vz, p, gam, filter='None', alpha=1e-05, equation='general', perturb_omega=True)

	Compute the numerical eigen-decomposition of the three-dimensional
linearized Euler equations for a cylindrical annulus.

	Parameters

	
	omega (float) – temporal frequency.

	m (int) – circumferential wavenumber.

	r (float) – array of equally-spaced radius locations for the
discretization, including end points.

	rho (float) – mean density.

	vr (float) – mean radial velocity.

	vt (float) – mean tangential velocity.

	vz (float) – mean axial velocity.

	p (float) – mean pressure.

	gam (float) – ratio of specific heats.

	filter (string, optional) – Optional filter for eigenmodes. values = [‘None’, ‘acoustic’]

	alpha (float, optional) – Criteria governing filtering acoustic modes.

	equation (string, optional) – Select from of governing equation for the decomposition.
values = [‘general’, ‘radial equilibrium’]

	perturb_omega (bool) – If true, small imaginary part is added to the temporal
frequency. Can help in determining direction of propagation.

	Returns

	a tuple containing an array of eigenvalues, an array of left
eigenvectors evaluated at radial locations, an array of right
eigenvectors evaluated at radial locations.

	Return type

	(eigenvalues, left_eigenvectors, right_eigenvectors)

Note

The eigenvectors being returned include each field
\([\rho,v_r,v_t,v_z,p]\). The primitive variables can be extracted
into their own eigenvectors by copying out those entries from the
returned eigenvectors as:

res = len(r)
rho_eigenvectors = eigenvectors[0*res:1*res,:]
vr_eigenvectors = eigenvectors[1*res:2*res,:]
vt_eigenvectors = eigenvectors[2*res:3*res,:]
vz_eigenvectors = eigenvectors[3*res:4*res,:]
p_eigenvectors = eigenvectors[4*res:5*res,:]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/nwukie/noisyduck/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Noisy Duck could always use more documentation, whether as part of the
official Noisy Duck docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/nwukie/noisyduck/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up noisyduck for local development.

	Fork the noisyduck repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/noisyduck.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv noisyduck
$ cd noisyduck/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 noisyduck tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/nwukie/noisyduck/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_noisyduck

Credits

Development Lead

	Nathan Wukie <nathan.wukie@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-02-02)

	First release on PyPI.

0.1.5 (2018-03-12)

	New governing equations

	Tests for uniform axial mean flow

	New API + documentation

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 noisyduck	

 	
 	
 noisyduck.annulus.analytical	

 	
 	
 noisyduck.annulus.numerical	

Index

 C
 | D
 | E
 | N

C

 	
 	compute_eigenvalues() (in module noisyduck.annulus.analytical)

 	compute_eigenvector() (in module noisyduck.annulus.analytical)

 	
 	compute_zeros() (in module noisyduck.annulus.analytical)

 	construct_numerical_eigensystem_general() (in module noisyduck.annulus.numerical)

 	construct_numerical_eigensystem_radial_equilibrium() (in module noisyduck.annulus.numerical)

D

 	
 	decomposition() (in module noisyduck.annulus.analytical)

 	(in module noisyduck.annulus.numerical)

E

 	
 	eigensystem() (in module noisyduck.annulus.analytical)

N

 	
 	noisyduck.annulus.analytical (module)

 	
 	noisyduck.annulus.numerical (module)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Noisy Duck

_static/up-pressed.png

_static/up.png

