

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	NIPAP 1.0 documentation

Neat IP-Address Planner

The majority of this documentation is generated from the Nipap Python module
where most of the server side logic is placed. A thin XML-RPC layer is wrapped
around the Nipap class to expose its functions over an XML-RPC interface as well
as translating internal Exceptions into XML-RPC errors codes. It is feasible to
implement other wrapper layers should one need a different interface, though
the XML-RPC interface should serve most well.

Given that the documentation is automatically generated from this internal Nipap
class, there is some irrelevant information regarding class structures - just
ignore that! :)

Happy hacking!

Contents:

	Design choices
	Why PostgreSQL?

	Why Python?

	Why Flask (and not Twisted)?

	Why XML-RPC?

	NIPAP API
	VRF

	Prefix

	Pool

	ASN

	The ‘spec’

	Authorization & accounting

	Classes

	pynipap - a Python NIPAP client library
	General usage

	Error handling

	Classes

	NIPAP XML-RPC

	Authentication library
	Authentication and authorization in NIPAP

	Authentication backends

	Authentication options

	Classes

	NIPAP release handling
	Packaging

	Version numbering

	Debian repository

	NEWS / Changelog

	Build prerequisites

	Rolling a new version

	Rolling the deb repo

	Uploading to PyPi

	Manually rolling a new version

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NIPAP 1.0 documentation

Design choices

This document tries to describe the overall design goals and decisions taken in
the development process of NIPAP.

Overall goals:

	Simple to interact with for users and other systems alike, you should _want_
to use it.

	Powerful, allowing the system to do things that are best performed by
computers leaving human users happy.

	Easy to maintain. Tele2 does not have many developers so maintenance needs
to be simple.

Out of these goals, the following set of tools and resources have been chosen
for the overall design.

	Backend storage implemented using PostgreSQL

	Backend / XML-RPC API in Python with the Flask-XML-RPC framework

	CLI client in Python

	Web GUI in Python using the Pyramid framework

Why PostgreSQL?

Postgres has a native datatype called ‘inet’ which is able to store both IPv4
and IPv6 addresses and their prefix-length. The latter (IPv6) usually poses a
problem to database storage as even long integers can only accomodate 64 bits.
Hacks using two columns or some numeric type exist, but often result in
cumbersome or slow solutions. Postgres inet type is indexable and using ip4r
even ternary accesses (such as a longest prefix lookup) is indexable. This
makes it a superior solution compared to most other databases.

PostgreSQL is an open source database under a BSD license, meaning anyone can
use it and modify it. Ingres development was started in the early 1970s and
Postgres (Post Ingres) later evolved into PostgreSQL when the SQL language was
added in 1995 as query language. It is the oldest and the most advanced open
source relational database available today.

Why Python?

Python is a modern interpreted language with an easy to use syntax and plenty
of powerful features. Experienced programmers usually pick up the language
within a few days, less experienced within a slightly larger time. Its clean
syntax makes it easy for people to familiarize themselves with the NIPAP
codebase.

Why Flask (and not Twisted)?

NIPAP was originally implemented with a Twisted powered backend but has since
been rewritten to use Flask.

Twisted is one of the leading concurrency frameworks allowing developers to
focus on their own application instead of labour-intensive work surrounding it.
It is used by companies such as Apple (iCal server) and Spotify (playlist
service) to serve hundreds of thousands of users. Twisted includes modules for
serving data over XML-RPC and/or SOAP as well as a complete toolset for
asynchronous calls.

Unfortunately, using Twisted asynchronous model is rocket science. Code needs
to be built specifically for Twisted. The original implementation never took
advantage of asynchronous calls and deferred objects and during later attempts
of adding it we realised how difficult and cumbersome it is. One really needs
to write code from the beginning up to suit Twisted.

Instead, we turned our eye to Flask, which together with Tornado offers a
pre-forked model. We didn’t need to change a line of code in our backend module
yet we have now achieved a simple form of parallelism. Flask is easy! For
NIPAP, this means we focus on NIPAP code and not XML-RPC and concurrency code.

Why XML-RPC?

From the very start, it was a important design goal that NIPAP remain open for
interoperation with any and all other systems and so it would be centered
around a small and simple API from which everything can be performed. Not
intending to reinvent the wheel, especially given the plethora of already
available APIs, it was up to chosing the “right one”. Twisted, which was
originally used for Twisteds backend, offers built-in support for SOAP
(WebServices) as well as XML-RPC but given design goals such as simple, SOAP
didn’t quite feel right and thus XML-RPC was chosen. It should however be noted
that NIPAPs XML-RPC protocol is a thin wrapper around an inner core and so
exposing a SOAP interface in addition to XML-RPC can be easily achieved.
XML-RPC shares a lot of similarities with SOAP but is very much less complex
and it is possible for a human to read it in a tcpdump or similar while
with SOAP one likely needs some interpreter or the brain of Albert Einstein.
Since the original implementation with Twisted, the backend has been
reimplemented using Flask-XML-RPC which is an extension to Flask. In addition
to XML-RPC, it is also possible to load a JSON-RPC module with Flask to add
another interface.

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NIPAP 1.0 documentation

NIPAP API

This module contains the Nipap class which provides most of the backend
logic in NIPAP apart from that contained within the PostgreSQL database.

NIPAP contains four types of objects: ASNs, VRFs, prefixes and pools.

VRF

A VRF represents a Virtual Routing and Forwarding instance. By default, one
VRF which represents the global routing table (VRF “default”) is defined. This
VRF always has the ID 0.

VRF attributes

	id - ID number of the VRF.

	
	vrf - The VRF RDs administrator and assigned number subfields

	(eg. 65000:123).

	name - A short name, such as ‘VPN Customer A’.

	description - A longer description of what the VRF is used for.

	tags - Tag keywords for simple searching and filtering of VRFs.

	
	avps - Attribute-Value Pairs. This field can be used to add

	various extra attributes that a user wishes to store together with a
VRF.

VRF functions

	list_vrf() - Return a list of VRFs.

	add_vrf() - Create a new VRF.

	edit_vrf() - Edit a VRF.

	remove_vrf() - Remove a VRF.

	search_vrf() - Search VRFs based on a formatted dict.

	smart_search_vrf() - Search VRFs based on a query string.

Prefix

A prefix object defines an IP address prefix. Prefixes can be one of three
different types; reservation, assignment or host.
Reservation; a prefix which is reserved for future use.
Assignment; addresses assigned to a specific purpose.
Host; prefix of max length within an assigment, assigned to an end host.

Prefix attributes

	id - ID number of the prefix.

	prefix - The IP prefix itself.

	prefix_length - Prefix length of the prefix.

	display_prefix - A more user-friendly version of the prefix.

	family - Address family (integer 4 or 6). Set by NIPAP.

	vrf_id - ID of the VRF which the prefix belongs to.

	vrf_rt - RT of the VRF which the prefix belongs to.

	vrf_name - Name of VRF which the prefix belongs to.

	description - A short description of the prefix.

	comment - A longer text describing the prefix and its use.

	node - Name of the node on which the address is configured.

	pool_id - ID of pool, if the prefix belongs to a pool.

	pool_name - Name of pool, if the prefix belongs to a pool.

	type - Prefix type, string ‘reservation’, ‘assignment’ or ‘host’.

	status - Status, string ‘assigned’, ‘reserved’ or ‘quarantine’.

	indent - Depth in prefix tree. Set by NIPAP.

	country - Two letter country code where the prefix resides.

	order_id - Order identifier.

	customer_id - Customer identifier.

	vlan - VLAN identifier, 0-4096.

	tags - Tag keywords for simple searching and filtering of prefixes.

	
	avps - Attribute-Value Pairs. This field can be used to add

	various extra attributes that a user wishes to store together with a
prefix.

	
	expires - Set a date and time for when the prefix assignment

	expires. Multiple formats are supported for specifying time, for
absolute time ISO8601 style dates can be used and None or the text
strings ‘never’ or ‘infinity’ is treated as positive infinity and means
the assignment never expires. It is also possible to specify relative
time and a fuzzy parser is used to interpret strings such as “tomorrow”
or “2 years” into an absolute time.

	
	external_key - A field for use by external systems which needs to

	store references to its own dataset.

	
	authoritative_source - String identifying which system last

	modified the prefix.

	
	alarm_priority - String ‘warning’, ‘low’, ‘medium’, ‘high’ or

	‘critical’.

	
	monitor - A boolean specifying whether the prefix should be

	monitored or not.

	
	display - Only set by the search_prefix() and

	smart_search_prefix() functions, see their documentation for
explanation.

Prefix functions

	list_prefix() - Return a list of prefixes.

	add_prefix() - Add a prefix, more or less automatically.

	edit_prefix() - Edit a prefix.

	remove_prefix() - Remove a prefix.

	search_prefix() - Search prefixes based on a formatted dict.

	smart_search_prefix() - Search prefixes based on a string.

Pool

A pool is used to group together a number of prefixes for the purpose of
assigning new prefixes from that pool. add_prefix() can for
example be asked to return a new prefix from a pool. All prefixes that are
members of the pool will be examined for free space and a new prefix, of the
specified prefix-length, will be returned to the user.

Pool attributes

	id - ID number of the pool.

	name - A short name.

	description - A longer description of the pool.

	default_type - Default prefix type (see prefix types above.

	ipv4_default_prefix_length - Default prefix length of IPv4 prefixes.

	ipv6_default_prefix_length - Default prefix length of IPv6 prefixes.

	tags - Tag keywords for simple searching and filtering of pools.

	
	avps - Attribute-Value Pairs. This field can be used to add

	various extra attributes that a user wishes to store together with a
pool.

Pool functions

	list_pool() - Return a list of pools.

	add_pool() - Add a pool.

	edit_pool() - Edit a pool.

	remove_pool() - Remove a pool.

	search_pool() - Search pools based on a formatted dict.

	smart_search_pool() - Search pools based on a string.

ASN

An ASN object represents an Autonomous System Number (ASN).

ASN attributes

	asn - AS number.

	name - A name of the AS number.

ASN functions

	list_asn() - Return a list of ASNs.

	add_asn() - Add an ASN.

	edit_asn() - Edit an ASN.

	remove_asn() - Remove an ASN.

	search_asn() - Search ASNs based on a formatted dict.

	smart_search_asn() - Search ASNs based on a string.

The ‘spec’

Central to the use of the NIPAP API is the spec – the specifier. It is used
by many functions to in a more dynamic way specify what element(s) you want
to select. Mainly it came to be due to the use of two attributes which can
be thought of as primary keys for an object, such as a pool’s id and
name attribute. They are however implemented so that you can use
more or less any attribute in the spec, to be able to for example get all
prefixes of family 6 with type reservation.

The spec is a dict formatted as:

vrf_spec = {
 'id': 512
}

But can also be elaborated somehwat for certain objects, as:

prefix_spec = {
 'family': 6,
 'type': 'reservation'
}

If multiple keys are given, they will be ANDed together.

Authorization & accounting

With each query an object extending the BaseAuth class should be passed.
This object is used in the Nipap class to perform authorization (not yet
implemented) and accounting. Authentication should be performed at an
earlier stage and is NOT done in the Nipap class.

Each command which alters data stored in NIPAP is logged. There are
currently no API functions for extracting this data, but this will change
in the future.

Classes

	
class nipap.backend.Inet(addr)

	This works around a bug in psycopg2 version somewhere before 2.4. The
__init__ function in the original class is broken and so this is merely
a copy with the bug fixed.

Wrap a string to allow for correct SQL-quoting of inet values.

Note that this adapter does NOT check the passed value to make sure it
really is an inet-compatible address but DOES call adapt() on it to make
sure it is impossible to execute an SQL-injection by passing an evil
value to the initializer.

	
class nipap.backend.Nipap(auto_install_db=False, auto_upgrade_db=False)

	Main NIPAP class.

The main NIPAP class containing all API methods. When creating an
instance, a database connection object is created which is used during
the instance’s lifetime.

	
add_asn(*args, **kwargs)

	Add AS number to NIPAP.

	
	auth [BaseAuth]

	AAA options.

	
	attr [asn_attr]

	ASN attributes.

Returns a dict describing the ASN which was added.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.add_asn() for full
understanding.

	
add_pool(*args, **kwargs)

	Create a pool according to attr.

	
	auth [BaseAuth]

	AAA options.

	
	attr [pool_attr]

	A dict containing the attributes the new pool should have.

Returns a dict describing the pool which was added.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.add_pool() for full
understanding.

	
add_prefix(*args, **kwargs)

	Add a prefix and return its ID.

	
	auth [BaseAuth]

	AAA options.

	
	attr [prefix_attr]

	Prefix attributes.

	
	args [add_prefix_args]

	Arguments explaining how the prefix should be allocated.

Returns a dict describing the prefix which was added.

Prefixes can be added in three ways; manually, from a pool or
from a prefix.

	Manually

	All prefix data, including the prefix itself is specified in the
attr argument. The args argument shall be omitted.

	From a pool

	Most prefixes are expected to be automatically assigned from a pool.
In this case, the prefix key is omitted from the attr argument.
Also the type key can be omitted and the prefix type will then be
set to the pools default prefix type. The find_free_prefix()
function is used to find available prefixes for this allocation
method, see its documentation for a description of how the
args argument should be formatted.

	From a prefix

	A prefix can also be selected from another prefix. Also in this case
the prefix key is omitted from the attr argument. See the
documentation for the find_free_prefix() for a description of how
the args argument is to be formatted.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.add_prefix() for full
understanding.

	
add_vrf(*args, **kwargs)

	Add a new VRF.

	
	auth [BaseAuth]

	AAA options.

	
	attr [vrf_attr]

	The news VRF’s attributes.

Add a VRF based on the values stored in the attr dict.

Returns a dict describing the VRF which was added.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.add_vrf() for full understanding.

	
edit_asn(*args, **kwargs)

	Edit AS number

	
	auth [BaseAuth]

	AAA options.

	
	asn [integer]

	AS number to edit.

	
	attr [asn_attr]

	New AS attributes.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.edit_asn() for full
understanding.

	
edit_pool(*args, **kwargs)

	Update pool given by spec with attributes attr.

	
	auth [BaseAuth]

	AAA options.

	
	spec [pool_spec]

	Specifies what pool to edit.

	
	attr [pool_attr]

	Attributes to update and their new values.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.edit_pool() for full
understanding.

	
edit_prefix(*args, **kwargs)

	Update prefix matching spec with attributes attr.

	
	auth [BaseAuth]

	AAA options.

	
	spec [prefix_spec]

	Specifies the prefix to edit.

	
	attr [prefix_attr]

	Prefix attributes.

Note that there are restrictions on when and how a prefix’s type
can be changed; reservations can be changed to assignments and vice
versa, but only if they contain no child prefixes.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.edit_prefix() for full
understanding.

	
edit_vrf(*args, **kwargs)

	Update VRFs matching spec with attributes attr.

	
	auth [BaseAuth]

	AAA options.

	
	spec [vrf_spec]

	Attibutes specifying what VRF to edit.

	
	attr [vrf_attr]

	Dict specifying fields to be updated and their new values.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.edit_vrf() for full
understanding.

	
find_free_prefix(auth, vrf, args)

	Finds free prefixes in the sources given in args.

	
	auth [BaseAuth]

	AAA options.

	
	vrf [vrf]

	Full VRF-dict specifying in which VRF the prefix should be
unique.

	
	args [find_free_prefix_args]

	Arguments to the find free prefix function.

Returns a list of dicts.

Prefixes can be found in two ways: from a pool of from a prefix.

From a pool
The args argument is set to a dict with key from-pool set to a
pool spec. This is the pool from which the prefix will be assigned.
Also the key family needs to be set to the adress family (integer
4 or 6) of the requested prefix. Optionally, also the key
prefix_length can be added to the attr argument, and will then
override the default prefix length.

Example:

args = {
 'from-pool': { 'name': 'CUSTOMER-' },
 'family': 6,
 'prefix_length': 64
}

	From a prefix

	Instead of specifying a pool, a prefix which will be searched
for new prefixes can be specified. In args, the key
from-prefix is set to the prefix you want to allocate
from and the key prefix_length is set to the wanted prefix
length.

Example:

args = {
 'from-prefix': '192.0.2.0/24'
 'prefix_length': 27
}

The key count can also be set in the args argument to specify
how many prefixes that should be returned. If omitted, the default
value is 1000.

The internal backend function find_free_prefix() is used
internally by the add_prefix() function to find available
prefixes from the given sources. It’s also exposed over XML-RPC,
please see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.find_free_prefix() for full
understanding.

	
list_asn(auth, asn=None)

	List AS numbers matching spec.

	
	auth [BaseAuth]

	AAA options.

	
	spec [asn_spec]

	An automous system number specification. If omitted, all ASNs
are returned.

Returns a list of dicts.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.list_asn() for full
understanding.

	
list_pool(auth, spec=None)

	Return a list of pools.

	
	auth [BaseAuth]

	AAA options.

	
	spec [pool_spec]

	Specifies what pool(s) to list. Of omitted, all will be listed.

Returns a list of dicts.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.list_pool() for full
understanding.

	
list_prefix(auth, spec=None)

	List prefixes matching the spec.

	
	auth [BaseAuth]

	AAA options.

	
	spec [prefix_spec]

	Specifies prefixes to list. If omitted, all will be listed.

Returns a list of dicts.

This is a quite blunt tool for finding prefixes, mostly useful for
fetching data about a single prefix. For more capable alternatives,
see the search_prefix() or smart_search_prefix() functions.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.list_prefix() for full
understanding.

	
list_vrf(auth, spec=None)

	Return a list of VRFs matching spec.

	
	auth [BaseAuth]

	AAA options.

	
	spec [vrf_spec]

	A VRF specification. If omitted, all VRFs are returned.

Returns a list of dicts.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.list_vrf() for full
understanding.

	
remove_asn(*args, **kwargs)

	Remove an AS number.

	
	auth [BaseAuth]

	AAA options.

	
	spec [asn]

	An ASN specification.

Remove ASNs matching the asn argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.remove_asn() for full
understanding.

	
remove_pool(*args, **kwargs)

	Remove a pool.

	
	auth [BaseAuth]

	AAA options.

	
	spec [pool_spec]

	Specifies what pool(s) to remove.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.remove_pool() for full
understanding.

	
remove_prefix(*args, **kwargs)

	Remove prefix matching spec.

	
	auth [BaseAuth]

	AAA options.

	
	spec [prefix_spec]

	Specifies prefixe to remove.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.remove_prefix() for full
understanding.

	
remove_vrf(*args, **kwargs)

	Remove a VRF.

	
	auth [BaseAuth]

	AAA options.

	
	spec [vrf_spec]

	A VRF specification.

Remove VRF matching the spec argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.remove_vrf() for full
understanding.

	
search_asn(auth, query, search_options=None)

	Search ASNs for entries matching ‘query’

	
	auth [BaseAuth]

	AAA options.

	
	query [dict_to_sql]

	How the search should be performed.

	
	search_options [options_dict]

	Search options, see below.

Returns a list of dicts.

The query argument passed to this function is designed to be
able to specify how quite advanced search operations should be
performed in a generic format. It is internally expanded to a SQL
WHERE-clause.

The query is a dict with three elements, where one specifies the
operation to perform and the two other specifies its arguments. The
arguments can themselves be query dicts, to build more complex
queries.

The operator key specifies what operator should be used for the
comparison. Currently the following operators are supported:

	and - Logical AND

	or - Logical OR

	equals - Equality; =

	not_equals - Inequality; !=

	like - SQL LIKE

	regex_match - Regular expression match

	regex_not_match - Regular expression not match

The val1 and val2 keys specifies the values which are subjected
to the comparison. val1 can be either any prefix attribute or an
entire query dict. val2 can be either the value you want to
compare the prefix attribute to, or an entire query dict.

The search options can also be used to limit the number of rows
returned or set an offset for the result.

	The following options are available:

	
	max_result - The maximum number of prefixes to return (default 50).

	offset - Offset the result list this many prefixes (default 0).

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.search_tag() for full
understanding.

	
search_pool(auth, query, search_options=None)

	Search pool list for pools matching query.

	
	auth [BaseAuth]

	AAA options.

	
	query [dict_to_sql]

	How the search should be performed.

	
	search_options [options_dict]

	Search options, see below.

Returns a list of dicts.

The query argument passed to this function is designed to be
able to specify how quite advanced search operations should be
performed in a generic format. It is internally expanded to a SQL
WHERE-clause.

The query is a dict with three elements, where one specifies the
operation to perform and the two other specifies its arguments. The
arguments can themselves be query dicts, to build more complex
queries.

The operator key specifies what operator should be used for the
comparison. Currently the following operators are supported:

	and - Logical AND

	or - Logical OR

	equals - Equality; =

	not_equals - Inequality; !=

	like - SQL LIKE

	regex_match - Regular expression match

	regex_not_match - Regular expression not match

The val1 and val2 keys specifies the values which are subjected
to the comparison. val1 can be either any pool attribute or an
entire query dict. val2 can be either the value you want to
compare the pool attribute to, or an entire query dict.

Example 1 - Find the pool whose name match ‘test’:

query = {
 'operator': 'equals',
 'val1': 'name',
 'val2': 'test'
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM pool WHERE name = 'test'

Example 2 - Find pools whose name or description regex matches ‘test’:

query = {
 'operator': 'or',
 'val1': {
 'operator': 'regex_match',
 'val1': 'name',
 'val2': 'test'
 },
 'val2': {
 'operator': 'regex_match',
 'val1': 'description',
 'val2': 'test'
 }
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM pool WHERE name ~* 'test' OR description ~* 'test'

The search options can also be used to limit the number of rows
returned or set an offset for the result.

	The following options are available:

	
	max_result - The maximum number of pools to return (default 50).

	offset - Offset the result list this many pools (default 0).

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.search_pool() for full
understanding.

	
search_prefix(auth, query, search_options=None)

	Search prefix list for prefixes matching query.

	
	auth [BaseAuth]

	AAA options.

	
	query [dict_to_sql]

	How the search should be performed.

	
	search_options [options_dict]

	Search options, see below.

Returns a list of dicts.

The query argument passed to this function is designed to be
able to express quite advanced search filters. It is internally
expanded to an SQL WHERE-clause.

The query is a dict with three elements, where one specifies the
operation to perform and the two other specifies its arguments. The
arguments can themselves be query dicts, i.e. nested, to build
more complex queries.

The operator key specifies what operator should be used for the
comparison. Currently the following operators are supported:

	and - Logical AND

	or - Logical OR

	equals_any - Equality of any element in array

	equals - Equality; =

	not_equals - Inequality; !=

	less - Less than; <

	less_or_equal - Less than or equal to; <=

	greater - Greater than; >

	greater_or_equal - Greater than or equal to; >=

	like - SQL LIKE

	regex_match - Regular expression match

	regex_not_match - Regular expression not match

	contains - IP prefix contains

	contains_equals - IP prefix contains or is equal to

	contained_within - IP prefix is contained within

	contained_within_equals - IP prefix is contained within or equals

The val1 and val2 keys specifies the values which
are subjected to the comparison. val1 can be either any
prefix attribute or a query dict. val2 can be either the
value you want to compare the prefix attribute to, or a query
dict.

Example 1 - Find the prefixes which contains 192.0.2.0/24:

query = {
 'operator': 'contains',
 'val1': 'prefix',
 'val2': '192.0.2.0/24'
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM prefix WHERE prefix contains '192.0.2.0/24'

Example 2 - Find for all assignments in prefix 192.0.2.0/24:

query = {
 'operator': 'and',
 'val1': {
 'operator': 'equals',
 'val1': 'type',
 'val2': 'assignment'
 },
 'val2': {
 'operator': 'contained_within',
 'val1': 'prefix',
 'val2': '192.0.2.0/24'
 }
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM prefix WHERE (type == 'assignment') AND (prefix contained within '192.0.2.0/24')

If you want to combine more than two expressions together with a
boolean expression you need to nest them. For example, to match on
three values, in this case the tag ‘foobar’ and a prefix-length
between /10 and /24, the following could be used:

query = {
 'operator': 'and',
 'val1': {
 'operator': 'and',
 'val1': {
 'operator': 'greater',
 'val1': 'prefix_length',
 'val2': 9
 },
 'val2': {
 'operator': 'less_or_equal',
 'val1': 'prefix_length',
 'val2': 24
 }
 },
 'val2': {
 'operator': 'equals_any',
 'val1': 'tags',
 'val2': 'foobar'
 }
}

The options argument provides a way to alter the search result to
assist in client implementations. Most options regard parent and
children prefixes, that is the prefixes which contain the prefix(es)
matching the search terms (parents) or the prefixes which are
contained by the prefix(es) matching the search terms. The search
options can also be used to limit the number of rows returned.

	The following options are available:

	
	parents_depth - How many levels of parents to return. Set to -1 to include all parents.

	children_depth - How many levels of children to return. Set to -1 to include all children.

	include_all_parents - Include all parents, no matter what depth is specified.

	include_all_children - Include all children, no matter what depth is specified.

	max_result - The maximum number of prefixes to return (default 50).

	offset - Offset the result list this many prefixes (default 0).

The options above gives the possibility to specify how many levels
of parent and child prefixes to return in addition to the prefixes
that actually matched the search terms. This is done by setting the
parents_depth and children depth keys in the
search_options dict to an integer value. In addition to this it
is possible to get all all parents and/or children included in the
result set even though they are outside the limits set with
*_depth. The extra prefixes included will have the
attribute display set to false while the other ones
(the actual search result togther with the ones included due to
given depth) display set to true. This feature is
usable obtain search results with some context given around them,
useful for example when displaying prefixes in a tree without the
need to implement client side IP address logic.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.search_prefix() for full
understanding.

	
search_tag(auth, query, search_options=None)

	Search Tags for entries matching ‘query’

	
	auth [BaseAuth]

	AAA options.

	
	query [dict_to_sql]

	How the search should be performed.

	
	search_options [options_dict]

	Search options, see below.

Returns a list of dicts.

The query argument passed to this function is designed to be
able to specify how quite advanced search operations should be
performed in a generic format. It is internally expanded to a SQL
WHERE-clause.

The query is a dict with three elements, where one specifies the
operation to perform and the two other specifies its arguments. The
arguments can themselves be query dicts, to build more complex
queries.

The operator key specifies what operator should be used for the
comparison. Currently the following operators are supported:

	and - Logical AND

	or - Logical OR

	equals - Equality; =

	not_equals - Inequality; !=

	like - SQL LIKE

	regex_match - Regular expression match

	regex_not_match - Regular expression not match

The val1 and val2 keys specifies the values which are subjected
to the comparison. val1 can be either any prefix attribute or an
entire query dict. val2 can be either the value you want to
compare the prefix attribute to, or an entire query dict.

The search options can also be used to limit the number of rows
returned or set an offset for the result.

	The following options are available:

	
	max_result - The maximum number of prefixes to return (default 50).

	offset - Offset the result list this many prefixes (default 0).

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.search_asn() for full
understanding.

	
search_vrf(auth, query, search_options=None)

	Search VRF list for VRFs matching query.

	
	auth [BaseAuth]

	AAA options.

	
	query [dict_to_sql]

	How the search should be performed.

	
	search_options [options_dict]

	Search options, see below.

Returns a list of dicts.

The query argument passed to this function is designed to be
able to specify how quite advanced search operations should be
performed in a generic format. It is internally expanded to a SQL
WHERE-clause.

The query is a dict with three elements, where one specifies the
operation to perform and the two other specifies its arguments. The
arguments can themselves be query dicts, to build more complex
queries.

The operator key specifies what operator should be used for the
comparison. Currently the following operators are supported:

	and - Logical AND

	or - Logical OR

	equals - Equality; =

	not_equals - Inequality; !=

	like - SQL LIKE

	regex_match - Regular expression match

	regex_not_match - Regular expression not match

The val1 and val2 keys specifies the values which are subjected
to the comparison. val1 can be either any prefix attribute or an
entire query dict. val2 can be either the value you want to
compare the prefix attribute to, or an entire query dict.

Example 1 - Find the VRF whose VRF match ‘65000:123’:

query = {
 'operator': 'equals',
 'val1': 'vrf',
 'val2': '65000:123'
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM vrf WHERE vrf = '65000:123'

Example 2 - Find vrf whose name or description regex matches ‘test’:

query = {
 'operator': 'or',
 'val1': {
 'operator': 'regex_match',
 'val1': 'name',
 'val2': 'test'
 },
 'val2': {
 'operator': 'regex_match',
 'val1': 'description',
 'val2': 'test'
 }
}

This will be expanded to the pseudo-SQL query:

SELECT * FROM vrf WHERE name ~* 'test' OR description ~* 'test'

The search options can also be used to limit the number of rows
returned or set an offset for the result.

	The following options are available:

	
	max_result - The maximum number of prefixes to return (default 50).

	offset - Offset the result list this many prefixes (default 0).

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.search_vrf() for full
understanding.

	
smart_search_asn(auth, query_str, search_options=None, extra_query=None)

	Perform a smart search operation among AS numbers

	
	auth [BaseAuth]

	AAA options.

	
	query_str [string]

	Search string

	
	search_options [options_dict]

	Search options. See search_asn().

	
	extra_query [dict_to_sql]

	Extra search terms, will be AND:ed together with what is
extracted from the query string.

	Return a dict with three elements:

	
	interpretation - How the query string was interpreted.

	search_options - Various search_options.

	result - The search result.

The interpretation is given as a list of dicts, each
explaining how a part of the search key was interpreted (ie. what
ASN attribute the search operation was performed on).

The result is a list of dicts containing the search result.

The smart search function tries to convert the query from a text
string to a query dict which is passed to the
search_asn() function. If multiple search keys are
detected, they are combined with a logical AND.

See the search_asn() function for an explanation of the
search_options argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.smart_search_asn() for full
understanding.

	
smart_search_pool(auth, query_str, search_options=None, extra_query=None)

	Perform a smart search on pool list.

	
	auth [BaseAuth]

	AAA options.

	
	query_str [string]

	Search string

	
	search_options [options_dict]

	Search options. See search_pool().

	
	extra_query [dict_to_sql]

	Extra search terms, will be AND:ed together with what is
extracted from the query string.

	Return a dict with three elements:

	
	interpretation - How the query string was interpreted.

	search_options - Various search_options.

	result - The search result.

The interpretation is given as a list of dicts, each
explaining how a part of the search key was interpreted (ie. what
pool attribute the search operation was performed on).

The result is a list of dicts containing the search result.

The smart search function tries to convert the query from a text
string to a query dict which is passed to the
search_pool() function. If multiple search keys are
detected, they are combined with a logical AND.

It will basically just take each search term and try to match it
against the name or description column with regex match.

See the search_pool() function for an explanation of the
search_options argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.smart_search_pool() for full
understanding.

	
smart_search_prefix(auth, query_str, search_options=None, extra_query=None)

	Perform a smart search on prefix list.

	
	auth [BaseAuth]

	AAA options.

	
	query_str [string]

	Search string

	
	search_options [options_dict]

	Search options. See search_prefix().

	
	extra_query [dict_to_sql]

	Extra search terms, will be AND:ed together with what is
extracted from the query string.

	Return a dict with three elements:

	
	interpretation - How the query string was interpreted.

	search_options - Various search_options.

	result - The search result.

The interpretation is given as a list of dicts, each
explaining how a part of the search key was interpreted (ie. what
prefix attribute the search operation was performed on).

The result is a list of dicts containing the search result.

The smart search function tries to convert the query from a text
string to a query dict which is passed to the
search_prefix() function. If multiple search keys are
detected, they are combined with a logical AND.

It tries to automatically detect IP addresses and prefixes and put
these into the query dict with “contains_within” operators and so
forth.

See the search_prefix() function for an explanation of the
search_options argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.smart_search_prefix() for full
understanding.

	
smart_search_vrf(auth, query_str, search_options=None, extra_query=None)

	Perform a smart search on VRF list.

	
	auth [BaseAuth]

	AAA options.

	
	query_str [string]

	Search string

	
	search_options [options_dict]

	Search options. See search_vrf().

	
	extra_query [dict_to_sql]

	Extra search terms, will be AND:ed together with what is
extracted from the query string.

	Return a dict with three elements:

	
	interpretation - How the query string was interpreted.

	search_options - Various search_options.

	result - The search result.

The interpretation is given as a list of dicts, each
explaining how a part of the search key was interpreted (ie. what
VRF attribute the search operation was performed on).

The result is a list of dicts containing the search result.

The smart search function tries to convert the query from a text
string to a query dict which is passed to the
search_vrf() function. If multiple search keys are
detected, they are combined with a logical AND.

It will basically just take each search term and try to match it
against the name or description column with regex match or the VRF
column with an exact match.

See the search_vrf() function for an explanation of the
search_options argument.

This is the documentation of the internal backend function. It’s
exposed over XML-RPC, please also see the XML-RPC documentation for
nipap.xmlrpc.NipapXMLRPC.smart_search_vrf() for full
understanding.

	
nipap.backend.requires_rw(f)

	Adds readwrite authorization

This will check if the user is a readonly user and if so reject the
query. Apply this decorator to readwrite functions.

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NIPAP 1.0 documentation

pynipap - a Python NIPAP client library

pynipap is a Python client library for the NIPAP IP address planning
system. It is structured as a simple ORM.
To make it easy to maintain it’s quite “thin”, passing many arguments
straight through to the backend. Thus, also the pynipap-specific
documentation is quite thin. For in-depth information please look at the
main NIPAP API documentation.

There are four ORM-classes:

	VRF

	Pool

	Prefix

	Tag

Each of these maps to the NIPAP objects with the same name. See the main
NIPAP API documentation for an overview of the
different object types and what they are used for.

There are also a few supporting classes:

	AuthOptions - Authentication options.

And a bunch of exceptions:

	NipapError

	NipapNonExistentError

	NipapInputError

	NipapMissingInputError

	NipapExtraneousInputError

	NipapNoSuchOperatorError

	NipapValueError

	NipapDuplicateError

	NipapAuthError

	NipapAuthenticationError

	NipapAuthorizationError

General usage

pynipap has been designed to be simple to use.

Preparations

Make sure that pynipap is accessible in your sys.path, you can test it by
starting a python shell and running:

import pynipap

If that works, you are good to go!

To simplify your code slightly, you can import the individual classes into
your main namespace:

import pynipap
from pynipap import VRF, Pool, Prefix

Before you can access NIPAP you need to specify the URL to the NIPAP
XML-RPC service and the authentication options to use for your connection.
NIPAP has a authentication system which is somewhat involved, see the main
NIPAP documentation.

The URL, including the user credentials, is set in the pynipap module
variable xmlrpc_uri as so:

pynipap.xmlrpc_uri = "http://user:pass@127.0.0.1:1337/XMLRPC"

If you want to access the API externally, from another host, update the
corresponding lines in the nipap.conf file. Here you can also change the port.

listen = 0.0.0.0 ; IP address to listen on.
port = 1337 ; XML-RPC listen port (change requires restart)

The minimum authentication options which we need to set is the
authoritative_source option, which specifies what system is accessing
NIPAP. This is logged for each query which alters the NIPAP database and
attached to each prefix which is created or edited. Well-behaved clients
are required to honor this and verify that the user really want to alter
the prefix, when trying to edit a prefix which last was edited by another
system. The AuthOptions class is a class with a shared state,
similar to a singleton class; that is, when a first instance is created
each consecutive instances will be copies of the first one. In this way the
authentication options can be accessed from all of the pynipap classes.

a = AuthOptions({
 'authoritative_source': 'my_fancy_nipap_client'
 })

After this, we are good to go!

Accessing data

To fetch data from NIPAP, a set of static methods (@classmethod) has been
defined in each of the ORM classes. They are:

	get() - Get a single object from its ID.

	list() - List objects matching a simple criteria.

	search() - Perform a full-blown search.

	smart_search() - Perform a magic search from a string.

Each of these functions return either an instance of the requested class
(VRF, Pool, Prefix) or a list of
instances. The search() and smart_search() functions also
embeds the lists in dicts which contain search meta data.

The easiest way to get data out of NIPAP is to use the get()-method,
given that you know the ID of the object you want to fetch:

Fetch VRF with ID 1 and print its name
vrf = VRF.get(1)
print(vrf.name)

To list all objects each object has a list()-function.

list all pools
pools = Pool.list()

print the name of the pools
for p in pools:
 print(p.name)

Each of the list functions can also take a spec-dict as a second
argument. With the spec you can perform a simple search operation by
specifying object attribute values.

List pools with a default type of 'assignment'
pools = Pool.list({ 'default_type': 'assignment' })

Performing searches

Searches are easiest when using the object’s smart_search()-method:

#Returns a dict which includes search metadata and
#a 'result' : [array, of, prefix, objects]
search_result = Prefix.smart_search('127.0.0.0/8')
prefix_objects = search_result['result']
prefix_objects[0].description
prefix_objects[0].prefix

You can also send query filters.

#Find the prefix for Vlan 901
vlan = 901
vlan_query = { 'val1': 'vlan', 'operator': 'equals', 'val2': vlan }
vlan_901 = Prefix.smart_search('', { }, vlan_query)['result'][0]
vlan_901.vlan

The following operators can be used.

* 'and'
* 'or'
* 'equals_any'
* '='
* 'equals'
* '<'
* 'less'
* '<='
* 'less_or_equal'
* '>'
* 'greater'
* '>='
* 'greater_or_equal'
* 'is'
* 'is_not'
* '!='
* 'not_equals'
* 'like': '
* 'regex_match'
* 'regex_not_match'
* '>>':
* 'contains'
* '>>='
* 'contains_equals'
* '<<'
* 'contained_within'
* '<<='
* 'contained_within_equals'

Saving changes

Changes made to objects are not automatically saved. To save the changes,
simply run the object’s save()-method:

vrf.name = "Spam spam spam"
vrf.save()

Error handling

As is customary in Python applications, an error results in an exception
being thrown. All pynipap exceptions extend the main exception
NipapError. A goal with the pynipap library has been to make the
XML-RPC-channel to the backend as transparent as possible, so the XML-RPC
Faults which the NIPAP server returns in case of errors are converted and
re-thrown as new exceptions which also they extend NipapError,
for example the NipapDuplicateError which is thrown when a duplicate key
error occurs in NIPAP.

Classes

	
class pynipap.AuthOptions(options=None)

	A global-ish authentication option container.

Note that this essentially is a global variable. If you handle multiple
queries from different users, you need to make sure that the
AuthOptions-instances are set to the current user’s.

	
exception pynipap.NipapAuthError

	General NIPAP AAA error

	
exception pynipap.NipapAuthenticationError

	Authentication failed.

	
exception pynipap.NipapAuthorizationError

	Authorization failed.

	
exception pynipap.NipapDuplicateError

	A duplicate entry was encountered

	
exception pynipap.NipapError

	A generic NIPAP model exception.

All errors thrown from the NIPAP model extends this exception.

	
exception pynipap.NipapExtraneousInputError

	Extraneous input

Most input is passed in dicts, this could mean an unknown key in a dict.

	
exception pynipap.NipapInputError

	Something wrong with the input we received

A general case.

	
exception pynipap.NipapMissingInputError

	Missing input

Most input is passed in dicts, this could mean a missing key in a dict.

	
exception pynipap.NipapNoSuchOperatorError

	A non existent operator was specified.

	
exception pynipap.NipapNonExistentError

	Thrown when something can not be found.

For example when a given ID can not be found in the NIPAP database.

	
exception pynipap.NipapValueError

	Something wrong with a value we have

For example, trying to send an integer when an IP address is expected.

	
class pynipap.Pool

	An address pool.

	
classmethod from_dict(parm, pool=None)

	Create new Pool-object from dict.

Suitable for creating objects from XML-RPC data.
All available keys must exist.

	
classmethod get(id)

	Get the pool with id ‘id’.

	
classmethod list(spec=None)

	List pools.

Maps to the function nipap.backend.Nipap.list_pool() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
remove()

	Remove pool.

Maps to the function nipap.backend.Nipap.remove_pool() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
save()

	Save changes made to pool to NIPAP.

If the object represents a new pool unknown to NIPAP (attribute
id is None) this function maps to the function
nipap.backend.Nipap.add_pool() in the backend, used to
create a new pool. Otherwise it maps to the function
nipap.backend.Nipap.edit_pool() in the backend, used to
modify the pool. Please see the documentation for the backend
functions for information regarding input arguments and return
values.

	
classmethod search(query, search_opts=None)

	Search pools.

Maps to the function nipap.backend.Nipap.search_pool() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
classmethod smart_search(query_string, search_options=None, extra_query=None)

	Perform a smart pool search.

Maps to the function
nipap.backend.Nipap.smart_search_pool() in the backend.
Please see the documentation for the backend function for
information regarding input arguments and return values.

	
class pynipap.Prefix

	A prefix.

	
classmethod find_free(vrf, args)

	Finds a free prefix.

Maps to the function
nipap.backend.Nipap.find_free_prefix() in the backend.
Please see the documentation for the backend function for
information regarding input arguments and return values.

	
classmethod from_dict(pref, prefix=None)

	Create a Prefix object from a dict.

Suitable for creating Prefix objects from XML-RPC input.

	
classmethod get(id)

	Get the prefix with id ‘id’.

	
classmethod list(spec=None)

	List prefixes.

Maps to the function nipap.backend.Nipap.list_prefix() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
remove(recursive=False)

	Remove the prefix.

Maps to the function nipap.backend.Nipap.remove_prefix()
in the backend. Please see the documentation for the backend
function for information regarding input arguments and return
values.

	
save(args=None)

	Save prefix to NIPAP.

If the object represents a new prefix unknown to NIPAP (attribute
id is None) this function maps to the function
nipap.backend.Nipap.add_prefix() in the backend, used to
create a new prefix. Otherwise it maps to the function
nipap.backend.Nipap.edit_prefix() in the backend, used to
modify the VRF. Please see the documentation for the backend
functions for information regarding input arguments and return
values.

	
classmethod search(query, search_opts=None)

	Search for prefixes.

Maps to the function nipap.backend.Nipap.search_prefix()
in the backend. Please see the documentation for the backend
function for information regarding input arguments and return
values.

	
classmethod smart_search(query_string, search_options=None, extra_query=None)

	Perform a smart prefix search.

Maps to the function
nipap.backend.Nipap.smart_search_prefix() in the backend.
Please see the documentation for the backend function for
information regarding input arguments and return values.

	
class pynipap.Pynipap(id=None)

	A base class for the pynipap model classes.

All Pynipap classes which maps to data in NIPAP (VRF,
Pool, Prefix) extends this class.

	
id = None

	Internal database ID of object.

	
class pynipap.Tag(id=None)

	A Tag.

	
classmethod from_dict(tag=None)

	Create new Tag-object from dict.

Suitable for creating objects from XML-RPC data.
All available keys must exist.

	
name = None

	The Tag name

	
classmethod search(query, search_opts=None)

	Search tags.

For more information, see the backend function
nipap.backend.Nipap.search_tag().

	
class pynipap.VRF

	A VRF.

	
description = None

	VRF description, as a string.

	
free_addresses_v4 = None

	Number of free IPv4 addresses in this VRF

	
free_addresses_v6 = None

	Number of free IPv6 addresses in this VRF

	
classmethod from_dict(parm, vrf=None)

	Create new VRF-object from dict.

Suitable for creating objects from XML-RPC data.
All available keys must exist.

	
classmethod get(id)

	Get the VRF with id ‘id’.

	
classmethod list(vrf=None)

	List VRFs.

Maps to the function nipap.backend.Nipap.list_vrf() in the
backend. Please see the documentation for the backend function for
information regarding input arguments and return values.

	
name = None

	The name of the VRF, as a string.

	
num_prefixes_v4 = None

	Number of IPv4 prefixes in this VRF

	
num_prefixes_v6 = None

	Number of IPv6 prefixes in this VRF

	
remove()

	Remove VRF.

Maps to the function nipap.backend.Nipap.remove_vrf() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
rt = None

	The VRF RT, as a string (x:y or x.x.x.x:y).

	
save()

	Save changes made to object to NIPAP.

If the object represents a new VRF unknown to NIPAP (attribute id
is None) this function maps to the function
nipap.backend.Nipap.add_vrf() in the backend, used to
create a new VRF. Otherwise it maps to the function
nipap.backend.Nipap.edit_vrf() in the backend, used to
modify the VRF. Please see the documentation for the backend
functions for information regarding input arguments and return
values.

	
classmethod search(query, search_opts=None)

	Search VRFs.

Maps to the function nipap.backend.Nipap.search_vrf() in
the backend. Please see the documentation for the backend function
for information regarding input arguments and return values.

	
classmethod smart_search(query_string, search_options=None, extra_query=None)

	Perform a smart VRF search.

Maps to the function
nipap.backend.Nipap.smart_search_vrf() in the backend.
Please see the documentation for the backend function for
information regarding input arguments and return values.

	
total_addresses_v4 = None

	Total number of IPv4 addresses in this VRF

	
total_addresses_v6 = None

	Total number of IPv6 addresses in this VRF

	
used_addresses_v4 = None

	Number of used IPv4 addresses in this VRF

	
used_addresses_v6 = None

	Number of used IPv6 addresses in this VRF

	
class pynipap.XMLRPCConnection

	Handles a shared XML-RPC connection.

	
pynipap.nipap_db_version()

	Get schema version of database we’re connected to.

Maps to the function nipap.backend.Nipap._get_db_version() in
the backend. Please see the documentation for the backend function for
information regarding the return value.

	
pynipap.nipapd_version()

	Get version of nipapd we’re connected to.

Maps to the function nipap.xmlrpc.NipapXMLRPC.version() in the
XML-RPC API. Please see the documentation for the XML-RPC function for
information regarding the return value.

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NIPAP 1.0 documentation

NIPAP XML-RPC

This module contains the actual functions presented over the XML-RPC API. All
functions are quite thin and mostly wrap around the functionality provided by
the backend module.

	
class nipap.xmlrpc.NipapXMLRPC

	NIPAP XML-RPC API

	
add_asn(*args, **kwargs)

	Add a new ASN.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	attr [struct]

	ASN attributes.

Returns the ASN.

	
add_pool(*args, **kwargs)

	Add a pool.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	attr [struct]

	Attributes which will be set on the new pool.

Returns ID of created pool.

	
add_prefix(*args, **kwargs)

	Add a prefix.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	attr [struct]

	Attributes to set on the new prefix.

	
	args [srgs]

	Arguments for addition of prefix, such as what pool or prefix
it should be allocated from.

Returns ID of created prefix.

	
add_vrf(*args, **kwargs)

	Add a new VRF.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	attr [struct]

	VRF attributes.

Returns the internal database ID for the VRF.

	
db_version(*args, **kwargs)

	Returns schema version of nipap psql db

Returns a string.

	
echo(*args, **kwargs)

	An echo function

An API test function which simply echoes what is is passed in the
‘message’ element in the args-dict..

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	message [string]

	String to echo.

	
	sleep [integer]

	Number of seconds to sleep before echoing.

Returns a string.

	
edit_asn(*args, **kwargs)

	Edit an ASN.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	asn [integer]

	An integer specifying which ASN to edit.

	
	attr [struct]

	ASN attributes.

	
edit_pool(*args, **kwargs)

	Edit pool.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	pool [struct]

	Specifies pool attributes to match.

	
	attr [struct]

	Pool attributes to set.

	
edit_prefix(*args, **kwargs)

	Edit prefix.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	prefix [struct]

	Prefix attributes which describes what prefix(es) to edit.

	
	attr [struct]

	Attribuets to set on the new prefix.

	
edit_vrf(*args, **kwargs)

	Edit a VRF.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	vrf [struct]

	A VRF spec specifying which VRF(s) to edit.

	
	attr [struct]

	VRF attributes.

	
find_free_prefix(*args, **kwargs)

	Find a free prefix.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	args [struct]

	Arguments for the find_free_prefix-function such as what prefix
or pool to allocate from.

	
list_asn(*args, **kwargs)

	List ASNs.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	asn [struct]

	Specifies ASN attributes to match (optional).

Returns a list of ASNs matching the ASN spec as a list of structs.

	
list_pool(*args, **kwargs)

	List pools.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	pool [struct]

	Specifies pool attributes which will be matched.

Returns a list of structs describing the matching pools.

	
list_prefix(*args, **kwargs)

	List prefixes.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	prefix [struct]

	Prefix attributes to match.

Returns a list of structs describing the matching prefixes.

Certain values are casted from numbers to strings because XML-RPC
simply cannot handle anything bigger than an integer.

	
list_vrf(*args, **kwargs)

	List VRFs.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	vrf [struct]

	Specifies VRF attributes to match (optional).

Returns a list of structs matching the VRF spec.

	
remove_asn(*args, **kwargs)

	Removes an ASN.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	asn [integer]

	An ASN.

	
remove_pool(*args, **kwargs)

	Remove a pool.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	pool [struct]

	Specifies what pool(s) to remove.

	
remove_prefix(*args, **kwargs)

	Remove a prefix.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	prefix [struct]

	Attributes used to select what prefix to remove.

	
remove_vrf(*args, **kwargs)

	Removes a VRF.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	vrf [struct]

	A VRF spec.

	
search_asn(*args, **kwargs)

	Search ASNs.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query [struct]

	A struct specifying the search query.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result and the search options
used.

	
search_pool(*args, **kwargs)

	Search for pools.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query [struct]

	A struct specifying the search query.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result and the search options
used.

	
search_prefix(*args, **kwargs)

	Search for prefixes.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query [struct]

	A struct specifying the search query.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing the search result together with the
search options used.

Certain values are casted from numbers to strings because XML-RPC
simply cannot handle anything bigger than an integer.

	
search_vrf(*args, **kwargs)

	Search for VRFs.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query [struct]

	A struct specifying the search query.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result and the search options
used.

	
smart_search_asn(*args, **kwargs)

	Perform a smart search among ASNs.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query_string [string]

	The search string.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result, interpretation of the
search string and the search options used.

	
smart_search_pool(*args, **kwargs)

	Perform a smart search.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query [string]

	The search string.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result, interpretation of the
query string and the search options used.

	
smart_search_prefix(*args, **kwargs)

	Perform a smart search.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query_string [string]

	The search string.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

	
	extra_query [struct]

	Extra search terms, will be AND:ed together with what is
extracted from the query string.

Returns a struct containing search result, interpretation of the
query string and the search options used.

Certain values are casted from numbers to strings because XML-RPC
simply cannot handle anything bigger than an integer.

	
smart_search_vrf(*args, **kwargs)

	Perform a smart search.

Valid keys in the args-struct:

	
	auth [struct]

	Authentication options passed to the AuthFactory.

	
	query_string [string]

	The search string.

	
	search_options [struct]

	Options for the search query, such as limiting the number
of results returned.

Returns a struct containing search result, interpretation of the
search string and the search options used.

	
version(*args, **kwargs)

	Returns nipapd version

Returns a string.

	
nipap.xmlrpc.authenticate()

	Sends a 401 response that enables basic auth

	
nipap.xmlrpc.requires_auth(f)

	Class decorator for XML-RPC functions that requires auth

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	NIPAP 1.0 documentation

Authentication library

A base authentication & authorization module.

Includes the base class BaseAuth.

Authentication and authorization in NIPAP

NIPAP offers basic authentication with two different backends, a simple
two-level authorization model and a trust-system for simplifying system
integration.

Readonly users are only authorized to run queries which do not modify any
data in the database. No further granularity of access control is offered at
this point.

Trusted users can perform operations which will be logged as performed by
another user. This feature is meant for system integration, for example to
be used by a NIPAP client which have its own means of authentication users;
say for example a web application supporting the NTLM single sign-on
feature. By letting the web application use a trusted account to
authenticate against the NIPAP service, it can specify the username of the
end-user, so that audit logs will be written with the correct information.
Without the trusted-bit, all queries performed by end-users through this
system would look like they were performed by the system itself.

The NIPAP auth system also has a concept of authoritative source. The
authoritative source is a string which simply defines what system is the
authoritative source of data for a prefix. Well-behaved clients SHOULD
present a warning to the user when trying to alter a prefix with an
authoritative source different than the system itself, as other system might
depend on the information being unchanged. This is however, by no means
enforced by the NIPAP service.

Authentication backends

Two authentication backends are shipped with NIPAP:

	LdapAuth - authenticates users against an LDAP server

	SqliteAuth - authenticates users against a local SQLite-database

The authentication classes presented here are used both in the NIPAP web UI
and in the XML-RPC backend. So far only the SqliteAuth backend supports
trusted and readonly users.

What authentication backend to use can be specified by suffixing the
username with @`backend`, where backend is set in the configuration file.
If not defined, a (configurable) default backend is used.

Authentication options

With each NIPAP query authentication options can be specified. The
authentication options are passed as a dict with the following keys taken
into account:

	authoritative_source - Authoritative source for the query.

	username - Username to impersonate, requires authentication as trusted user.

	full_name - Full name of impersonated user.

	readonly - True for read-only users

Classes

	
exception nipap.authlib.AuthError

	General auth exception.

	
class nipap.authlib.AuthFactory

	An factory for authentication backends.

	
get_auth(username, password, authoritative_source, auth_options=None)

	Returns an authentication object.

Examines the auth backend given after the ‘@’ in the username and
returns a suitable instance of a subclass of the BaseAuth class.

	
	username [string]

	Username to authenticate as.

	
	password [string]

	Password to authenticate with.

	
	authoritative_source [string]

	Authoritative source of the query.

	
	auth_options [dict]

	A dict which, if authenticated as a trusted user, can override
username and authoritative_source.

	
reload()

	Reload AuthFactory.

	
exception nipap.authlib.AuthSqliteError

	Problem with the Sqlite database

	
exception nipap.authlib.AuthenticationFailed

	Authentication failed.

	
exception nipap.authlib.AuthorizationFailed

	Authorization failed.

	
class nipap.authlib.BaseAuth(username, password, authoritative_source, auth_backend, auth_options=None)

	A base authentication class.

All authentication modules should extend this class.

	
authenticate()

	Verify authentication.

Returns True/False dependant on whether the authentication
succeeded or not.

	
authorize()

	Verify authorization.

Check if a user is authorized to perform a specific operation.

	
class nipap.authlib.LdapAuth(name, username, password, authoritative_source, auth_options=None)

	An authentication and authorization class for LDAP auth.

	
authenticate()

	Verify authentication.

Returns True/False dependant on whether the authentication
succeeded or not.

	
class nipap.authlib.SqliteAuth(name, username, password, authoritative_source, auth_options=None)

	An authentication and authorization class for local auth.

	
add_user(username, password, full_name=None, trusted=False, readonly=False)

	Add user to SQLite database.

	
	username [string]

	Username of new user.

	
	password [string]

	Password of new user.

	
	full_name [string]

	Full name of new user.

	
	trusted [boolean]

	Whether the new user should be trusted or not.

	
	readonly [boolean]

	Whether the new user can only read or not

	
authenticate()

	Verify authentication.

Returns True/False dependant on whether the authentication
succeeded or not.

	
get_user(username)

	Fetch the user from the database

The function will return None if the user is not found

	
list_users()

	List all users.

	
modify_user(username, data)

	Modify user in SQLite database.

Since username is used as primary key and we only have a single
argument for it we can’t modify the username right now.

	
remove_user(username)

	Remove user from the SQLite database.

	
	username [string]

	Username of user to remove.

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	NIPAP 1.0 documentation

NIPAP release handling

This document tries to describe most aspects of the release handling of NIPAP.

Packaging

NIPAP is packaged into a number of packages. There is the backend parts in form
of the NIPAP XML-RPC daemon (hereinafter referred to as nipapd) that is just
the actual daemon. Since it depends on PostgreSQL it has its own package while
most of its actual code lies in the shared ‘nipap’ Python module which is
packaged into nipap-common. The same Python module is used by the web frontend
and it is for this reason it is packaged into the nipap-common package. nipapd
and nipap-common share a common source directory (nipap) and thus also share
version number.

The client library/module in pynipap is packaged into a package with the same
name and has its own version number, ie it is not correlated in any way with
the version of the backend parts.

Version numbering

Version numbering of NIPAP is in the form of major.minor.patch. Major releases
are milestones for when a number of large improvements have been implemented
and are stable while minor releases will increment for most new features. Patch
releases will only include smaller bug fixes or other similarily small changes.

Major releases should generally be released after a number of features have
proven to be stable and fairly bug free. For example, we are at 1.0.0. A couple
of features are implemented over a period of time and for each, a new minor
version is released so we are now at 1.7.0. After some time in production and
seeing that these features behave as expect it, version 2.0.0 can be released
as a “trusted release” with basically the same feature set as 1.7.0 but now
marked as a stable and major version.

This implies that major version can be trusted, while the risk for bugs are
higher in minor versions and again smaller with patch releases.

Debian repository

The repo itself is hosted by GitHub through their support for building a
webpage via the branch gh-pages, please see http://help.github.com/pages/ for
more information on that.

The Makefile includes a two targets (debrepo-testing & debrepo-stable) to build
the necessary files for a debian repo and put this in the correct place. As
soon as a commit is pushed, github will copy the files and produce a webpage
accessible via http://<github user>.github.com/<project name> (ie
http://spritelink.github.com/NIPAP). We use this to build a simple apt
repository hosted on GitHub.

To update the apt repo, build the debian packages, then run ‘make
debrepo-testing’ in the project root. This will put the packages in the testing
repo. Commit to the gh-pages branch and then push and it should all work! :)
Once a version is considered stable, run ‘make debrepo-stable’ to copy the
packages from the testing branch into stable. Again, commit to gh-pages and so
forth. Please see “Rolling the deb repo” section for more details.

NEWS / Changelog

There is a NEWS file outlining the differences with every version. It can
either be updated as changes are made or just before a new release is rolled by
going through the git log since the last version and making sure everything
worth mentioning is in the NEWS file.

Note how a NEWS file is usually used to document changes between versions of a
package while a Changelog file is used to convey information about changes
between commits. The Debian changelog included with packages normally do not
follow this “changelog principle” but rather they are usually used to document
changes to the actual packaging or to patches and changes made by the
maintainer of a package.

As documented on http://www.debian.org/doc/debian-policy/footnotes.html#f16, it
is under certain circumstances perfectly fine to essentially have the same file
as Debian changelog and the project “changelog” (or NEWS file as is more correct).
One such instance is when the Debian package closely follows the project, as is
the case with NIPAP. Thus, the NEWS file will be very similar to the Debian
changelog.

Debian style package managers are able to fetch the Debian changelog file from
repositories and can thus display the changes between versions before
installing a package.

Build prerequisites

Install the following debian packages:

apt-get install debhelper python-docutils python-setuptools python3-all \
 python3-docutils python3-setuptools reprepro

Rolling a new version

Update the NEWS file as described above.

If you have changes to the database, don’t forget to increment the version
number in sql/ip_net.sql.

	From the project root, run::

	make bumpversion

This will automatically update the debian changelog based on the content of the
NEWS file. You can bump the version for a single component (such as pynipap) by
running the same command in the directory of that component.

After having built packages for the new version, tag the git repo with the new
version number:

git tag vX.Y.Z

	And for pushing to git::

	git push origin refs/tags/vX.Y.Z

Rolling the deb repo

Debian stable is the primary production platform targeted by NIPAP and new
releases should be put in our Debian repo.

To update the deb repo, make sure you are on branch ‘master’ and then build the
bebian packages with:

make builddeb

	Then checkout the ‘gh-pages’ branch and add them to the repo::

	git checkout gh-pages

	Start by adding the packages the testing repo::

	make debrepo-testing

Once the new version has been tested out for a bit, it is time to copy it to
stable, using:

make debrepo-stable

Regardless if you are putting the packages in testing or stable, you need to
actually push them to the github repo. Make sure the new files are added to
git, commit and push:

git add --all repos
git commit -a -m "Add nipapd vX.Y.Z to debian STABLE|TESTING repo"
git push

Once a stable version is release, update readthedocs.org to point to the latest
tag and write a post on Google+ in the NIPAP community and share it from the
NIPAP account.

Uploading to PyPi

	pynipap should be available on PyPi::

	cd pynipap
python setup.py sdist upload

Manually rolling a new version

You probably don’t want to roll a new release manually but this might help in
understanding what happens behind the scenes.

The different packages are first built as Python easy_install / distutils
packages which are later mangled into a debian package. To roll a new version
there are thus two places that need updating; the first is where easy_install
gets its version number. You can look into setup.py and see the version line
and which file & variable it refers too.

See the following files for version info:
nipap/nipap/__init__.py
pynipap/pynipap.py
nipap-cli/nipap_cli/__init__.py
nipap-www/nipapwww/__init__.py

To roll a new release, update the Python file with the new version number
according to the above instructions. After that, run ‘dch -v <version>’, where
version is the version number previously entered into the Python file postfixed
with -1. Ie, if you want to release 1.0.0, set that in the Python file and use
1.0.0-1 for dch. The -1 is the version of the debian package for non-native
packages. Non-native packages are all packages that are not exlusively packaged
for debian. If you want to release a new debian release, for example if you
made changes to the actual packaging but not the source of the project, just
increment the -x number.

When dch launches an editor for editing the changelog. Copy the content of the
NEWS file into the Debian changelog (see previous chapten “NEWS / Changelog”
for more information). Make sure the formatting aligns and save the file.

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	NIPAP 1.0 documentation

 Python Module Index

 n |
 p

 			

 		
 n	

 	[image: -]
 	
 nipap	

 	
 	
 nipap.authlib	

 	
 	
 nipap.backend	

 	
 	
 nipap.xmlrpc	

 			

 		
 p	

 	
 	
 pynipap	

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	NIPAP 1.0 documentation

Index

 A
 | B
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	

 	add_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	add_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	add_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	add_user() (nipap.authlib.SqliteAuth method)

 	add_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	authenticate() (in module nipap.xmlrpc)

 	

 	(nipap.authlib.BaseAuth method)

 	(nipap.authlib.LdapAuth method)

 	(nipap.authlib.SqliteAuth method)

 	AuthenticationFailed

 	

 	AuthError

 	AuthFactory (class in nipap.authlib)

 	AuthOptions (class in pynipap)

 	AuthorizationFailed

 	authorize() (nipap.authlib.BaseAuth method)

 	AuthSqliteError

B

 	

 	BaseAuth (class in nipap.authlib)

D

 	

 	db_version() (nipap.xmlrpc.NipapXMLRPC method)

 	

 	description (pynipap.VRF attribute)

E

 	

 	echo() (nipap.xmlrpc.NipapXMLRPC method)

 	edit_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	edit_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	

 	edit_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	edit_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

F

 	

 	find_free() (pynipap.Prefix class method)

 	find_free_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	free_addresses_v4 (pynipap.VRF attribute)

 	

 	free_addresses_v6 (pynipap.VRF attribute)

 	from_dict() (pynipap.Pool class method)

 	

 	(pynipap.Prefix class method)

 	(pynipap.Tag class method)

 	(pynipap.VRF class method)

G

 	

 	get() (pynipap.Pool class method)

 	

 	(pynipap.Prefix class method)

 	(pynipap.VRF class method)

 	get_auth() (nipap.authlib.AuthFactory method)

 	

 	get_user() (nipap.authlib.SqliteAuth method)

I

 	

 	id (pynipap.Pynipap attribute)

 	

 	Inet (class in nipap.backend)

L

 	

 	LdapAuth (class in nipap.authlib)

 	list() (pynipap.Pool class method)

 	

 	(pynipap.Prefix class method)

 	(pynipap.VRF class method)

 	list_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	list_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	

 	list_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	list_users() (nipap.authlib.SqliteAuth method)

 	list_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

M

 	

 	modify_user() (nipap.authlib.SqliteAuth method)

N

 	

 	name (pynipap.Tag attribute)

 	

 	(pynipap.VRF attribute)

 	Nipap (class in nipap.backend)

 	nipap.authlib (module)

 	nipap.backend (module)

 	nipap.xmlrpc (module)

 	nipap_db_version() (in module pynipap)

 	NipapAuthenticationError

 	NipapAuthError

 	NipapAuthorizationError

 	nipapd_version() (in module pynipap)

 	NipapDuplicateError

 	

 	NipapError

 	NipapExtraneousInputError

 	NipapInputError

 	NipapMissingInputError

 	NipapNonExistentError

 	NipapNoSuchOperatorError

 	NipapValueError

 	NipapXMLRPC (class in nipap.xmlrpc)

 	num_prefixes_v4 (pynipap.VRF attribute)

 	num_prefixes_v6 (pynipap.VRF attribute)

P

 	

 	Pool (class in pynipap)

 	Prefix (class in pynipap)

 	

 	Pynipap (class in pynipap)

 	pynipap (module)

R

 	

 	reload() (nipap.authlib.AuthFactory method)

 	remove() (pynipap.Pool method)

 	

 	(pynipap.Prefix method)

 	(pynipap.VRF method)

 	remove_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	remove_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	remove_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	

 	remove_user() (nipap.authlib.SqliteAuth method)

 	remove_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	requires_auth() (in module nipap.xmlrpc)

 	requires_rw() (in module nipap.backend)

 	rt (pynipap.VRF attribute)

S

 	

 	save() (pynipap.Pool method)

 	

 	(pynipap.Prefix method)

 	(pynipap.VRF method)

 	search() (pynipap.Pool class method)

 	

 	(pynipap.Prefix class method)

 	(pynipap.Tag class method)

 	(pynipap.VRF class method)

 	search_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	search_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	search_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	search_tag() (nipap.backend.Nipap method)

 	search_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	

 	smart_search() (pynipap.Pool class method)

 	

 	(pynipap.Prefix class method)

 	(pynipap.VRF class method)

 	smart_search_asn() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	smart_search_pool() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	smart_search_prefix() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	smart_search_vrf() (nipap.backend.Nipap method)

 	

 	(nipap.xmlrpc.NipapXMLRPC method)

 	SqliteAuth (class in nipap.authlib)

T

 	

 	Tag (class in pynipap)

 	total_addresses_v4 (pynipap.VRF attribute)

 	

 	total_addresses_v6 (pynipap.VRF attribute)

U

 	

 	used_addresses_v4 (pynipap.VRF attribute)

 	

 	used_addresses_v6 (pynipap.VRF attribute)

V

 	

 	version() (nipap.xmlrpc.NipapXMLRPC method)

 	

 	VRF (class in pynipap)

X

 	

 	XMLRPCConnection (class in pynipap)

 Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		NIPAP 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Kristian Larsson <kll@tele2.net>, Lukas Garberg <lukas@tele2.net>.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/comment.png

_static/plus.png

