

 Navigation

 	
 index

 	nodes alpha documentation

nodes

An easy-to-use graph-oriented object model for Python.

Overview

Graph-oriented programming, a functional reactive model in which
changes to function inputs trigger the need for reevaluation
of those functions, is generally a feature reserved for
languages with strong functional programming support, particular
those that perform strong type checking and that can enforce
function purity at compile time.

This is too bad. A graph-oriented programming model, in addition
to providing a useful model for the relationships between objects
in your system, can be an extremely productivity-enhancing
tool, freeing the developer from a lot of the coding that
would typically be needed to perform such things as memoization,
lazy evaluation, dependency tracking, subscriptions and callbacks,
temporary changes, report building, and so forth.

It doesn’t have to be this way.

A programmer can still leverage a graph-oriented model
in a less strictly typed language as long as she adheres to the
semantics required by such a model (mainly that on-graph
functions must be pure and side-effect free).

The goal of nodes is to bridge this gap by providing Python
developers with a simple, elegant way to put their classes
on a graph.

Features

	Ease of use.

	Dependency tracking and invalidation for on-graph nodes.

	Lazy evaluation.

	Memoization.

	Change delegation.

	Contextual evaluation. (What-if scenario building.)

Current Limitations

	Runtime overhead. The current version focuses on the developer interface, and
is not tuned for high performance. So there is overhead
associated with each on-graph method that will impact
programs that require high performance.

	Single threaded. The graph is single threaded, and use within
a multiple threaded environment is not yet supported.

	No object persistence. The graph must be constructed in memory
each time a program is launched; there is no object persistence
layer yet. This is a feature under development, namely, an
object-oriented database of Python objects allowing one to
save and read back on-graph objects.

	Dynamic graph construction. There are two approaches I could
have taken to building the graph. One involves using
a AST to determine the full structure of the graph upfront.
The other involves dynamically discovering the graph as
graph methods are called.

At present I use the dynamic route, which means that
graph edges are added and updated as on-graph functions
are called. I plan to abstract the way the graph is
discovered into a separate class and allow a user to perform
static graph discovery vs dynamic, if desired.

(One benefit to static discovery is that it makes it
possible to query the graph about its relationships without
having to had evaluated its functions, and even in that case,
in a dynamic graph that has been evaluated with some set
of inputs, one still doesn’t necessarily get a full picture
of the graph, but instead sees the relationships as of a
state in time - thatis, how the graph was used before
the time at which you asked it for its structure.)

Using nodes: Requirements

Putting an object on the graph is easy, as this example
illustrates. There are three things a developer must do.

Two of these are technical:

	His class must be a subclass of GraphObject.

	On-graph methods in this class must be decorated with
@graphMethod.

The third is has to do with the semantics of the methods
he has decorated with @graphMethod. All
graph methods must be pure and side-effect free (with
some exceptions that we need not delve into here).

A function is pure if given the same inputs it returns
the same output:

def cubed(self, x):
 return x * x * x

is a pure function, whereas:

file.readline

is not.

A function has side-effects if it modifies global state
in any way. cubed is side-effect free, but file.readline is not,
as it would update state indicating where in the file
its next read should occur.

Purity and lack of side-effects often go hand-in-hand, and
vice-versa.

Why is purity so important? Because without purity we cannot
know when a function’s value needs to be recomputed; if that
value is determined by factors other than the inputs to
the function then we lose control over when a function needs
to be invalidated. And a huge benefit of the graph is
its support for automatic node invalidation,
node memoization, and lazy evaluation of node functions.

(The documentation will contain more detail on the model
used and the patterns one can leverage to perform common
operations in a graph-consistent manner. I don’t want to
get too Haskell-y on you because this is a Python module,
not a Haskell library.)

So you may be thinking, jeez, this all sounds quite
mathy and it sounds as if it’ll be a pain to write
proper on-graph methods.

That’s a fair initial reaction. But the reality is
that developing with nodes is not that diffcult, and if you
follow its practices you end up with cleaner code
and maybe even a new way of thinking about problems.

Using nodes: An Example

The following example illustrates how you might use nodes
to put a simple example class on the graph. It doesn’t
cover all of nodes’ features but will give you an idea
of its flavor.

The comments below indicate the status of each graph
method after a given calculation. At this point
I’m going to switch to using the term “node” instead of
method, as in reality a method may map to multiple nodes
(for example, in the case where the method has arguments
in addition to self).

	invalid: The node is not set and the method body will run when its
value is next requested.

	calced: The node is valid and its value was calculated by
running the function body and memoizing the result. As long as
the node remains valid its memoized output will be returned with
no recomputation required.

	set: The node was set to a specific value by the user. This
setting is non-contextual (global) to the graph.

	overlaid: The node was overlaid to a specific value by the user
within a GraphContext. The overlay is active only within the
context, and upon exiting the context the node’s state is
reverted to its prior value. (This is not strictly true; if
global dependencies changed that were hidden by the context the
node might have been invalidated outside the context and thus
require computation the next time it’s valid is requested.)

That said, here is the code:

class Example(nodes.GraphObject):

 @nodes.graphMethod
 def X(self):
 return 'X:%s:%s' % (self.Y(), self.Z())

 @nodes.graphMethod(nodes.Settable)
 def Y(self):
 return 'Y'

 @nodes.graphMethod(nodes.Settable)
 def Z(self):
 return 'Z'

def main():
 example = Example()

 # example.X <invalid>
 # example.Y <invalid>
 # example.Z <invalid>

 example.X()

 # example.X == 'X:Y:Z' <calced>
 # example.Y == 'Y' <calced>
 # example.Z == 'Z' <calced>

 example.Y = 'y'

 # example.X <invalid>
 # example.Y == 'y' <set>
 # example.Z == 'Z' <calced>

 example.X()

 # example.X == 'X:y:Z' <calced>
 # example.Y == 'y' <set>
 # example.Z == 'Z' <calced>

 example.Y.clearValue()

 # example.X <invalid>
 # example.Y <invalid> (maybe)
 # example.Z == 'Z' <calced>

 example.X()

 # example.X == 'X:Y:Z' <calced>
 # example.Y == 'Y' <calced>
 # example.Z == 'Z' <calced>

 with nodes.GraphContext():
 example.Y.overlayValue('y')

 # example.X <invalid>
 # example.Y == 'Y' <overlaid>
 # example.Z == 'z' <calced>

 example.X()

 # example.X == 'X:Y:z' <calced>
 # example.Y == 'Y' <overlaid>
 # example.Z == 'z' <calced>

 # example.X <invalid> (maybe)
 # example.Y == 'Y' <invalid> (maybe)
 # example.Z == 'Z' <calced>

 with nodes.GraphContext() as savedContext:
 example.Y.overlayValue('y')

 # example.X <invalid>
 # example.Y == 'y' <overlaid>
 # example.Z == 'Z' <calced>

 # example.X <invalid (maybe)>
 # example.Y <invalid (maybe)>
 # example.Z == 'Z' <calced>

 example.X()

 # example.X == 'X:Y:Z' <calced>
 # example.Y == 'Y' <calced>
 # example.Z == 'Z' <calced>

 with savedContext:

 # example.X <invalid>
 # example.Y == 'y' <overlaid>
 # example.Z == 'Z' <calced>

 example.X()

 # example.X == 'X:y:Z' <calced>
 # example.Y == 'y' <overlaid>
 # example.Z == 'Z' <calced>

 with nodes.GraphContext():
 example.Z.overlayValue('z')

 # example.X <invalid>
 # example.Y == 'y' <overlaid>
 # example.Z == 'z' <overlaid>

 example.X()

 # example.X == 'X:y:z' <calced>
 # example.Y == 'y' <overlaid>
 # example.Z == 'z' <overlaid>

 # example.X <invalid>
 # example.Y == 'y' <overlaid>
 # example.Z == 'Z' <invalid (maybe)>

 Copyright 2013, Adam M. Donahue.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	nodes alpha documentation

Index

 Copyright 2013, Adam M. Donahue.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		nodes alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Adam M. Donahue.
 Created using Sphinx 1.3.1.

_index.html

 Navigation

 		
 index

 		nodes alpha documentation »

nodes: An easy-to-use graph-oriented object model for Python.

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2013, Adam M. Donahue.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/comment.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/comment-bright.png

_static/up.png

