

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

node-argon2

[image: Greenkeeper badge] [https://greenkeeper.io/]
![NPM package][npm-image] [https://www.npmjs.com/package/argon2] ![Coverage status][coverage-image] [https://coveralls.io/github/ranisalt/node-argon2] ![Code Quality][codequality-image] [https://www.codacy.com/app/ranisalt/node-argon2] ![Dependencies][david-dm-image] [https://david-dm.org/ranisalt/node-argon2]

	Linux: ![Linux build status][travis-image] [https://travis-ci.org/ranisalt/node-argon2]

	Windows: ![Windows build status][appveyor-image] [https://ci.appveyor.com/project/ranisalt/node-argon2]

Bindings to the reference Argon2 [https://github.com/P-H-C/phc-winner-argon2]
implementation.

Want to use it on command line? Instead check
node-argon2-cli [https://github.com/ranisalt/node-argon2-cli].

Usage

It’s possible to hash a password using both Argon2i (default) Argon2d and Argon2id, sync
and async, and to verify if a password matches a hash.

To hash a password:

const argon2 = require('argon2');

argon2.hash('password').then(hash => {
 // ...
}).catch(err => {
 // ...
});

// ES7 or TypeScript

try {
 const hash = await argon2.hash("password");
} catch (err) {
 //...
}

You can choose between Argon2i, Argon2d and Argon2id by passing an object as the third
argument with the type key set to which type you want to use:

argon2.hash('password', {
 type: argon2.argon2d
}).then(hash => {
 // ...
}).catch(err => {
 // internal failure
});

// ES7 or TypeScript

try {
 const hash = await argon2.hash('password', {
 type: argon2.argon2d
 });
} catch (err) {
 // internal failure
}

The type option is flexible and accepts 0, 1 or 2 for Argon2d, Argon2i and Argon2id respectively.

You can also get the hash as a raw Node Buffer by passing ‘true’ to the ‘raw’ option:

argon2.hash('password', {
 raw: true
}).then(hash => {
 // ... hash is a Buffer
}).catch(err => {
 // internal failure
});

// ES7 or TypeScript

try {
 const hash = await argon2.hash('password', {
 raw: true
 });
} catch (err) {
 // internal failure
}

You can change the Promise with
any-promise [https://www.npmjs.com/package/any-promise]. Try using Bluebird or
Q for enhanced functionality.

You can also modify time, memory and parallelism constraints passing the object
as the third parameter, with keys timeCost, memoryCost and parallelism,
respectively defaulted to 3, 4096 (KiB) and 1 (threads):

const options = {
 timeCost: 4, memoryCost: 2 ** 13, parallelism: 2, type: argon2.argon2d
};

argon2.hash('password', options).then(hash => {
 // ...
});

// ES7 or TypeScript

const hash = await argon2.hash("password", options);

The default parameters for Argon2 can be accessed with defaults:

console.log(argon2.defaults);
// => { timeCost: 3, memoryCost: 4096, parallelism: 1, type: argon2.argon2i }

To verify a password:

argon2.verify('<big long hash>', 'password').then(match => {
 if (match) {
 // password match
 } else {
 // password did not match
 }
}).catch(err => {
 // internal failure
});

// ES7 or TypeScript

try {
 if (await argon2.verify("<big long hash>", "password")) {
 // password match
 } else {
 // password did not match
 }
} catch (err) {
 // internal failure
}

First parameter must have been generated by an Argon2 encoded hashing method,
not raw.

When you hit an internal failure, the message is properly set. If it is not or
you do not understand it, feel free to open an issue.

TypeScript Usage

A TypeScript type declaration file is published with this module. If you are
using TypeScript >= 2.0.0 that means you do not need to install any additional
typings in order to get access to the strongly typed interface. Simply use the
library as mentioned above. This library uses Promises, so make sure you are
targeting ES6+, including the es2015.promise lib in your build, or globally
importing a Promise typings library.

Some example tsconfig.json compiler options:

{
 "compilerOptions": {
 "lib": ["es2015.promise"]
 }
}

or

{
 "compilerOptions": {
 "target": "es6"
 }
}

import * as argon2 from "argon2";

const hash = await argon2.hash(..);

Differences from node-argon2-ffi [https://github.com/cjlarose/argon2-ffi]

This library is implemented natively, meaning it is an extension to the node
engine. Thus, half of the code are C++ bindings, the other half are Javascript
functions. node-argon2-ffi uses ffi, a mechanism to call functions from one
language in another, and handles the type bindings (e.g. JS Number -> C++ int).

The interface of both are very similar, notably node-argon2-ffi splits the
argon2i and argon2d function set, but this module also has the argon2id option. Also, while
node-argon2-ffi suggests you promisify `crypto.randomBytes, this library does that internally.

Performance-wise, the libraries are equal. You can run the same benchmark suite
if you are curious, but both can perform around 130 hashes/second on an Intel
Core i5-4460 @ 3.2GHz with default options.

Before installing

You MUST have a node-gyp global install before proceeding with install,
along with GCC >= 4.8 / Clang >= 3.3. On Windows, you must compile under Visual
Studio 2015 or newer.

node-argon2 works only and is tested against Node >=4.0.0.

OSX

To install GCC >= 4.8 on OSX, use homebrew [http://brew.sh/]:

$ brew install gcc

Once you’ve got GCC installed and ready to run, you then need to install
node-gyp, you must do this globally:

$ npm install -g node-gyp

Finally, once node-gyp is installed and ready to go, you can install this
library, specifying the GCC or Clang binary to use:

$ CXX=g++-6 npm install argon2

NOTE: If your GCC or Clang binary is named something different than g++-6,
you’ll need to specify that in the command.

License

Work licensed under the MIT License. Please check
[P-H-C/phc-winner-argon2] (https://github.com/P-H-C/phc-winner-argon2) for
license over Argon2 and the reference implementation.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at ranisalt+github@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 Welcome to the issues section if it’s your first time!

Before creating an issue, please be sure to:

	[] Checkout to the latest version, including submodules

	[] Try to find an isolated way to reproduce the behavior

	[] Fill in all the blanks in the most specific way you can

Steps to reproduce

	

	

	

Expected behaviour

Tell us what should happen

Actual behaviour

Tell us what happens instead

Environment

Operating system:

Node version:

Compiler version:

20171227

	Added ABI version number

	AVX2/AVX-512F optimizations of BLAMKA

	Set Argon2 version number from the command line

	New bindings

	Minor bug and warning fixes (no security issue)

20161029

	Argon2id added

	Better documentation

	Dual licensing CC0 / Apache 2.0

	Minor bug fixes (no security issue)

20160406

	Version 1.3 of Argon2

	Version number in encoded hash

	Refactored low-level API

	Visibility control for library symbols

	Microsoft Visual Studio solution

	New bindings

	Minor bug and warning fixes (no security issue)

20151206

	Python bindings

	Password read from stdin, instead of being an argument

	Compatibility FreeBSD, NetBSD, OpenBSD

	Constant-time verification

	Minor bug and warning fixes (no security issue)

Argon2

[image: Build Status] [https://travis-ci.org/P-H-C/phc-winner-argon2]
[image: Build status] [https://ci.appveyor.com/project/P-H-C/phc-winner-argon2]
[image: codecov.io] [https://codecov.io/github/P-H-C/phc-winner-argon2?branch=master]

This is the reference C implementation of Argon2, the password-hashing
function that won the Password Hashing Competition
(PHC) [https://password-hashing.net].

Argon2 is a password-hashing function that summarizes the state of the
art in the design of memory-hard functions and can be used to hash
passwords for credential storage, key derivation, or other applications.

It has a simple design aimed at the highest memory filling rate and
effective use of multiple computing units, while still providing defense
against tradeoff attacks (by exploiting the cache and memory organization
of the recent processors).

Argon2 has three variants: Argon2i, Argon2d, and Argon2id. Argon2d is faster
and uses data-depending memory access, which makes it highly resistant
against GPU cracking attacks and suitable for applications with no threats
from side-channel timing attacks (eg. cryptocurrencies). Argon2i instead
uses data-independent memory access, which is preferred for password
hashing and password-based key derivation, but it is slower as it makes
more passes over the memory to protect from tradeoff attacks. Argon2id is a
hybrid of Argon2i and Argon2d, using a combination of data-depending and
data-independent memory accesses, which gives some of Argon2i’s resistance to
side-channel cache timing attacks and much of Argon2d’s resistance to GPU
cracking attacks.

Argon2i, Argon2d, and Argon2id are parametrized by:

	A time cost, which defines the amount of computation realized and
therefore the execution time, given in number of iterations

	A memory cost, which defines the memory usage, given in kibibytes

	A parallelism degree, which defines the number of parallel threads

The Argon2 document gives detailed specs and design
rationale.

Please report bugs as issues on this repository.

Usage

make builds the executable argon2, the static library libargon2.a,
and the shared library libargon2.so (or libargon2.dylib on OSX).
Make sure to run make test to verify that your build produces valid
results. make install PREFIX=/usr installs it to your system.

Command-line utility

argon2 is a command-line utility to test specific Argon2 instances
on your system. To show usage instructions, run
./argon2 -h as

Usage: ./argon2 [-h] salt [-i|-d|-id] [-t iterations] [-m memory] [-p parallelism] [-l hash length] [-e|-r] [-v (10|13)]
 Password is read from stdin
Parameters:
 salt The salt to use, at least 8 characters
 -i Use Argon2i (this is the default)
 -d Use Argon2d instead of Argon2i
 -id Use Argon2id instead of Argon2i
 -t N Sets the number of iterations to N (default = 3)
 -m N Sets the memory usage of 2^N KiB (default 12)
 -p N Sets parallelism to N threads (default 1)
 -l N Sets hash output length to N bytes (default 32)
 -e Output only encoded hash
 -r Output only the raw bytes of the hash
 -v (10|13) Argon2 version (defaults to the most recent version, currently 13)
 -h Print argon2 usage

For example, to hash “password” using “somesalt” as a salt and doing 2
iterations, consuming 64 MiB, using four parallel threads and an output hash
of 24 bytes

$ echo -n "password" | ./argon2 somesalt -t 2 -m 16 -p 4 -l 24
Type: Argon2i
Iterations: 2
Memory: 65536 KiB
Parallelism: 4
Hash: 45d7ac72e76f242b20b77b9bf9bf9d5915894e669a24e6c6
Encoded: $argon2i$v=19$m=65536,t=2,p=4$c29tZXNhbHQ$RdescudvJCsgt3ub+b+dWRWJTmaaJObG
0.188 seconds
Verification ok

Library

libargon2 provides an API to both low-level and high-level functions
for using Argon2.

The example program below hashes the string “password” with Argon2i
using the high-level API and then using the low-level API. While the
high-level API takes the three cost parameters (time, memory, and
parallelism), the password input buffer, the salt input buffer, and the
output buffers, the low-level API takes in these and additional parameters
, as defined in include/argon2.h.

There are many additional parameters, but we will highlight three of them here.

	The secret parameter, which is used for keyed hashing [https://en.wikipedia.org/wiki/Hash-based_message_authentication_code].
This allows a secret key to be input at hashing time (from some external
location) and be folded into the value of the hash. This means that even if
your salts and hashes are compromized, an attacker cannot brute-force to find
the password without the key.

	The ad parameter, which is used to fold any additional data into the hash
value. Functionally, this behaves almost exactly like the secret or salt
parameters; the ad parameter is folding into the value of the hash.
However, this parameter is used for different data. The salt should be a
random string stored alongside your password. The secret should be a random
key only usable at hashing time. The ad is for any other data.

	The flags parameter, which determines which memory should be securely
erased. This is useful if you want to securly delete the pwd or secret
fields right after they are used. To do this set flags to either
ARGON2_FLAG_CLEAR_PASSWORD or ARGON2_FLAG_CLEAR_SECRET. To change how
internal memory is cleared, change the global flag
FLAG_clear_internal_memory (defaults to clearing internal memory).

Here the time cost t_cost is set to 2 iterations, the
memory cost m_cost is set to 216 kibibytes (64 mebibytes),
and parallelism is set to 1 (single-thread).

Compile for example as gcc test.c libargon2.a -Isrc -o test, if the program
below is named test.c and placed in the project’s root directory.

#include "argon2.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define HASHLEN 32
#define SALTLEN 16
#define PWD "password"

int main(void)
{
 uint8_t hash1[HASHLEN];
 uint8_t hash2[HASHLEN];

 uint8_t salt[SALTLEN];
 memset(salt, 0x00, SALTLEN);

 uint8_t *pwd = (uint8_t *)strdup(PWD);
 uint32_t pwdlen = strlen((char *)pwd);

 uint32_t t_cost = 2; // 1-pass computation
 uint32_t m_cost = (1<<16); // 64 mebibytes memory usage
 uint32_t parallelism = 1; // number of threads and lanes

 // high-level API
 argon2i_hash_raw(t_cost, m_cost, parallelism, pwd, pwdlen, salt, SALTLEN, hash1, HASHLEN);

 // low-level API
 argon2_context context = {
 hash2, /* output array, at least HASHLEN in size */
 HASHLEN, /* digest length */
 pwd, /* password array */
 pwdlen, /* password length */
 salt, /* salt array */
 SALTLEN, /* salt length */
 NULL, 0, /* optional secret data */
 NULL, 0, /* optional associated data */
 t_cost, m_cost, parallelism, parallelism,
 ARGON2_VERSION_13, /* algorithm version */
 NULL, NULL, /* custom memory allocation / deallocation functions */
 /* by default only internal memory is cleared (pwd is not wiped) */
 ARGON2_DEFAULT_FLAGS
 };

 int rc = argon2i_ctx(&context);
 if(ARGON2_OK != rc) {
 printf("Error: %s\n", argon2_error_message(rc));
 exit(1);
 }
 free(pwd);

 for(int i=0; i<HASHLEN; ++i) printf("%02x", hash1[i]); printf("\n");
 if (memcmp(hash1, hash2, HASHLEN)) {
 for(int i=0; i<HASHLEN; ++i) {
 printf("%02x", hash2[i]);
 }
 printf("\nfail\n");
 }
 else printf("ok\n");
 return 0;
}

To use Argon2d instead of Argon2i call argon2d_hash instead of
argon2i_hash using the high-level API, and argon2d instead of
argon2i using the low-level API. Similarly for Argon2id, call argond2id_hash
and argon2id.

To produce the crypt-like encoding rather than the raw hash, call
argon2i_hash_encoded for Argon2i, argon2d_hash_encoded for Argon2d, and
argon2id_hash_encoded for Argon2id

See include/argon2.h for API details.

Note: in this example the salt is set to the all-0x00 string for the
sake of simplicity, but in your application you should use a random salt.

Benchmarks

make bench creates the executable bench, which measures the execution
time of various Argon2 instances:

$./bench
Argon2d 1 iterations 1 MiB 1 threads: 5.91 cpb 5.91 Mcycles
Argon2i 1 iterations 1 MiB 1 threads: 4.64 cpb 4.64 Mcycles
0.0041 seconds

Argon2d 1 iterations 1 MiB 2 threads: 2.76 cpb 2.76 Mcycles
Argon2i 1 iterations 1 MiB 2 threads: 2.87 cpb 2.87 Mcycles
0.0038 seconds

Argon2d 1 iterations 1 MiB 4 threads: 3.25 cpb 3.25 Mcycles
Argon2i 1 iterations 1 MiB 4 threads: 3.57 cpb 3.57 Mcycles
0.0048 seconds

(...)

Argon2d 1 iterations 4096 MiB 2 threads: 2.15 cpb 8788.08 Mcycles
Argon2i 1 iterations 4096 MiB 2 threads: 2.15 cpb 8821.59 Mcycles
13.0112 seconds

Argon2d 1 iterations 4096 MiB 4 threads: 1.79 cpb 7343.72 Mcycles
Argon2i 1 iterations 4096 MiB 4 threads: 2.72 cpb 11124.86 Mcycles
19.3974 seconds

(...)

Bindings

Bindings are available for the following languages (make sure to read
their documentation):

	Elixir [https://github.com/riverrun/argon2_elixir] by @riverrun [https://github.com/riverrun]

	Go [https://github.com/tvdburgt/go-argon2] by @tvdburgt [https://github.com/tvdburgt]

	Haskell [https://hackage.haskell.org/package/argon2-1.0.0/docs/Crypto-Argon2.html] by @ocharles [https://github.com/ocharles]

	JavaScript (native) [https://github.com/ranisalt/node-argon2], by @ranisalt [https://github.com/ranisalt]

	JavaScript (native) [https://github.com/jdconley/argon2themax], by @jdconley [https://github.com/jdconley]

	JavaScript (ffi) [https://github.com/cjlarose/argon2-ffi], by @cjlarose [https://github.com/cjlarose]

	JavaScript (browser) [https://github.com/antelle/argon2-browser], by @antelle [https://github.com/antelle]

	JVM [https://github.com/phxql/argon2-jvm] by @phXql [https://github.com/phxql]

	Lua (native) [https://github.com/thibaultCha/lua-argon2] by @thibaultCha [https://github.com/thibaultCha]

	Lua (ffi) [https://github.com/thibaultCha/lua-argon2-ffi] by @thibaultCha [https://github.com/thibaultCha]

	OCaml [https://github.com/Khady/ocaml-argon2] by @Khady [https://github.com/Khady]

	Python (native) [https://pypi.python.org/pypi/argon2], by @flamewow [https://github.com/flamewow]

	Python (ffi) [https://pypi.python.org/pypi/argon2_cffi], by @hynek [https://github.com/hynek]

	Python (ffi, with keyed hashing) [https://github.com/thusoy/porridge], by @thusoy [https://github.com/thusoy]

	R [https://cran.r-project.org/package=argon2] by @wrathematics [https://github.com/wrathematics]

	Ruby [https://github.com/technion/ruby-argon2] by @technion [https://github.com/technion]

	Rust [https://github.com/quininer/argon2-rs] by @quininer [https://github.com/quininer]

	C#/.NET CoreCLR [https://github.com/kmaragon/Konscious.Security.Cryptography] by @kmaragon [https://github.com/kmaragon]

	Perl [https://github.com/Leont/crypt-argon2] by @leont [https://github.com/Leont]

	mruby [https://github.com/Asmod4n/mruby-argon2] by @Asmod4n [https://github.com/Asmod4n]

	Swift [https://github.com/ImKcat/CatCrypto] by @ImKcat [https://github.com/ImKcat]

Test suite

There are two sets of test suites. One is a low level test for the hash
function, the other tests the higher level API. Both of these are built and
executed by running:

make test

Intellectual property

Except for the components listed below, the Argon2 code in this
repository is copyright (c) 2015 Daniel Dinu, Dmitry Khovratovich (main
authors), Jean-Philippe Aumasson and Samuel Neves, and dual licensed under the
CC0 License [https://creativecommons.org/about/cc0] and the
Apache 2.0 License [http://www.apache.org/licenses/LICENSE-2.0]. For more info
see the LICENSE file.

The string encoding routines in src/encoding.c are
copyright (c) 2015 Thomas Pornin, and under
CC0 License [https://creativecommons.org/about/cc0].

The BLAKE2 code in src/blake2/ is copyright (c) Samuel
Neves, 2013-2015, and under
CC0 License [https://creativecommons.org/about/cc0].

All licenses are therefore GPL-compatible.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

