
nodev tutorial Documentation
Release 0.2.0

Alessandro Amici

2016-07-22

Table of Contents

1 Test-driven code search concepts 3
1.1 Motivation . 3
1.2 Test-driven code search . 3
1.3 Test-driven code reuse . 3
1.4 Unit tests validation . 4
1.5 Feature specification tests . 4
1.6 Bibliography . 4

2 Quickstart 5
2.1 New user FAQ . 5
2.2 Install nodev-starter-kit . 5
2.3 Install docker-engine and docker . 5
2.4 Create the nodev image . 6
2.5 Execute a search . 6
2.6 Project resources . 6
2.7 Contributing . 7
2.8 License . 7

3 Specification Tests 9
3.1 Why do we love unit tests? . 9
3.2 Why do we hate unit tests? . 9
3.3 Feature vs. implementation . 9
3.4 How to test for a feature without knowing the implementation? . 9
3.5 Examples . 9

i

ii

nodev tutorial Documentation, Release 0.2.0

Version 0.2.0

Date 2016-07-22

Warning: This documentation is work in progress and there will be areas that are lacking.

Table of Contents 1

nodev tutorial Documentation, Release 0.2.0

2 Table of Contents

CHAPTER 1

Test-driven code search concepts

1.1 Motivation

“Have a look at this piece of code that I’m writing–I’m sure it has been written before. I wouldn’t be
surprised to find it verbatim somewhere on GitHub.” - @kr1

Every piece of functionality in a software project requires code that lies somewhere in the wide reusability spectrum
that goes form extremely custom and strongly tied to the specific implementation to completely generic and highly
reusable.

On the custom side of the spectrum there is all the code that defines the features of the software and all the choices of
its implementation. That one is code that need to be written.

On the other hand seasoned software developers are trained to spot pieces of functionality that lie far enough on the
generic side of the range that with high probability are already implemented in a librariy or a framework and that are
documented well enough to be discovered with a keyword-based search, e.g. on StackOverflow and Google.

In between the two extremes there is a huge gray area populated by pieces of functionality that are not generic enough
to obviously deserve a place in a library, but are common enough that must have been already implemented by someone
else for their software. This kind of code is doomed to be re-implemented again and again for the simple reason that
there is no way to search code by functionality...

Or is it?

1.2 Test-driven code search

To address the limits of keyword-based search test-driven code search focuses on code behaviour and semantics
instead.

The search query is a test function that is executed once for every candidate class or function available to the search
engine and the search result is the list of candidates that pass the test.

Due to its nature the approach is better suited for discovering smaller functions with a generic signature.

pytest-nodev is a pytest plugin that enables test-driven code search for Python.

1.3 Test-driven code reuse

Test-driven reuse (TDR) is an extension of the well known test-driven development (TDD) development practice.

3

https://github.com/kr1

nodev tutorial Documentation, Release 0.2.0

Developing a new feature in TDR starts with the developer writing the tests that will validate the correct implementa-
tion of the desired functionality.

Before writing any functional code the tests are run against all functions and classes of all available projects.

Any code passing the tests is presented to the developer as a candidate implementation for the target feature:

• if nothing passes the tests the developer need to implement the feature and TDR reduces to TDD

• if any code passes the tests the developer can:

– import: accept code as a dependency and use the class / function directly

– fork: copy the code and the related tests into their project

– study: use the code and the related tests as guidelines for their implementation, in particular identifyng
corner cases and optimizations

1.4 Unit tests validation

An independent use case for test-driven code search is unit tests validation. If a test passes with an unexpected object
there are two possibilities, either the test is not strict enough and allows for false positives and needs to be updated, or
the PASSED is actually a function you could use instead of your implementation.

1.5 Feature specification tests

Similarly to keyword-based search also in test-driven code search the quality of the search results depends strongly
from the ability to build a strong search query, in particular from the way our feature specification tests are written.

Writing effective feature specification tests is an art.

1.6 Bibliography

• “CodeGenie: a tool for test-driven source code search”, O.A. Lazzarini Lemos et al, Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and applications companion, 917–918,
2007, ACM, http://dx.doi.org/10.1145/1297846.1297944

• “Code conjurer: Pulling reusable software out of thin air”, O. Hummel et al, IEEE Software, (25) 5 45-52, 2008,
IEEE, http://dx.doi.org/10.1109/MS.2008.110 — PDF

• “Finding Source Code on the Web for Remix and Reuse”, S.E. Sim et al, 251, 2013 — PDF

• “Test-Driven Reuse: Improving the Selection of Semantically Relevant Code”, M. Nurolahzade, Ph.D. thesis,
2014, UNIVERSITY OF CALGARY — PDF

4 Chapter 1. Test-driven code search concepts

http://dx.doi.org/10.1145/1297846.1297944
http://dx.doi.org/10.1109/MS.2008.110
http://cosc612.googlecode.com/svn/Research%20Paper/Code%20Conjurer.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.2645&rep=rep1&type=pdf
http://lsmr.org/docs/nurolahzade_phd_2014.pdf

CHAPTER 2

Quickstart

2.1 New user FAQ

nodev-starter-kit lets you perform test-driven code search queries with pytest-nodev safely and efficiently using docker.

Why do I need special care to run pytest-nodev?

Searching code with pytest-nodev looks very much like running arbitrary callables with random arguments. A lot of
functions called with the wrong set of arguments may have unexpected consequences ranging from slightly annoying,
think os.mkdir(’false’), to utterly catastrophic, think shutil.rmtree(’/’, True). Serious use of
pytest-nodev, in particular using --candidates-from-all, require running the tests with operating-system level
isolation, e.g. as a dedicated user or even better inside a dedicated container.

But isn’t it docker overkill? Can’t I just use a dedicated user to run pytest-nodev?

We tried hard to find a simpler setup, but once all the nitty-gritty details are factored in we choose docker as the best
trade-off between safety, reproducibility and easiness of use.

2.2 Install nodev-starter-kit

To install nodev-starter-kit clone the official repo:

$ git clone https://github.com/nodev-io/nodev-starter-kit.git
$ cd nodev-starter-kit

Advanced GitHub users are suggested to fork the offical repo and clone their fork.

2.3 Install docker-engine and docker

In order to run pytest-nodev you need to access a docker-engine server via the docker client, if you don’t have Docker
already setup you need to follow the official installation instructions for your platform:

• Docker for Linux

• Docker for MacOS

• Docker for Windows

Only on Ubuntu 16.04 you can use the script we provide:

5

https://pypi.python.org/pypi/pytest-nodev
https://docker.com
https://github.com/nodev-io/nodev-startet-kit
https://help.github.com/articles/fork-a-repo/
https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/

nodev tutorial Documentation, Release 0.2.0

$ bash ./docker-engine-setup.sh

And test your setup with:

$ docker info

Refer to the official Docker documentation for trouble-shooting and additional configurations.

2.4 Create the nodev image

The nodev docker image will be your search engine, it needs to be created once and updated every time you want to
change the packages installed in the search engine environment.

With an editor fill the requirements.txt file with the packages to be installed in the search engine.

Build the docker image with:

$ docker build -t nodev .

2.5 Execute a search

Run the search engine container on a local docker-engine server, e.g. with:

$ docker run --rm -it -v `pwd`:/src nodev --candidates-from-stdlib tests/test_parse_bool.py

Or alternatively after having set the DOCKER_HOST environment variable, e.g. with:

$ export DOCKER_HOST='tcp://127.0.0.1:4243' # change '127.0.0.1:4243' with the IP address and port
of your docker-engine host

you can run the search engine container on a remote docker-engine server, e.g. with:

$ python docker-nodev.py --candidates-from-stdlib tests/test_parse_bool.py
======================= test session starts ==========================
platform darwin -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /tmp, inifile: setup.cfg
plugins: nodev-1.0.0, timeout-1.0.0
collected 4000 items

test_parse_bool.py xxxxxxxxxxxx[...]xxxxxxxxXxxxxxxxx[...]xxxxxxxxxxxx

====================== pytest_nodev: 1 passed ========================

test_parse_bool.py::test_parse_bool[distutils.util:strtobool] PASSED

=== 3999 xfailed, 1 xpassed, 260 pytest-warnings in 75.38 seconds ====

2.6 Project resources

Documentation http://nodev-starter-kit.readthedocs.io
Support https://stackoverflow.com/search?q=pytest-nodev
Development https://github.com/nodev-io/nodev-starter-kit

6 Chapter 2. Quickstart

http://nodev-starter-kit.readthedocs.io
https://stackoverflow.com/search?q=pytest-nodev
https://github.com/nodev-io/nodev-starter-kit

nodev tutorial Documentation, Release 0.2.0

2.7 Contributing

Contributions are very welcome. Please see the CONTRIBUTING document for the best way to help. If you encounter
any problems, please file an issue along with a detailed description.

Authors:

• Alessandro Amici - @alexamici

Sponsors:

•

2.8 License

nodev-starter-kit is free and open source software distributed under the terms of the MIT license.

2.7. Contributing 7

https://github.com/nodev-io/nodev-starter-kit/blob/master/CONTRIBUTING.rst
https://github.com/alexamici
http://opensource.org/licenses/MIT

nodev tutorial Documentation, Release 0.2.0

8 Chapter 2. Quickstart

CHAPTER 3

Specification Tests

“If it’s not tested, it’s broken.” - Bruce Eckel.

Testing assure you that the code works... at least in one very specific case.

3.1 Why do we love unit tests?

We love unit tests because they...

• help writing better code in the first place

• make refactoring possible

• keep internal API tidy

• help design and document the intended behaviour of the code

3.2 Why do we hate unit tests?

We hate unit tests because they...

• need as much work as code

• need to be refactored during a refactoring

• break when you change trivial implementation details

• risk keeping the focus on the process, not on the product

3.3 Feature vs. implementation

3.4 How to test for a feature without knowing the implementation?

3.5 Examples

Another example, find a function that decomposes a URL into individual rfc3986 components:

9

nodev tutorial Documentation, Release 0.2.0

$ py.test examples/test_rfc3986_parse.py --candidates-from-modules urllib.parse
[...]
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib.parse:urlparse] HIT
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib.parse:urlsplit] HIT
[...]

the two functions urlparse and urlsplit pass the basic rfc3986 parsing test, but do not pass the more complex
test_rfc3986_parse_full test.

More advanced functions are available on PyPI:

$ pip install urllib3
$ py.test examples/test_rfc3986_parse.py --candidates-from-modules urllib3
[...]
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib3.util.url:parse_url] HIT
examples/test_rfc3986_parse.py::test_rfc3986_parse_full[urllib3.util.url:parse_url] HIT
[...]

now the function parse_url in the module urllib3.util.url passes both tests.

10 Chapter 3. Specification Tests

	Test-driven code search concepts
	Motivation
	Test-driven code search
	Test-driven code reuse
	Unit tests validation
	Feature specification tests
	Bibliography

	Quickstart
	New user FAQ
	Install nodev-starter-kit
	Install docker-engine and docker
	Create the nodev image
	Execute a search
	Project resources
	Contributing
	License

	Specification Tests
	Why do we love unit tests?
	Why do we hate unit tests?
	Feature vs. implementation
	How to test for a feature without knowing the implementation?
	Examples

